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Abstract

Continuum Simulations of Multi-Cellular Tumor Spheroids using Two-phase Flow

Models

by

Dennis Manjaly Joshy

Cancer growth and invasion is a problem that has been studied for several decades,

particularly due to high mortality rates among patients. Despite this, large gaps in our

understanding of cancer remain. The traditional approach for studying cancer has been

largely from the biological perspective. But, recently, the biophysical properties of cancer

have proven to complement these traditional studies and enhance our understanding of

cancer. Are there mechanical gradients developed inside tumor aggregates? Do these

gradients represent a solid-to-fluid phase transition inside the spheroid? If so, does it af-

fect its behavior? How does the growth of the tumor aggregate affect its surface features?

If so, are these features that could initiate tumor invasion? What is the involvement of

the forces that the tumor exerts on its surroundings?

This study attempts to answer these questions by developing a simplified Stokes’ flow

model using the commercial Multiphysics package — COMSOL Multiphysics versions

(5.3) and (5.4). It begins by highlighting the relevance of mechanics in cancer and no-

table attempts to model them mathematically. The internal mechanics of the tumor and

the evolution of the spheroid contour as it grows has been discussed. We studied curva-

ture dependent active stresses normal to the spheroid surface. Growth induced surface

instabilities have also been explored. Experimental techniques that could be used to

confirm these hypotheses have been described and finally, the potential future work in

this domain has been elucidated.
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Chapter 1

Introduction

1.1 Cancer as a Dynamical System

Homeostasis is a Greek word which translates to “staying the same”. More formally,

from a biological standpoint, an organism can maintain its physiological conditions via

biophysical and biochemical pathways. An example is that of how the human body con-

trols the size of its organs. As organs are composed of tissues formed by cells arranged by

morphogenesis, the body has to actively regulate cell division and apoptosis (programmed

cell death) to maintain the correct organ size. In a living system, this is accomplished

by natural control systems, manifested in the form of many signaling cascades in which

proteins interact with each other to transmit information. The Hippo pathway is one of

the signaling cascades which is conserved in many organisms that help maintain organ

size. [1].

Cancer is a consequence of the disruption of cancer-suppressing control systems like

the Hippo Pathway [2], [3]. One effect of this disruption is the cancer cells’ ability to

acquire the unlimited potential for cell division. Studies have shown that as the tumor’s
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Introduction Chapter 1

size increases due to this, it recruits blood vessels to provide itself nutrition. This is

also accompanied by significant remodeling of its surrounding micro-environment to fa-

cilitate invasion. Several biological and biophysical transitions eventually contribute to

the tumor‘s acquisition of invasive characteristics. Today, it is known that cancer cells

show ten specific biological hallmarks that allow them to thrive and actively migrate

to a new organ site [4], [5]. The diversity of these hallmarks and the different scales

of time and length at which they function make it difficult to predict the behavior of

cancer. Finally, after having acquired these malignant traits, the cancer cells will make

their way into lymph nodes and local vasculature. From this point, they can travel to

distant organs and the process is termed as metastasis. Tumor metastasis is a compli-

cated phenomenon in human health as it is the state at which the disease becomes nearly

incurable. It has been extensively studied in many ways from a biochemical perspective;

what is lacking is a novel perspective like a mechanical approach to understanding cancer.

Due to the high incidence rates of cancer, with nearly 18.1 million new cases in the

year 2018 itself, tumor-suppressing pathways that are dysregulated and the proteins that

constitute them have been extensively studied. The motives of these studies being to

predict or to kill cancer cells or to induce cancer remission. However, large gaps in our

understanding of cancer behavior remain. In a novel attempt to fill these gaps, scientists

are currently examining a much more fundamental mode of cellular communication. This

is mechanical perturbation and the changes in the tumor and tumor micro-environmental

mechanics. Mechanical palpitation is a generally known technique used by medical prac-

titioners as a rough diagnosis to detect tumors or tissues modified by tumors. At the

cellular level, tumor cells exert and experience a myriad of mechanical stresses, both

during their avascular stage and as they metastasize. While many of them are harmful

to the cancer cells, they find ways to survive them [7]. These stresses are gradually be-

2



Introduction Chapter 1

Figure 1.1: a) A network representation of how the Hippo Pathway takes input signals
from junction proteins in addition to other extra-cellular inputs [2]. It is potentially a
mechanosensitive pathway. b) The ten hallmarks of cancer as explained in [4], which
helps cancer cells to thrive and invade. c) The five-step process by which a solid tumor
invades and leaves its primary site. The mechanical properties and instabilities formed
by the tumor during the initiation of invasion can provide novel insight into their
working [6]. d) Cancer statistics from the World Health Organization demonstrated
that cancer is among the deadliest diseases with almost a 50% mortality rate all over
the world.

ginning to be understood via emerging interdisciplinary fields like mechanobiology. The

growing interest in this area of research is further evidenced by the emergence of several

institutions specializing in physical oncology.
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Albeit, the concept of using mechanical palpitation appears rather unsophisticated,

most advanced sensors used for mechanically characterizing living tissues work on the

same principle. A force is applied to the biological system under study and its strain

or strain-rate response is recorded. This information is fit to appropriate constitutive

models.

Techniques for applying forces biological systems include Atomic Force Microscopy

(AFM), Traction Force Microscopy (TFM), hydrogel-based sensors, droplet insert tech-

niques, optical traps, etc. [8]. These techniques evolved over the past 30 years and have

helped make cogent discoveries that highlight the role of mechanics and mechanical cues

involved in morphogenesis, at both the cellular and the tissue level. However, they have

hitherto not been employed in the study of cancer invasion. The droplet insert techniques

developed in the Campàs lab is a technique that can make in-vivo measurements during

organ/aggregate development [9]. These techniques are becoming more sophisticated as

it is becoming more evident that mechanics play a crucial role in cancer progression as

explained in the next section.

1.2 The Mechanical Perspective of Cancer

Mechanical cues can affect tumors from the nuclear level to the scale of the bulk

tissues. Consider for instance the Hippo Pathway itself. The Yes-associated Protein

(YAP) and the Transcriptional Co-activator with PDZ-binding motif (TAZ) are proteins

functioning downstream of the Hippo Pathway. The translocation of these transcrip-

tional co-activators into the nucleus influences cell proliferation, which might be linked

to cancer. Dysregulation of the Hippo Pathway is observed in many types of cancers.

4
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Studies using cancer cells have shown that increasing the growth substrate’s stiffness has

increased the transcriptional activity of YAP-TAZ. [10], [11]. In addition to affecting

cell proliferation, mechanical cues can induce invasive characteristics too. Compressive

stresses of the order of 0.2- 0.25 kPa have been shown to upregulate genes that facilitate

proteolysis, which cancer cells perform to breakdown and remodel their surroundings.

Some of these include Cathespin B and PTEN [12]. This provides evidence that the

mechanics of the environment can induce changes in gene expression to the point that it

can influence tumor-suppressing pathways.

Proteins serve multiple structural and catalytic functions. They can transmit both

mechanical and chemical signals which can be critical for cancer cells. Mechanotrans-

duction is the process by which the exterior mechanical cues are translated into chemical

ones inside the cell. Such signals can profoundly impact the cell’s functioning at the

protein or genome level. For example, vinculin is a molecule that, in a force-dependent

manner, recruits and releases relevant proteins that sequester at Focal Adhesions [13],

[17]. The force transmitted via vinculin causes vinculin-binding-sites to become exposed.

It has also been demonstrated that mechanotransduction via vinculin can interfere with

the functioning of integrins. Integrins are proteins that with the help of Focal Adhesions

help to maintain the attachment of a mammalian cell to its substrate. Disruption of

integrins can be involved in Epithelial-to-Mesenchymal Transitions (EMT), which is a

well-known trait exhibited by many cancerous cells [18], [19], [20]. Cancer cells are proven

to undergo significant morphological changes as they begin invasion or metastasis. The

overall mechanical properties of a tumor cell can influence its metastatic potential. For

example, it has been demonstrated that HEY cells, which are more compliant than other

cells have relatively higher invasion levels than others. [14]. In this study, magnetic

tweezers were used to apply known forces on 2.8 µm diameter beads attached to cells

and the resultant displacements were measured.

5
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Figure 1.2: a) Fluorescence image showing that nuclear translocation of YAP-TAZ
increases with substrate stiffness. Mechanical cues from the environment might be able
to influence gene expressions [10], b) A schematic representation of the involvement
of vinculin in recruiting proteins upon activation due to an applied force [13]. c) Bar
graphs demonstrating that tumor cells demonstrating high invasion propensities (top
graph) exhibit high compliance (lower graph) [14]. d) Breast tumorigenesis increases
with substrate stiffness - implying the role of mechanics on the level of cell colonies [15].
e) Higher compressive stresses and gel concentration can lead to smaller spheroids,
indicating the influence of mechanics in 3 dimensions [16]

6
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A description of the mechanics of tumor invasion is incomplete without analyzing the

mechanical transitions experienced by the tumor micro-environment. Several theoretical

and experimental studies have concluded that the invasive potential of a tumor aggregate

increases with the stiffness of the tumor-microenvironment [21]. Breast tumorigenesis has

been shown to increase due to the stiffening of the collagen substrate using Ribose [22],

[15], [23], [24]. Tumor spheroid growth has been shown to be inhibited due to the ap-

plication of isotropic compressive stresses. These stresses have a bearing on parameters

like packing density and events like apoptosis [16]. Finally, cancer cell lines, in gels of

similar mechanical properties as its target organ during metastasis, had correlated cellu-

lar responses in terms of proliferation and migration. This provides evidence that cancer

cells can detect environmental mechanical properties and initiate unique cellular response

depending on them as they travel from their primary tumor site to secondary sites [25].

These examples demonstrate that the cancer tissue and environmental mechanical

cues influence cancer behavior at several different scales. Understanding them can greatly

complement the traditionally held biochemical perspective of cancer and perhaps in the

future offer inputs for therapeutic initiatives.

Hence, it is important to characterize cancer both theoretically and experimentally

from a mechanical perspective. To accomplish this, a suitable representative experimen-

tal model needs to be chosen. As evidenced from the literature cited previously, a wide

variety of models exist from single-cell studies to monolayer cultures and 3D aggregates

to xenograft cultures, etc. The 3D aggregates called Multi-Cultural Tumor Spheroids

(MCTS) are ideal for these experiments because they offer multiple physiologically accu-

rate biological properties, while at the same time being cost-effective and quick to culture

7
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and easy to handle and maintain.

1.3 Multi-Cellular Tumor Spheroids

Multi-Cellular Spheroids (MCS) are three-dimensional spherical cultures of cells.

When cultured using tumor cell lines, they are referred to as Multi-Cellular Tumor

Spheroids (MCTS). The primary mechanism of MCS formation is due to the forma-

tion of bonds between adjacent cells when aggregated together. As cells of a particular

cell line aggregate together, the expression of adhesion proteins like cadherin is upregu-

lated. Cadherin is the primary adhesion protein that keeps cells connected to each other.

Some studies claim that integrin expression is also altered [26], [27], [28]. When anti-E-

cadherin drugs (E-Cadherin is the type Cadherin most used by epithelial cells) are used,

compact spheroids from rat hepatocyte cells could not be obtained. [29]. Junction pro-

teins like those of the cadherin family cause the cells to stick together. The expression of

additional adhesive proteins like that of gap junctions and pannexins [30] also contribute

to the formation of spherical aggregates. Cells inside the MCTS proliferate and increase

the overall radius of the aggregate, but the adhesive strength of the junction proteins

maintains the cohesion of the entire aggregate. The radii of tumor spheroids have been

shown to increase exponentially, followed by a linear region and finally saturates to a

constant value [31], [32], [33].

MCS models of tumors and organoids became popular for multiple reasons. Firstly,

they exhibit markedly different cell-cell and cell-matrix interactions in comparison to

monolayers cultures which was the primary tool for modeling in-vivo systems. These dif-

ferent interactions effect changes in the biochemical and may also affect the bio-physical

make-up of the tumor. The effects of these unique cell-cell interactions include enhanced

8
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resistance to radiation, drugs, modulation of protein expression, etc. For example, Chi-

nese Hamster cells could resist higher doses of radiation when cultured in MCS form [34].

The inter-cellular interactions inside MCSs can also activate unique signaling pathways

that are not activated in monolayer cultures. For instance, Transcriptional Profiling

(TP) of NCI-H1650 and EBC-1 (human lung cancer) cell lines in both 2D and 3D cul-

tures have shown a marked difference in the representation of cell signaling pathways

that affect critical cell functions like the cell cycle, angiogenesis, and interleukin activa-

tion [35]. Furthermore, both elicited and influenced by these cell-cell interactions are the

formation of profound gradients in the distribution of glucose, ions, oxygen and many

other metabolites, which in turn introduce bio-chemical (figure 1.3) and potentially bio-

physical gradients inside the spheroid [36].

Figure 1.3: a) An MCF10ca1a breast cancer Multi-Cellular Tumor Spheroid (MCTS)
cultured via the hanging droplet technique. The thickness of the spheroid is evidenced
by the relatively darker regions in the center. b) The many biochemical gradients that
are established inside the MCTS [37]. c) A simplified diagram showing the levels of
proliferation of cells at different locations inside the MCTS (red represents the necrotic
core, while blue represent healthy cells)

Consequently, MCS offers a more holistic and physiologically relevant representation

of organs in-vitro [38]. Hence, the medical community has been quick to adopt them as

9
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reliable models that mimic in-vivo systems. Some of the most widely used applications

have been to study avascular tumor growth [39].

The majority of previous work on MCTS focus almost exclusively on their biological

aspects. However, as explained earlier, large gaps remain when attempting to characterize

their behavior. Multiple theoretical models are describing how aggregates grow and

invade, but a comprehensive model that explains their behavior continues to remain

elusive. Viewing spheroid growth from a mechanical property is a fresh perspective to

this age-old problem. Well-thought-out theoretical models of their mechanical behavior

will serve to guide experiments and help refine experimental hypothesis in this nascent

field which the scientific community is only starting to explore [40]. This thesis aims to

explain a continuum model to understand the internal mechanics of tumor aggregates and

instabilities that lead to tumor invasion. It particularly examines if a solid-to-fluid phase

transition takes place in a growing avascular MCTS that causes it to invade. However,

before getting into its details, it is interesting to review some of the popular and widely

cited theoretical models that have informed the present study.

1.4 Modeling Multi-Cellular Tumor spheroids

Akin to classifications of theoretical models in many fields of science, the practice of

modeling Multi-Cellular Tumor Spheroids can be broadly separated into continuum, dis-

crete and the relatively recent hybrid models. The continuum models approximate that

the properties of the tissue system under study vary smoothly and continuously. The

characteristic dimensions of the system are much larger than the size of the cells. It is

hence appropriate for studying bulk tissue behavior and also reduces computational cost.

Discrete theoretical models track the individual behavior of cellular agents, by specify-

10
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ing rules for them and observing emergent behavior of the cell collective. These models

are suitable to study cell-cell interactions, but can quickly become computationally un-

wieldy. Each modeling technique is effective at different length scales and depending on

the behavior of interest. Finally, hybrid models attempt to combine both continuum and

discrete assumptions to capture tissue behaviors at different length scales (multi-scale

modeling of cancer) [41].

Models in these categories vary in complexity - some attempt to understand tumor

growth, others invasion, and some others angiogenesis - the process by which the tumor

recruits blood vessels for itself. However, the present study focuses on the growth of an

avascular tumor spheroid using continuum assumptions, its internal mechanics and the

mechanical instabilities they form as they invade.

1.4.1 Cancer growth as a Reaction-Diffusion Problem

One of the earliest approached to model tumor growth was to characterize it as a

diffusion problem. A spherical symmetry condition would be assumed and molecular

gradients - some for nutrient molecules and some for proliferation inhibitors would be

introduced. These models could solve for the spheroid radius as a function of time [42].

In the same era, modifying such models by adding a reaction term to the equation was

also done commonly. Models such as these were used to derive critical parameters tran-

sitions of which lead to instabilities or limitless growth occurs [43] - considering the

growing tumor as a dynamical system. Multiple models from this era improved upon the

reaction-diffusion scheme to increasing levels of complexity. Some models even took into

account the concentrations of over four different ionic species, glucose and oxygen levels

and pH levels to model MCTS growth and demonstrated experimental correlations [44].

11
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In addition to capturing nutrient transport, an important leap forward was to model the

presence of the necrotic core inside tumors that are caused by cell death due to gradi-

ents of nutrients established inside the spheroid [45] (refer figure 1.2)). Finally, models

based on the reaction-diffusion approach was also used to include the transport of matrix-

degrading enzymes and incorporate cell-ECM interactions and consequently study tumor

invasion [46]. These models were able to solve for the distribution of cell nutrients and

offer some of the first estimates for the evolution of the spheroid radius. The authors

of these pioneering articles highly emphasized the transport of nutrient molecules. They

inform that the spheroid and its environment are subject to important property gradi-

ents and motivated by this, the present study coarse-grains these effects in the form of

mechanical property and cell proliferation gradients.

In the years that followed these models, as explained in section 1.2, as the scientific

community began to realize the growing importance of mechanical field variables involved

in cancer growth, these reaction-diffusion models began to be coupled with constitutive

models. These constitutive models described the variations in shear stresses, normal

stresses components and pressure inside and around the spheroid. One of the earliest

equations that were used in these models is Darcy‘s law, which was primarily used to

model flow a through porous medium.

~u = −1

κ
∇ · pI

Where κ is an averaged representation of the permeability (hydraulic resistance) of the

porous structure. Reaction-Diffusion Models using Darcy’s law has been used to simulate

tumor invasion. An interesting modification to this model was to use a tissue tension

boundary condition at the tumor-medium interface to coarse-grain the effect of intercel-

12
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lular adhesion at the aggregate surface [47], [48].

Another kind of constitutive model is based on the Stokes‘ flow assumption. Here,

the MCTS is treated as a fluid and the inertial terms are considered to be small enough

that the convective term of the Navier-Stokes equation can be neglected;

−∇ · pI + µ∇ ·
[
∇~u + (∇~u)T

]
= 0

This is applicable because the time scale of cancer cell division and propagation is large

enough that inertial influences due to their motion can be neglected. Coupling the con-

tinuity equation and the stokes law assumption with a nutrient transport equation has

been used to study spheroid growth [49], [50]. There is scarce literature about the use

of Stoke’s law as a constitutive model, but it has also been used to simulate tumor

metastasis [51]. Two-phase models that couple the mass conservation equation with the

momentum conservation equation with special source terms and a proliferation gradient

dependent on oxygen levels have also been used to simulate tumors [52], [53].

A radically different set of constitutive models is drawn from the family of nonlinear

mechanics models. Some of these include poroelastic models such as using Brinkman

equations, hyper-elastic models and linear and nonlinear visco-elastic models that at-

tribute stiffness and viscosity via storage and loss moduli. Some authors have also ex-

tended these models to the tumor micro-environment, for example, in one model, the

tumor spheroid is suspended in a porous medium and the location is determined by defin-

ing volume fractions for the solid domain and the fluid domain [54]. Another approach

was to model solid tumor growth as a nonlinear elastic material and obtain conditions

for metastasis in terms of strain energy functions [55]. Other non-linear approaches in-

13
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Figure 1.4: Modeling the mechanics of MCTS in the past have been done by coupling
reaction-diffusion equations with constitutive laws and the continuity equation. Some
examples of popular constitutive laws are Darcy’s law, Stokes’ law and those derived
from nonlinear mechanical models.

clude modeling the deformable micro-environment as a hyper-elastic material [56], [52].

In addition to these well-known material models, formulation of unique constitutive laws

which better describe the mechanics of the tumor has been coupled with the mass con-

servation or the diffusion equation to improve upon the extant models [57]. In almost all

these papers, the authors have conducted a linear perturbation analysis to characterize

the morphologies associated with growth or invasion as mechanical instabilities. Hence,

a similar approach is taken in this study, where parametric sweeps are calculated across

multiple scales to study phase transitions that might occur during tumor growth.

These afore-mentioned models only form a small group of large effort towards mod-

eling cancer progression in mechanics. In addition to these models which have reaction-

diffusion equations coupled with constitutive models, some other interesting models add

further details such as distinguishing the cancer tissue and the micro-environment as

different phases such as using Cahn-Hilliard Equations[58], mixture theory [59] and a
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variety of other approaches [60]. For reference, the reader can refer the thorough reviews

[61], [62], [63], [64].

The present study introduces a continuum mechanics model implemented in COM-

SOL Multiphysics using a Stoke‘s flow assumption, combining a moving-mesh algorithm

based on the Arbitrary Langrangian-Eulerian (ALE) scheme which qualitatively cap-

tures morphological changes associated with tumor growth. This is a fluid-fluid interface

allows the specification of surface tension between the tumor spheroid and the tumor

micro-environment. The model in Chapter 2 simulates the tumor spheroid in using a 2D

axisymmetric model. This model coarse-grains the effect of the afore-mentioned nutrient

profiles that are established in an MCTS. This is achieved by implementing a gradient

in viscosity and cell proliferation. The cells in the core are deprived of critical nutrients

needed for their survival and are undergoing necrosis. Hence, the organized structure

they form is rigid and they can be modeled as a fluid with a large time scale and hence a

large viscosity. In contrast, the rim of outer cells are rich in nutrients and proliferate ac-

tively. They are not fixed in place and are free to move and they can be modeled as fluid

with small time scales or low viscosity. Imposing these profiles represent a solid-to-fluid

phase transition from the center of the spheroid to the outer rim. This chapter isolates

this effect which is starting to be seen in different biological systems [9] and confirms if

it initiates tumor invasion via surface instabilities.

In chapter 3, cancer growth in a 2D planar model is simulated. Here, the instabilities

that are formed due to both proliferation and curvature dependent normal active stresses

are considered. The same profile of viscosity is implemented and the effect of the active

stresses and proliferation on tumor invasion is investigated. The commercial solver pack-

age COMSOL Multiphysics (5.3) and (5.4) along with MATLAB is used to implement the
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model explained in both chapters to calculate the mechanical profiles inside the spheroid

and to investigate instabilities caused by growth and active stresses. Further, in chapter

4, a summary of the experimental techniques - from sample preparation to the last data

analysis step is explained, followed by a concluding chapter and discussions on potential

future work in this area.
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Chapter 2

Two-phase Axisymetric Model of

Tumor Growth

2.1 Introduction

Tumor invasion can be compared to multiple physical phenomena found in nature.

Considering the spherical arrangement of cells from a mechanical perspective, the con-

tinuous growth of the spheroid can introduce surface instabilities to compensate for the

increased surface area. These instabilities could facilitate tumor invasion as they are

finger-like and offer an invasive morphology for the cells as they attempt to escape the

primary tumor site. Analogous to a system with a source enclosed, a decrease in the sur-

face tension, which contains the growth can lead to instabilities of this nature. However,

like changes in the surface properties, changes in the bulk of the tumor are equally impor-

tant. The gradients of nutrients and other properties that arise inside the 3D spheroid

could give rise to mechanical gradients - particularly one in viscosity as the cells in the

proliferative region are more motile than those in the necrotic core. Further, when the

tumor invades, the solid tumor could potentially undergo a fluidization process to release
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cells that invade the tumor surroundings. Consequently, it may be hypothesized that the

invasion of the spheroid is due to a solid-to-fluid phase transition.

To test this hypothesis, this chapter begins with a simple model consisting of in-

compressible Newtonian fluid domains - the spheroid and the micro-environment having

a distinct boundary in a 2D axisymmetric geometry. The Stokes law assumption of

neglecting inertial terms in the Navier-Stokes Equation has been implemented. The

chapter describes the computational domain, the governing differential equations, the

relevant scales of the problem and finally a discussion of the results.

2.2 The Arbitrary Lagrangian-Eulerian Algorithm

Much academic effort has been dedicated to understanding the growth of tumors

using a multi-phase fluid approach. As exemplified in the previous chapter, several

scientists [53], [64] have considered the tumor and its micro-environments as distinct

domains and captured the interface using phase-fields or level-set approaches. However,

these are diffuse interface techniques and computationally quite expensive. This chapter

explains how the two-phase moving mesh module in COMSOL Multiphysics can be used

to describe the growth of tumor spheroids. A range of parameter regimes is investigated

to predict mechanical instabilities that can elicit cancer invasion using COMSOL’s in-

built Parametric Sweep option. Briefly, the two-phase moving mesh physics module

is one of the many methods that COMSOL offers for interface capturing. It uses the

Arbitrary Lagrangian-Eulerian (ALE) algorithm for coupling the fluid flow with mesh

deformation and hence can simulate moving boundaries. The following sections describe

the governing equations solved for, the material properties imposed and the results from
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the simulations.

The Lagrangian approach of solving finite element problems involves the use of a

deformable mesh. The deformable mesh permits the tracking of a control volume as it

moves through the computational domain. The observer’s frame is the same as that of

the control volume. In the Eulerian approach, the mesh is fixed and does not follow the

control volumes as they move. The observer’s frame is fixed and does not change.

The Arbitrary Lagrangian-Eulerian algorithm makes use of both these classical rep-

resentations of Finite Element Methods. It makes use of a mapping from a deformed

(Lagrangian) mesh to that of a simpler, ordered mesh (Eulerian). The mapping is smooth

and one-to-one.

Specifically, the governing differential equations that are solved in the moving-mesh

domain is transformed using the aforementioned mapping into the simpler domain. Here,

the transformed equations are solved using an additional term containing information

about the mesh velocity. This new equation is solved and the solutions are mapped back

into the deformed domain.

2.3 Governing Differential Equations

The governing differential equations consist of the Continuity Equation (2.1) and the

incompressible Stokes (2.2) applied on both domains (tumor spheroid and environment).

The continuity equation has a source term (on RHS) that represents cell division and

consequently regulating the proliferation. Hence, the equations solved for the tumor

aggregate (domain - I) are;

ρ∇ · u1 = G(r, z) (2.1)
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−∇ · p2I + µ(x)∇ ·
[
∇u1 + (∇u1)T − 2

3
∇ · u1

]
= 0 (2.2)

Similarly, the tumor spheroid is suspended in a cylindrical domain. The boundary condi-

tions of the micro-environment (domain II) includes an outlet condition on the far edge

and two wall conditions on the top and the bottom. The micro-environment is mod-

eled as an incompressible Newtonian fluid with properties that of water, but a smaller

viscosity than that found inside the spheroid. The equations solved are;

∇ · u2 = 0 (2.3)

−∇ · p2I + µ2∇ ·
[
∇u2 + (∇u2)T

]
= 0 (2.4)

These are subject to the boundary conditions related to the interface between the tumor

Figure 2.1: 2D axisymmetric geometry of the Spheroid (blue) suspended in a Newto-
nian fluid Medium
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Figure 2.2: Boundary Conditions of the Tumor Micro-environment - Wall and Outlet
boundary conditions. The interface between the spheroid and the domain is modeled
using the Young-Laplace interfacial tension Condition

and tumor micro-environment;

nj(σ
(1)
ij − σ

(2)
ij ) = γ(∇ · n̂)ni

where

σij = −pδij + µ(x, λ)ε̇ij

γ is the coefficient of interfacial tension and n̂ is the unit outward normal. Constant

pressure outlet conditions p2 = 0 and no-slip wall conditions u2 = 0, as specified in figure

2.2.

2.4 Computational Domain

The computational domain is modeled in a 3-D axisymmetric geometry mode. This

is a technique used by COMSOL to take advantage of the symmetry of the problem

and hence reduce computational time. The coordinates are specified using cylindrical

coordinates (r, z). Hence, a fully revolved rendering represents a spherical tumor spheroid
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suspended in a cylindrical domain filled with media.

The initial radius of the tumor spheroid is 100µm. The micro-environment surround-

ing it is made 150 times larger with a radius and height of 15mm. It is made large so that

the wall conditions do not influence the growth of the spheroid inside an incompressible,

Newtonian fluid medium.

2.5 Relevant Dimensionless Parameters

We use the cell division time τ and the length of proliferation zone λ as the charac-

teristic time and length scales in the problem. Using this characteristic length and time

scale, two dimensionless numbers; the Capillary Number (Ca) and the ratio of the shear

stress in the proliferating rim to the shear stress in the necrotic core. These two dimen-

sionless numbers dictate the solutions of the system. The Capillary number is defined

as;

Ca =
σc
σs

=
τγ

µcλ

Where γ is the co-efficient of interfacial tension between the tumor spheroid and its

micro-environment and µc is the viscosity of the necrotic core region of the spheroid.

The other dimensionless number β is defined as

β =
σf
σs

=
µfτ

µsτ

Where, µr is the viscosity in the fluidized proliferation rim and σf is its associated shear

stress. σS is the shear stress in the necrotic core region and µs is the viscosity.
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2.6 Material Properties

As seen in equation (2.1) and (2.2), the proliferation G and the viscosity µ are both

functions of position inside the moving domains. To apply these property variations, the

general extrusion operator along with the piecewise function and variable definition in

COMSOL has been used.

2.6.1 Defining a distance operator - dR

The general extrusion operator represents a transformation of geometry from a lower

dimension to a higher dimension. For instance, with the appropriate settings, it allows

the extraction of property value from an arc and assigns it to a surface. In this case, the

general extrusion tool has been used to design a distance field from the moving boundary.

The method to accomplish this is to select the desired arc geometry elements of the

tumor in the general extrusion settings interface. The Destination Map fields are specified

as r and z in their respective fields and in the advanced tab, the Mesh Search Method

is changed to the closest point. Next, a variable is defined which computes the distance

and is assigned the following formula. If the general extrusion operator is named Ab

dR(r, z) =
√

(r − Ab(r))2 + (z − Ab(z))2

Which defines a distance operator for each point (r, z) from the contour of the spheroid

The distance operator is used as an argument for a piece-wise function that chooses the

value of the material property. This allows the model to assign material properties based

on the distance from the boundary.
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2.6.2 Material Property profiles of the Tumor Aggregate

Tumor aggregates in this model have been idealized as perfectly spherical initially.

They are termed spheroids of tumor cells. The formation of spheroids is physiologically

possible as evident from a variety of in-vitro and in-vivo techniques.

Three-dimensional cultures of tumor cells offer more accurate models of studying

them via drug perturbations from both a biochemical and biophysical perspective [35].

This is justified by their ability to form physiologically relevant gradients in nutrients

levels, oxygen concentration, ions, and other chemical species. The primary reason for

these gradients being their inability to diffuse into the spheroid core.

These gradients have significant consequences. Multiple articles mentioned in chap-

ter 1 including the earliest models relying solely on diffusion [42], [43] have paid careful

attention to them while modeling tumor spheroid growth. However, the model presented

does not address the transport of these chemical species but represent their consequences

in terms of material property profiles. Two such property profiles resulting from these

gradients are step-function like variations in proliferative capacities of the cells and dy-

namic viscosities. To implement these in COMSOL, two piece-wise functions are defined,

one for proliferation and another for viscosity.

µ(r, z) =


µr dR(r, z) ≤ λ

µs dR(r, z) > λ

Where µr represents the viscosity in the proliferating rim of the tumor spheroid and µs

is the viscosity in the necrotic core of the spheroid. λ is the thickness of the proliferating

shell of cells around the necrotic core of the spheroid. To be physiologically accurate, the
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Figure 2.3: a) Functions showing the transition of proliferation rate and viscosity from
the necrotic core region to the proliferating rim. It is required to prevent potential
singularities in the system. b) Application of the piece-wise function (G(r, z) and
µ(r, z))to set up the proliferation and viscosity gradients in the axisymmetric geometry
The function can follow the curvature of the spheroid and applies the properties as a
function of distance from the envelope. c) The application of the gradients in a 2D
planar geometry via the piece-wise functions.

region between the proliferating domain and the necrotic core is occupied by quiescent

cells, but an explicit description of them have been left out in this study. The prolifera-

tion rate is also similarly defined using the general extrusion operator and the distance

function;

G(r, z) =


G dR(r, z) ≤ λ

0 dR(r, z) > λ
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Where G is a constant specified in the global parameter definition of COMSOL and

is defined as G = ρ
τ
, where ρ is the density of water. This definition states that the

proliferative rim is constantly dividing and that the necrotic core is not undergoing cell

division. To avoid numerical problems arising from discontinuities, the piece-wise func-

tions are smoothed between the two-step values by a function that has a continuous

second derivative across a transition zone of 0.4λ.

The boundary between the tumor spheroid and the tumor micro-environment has

been explicitly modeled using a fluid-fluid interface node in COMSOL. This node makes

it possible to specify both the direction, mass flux and the magnitude of the interfacial

tension at the tumor-tumor microenvironment interface. In the present model, only the

coefficient of the interfacial tension is specified without a mass flux across the interface.

In addition to the material properties imposed in this fashion, the remaining prop-

erties, such as density, compressibility, etc. of both domains are assumed to be that of

water at 25oC.

2.6.3 Material Properties of the Tumor Micro-environment

As previously mentioned, the tumor micro-environment is modeled as an incompress-

ible Newtonian fluid with a lower viscosity than that found inside the spheroid. The

viscosity steps are calculated by multiplying the shear stresses in the spheroid by the

characteristic time constant τ . The shear stresses are assigned based on the ratio of the

rim to necrotic core viscosities β which is swept using COMSOL’s parametric sweep.

The viscosity of the micro-environment was held constant at a value much lower than

the viscosity of the necrotic core.
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2.7 Scaling the Governing Differential Equations

Using the physical parameters described in the previous sections, the governing dif-

ferential equations (2.1) through (2.4) can be scaled as follows;

ρ
∇̃
λ
· ũ1λ

τ
= G(r, z)

=⇒ ∇̃ · ũ1 =
G(r, z)τ

ρ
(2.5)

−∇̃ · p̃1I

λ
σs + µ(r, z)

∇̃
λ
·

[
∇̃
λ

ũ1λ

τ
+

(
∇̃
λ

ũ1λ

τ

)T

− 2

3

∇̃
λ
· ũ1

λ

τ

]
= 0

=⇒ −∇̃ · p̃1I
λ

+
µ(r, z)

τσs

∇̃
λ
·

[
∇̃ũ1 + (∇̃ũ1)T − 2

3
∇̃ · ũ1

]
= 0

Scaling the viscosity using the viscosity in the necrotic core, we obtain;

=⇒ −∇̃ · p̃1I + µ̃(r, z)∇̃ ·
[
∇̃ũ1 + (∇̃ũ1)T − 2

3
∇̃ · ũ1

]
= 0 (2.6)

Where

µ̃(r, z) =


µr
µs

= β dR(r, z) ≤ λ

µs
µs

= 1 dR(r, z) > λ

Subject to the boundary conditions at the fluid-fluid interface.

=⇒ nj(σij
(1) − σij(2)) = γ(∇ · n̂)ni
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Where γ is the coefficient for interfacial tension, σij is the stress tensor in domains (1)

and (2), n̂i is the unit outward normal. This is expression can be scaled again with the

shear stress in the necrotic core region σs;

=⇒ nj(σ̃
(1)
ij − σ̃

(2)
ij ) = γ

( ∇̃
λσs
· n̂
)
ni

=⇒ nj(σ̃
(1)
ij − σ̃

(2)
ij ) = Ca

(
∇̃ · n̂

)
ni (2.7)

At the outlet, a constant pressure boundary condition is imposed;

p̃2 = 0 (2.8)

and a no-slip boundary condition at the walls;

ũ2 = 0 (2.9)

Equations (2.5) through (2.9) represents the scaled governing differential equations of

the system.

2.8 Implementing the Parametric Sweep

The parametric sweep study option in COMSOL is meant to facilitate iterative design

and optimization of models. It allows COMSOL to solve the same study after varying one

or more parameters of the system. In this case, the parameters swept are the Capillary

number Ca and the ratio of the rim to necrotic core viscosities β. These parameters are
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varied logarithmically - Ca from 0.01 to 10 and β from 0.01 to 10 and the results of the

simulation are shown in the subsequent section. In terms of physical parameters, for each

study, COMSOL calculates the viscosities in the system as;

µs = σsτ

µr = σsτβ

Here, µs is held constant at 105Pas and consequently, σs is also constant throughout the

sweep. The co-efficient of inter-facial tension as;

γ = σsλCa

2.9 Results

The parametric sweep explores the parameter space specified by the following table -

effectively exploring a wide range of combinations of the Capillary number and the ratio

of rim to necrotic core viscosities and the following section details the results obtained

from each parameter in the form of relevant field variables such as pressure, velocity,

strain rate magnitude, and contour evolution as a function of time. The strain rate

magnitude is defined as;

ε̇ =
√

2S : S

where S is the strain rate tensor ∇ ·u+ (∇ ·u)T and : is a contraction operator defined

such that;

a : b =
∑
n

∑
m

anmbnm
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The results calculated - the mechanical field variables - pressure, shear rate magnitude

and velocity magnitude from each of the parameter datasets, for the last time step,

considered are shown in the figures below. Additionally, although the variables appear

invariant in the cases for β = 1, there are important profiles here as demonstrated by the

radial plot figures. Finally, the evolution of the spheroid contour as time progresses has

been shown in figure (2.6).
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Figure 2.4: Non-dimensionlized Shear Rate Magnitude for different parameter regimes
normalized with the characteristic time constant (τ , ˜̇ε = ε̇τ) after 12 time constants of
growth, simulated for parameter ranges - β: (0.01, 0.1, 1, 10) and Ca: (0.01, 0.1, 1, 10).
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Figure 2.5: Non-dimensionlized Pressure profiles for different parameter regimes nor-
malized with the necrotic core shear stress (σs, p̃ = p

σs
) after 12 time constants of

growth, simulated for parameter ranges - β: (0.01, 0.1, 1, 10) and Ca: (0.01, 0.1, 1, 10).
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Figure 2.6: Non-dimensionlized Velocity Magnitude for different parameter regimes
normalized with the system‘s characteristic velocity (Ũ = λ

τ ) after 12 time constants of
growth, simulated for parameter ranges - β: (0.01, 0.1, 1, 10) and Ca: (0.01, 0.1, 1, 10).
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Figure 2.7: Evolution of the Spheroid Contour at every 2τ time step from the simulation
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Figure 2.8: The normalized variation (between 0 and 1) of the radial component of
velocity along (normalized with the maximum value of velocity along the radius) the
radius of the spheroid at intervals of 2 time constants.
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Figure 2.9: The normalized variation (between 0 and 1) of the shear strain rate along
the radius (normalized with the maximum value of shear strain rate along the radius)
of the spheroid at intervals of 2 time constants.
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Figure 2.10: The normalized variation (between 0 and 1) of the pressure along the
radius (normalized with the maximum value of pressure along the radius) of the
spheroid at intervals of 2 time constants.
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2.10 Discussion

The simulations solve for the mechanics of a simple coarse-grained model of a spher-

ical colony of cells or an MCTS. This model serves as an initial guess to decide what

additional phenomena need to be included. It focuses on the changes in the internal

mechanical properties of the tumor spheroid - chiefly the profiles in cell proliferation and

viscosity gradients. As the dimensionless parameters that control these internal gradients

and the surface properties are varied from one limiting case to another, several interesting

phenomena can be observed.

Before moving forward, it is useful to explain how the surface instabilities observed

in the results are formed. The boundary condition of interfacial tension between the

spheroid and the micro-environment is specified via a co-efficient of surface tension. The

Capillary stress is equal to the discontinuity between the states of stress across the bound-

ary. It represents maximum tensile stress the boundary can sustain. The phenomenon

can be compared to buckling observed under compressive loading of a pillar. When com-

pressive stresses exceed the critical compressive load, the pillar buckles. Similarly, when

the fluid shear stress in the spheroid exceeds the capillary stress, the ratio of viscosities

β and the proliferation rate of the cells becomes the driving force that dictates the mor-

phology of the spheroid. These need to be contrasted with numerical instabilities that,

due to the expanding domain size, appear like mechanical instabilities due to insufficient

meshing. When the mesh is refined sufficiently, these numerical instabilities will disap-

pear. Further, the presence of the axial boundary condition in the 2D axisymmetric case

could also influence these instabilities, which is why to eliminate this possibility, further

models are simulated using a fully 2D geometry.
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According to figure 2.1, the buckling instabilities are evident for a value of β = 10.

This is because the shear fluid shear stresses are much higher than the Capillary stresses

and the inner region of the tumor aggregate is much less viscous compared to the prolif-

erative rim. However, according to the explanation given in the previous paragraph, the

instabilities should occur whenever the fluid shear stress σf and the capillary stress σc are

of the same magnitude (See Figure 2.). But, for the cases where the necrotic core is more

viscous (β = 0.01, 0.1, 1), the proliferative rim is not able to deform the necrotic core and

hence instabilities are not formed. However, the onset of mechanical instabilities of high

wave-number can be seen for the cases of β = 1, Ca = 0.01 and β = 1, Ca = 0.1.

Although the cases corresponding to β = 10 portray dramatic transformations from

the initial spherical shape, they do not represent invasion in the property variations that

apply to a real MCTS (β < 1, Ca < 0.1). The cases β < 1 imply that the necrotic core

is more viscous than the proliferative rim which is expected in a Multi-Cellular Tumor

Spheroid. Instead, these shapes are representative of the development of alveolar tis-

sues in lungs as they can be regarded as a thick membrane evolving with a thinner fluid

inside. Here, this is because proliferative cells are more motile and have a smaller associ-

ated time constant and thereby a much smaller viscosity. Hence, additional effects need

to be explored to develop a more accurate representation of tumor growth and invasion.

Some of these include the traction forces exerted by the tumor on its micro-environment

and the release of Matrix-Metallo-Proteinases (MMPs) to facilitate invasion in addition

to mechanical instabilities.

The profile for the magnitude of the velocity after 12-time constants is shown in fig-

ure 2.5. The cases with the growing finger-like morphologies have a high velocity at the

tips. This might be because as the spheroid buckled, the outward-facing region experi-
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Figure 2.11: A diagram showing the airway epithelial conduits that form during lung
develpment [65]

enced a sudden jump in velocity and the inner fluid (regions farther away than 1λ) got

pushed into the tips, further accentuating the finger-like morphologies. Also, although

the spheroids for cases (β = 0.01, Ca = 10) through (β = 1, Ca = 10) do not appear to

have any flow in the necrotic core, there is a small backflow towards the center of the

spheroid as shown in figure 2.8. This is because the cell division inside the proliferative

rim occurs in all directions pushes and against the necrotic core and introduces a backflow.

As per the plots on the normalized shear rates, in all parameter sets, the region of

lower viscosity has a higher shear rate which is why the proliferative rim has a high shear

rate for β < 1 and the necrotic core has a larger shear rate for β = 10. An interesting

observation is the presence of low shear rate regions only at the junctions of the β = 10

parameter cases.

Finally, in the normalized pressure profiles, the cases of β = 10, experience a negative

pressure in their necrotic cores as the proliferation rim deposits low viscosity necrotic core
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material and pulls it from the invasive front leaving a low-pressure zone in the center.

Similarly, all the cases from (β = 0.01, Ca = 0.01) through (β = 1, Ca = 1), also have

negative pressures in their necrotic cores, but the magnitudes of these pressures are much

smaller than the β = 10 case. This is because the necrotic core is more viscous in the

lower β cases and fluid motion is slower. The cases of Ca = 10 for the lower β cases do

not have negative pressure throughout the simulation, because the higher surface tension

compresses the proliferative rim and the necrotic core giving a positive pressure.

2.11 Conclusions

Although the incompressible Newtonian fluid model of the Spheroid implementing

the Stokes law condition offers much insight into the mechanical fields characteristic of

different types of cell aggregates, it does not predict any mechanical instabilities in the

physiologically correct parameter regimes (β = 0.01, Ca = 0.01 to β = 0.1, Ca = 0.1).

This implies that the mechanics of the tumor spheroid alone during its growth and

with the presence of solid-to-fluid phase transition is not sufficient to predict mechanical

instabilities that can facilitate invasion. Hence, a more accurate model which implements

the effects of active forces experienced by the spheroid has been explored in the next

chapter.
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Chapter 3

Two-phase model of Tumor

spheroids applying Active Stresses

3.1 Introduction

The previous demonstrate that proliferation alone cannot describe an invasive pheno-

type in an MCTS. However, some important mechanobiological features of cancer cells are

not included in this model. For instance, cancer cells are known to apply traction forces,

using various structures such as lamellopodia and filopodia on their micro-environment

that helps them leave the primary tumor site. The model described in this chapter aims

to simulate tumor growth after an MCTS has fluidized its micro-environment and applies

active forces on an unfluidized matrix at an arbitrary distance of fluidized region. This

distance is assumed to be large in this model and that the presence of the unfluidized

matrix does not affect tumor invasion.

The chapter begins with a description of the 2D geometry considered, the governing

differential equations solved for, the results that describe the formation of two types of
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instabilities - one caused due to proliferation alone and another due to the application of

active stresses.

3.2 Computational Domains

This model was solved in the planar 2D geometry. Figure 3.1 shows the computational

domain and the relevant boundary conditions applied.

Figure 3.1: The geometry of the 2D planar computational model for spheroid growth
with active stresses

3.3 Governing Differential Equations

The governing differential equations for these models are the same as in the previous

section, with the addition of the equations describing active stresses on the spheroid-

micro-environment boundary condition (along with surface tension) and the profile of
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viscosity in the micro-environment as a consequence of ECM remodeling. In domain I,

the steady-state incompressible continuity equation with the source term and the Navier-

Stokes equations are solved along with the Arbitrary Lagrangian-Eulerian Algorithm as

described in the previous chapter;

ρ∇ · u1 = G(r, z) (3.1)

−∇ · p1I + µ1(r, z)∇ ·
[
∇u1 + (∇u1)T − 2

3
∇ · u1

]
= 0 (3.2)

Where G(r, z) and µ(r, z) are the same functions defined in section (2.6.2). In domain

II, the continuity equations and the conservation of momentum equations are solved;

ρ∇ · u2 = 0 (3.3)

−∇ · p2I + µ2(r, z)∇ ·
[
∇u2 + (∇u2)T

]
= 0 (3.4)

These governing equations are again subject to the boundary conditions;

nj(σ
(1)
ij − σ

(2)
ij ) = γ(∇ · n̂)ni (3.5)

where;

σij = −pδij + µ(x, λ)ε̇ij
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p2 = 0 (3.6)

which represents the outlet conditions on all four sides. Equations (3.1) through (3.6)

represent the governing differential equations solved for this system.

3.4 Active Surface Stresses

These equations are subject to the boundary conditions shown in figure 3.1. The

most important change is the implementation of the spheroid-micro-environment inter-

face boundary condition. The spheroid exerts an active force on the surroundings and

the resulting reaction from the force causes the spheroid to propel itself out of the 3D

spheroid. Here, this propelling force has been introduced via the boundary condition.

The applied active stresses have been included as a normal inside the tumor spheroid

and it can be interpreted as a change in the local co-efficient of surface tension.

There are scarce studies that describe the system variables on which the effective co-

efficient could depend. While there could be multiple ways to model this active stress, an

interesting paper recently published [66] demonstrated that tumor invasion progresses in

multiple invasive fronts that are initiated from regions of high curvature. As the amount

of active stresses experienced by the invading cells is larger, it can be deduced that the

amount of active force sustained by these cells increases with the local curvature of the

spheroid surface. Hence, the active stress is varied as a function of the local mean cur-

vature.

In this study, the stresses resulting from the traction forces are modeled as increasing
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Figure 3.2: a) A simplified image of cells invading, the traction forces the invading
front applies and the reaction to the traction forces. The invading cells apply forces
on the surrounding matrix and the reaction results in an increase in stress in the
normal direction which is transmitted to the bulk of the spheroid. b) By making
the magnitude of active stresses curvature dependent, it is possible to model cancer
invasion, initiated by perturbations in local mean curvature.

with the square of the curvature and no forces are experienced when the curvature is

positive. Thus, regions of higher surface tension will experience a larger normal stress in

the direction of the normal (see figure 3.3).

σA = ζH2

Numerical perturbations introduced by COMSOL’s descritization will cause some regions

to experience a higher stress than others. These perturbations will grow in size as the

active stress increases with the local mean curvature and eventually introduce instabilities
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in the system. Hence, σA is re-written as;

σA =


0 H ≥ 0

ζH2 H < 0

(3.7)

Where ζ is a constant with units of force - N, where H is the curvature defined as

H = −∇ · n̂, where n̂ is the unit outward normal. Defining the stress states of each

domain as;

σij = −pδij + µ(x, λ)˜̇εij

Where p is the pressure, δij is the Kronecker delta, µ is the viscosity function and is

dependent on the position of the moving interface x and the thickness of the proliferative

rim λ. ˜̇εij is the strain rate tensor at the interface between the spheroid and the micro-

environment domain, the boundary condition that relates the discontinuity between the

stress states of domain 1 and domain 2 is solved. This is obtained from a balance of

forces;

nj(σ
(1)
ij − σ

(2)
ij ) = γ(∇ · n̂)ni

When the cells apply forces, the state of stress in domain 1 changes to;

σ
(1)
ij,inv = −(p+ σA)δij + µ(x, λ)˜̇εij

=⇒ σ
(1)
ij,inv = σ

(1)
ij − σAδij

Hence, Equation (3.5) can be re-written as;

nj(σ
(1)
ij − σA − σ

(2)
ij ) = γ(∇ · n̂)ni
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Figure 3.3: A diagram explaining the definitions of domains (1) and (2) and the
direction of the outward normal and the capillary stress in the boundary.

Expressing as defined in equation (3.6);

=⇒ nj(σ
(1)
ij − σ

(2)
ij ) = γ(∇ · n̂)ni + ζ(∇ · n̂)2ni

=⇒ nj(σ
(1)
ij − σ

(2)
ij ) = [γ + ζ(∇ · n̂)](∇ · n̂)ni (3.8)

Hence, the afore-mentioned effective co-efficient of surface tension is given as;

γeff = [γ + ζ(∇ · n̂)] (3.9)

COMSOL automatically calculates the local curvature of the boundaries in a variable

called curv spatial. Which is defined as;

curv spatial = −∇ · n̂

Where n̂ is the unit outward normal. To use this variable effectively, two functions are
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defined in COMSOL - smooth curv11, a moving average filter that interfaces between

MATLAB and COMSOL and the force function that changes the sign for use in effective

surface tension coefficient as described by equation (3.6). The function smooth curv11

is gaussian averaged moving average filter implemented by using the built-in MATLAB

function smooth data(). During the execution, COMSOL calls the MATLAB function

and sends it a vector containing the variable curv spatial from each mesh node. MAT-

LAB applies the gaussian-weighted moving average filter and returns the data to COM-

SOL, which is then processed by the force() function;

force(H) =


0 H ≥ 0

−H H < 0

(3.10)

smooth curv11 was able to smooth significant curvature variations. For instance, at time

=0, the two vertices present in the initial spheroid surface introduced a large discontinu-

ity (almost 50% of mean curvature value). The smoothing function was able to reduce

to less this discontinuity to less than 3% variation. However, COMSOL also introduced

small numerical errors in the smoothed data. The corresponding data, when analyzed

in MATLAB, did not present these variations. Hence, it is potentially caused by some

round-off error introduced by COMSOL.

The remaining boundary conditions of the micro-environment are four outlets at zero

pressure boundary condition p̃. The axial symmetry boundary condition does not apply

in this case as this is a full 2D model. This is an important change as the presence of

the axial symmetry condition could introduce numerical instabilities after the spheroid

has buckled.
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3.5 Scaling of Equations

As described in the previous chapter, the characteristic length and time scales in the

system are defined as τ = 108, 000s, the cell division time and λ = 50µm the length of

the proliferative rim of the spheroid. Using these constants, we can non-dimensionalize

equations (3.1)-(3.6).

t̃ =
t

τ
, x̃ =

x

λ
, Ũ =

Uτ

λ

ρ
∇̃
λ
· ũ1λ

τ
= G(r, z)

Equation 3.1 becomes;

∇̃ · ũ1 =
τ

ρ
G(r, z) (3.11)

As explained in section (2.6.2), the cell division rate G is held constant and the parameter;

Gτ

ρ
= Ω

is defined as the Cell division control parameter. Similarly, for equation 3.2;

−∇̃ · p̃1I
λ

σs +
µ1(r, z)

τλ
∇̃ ·

[
∇̃ũ1 + (∇̃ũ1)T − 2

3
∇̃ · ũ1

]
= 0

As µ(r, z) is a piece-wise function spatially defining the viscosity in the proliferative rim

and the necrotic core, two stress values are arising out of this function. As before, the

shear stress scale in the necrotic region is chosen to normalize the system.

−∇̃ · p̃1I +
µ1(r, z)

τσs
∇̃ ·

[
∇̃ũ1 + (∇̃ũ1)T − 2

3
∇̃ · ũ1

]
= 0
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−∇̃ · p̃1I + µ̃1(r, z)∇̃ ·
[
∇̃ũ1 + (∇̃ũ1)T − 2

3
∇̃ · ũ1

]
= 0 (3.12)

Where

µ̃(r, z) =


µr

µs
= β dR(r̃, z̃) ≤ 1

µs

µs
= 1 dR(r̃, z̃) > 1

∇̃ · ũ2 = 0 (3.13)

The equation 3.4 for the governing differential equations inside the non-newtonian micro-

environment, the shear stress in the necrotic core is used to scale the pressure and active

stresses;

−∇̃ · p̃2I +
µ2(r, z)

τσs
∇̃ ·

[
∇̃ũ2 + (∇̃ũ2)T

]
= 0

Where κ is the ratio of the medium shear stress to the shear stress in the necrotic core.

−∇̃ · p̃2I + κ∇̃ ·
[
∇̃ũ2 + (∇̃ũ2)

T

]
= 0 (3.14)

3.5.1 Normalizing the Interfacial Tension Boundary Condition

Equation (3.9) is normalized using the shear stress in the necrotic core and normal-

izing the gradient operators using the characteristic length scale λ

nj

(
σ̃
(1)
ij − σ̃

(2)
ij

)
σs =

1

λ
γ

(
∇̃ · n̂

)
ni
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nj(σ̃
(1)
ij − σ̃

(2)
ij ) = Ca(∇̃ · n̂)ni (3.15)

Where Ca is the Capillary number and is defined as the ratio of the capillary stress to

the shear stress in the necrotic core;

Ca =
σc
σs

=
γτ

λµs

which can also be interpreted as the ratio of the proliferation rim thickness λ and an

intrinsic length scale defined as;

l =
τγ

µs

Constant pressure outlet boundary condition;

p̃2 = 0 (3.16)

Equations (3.11) through (3.16) represents the fully scaled governing differential equa-

tions and boundary conditions for the model exploring growth-induced instabilities.

3.5.2 Non-dimensionalized equations for Active Surface Stress

Simulations

The model exploring the instabilities due to the active stress is different from the

model in the previous section. In this model, growth is neglected and hence a character-

istic time scale associated with proliferation is does not exist in the system. A different

time-scale needs to be defined. The length scale of the viscosities λ is still used here.
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As defined previously, the active stress is considered to be proportional to the square

of the local mean curvature (Equation 3.7). The stress-scale that arises out of this formula

is given by;

σ0
A =

ζ

λ2

Using this, a time-scale can be defined;

τA =
µr
σ0
A

These stress, length and time-scales can be used to nondimensionalize the Stokes flow

equation as before. In domain 1;

∇̃ · ũ1 = 0 (3.17)

−∇̃
λ
· p̃1Iσ0

A + µ(r, z)
∇̃
λ
·

[
∇̃
λ
ũ1

λ

τA
+

(∇
λ
ũ1

λ

τA

)T]
= 0

=⇒ −∇̃ · p̃1I + µ(r, z)
∇̃
τAσ0

A

·

[
∇̃ũ1 +

(
∇ũ1

)T]
= 0

=⇒ −∇̃ · p̃1I + µ̃(r, z)∇̃ ·
[
∇̃ũ1 +

(
∇ũ1

)T]
= 0 (3.18)

Where

µ̃(r, z) =


µr

µr
= 1 dR(r̃, z̃) ≤ 1

µs

µr
= 1

β dR(r̃, z̃) > 1
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The equations for domain II can be scaled in the similar way. Next, the interfacial tension

incorporating the curvature dependent boundary condition is scaled. Using Equation

(3.8);

nj(σ̃
(1)
ij − σ̃

(2)
ij )σ0

A =

[
γ + ζ

(∇̃
λ
· n̂
)]

(
∇̃
λ
· n̂)ni

=⇒ nj(σ̃
(1)
ij − σ̃

(2)
ij ) =

[
γλ2

ζ
+ ζ

( ∇̃
σ0
Aλ
· n̂
)]

(
∇̃
λ
· n̂)ni

=⇒ nj(σ̃
(1)
ij − σ̃

(2)
ij ) =

[
γλ

ζ
+ ∇̃ · n̂

]
(∇̃ · n̂)ni

=⇒ nj(σ̃
(1)
ij − σ̃

(2)
ij ) =

[
1

α
+ ∇̃ · n̂

]
(∇̃ · n̂)ni (3.19)

Where α = ζ
λγ

. Hence, it can be interpreted that large values of α results in the first

term diminishing and the non-dimensional curvature term begins to dominate, resulting

in instabilities that depend on the curvature.

3.6 Computational Results

3.6.1 Validation of 2D Axisymmetric model in Planar model

As is required after any radical change made to the dimensionality of a theoretical

model, the first step taken here is validating the results of the previous model in a 2-

dimensional domain. Here, the spheroid and the micro-environment are planar models.

The case specifically for Ca = 0.01 is studied as it contains interesting transitions as β

varies from 0.01 to 10. From figure 3.2, it is evident that physical phenomena observed

such as buckling is conserved for both types of geometry - 2D axisymmetric and planar 2D
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Figure 3.4: Revalidation model results of spheroid contours, normalized velocity, shear
rates and pressures for a parametric sweep for Capillary number (0.01) σc

σs
and ratio

of viscosities (0.01-10) µr
µs

for 12 time constants (τ)

cases and is independent of the axial symmetry boundary condition imposed by comsol

in the previous chapter.
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3.6.2 Computational Results for Spheroids exhibiting Growth

Induced Instabilities

The model described in the previous sections was simulated without any active

stresses, i.e., by setting α = 0. This was done to examine potential growth induced

instabilities. From the model in the previous chapter, it was shown that for the fixed

proliferation rim length of λ, the physiologically relevant regime (Ca = 0.01, β = 0.1)

did not produce any instabilities. Here, the dimensionless parameter λ
l

is varied over

different values and instabilities similar to creasing instabilities are observed for the pa-

rameters β = 0.1 and Ca = 0.01, with a instabilities occurring between, but not including,

λ
l

= 0.25, 0.5 and λ
l

= 100.

3.6.3 Computational Results for Spheroids exhibiting Normal

Curvature Dependent Active Stresses

The parametric sweep is calculated between β, the ratio of core to rim viscosities

and α, the ratio of the active stress to the capillary stress. The parameters examined

are α = 150, 250, 500, 1000 and β = 10−4, 10−3, 0.01, 0.1. Also, as the simulations were

computationally expensive, they were simulated only until 0.1τ in some cases. However,

the instability that can cause invasion is already evident in these cases and the calculation

becomes more difficult due to the highly non-linear shape of the spheroid before the

invasion. As the active stresses are imposed on the system after the spheroid assumes a

large curvature, the imbalance in the momentum equation causes the spheroid to drift.

This was considered as the stopping point for these simulations. The results of these

simulations are shown below.
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Figure 3.5: Simulation Results for Spheroid growth and field variables for
β = µr

µs
= 0.01, Ca = σc

σs
= 0.01 for 3 different values of α = 150, 500, 1000
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Figure 3.6: Simulation Results for Spheroid growth and field variables for
α = ζ

γλ = 250, Ca = σc
σs

= 0.01 for 4 different values of β = 0.0001, 0.001, 0.01, 0.1
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Figure 3.7: Instabilities originating due to spheroid growth by varying the thickness
of the proliferating rim by varying the dimensionless parameter λ

l

Figure 3.8: The rate at which the instabilities form on the spheroid surface depends on
the length of the proliferation rim. Left - For the same amount of time, the curvature
variations are obtained faster for λ

l = 10 and similarly, changes in curvature are faster

for λ
l = 1
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Figure 3.9: Instabilities originate when the dimensionless parameter λ
l is within a

specific range.

3.7 Discussion

This chapter first investigates the instabilities due to cell division. Here, the relevance

of the thickness of the proliferative rim is examined. According to figure (3.7), we find

that the growth-induced instabilities seem to depend on the length of the proliferative

rim. The three variables of interest here are the time scale of these instabilities, the

extent of the variation in curvature and the wavelengths formed. According to figure

(3.7) and (3.9), the cases corresponding to the extreme cases of the proliferation-zone

thickness values do not form any instabilities. This is because in the case λ
l

= 0.25, the

rim is so small relative to the MCTS that, the accumulation of mass is at a small rate.

Due to this, the instabilities will take a significant amount of time to form. In the case

for λ
l

= 100, the large rate of proliferation smooths out the formation of instabilities and

hence will take a large amount of time for instabilities to form.

But, in the cases λ
l

= 1 and λ
l

= 10, instabilities are visible. Here, a low proliferation-
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zone thickness results in instabilities of high variations in curvature and correspondingly

small wavelengths. These curvature variations diminish as the length of the proliferation

zone increases and finally disappears within in the examined time-scale. This physi-

cally means that if the MCTS wishes to introduce an increasingly wavy profile on its

surface within a specific period of time, the necrotic core should have a larger radius.

This is consistent because a large proliferation rim means that a large part of the MCTS

is still dividing and it does not permit the outermost cells to escape from the free surface.

Next, we investigate the effect of adding curvature dependent normal-active stresses.

In this formulation, the parameters varied are the ratio of rim-to-necrotic core viscosities

β and the dimensionless parameter α. The sweeps done was for values of α 150, 500 and

1000 and for β, 10−4, 10−3, 0.01 and 0.1.

3.7.1 Varying Active Stress, keeping Viscosity Profile Same

The results calculated are shown in figure 3.3. According to the model, if the value of

β is held constant, the active forces attempt to deform the spheroid to the same shape.

This means that β or the differences in the viscosity inside the spheroid controls the shape

of the instability, while α controls the time scale of the emergence of these instabilities.

This is evident from the legends specified for the time-lapsed contours specified on the

top row of the figure (3.5). From these, it is evident that the time scale of the instability

almost inversely scales with the parameter α;

tM,α=500

tM,α=150

=
0.27

1
= 0.27 ≈ 150

500
= 0.3

Higher values of α were generating the instabilities so fast that, the geometry became

nonlinear by 0.1τ and could not solve further.
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With the curvature-dependent normal stresses in effect, the regions of high curva-

ture are experiencing high normal stress compared to those regions of zero or positive

curvature. This results in the spheroid attempting to pinch off a part of it, which is

representative of tumor invasion - where a collection of cells attempt to branch out and

invade to the surrounding matrix.

It is also interesting to note the arrangement of normalized velocity vectors inside

the spheroids. It is possible to observe Marangoni flows that form due to the presence

of the gradients in the coefficient of interfacial tension. As explained before, the regions

of high negative curvature are defined to have high coefficients of interfacial tension and

baseline interfacial tension for regions of positive or zero curvature. In all cases of α,

it is possible to see tangential velocity vectors starting from positive curvature regions,

directed towards negative curvature regions.

3.7.2 Changing viscosity profile, keeping active stress Constant

Keeping α fixed at 250, the resulting instabilities are shown in figure (3.6). There

are multiple interesting cases to be explored. As mentioned previously, the parameter

appeared to control the time scale of the emergence of the instabilities. Here, for the

cases of β = 0.001 and β = 0.01, the instabilities emerged by 0.5τ . However, the case

of β = 0.1, it takes longer for the instabilities to appear. The case for β = 10−4 is not

reliable in this model, because, there was a large amount of numerical error evidenced

by the drifting of the spheroid from its initial position.

As in the previous section, it is possible to see Marangoni flow setting up flow cells
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inside the spheroid and appears to be different for each case of β.

3.8 Conclusion

The study presented in this chapter explores two kinds of instabilities. One due to

growth and another due to the application of normal active stresses. The instabilities

due to growth are reminiscent of creasing instabilities and depend on the thickness of the

proliferative rim. The wave-number of these instabilities also appear to be dictated by

the inverse Capillary number ( 1
Ca

interpreted as λ
l
).

The instabilities due to the normal active stresses demonstrate the tendency of the

spheroid to pinch off, to invade its surroundings. The parameter β appears to control the

shape of the instabilities formed and the parameter α appears to control the time scale

of their emergence.

Unlimited growth and invasive potential are 2 among the most dangerous hallmarks

of any cancer. Unlimited growth can lead to disruption of the functioning of local organs

and invasion can result in the tumor attacking the host body on a global scale. It

is possible that tumor cells could use both these techniques simultaneously. Hence, it

is important to understand the instabilities caused by these cases individually to fully

appreciate their combined effect in the future.
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Chapter 4

Troubleshooting Experiments to

validate theoretical models

4.1 Introduction

The conclusions from the previous chapter indicate that the inhomogeneities in ag-

gregate mechanics, applied active stresses and growth can affect invasion. The current

chapter describes a potential experimental outline to which I contributed to validate

these theoretical predictions.

As mentioned briefly in the first chapter, many techniques can be used to investigate

the mechanics of a biological system. However, a large majority of them are applicable

only for in-vitro models or requires the destruction of the model to study them. Other

problems include that they can only be applied to a simplified model which does not

recapitulate the working of the real system. The oil droplet inserts using co-surfactant

systems developed in the Campàs lab [67] is the best technique to measure the rheological

properties of the system as it develops and in the case of cancer, as it proliferates and

invades.
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This chapter begins by explaining the oil droplet technique developed in the Campàs

lab. It explains the process of inserting them into cultured MCTS and acquiring data

via a confocal microscope and analyzing the results using LabVIEW. The cell lines that

used and the procedures involved in developing the 2D and 3D cell cultures (spheroids)

using the hanging droplet technique are explained [9], [68].

4.2 Experimental Setup

4.2.1 Oil Droplet-based magnetic micro-rheometers

As explained in [68], magnetic droplets can be used to apply magnetic stress on the

surrounding tumor aggregates using a magnetic assembly. These droplets are injected

into the spheroids using a pico-liter injector through glass needles. (Refer to appendix

B.1 for how these oils are mixed).

4.2.2 Oil Droplet-based sensors for measuring anisotropic stresses

The anisotropic stress refers to the stress experienced by a cell in the bulk tissue due

to active forces and morphogenetic flows. Measuring the trends and time scales of this

stress can offer important insights into the origin of invasion related instabilities. With

the oil-droplet based sensors [67] and further modified with the co-surfactant system [69],

these stresses can be measured. The droplets use a co-surfactant system consisting of

Krytox-PEG(600) and DSPE-biotinylated-PEG(2000) coated with Arginylglycylaspartic

acid (RGD) which can ligate to the cells. These ligands can be used as adapters to

transmit forces to the droplet.

The Krytox-PEG maintains the droplet interfacial tension so that γ remains constant
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Figure 4.1: a) A schematic diagram of a magnetic droplet actuating, when the mag-
netic field is switched on, b) An oil droplet after recording deformations applied by
surrounding cells. After post-processing, the surface heat map represents the varia-
tions in curvature which can be used to calculate the anisotropic stress components
[69]

Figure 4.2: a) The co-surfactant system employed to measure the curvature variations
after correctly mixing inside the oil. b) The individual surfactants employed - the
DSPE-PEG(2000) biotin allows cells to ligate to the droplet and apply forces, while
the Krytox-PEG(600) helps to maintain the coefficient of interfacial tension

and the DSPE-PEG-biotin allows cells to attach to the droplets and exert forces. These

surfactants are also suspended in the fluorocarbon oil - Novec 7700 and due to the

amphiphilic nature of the surfactants, the DSPE component remains at the surface,

while the Krytox component remains inside the droplet. Writing a force equilibrium at

the droplet surface;

σTA = 2γ(Ha −Hb) (4.1)
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Where, γ is the coefficient of interfacial tension and Ha and Hb are the local curvatures at

any two points on the droplet surface inside the MCTS, where σTA is the local component

of anisotropic stress. The distribution of these values are obtained for any two points on

the droplet and the standard deviation calculated from the distribution represents the

magnitude of anisotropic stress at the location of the droplet.

4.3 Data Acquisition and Processing

These non-magnetic droplets are generated using microfluidic techniques, while the

magnetic droplets are injected directly from a stock of magnetic oil. Once generated and

collected, they are injected into the MCTS. After injection (Appendix B.2), the MCTS is

embedded inside a collagen matrix (Appendix B.3-4) and after providing sufficient time

to heal the aggregates, are imaged using a Zeiss confocal microscope with an incubation

chamber which maintains a temperature of 37 degrees Celcius and 5% Carbon Dioxide.

Using the Confocal microscope, Time Lapsed Z-stacks of the deforming droplet are ac-

quired and the variations in the curvature can be calculated. The curvature is calculated

at the nodes on a mesh resulting from discretizing the droplet surface and reconstructing

it using the z-stacks and an in-house code written in MATLAB. Equation (4.1) is ap-

plied to obtain the distribution of anisotropic stress at any two points and the standard

deviation of this curve is the value of the anisotropic stress [69].

The confocal microscope housing also contains a magnetic housing with an array of 8

magnets arranged so that there is a unidirectional magnetic field at the center of the

housing and no magnetic field components perpendicular to this direction. The arrange-

ment attenuates the magnetic fields in the other two (x and y) orthogonal directions.

By moving the magnets up and down - using a virtual instrument developed using Lab-

VIEW, the applied magnetic stress can be varied. This can be used to actuate the mag-
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Figure 4.3: a) A 4T1 MCTS cultured using the hanging droplet technque b) A 4T1
spheroid injected with magnetic droplets.

Figure 4.4: Stress and Strain data measured from previous experiments done on ze-
brafish yolk from the Campàs lab, [68]

netic droplets mentioned in section 4.4.1 inside the fluorescently tagged MCTS. Again,

time-series experiments are conducted while actuating and relaxing the magnetic droplet
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and the contours of the deforming droplet are acquired using an image-processing soft-

ware programmed using both LabVIEW and the image acquisition software (Zen) after

specifying appropriate imaging parameters. The aspect ratios for every time point are

calculated for the droplet. The change in the aspect ratio of the magnetic droplet after

an actuation can be used to infer the deformation of the surrounding tissues and to infer

stress-strain curves. The deformation calculated this way can be used to calculate the

storage and loss moduli. A parameter estimation algorithm is implemented to calculate

the stiffness and viscosity of the tumor spheroids by fitting the stress and strain to linear

visco-elastic models such as the Kelvin-Voigt model, Maxwell model, and the Generalized

Maxwell model. Thus changes in the viscosity of the tumor aggregate can be calculated

while it is invading.

4.4 Cell Lines Used

A variety of cancer cell lines were investigated for growing the 3D cultures. The

following cell lines were considered based on their ability to form good spheroids using

the hanging droplet technique based on experiments seen in the literature [70], [71], [72].

A complete list includes;

4.5 Culturing Flourescent Tagged MCTS

All the cell lines specified in Table 4.1 were used to make multi-cellular spheroids.

However, only 3 out of the 6 cell lines namely - the HepG2, MCF10ca1a, and the 4T1

cells produce compact spherical spheroids. The MCF7 and MDA MB-231 adhere together

so weakly that they do not form acceptable spheroids. The Prostate cancer line PCC3

does form good aggregates but, they are usually oblong (not spherical) and invades in a
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Cell Line Description

MCF 7 ER (Estrogen Receptor) positive Human Breast Cancer Cell Line

MCF10 ca1a Human Breast Cancer Cell Line

MBA MD-231 Triple Negative Human Breast Cancer Cell Line

PCC3 Human Prostate Cancer Cell Line

HepG2 Human Liver Cancer Cell Line

4T1 Mouse Mammary Cell Line

Table 4.1: List of Cell Lines Considered for Three Dimensional Culture of Tumor Spheroids

Figure 4.5: Left - a monolayer culture of 4T1 cell line, Right - 4T1 cell lines at the
initial stage of transfection.

single-cell manner. As the experiments intended to examine stream-lined finger-like an

invasion from an initially spherical aggregate, this cell line was rejected. Hence, the 3 cell

lines used for the experiments are the MCF10ca1a, HepG2 and 4T-1 cell lines which were

observed to form good spheroids and invade in a finger-like manner. Please see Appendix

A for the procedures used to maintain these cell lines. These fluorescently labeled cells
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(different colors for nucleus and cell membrane) are used to culture Multi-Cultural Tumor

Spheroids (MCTS) via the hanging droplet technique in Petri-dishes (Appendix A.6.1).
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Chapter 5

Conclusions and Future Work

The work presented in this Thesis introduces two coarse-grained continuum mechanical

models that offer a view into how variations of the internal mechanical properties of

the spheroid and how active surface stresses could facilitate tumor invasion and growth.

They both use a two-phase moving mesh model of incompressible fluid domains that rep-

resent both the spheroid and the micro-environment. They both have proliferation and

viscosity profiles dependent on the distance from the spheroid contour - clearly demar-

cating a necrotic core region and a proliferating rim region. Several interesting physical

phenomena were predicted by the model, some of which are observed in experiments.

The overarching hypothesis in the first model is that a solid-to-fluid phase transition

facilitates the formation of surface instabilities. This model showed the onset of small

buckling instabilities in the lower Capillary number regimes (Ca = 0.01), but these were

not representative of an invasive phenotype and the most prominent of them did not

take place in the paramter regimes expected of a tumor with a necrotic core. To observe

this more clearly, these models were simulated using a full 2D model to remove the ef-

fect of the axial symmetry boundary condition imposed by COMSOL in the first model.
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Here, the wavelength of the buckling instabilities observed earlier was found to depend

on the parameter λ
l
, the ratio of the proliferative rim thickness to the intrinsic length

scale of. The properties of these instabilities like the wavelength, curvature variations

and the time-scales are dependent on the length of the proliferation rim. The variations

in curvature increases as the length of the proliferation decreases. They are reminiscent

of creasing instabilities observed in organs that undergo significant invagination, like the

human brain. However, it is likely that, the active forces applied by the aggregate greatly

contribute to tumor invasion and need to be included.

There are multiple hallmarks of cancer that aids it in its invasion to a different site.

This includes the ability of the tumor to fluidize its surrounding matrix and apply ac-

tive forces using membrane junction proteins on surfaces that can sustain these forces.

In both models in this study, the surrounding medium was assumed to be much more

fluidized than the tumor aggregate itself (represented by a much lower viscosity). The

addition in the second model is the ability of the tumor to apply active stresses normal

to its surface and dependent on the local mean curvature as observed experimentally

[66]. This introduced instability in the system that showed the tendency of the spheroid

to pinch off and leave the primary site. As the geometry becomes highly nonlinear, the

moving mesh is unable to accommodate severe topological changes. Consequently, these

could not be simulated to large durations of time.

5.1 Future Work

Several different parameter regimes remain to be explored in this model. For instance,

the involvement of the tumor micro-environment has been largely ignored. This greatly
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limits the scope of this study because it is well documented that tumor aggregates inter-

act actively with their micro-environment by chemical and mechanical signaling. Some

parameters to consider first would be the viscosity of the micro-environment and examine

how profiles in them could contribute to tumor invasion. An interesting hypothesis is to

coarse-grain the tumor‘s ability to re-model the Extra-Cellular Matrix (ECM) fibers as

tracks of low-viscosity regions and perform the same analysis on the instabilities due to

proliferation and that induced by active stress. Such a study could complete the circle

by investigating both the internal mechanics, surface properties and the tumor micro-

environment providing a holistic view of tumor invasion.

Another modification to attempt would be to limit the value of active stresses the

cells can experience. This can be done by defining an upper limit to the force function.

Currently, active stress is allowed to increase in an unbounded fashion quadratically. This

is realistic because there is a physical limit to the amount of force that an invading from

of the tumor aggregate can apply on the ECM. Also, varying powers of how the active

stress depends on curvature can also be explored. In this case, only the square term was

considered while, cubic and fourth powers could show other interesting effects.

Finally, it is interesting to investigate the effects of combining the instabilities induced

by proliferation and that by tumor invasion. It is possible that one could be accentuating

the other or they could be working against each other. It is also possible that the result-

ing wavelength could contain frequency components of both types of these instabilities.

This thesis demonstrates how commercial solvers like COMSOL, which is only start-

ing to be explored for solving models for morphogenesis and organogenesis can be used

to obtain solutions for complex systems like tumors when the correct mechanical profiles
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are incorporated. The present study only implements only a fraction of what COMSOL

is truly capable of. There are diverse mathematical interfaces that could be computa-

tionally more expensive but will be capable of handling the large non-linearities observed

in the previous results.

As mentioned earlier, the moving mesh module is incapable of solving the model when

there are significant topological variations. Two types of multi-phase models that could

simulate this are the level-set technique and the phase-field techniques. These can model

deformations that could lead to the separation of one domain into two and should be

explored. The reason why this was not used in the present study was primarily that, it

was computationally expensive and they were diffuse-interface techniques.

A different set of tools that COMSOL offers are those for Fluid-Structure Interac-

tions. In many previous studies, scientists have modeled the tumor aggregate and the

spheroid as solid domains with widely varying material properties. COMSOL offers dif-

ferent material property models which vary from linear elastic, visco-elastic, hyperelastic

models, etc. These might offer interesting results by expanding the mechanical param-

eters considered. For instance, rheological models can include storage moduli and loss

moduli and parametric sweeps could be executed to observe instabilities due to varying

them. The property of elasticity has been largely ignored in the present study. The mul-

tiphysics modules for biot poroelasticity and subsurface flow could also be potentially

used to model tumor invasion.

Finally, COMSOL’s versatility in specifying variational constraints and equations us-

ing their weak contributions node can be of great use. Some of the interesting work done

using them pertinent to this study would that of were an Oldroyd B fluid was simulated.
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Although it required multiple stabilization techniques, it is a nice model instructive of

how to start modeling complex fluids in COMSOL. It would be interesting to model

tumor spheroids as Oldroyd-B fluids and examine the effect of varying the Wissenberg

number.

In Conclusion, the work presented here explores both the internal mechanics of a sim-

plified tumor model in two different types of geometry and also the evolution of the tumor

aggregate contours and the parameters that control them. Hence, it provides insight into

both the dynamics of the tumor bulk and its surface properties. Multiple avenues remain

to be explored in both the existing model and by using modeling techniques that are

based on radically different mathematical frameworks, which in the future will surely

elicit interesting and exciting results.
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Appendix A

Cell Culture Methods

A.1 Unfreezing Cells

The cell lines which were stored as cryovials were thawed in a hot water bath or an

armor bead bath just until the frozen cell-freezing medium became liquid. The thawed

vial is wiped with alcohol and transferred into the Biosafety cabinet. The thawed cell

culture and freezing medium mixture was resuspended in 10 mL of the corresponding

culture medium (DMEM for all cell lines mentioned in Table 4.1 except for 4T1 which uses

RPMI culture medium). The resuspended cells were then spun down using a centrifuge at

1200 rpm for 5 minutes into pellet form. The supernatant was removed and the remaining

pellet was once again resuspended using 5mL of the corresponding culture medium. The

suspension was then transferred into a T − 25 culture flask and incubated at 37 o C with

5 % Carbon Dioxide. The culture flask is inspected daily and the culture media may be

changed as required, depending on how fast the cell line grows and consumes nutrients.
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A.2 Passaging of Confluent Cell Lines

The previous subsection provides details about the unfreezing of cryo-preserved cells.

After the growth of the cell line stabilizes, the cells need to be passaged periodically

when they achieve confluency. This is necessary to maintain the overall health of the cell

line. Confluency is measured in the percentage area of the flask in which the cell lines

are attached. The rule-of-thumb level of confluency for passaging cell lines is 70-80 %.

The exact cell division times vary for different cell lines. For instance, the MCF 7

line divides once every 36 hours while the PC3 line divides in 24 hours. Depending on

the cell division times and assuming that the correct incubation conditions and culture

media were provided without any contamination, the T −25 culture flasks would achieve

70-80 % confluence in nearly 3 days. The culture flasks are inspected every day to check

the level of confluency and they are passaged if they reach 70− 80% confluency.

The aseptic technique is followed when bringing items into the Biosafety Cabinet -

all items are wiped with alcohol and Kimwipes before using them. After cleaning the

confluent flasks, the older culture media is removed from them using Pasteur pipets. The

pipet transfers the media into a waste disposal system. This does not disturb the cells as

they are attached to the bottom of the culture flasks. The attached cells are then rinsed

with Phosphate-Buffered Saline (PBS) solution (3−5mL) to remove any remnants of the

media or any other impurities. The PBS is removed using a Pasteur pipet and the cell

dissociation buffer or trypsin (3− 5mL) is added to detach the cells from the bottom of

the culture flask. The buffer contains chemicals that cleave the bonds between adjacent

cells and between the cell and the flask. The flask containing the dissociation buffer is

incubated at 37o C with 5% Carbon dioxide for 10 minutes. For most cell lines, this
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detaches the cells and can be seen floating inside the culture flask under a microscope.

If the cell line is highly adherent, gently tapping it by hand should remove them. The

detached cells are rinsed with either PBS (for cell dissociation buffer) or culture media (if

trypsinized) and transferred to a 15 mL falcon tube (conical centrifuge tube). The falcon

tube is centrifuged at 1200 rpm for 5 minutes to form a pellet of the cells. The falcon

tube is wiped with alcohol and brought into the cell culture hood and the supernatant

is removed using a Pasteur pipet. The pellet is resuspended using 3− 5mL of media.

The cells are now counted using a cell hemacytometer. The cell suspension obtained

from step is agitated to ensure uniform distribution of cells and 90 µL of the cell sus-

pension is aspirated with a micropipette and transferred to a microfuge tube. 10µL of

Trypan-Blue solution is added to the cells and the mixture is shaken. From the microfuge

tube, 10 µL of stained cells are aspirated and transferred to between the cell hemacy-

tometer and the cover glass. The hemacytometer is inverted and the cells are counted

in either the central grid or the sum of the number of cells in the four top and bottom

corners and then averaged. This number multiplied by 10000 gives the density of cells

inside the cell suspension falcon tube.

Using the calculated cell density, the required number of cells are transferred to a new

T-25 flask. Barring unusual conditions such as very low cells counts, 500000 cells were

transferred during each passage into the new flasks. This was done by calculating the

required volume of the cells to maintain this count. T-25 flasks are seeded with a total

volume 5 mL including both cells and culture media. If there is any remaining volume

after the transfer of cells, cell culture media is added to raise it to 5mL. The flasks were

labeled with the cell line name, the passage number and the date of passaging along with

any additional information required.
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A.3 Cryopreservation of Cell Lines

Cryopreservation is intended for long-term storage of cell lines. The cell lines were

cultured in larger T-75 culture flasks. The cells are resuspended in a similar procedure

as in a passage which includes detachment, pelleting and subsequent resuspension. The

cells are counted and the corresponding volume for 1 million cells is calculated. The cells

are centrifuged again and resuspended in cell-freezing buffer of the same volume used for

resuspension in the previous step. The volume calculated, for 1 million cells calculated

before, is transferred to cryovials and the remaining volume is filled with culture media

to raise the total volume to 1 mL. The cryovials are then stored in a −80oC refrigerator.

A.4 Transfection of Cell Lines to Improve Imaging

The spheroids cultured from the afore-mentioned cell lines will be injected with non-

magnetic or magnetic droplets. To measure the strain experienced by these droplets and

consequently, the surrounding tissues, the cell lines are transfected with GFP, mCherry,

and mPlum, along with a kanamycin antibiotic-resistant gene. This is done so that cells

not expressing these transfections are selected out and a colony of cells expressing these

fluorescent proteins can be obtained. The nucleus and the cell membrane are tagged with

different fluorescent proteins - GFP for the nucleus and either mCherry or mPlum for

the cell membrane.
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A.5 3D Cell Culture of Tumor Spheroids

Multi-cellular Spheroids (MCS) are in-vitro models of cancer aggregates inside a liv-

ing system. They are composed of cells held together by inter-cellular forces and can

be cultured using a variety of techniques. The technique adopted in the present study

is called the hanging droplet technique and will be described shortly. The section also

describes the advantage of using Multi-Cellular Spheroids over conventional monolayer

cultures and describes some of the basic physiological properties of these aggregates.

A.6 Culturing 3 Dimensional Multi-cellular Spheroids

There are a variety of techniques available to culture 3 Dimensional Tumor Spheroids.

Some of them include the use of bio-reactors [73], [74], the use of microfluidic channels

[75], [76], using biopolymer matrices such as agarose or matrigel to compact colonies of

dividing cells to form spherical aggregates [77], [78]. However, in this study, a technique

called the hanging droplet technique is used to generate tumor spheroids [72]. This

method is chosen because of its simplicity and its ability to form a large number of

spheroids using a small number of reagents. Its procedure is described as follows;

A.6.1 The Hanging Droplet Technique

After passaging cells at 70-80% confluence, the cell suspension containing cells and

media is retained. Using the cell density calculated during the passaging step, the vol-

ume of cell suspension for each hanging drop is calculated based on the number of cells

per spheroid. The number of cells per spheroid is decided by the desired radius of each

spheroid. The radius increases with the number of cells. For a spheroid of 200µm radius,
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1500 cells need to be seeded in each hanging droplet. The volume of cell suspension for

each droplet is calculated and raised to a total volume of 15µL. The volume of each

component - both cell suspension and the media is multiplied by the required number

of spheroids and mixed in a microfuge tube. The mixture is resuspended using a micro-

pipet and 15µL of the mixture is aspirated using the micro-pipet and dispensed onto the

inverted cover of a petri dish. Approximately 30 droplets are made in quick succession.

Upon making the droplets, the cover is inverted quickly so that cells do not settle on

the petri dish and stick to it. The best results are observed when the droplets are made

close to the center of the petri-dish cover. The cover is then closed over a pool of culture

media (DMEM or RPMI depending on the kind of cells used). This is required to help

the cells grow and to let the spheroid form. The shape of the hanging droplet forces the

cells to aggregate at the bottom of the drop. This causes the cells to bind together and

form tumor spheroids.
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Preparation of Sample

B.1 Mixing the components for magnetic oil droplets

The magnetic droplets are composed of a ferrofluid which provides ferrite nano-

particles to help actuate the droplet, Novec 7700 oil as the continuous phase in which

a surfactant known as Krytox (PEG-600) is dispersed. The amphiphilic nature of the

Krytox (PEG-600) causes it to orient itself with the hydrophobic tail facing into the

droplet. This allows the magnetic droplet to maintain its interfacial tension. Further,

rhodamine dye is also added to make the droplet visible under confocal microscopy. The

components of the magnetic oil are mixed in specific amounts to obtain good actuation

and ease of imaging. A metric that is used is the dilution factor. It is calculated based

on the amount of ferrofluid.

The dilution factor denotes the number of times by which the stock concentration

of ferrofluid should be divided to obtain the concentration of the prepared magnetic oil.

Also, the magnetic stress that can be applied by the droplet varies with the square of the

dilution factor. The prepared magnetic oil is sealed using a parafilm wrap and stored in
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a cool and dark location.

B.2 Inserting the magnetic droplets into the spheroids

B.2.1 Magnetic Oil Droplets

The injection is carried out in an agarose mold patterned with wells to facilitate in-

jection. The agarose is mixed at 2 % by weight and warmed. The warm mixture is then

poured out onto a petri dish and the template for the injection mold is inserted into

at nearly 45o C. The template is removed after the agarose fully cross-links and leaves

behind a neat array of wells.

When being prepared for injection, the vial containing the magnetic oil is first son-

icated for 10 minutes at room temperature. Approximately, 3µL of the magnetic oil

is aspirated and transferred into a pulled-capillary needle. The needle is connected to

the conduit of a pico-liter injector. The injection pressure and the injection time of the

injector can be changed using the knobs on the device. These two parameters can be

manipulated to change the size of the droplets being injected into the spheroid. If there

is too much resistance to the ejection of the droplet from the needle, the length of the

needle may be reduced. This is done to increase the diameter of the needle to enhance

the flow of the magnetic oil. This might also be required to help improve injection be-

cause as the diameter of the tip of the needle increases, the bending rigidity of the needle

increases and allows easier piercing of the spheroid surface. The injected droplets are

controlled to have diameters between 30− 40µm.

After injection, the agarose wells in the petri-dish containing the injected spheroids
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are incubated overnight so that the spheroids can heal. The spheroids are then embedded

in collagen the next day for the invasion assay.

B.3 Embedding the Spheroids in a Collagen Matrix

To successfully perform an invasion assay, the aggregate needs to be positioned in

the middle of the crosslinked collagen. Several techniques were attempted to accomplish

this. One of the methods was to resuspend the spheroid in collagen inside a microfuge

tube and to pipet the mixture out onto a mattek dish. The intention was to control the

position of the injected spheroid by varying the volume of the collagen used to resuspend

the spheroid and by varying the position of the heat sources to cross-link from different

directions. However, the spheroid continued to drop through the collagen as the bulk

of the collagen remained un-crosslinked in the center despite the surface regions being

cross-linked.

Another technique was to sandwich the injected spheroid between two layers of col-

lagen. However, the spheroid seemed to be able to locate the interface between the two

differently crosslinked layers of collagen and spread into that interface. This did not

enable studying cancer invasion in all directions and the invasion on such a specific plane

was thought to bias the experiment and not provide a realistic picture of cancer invasion.

Lately, a technique that has seen success is the use of circular and square glass capil-

laries. The method is akin to that in light-sheet microscopy where the sample is aspirated

with the aid of capillary effects and suspended in the middle of the capillary. Spheroids

embedded this way have been observed to invade in a finger-like fashion. However, the

curvature of the circular capillary bent the light and obscured the image.
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The square capillaries rectify this issue. Having embedded the injected spheroid in the

Figure B.1: a) Using Mattek dishes to embed the spheroid. The MCTS is first re-
suspended in collagen and is pipetted out onto a Mattek dish. b) The use of circular
capillaries to pick up injected MCTS c) Square capillaries that can avoid the bending
of light at the center of each face only.

middle of a square glass capillary, relatively better images of the spheroids can be taken.

The dimensions of the square capillaries also need to be of a specific dimension such that

the spheroid remains within the working distance of the 40X objective which is approx-

imately 400− 600µm. As square glass capillaries are expensive, alternate materials like

PDMS is being investigated to solve this issue. Furthermore, the square glass capillary

also has the issue of lack of perfusion of culture media. Without adequate amounts of

culture media, the spheroid can vaporize and compromise the whole experiment. To

overcome this, 3D printed molds that position the spheroid correctly, with wells that

hold media that will diffuse through the collagen matrix to the other side are being

explored. Once, the perfusion can be successfully implemented and the actuation and

imaging performance improved, the experiments can be conducted to actuate the droplet

and simultaneously image them. This enables the calculation of the changes in aspect
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ratio to infer tissue deformation and consequently, the viscosity as a function of time.

87



Bibliography

[1] R. M. Neto-Silva, S. de Beco, and L. A. Johnston, Evidence for a growth-stabilizing
regulatory feedback mechanism between myc and yorkie, the drosophila homolog of
yap, Developmental cell 19 (2010), no. 4 507–520.

[2] K. F. Harvey, X. Zhang, and D. M. Thomas, The hippo pathway and human
cancer, Nature Reviews Cancer 13 (2013), no. 4 246.

[3] X. Zhang, J. George, S. Deb, J. Degoutin, E. Takano, S. Fox, D. Bowtell, and
K. Harvey, The hippo pathway transcriptional co-activator, yap, is an ovarian
cancer oncogene, Oncogene 30 (2011), no. 25 2810.

[4] D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, cell
144 (2011), no. 5 646–674.

[5] Y. A. Fouad and C. Aanei, Revisiting the hallmarks of cancer, American journal of
cancer research 7 (2017), no. 5 1016.

[6] J. J. Sleeboom, H. E. Amirabadi, P. Nair, C. M. Sahlgren, and J. M. Den Toonder,
Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip
approaches, Disease models & mechanisms 11 (2018), no. 3 dmm033100.

[7] S. Kumar and V. M. Weaver, Mechanics, malignancy, and metastasis: the force
journey of a tumor cell, Cancer and Metastasis Reviews 28 (2009), no. 1-2 113–127.

[8] P. Roca-Cusachs, V. Conte, and X. Trepat, Quantifying forces in cell biology,
Nature cell biology 19 (2017), no. 7 742.

[9] A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K.
Carn, F. Serwane, A. A. Lucio, J. Giammona, and O. Campàs, A fluid-to-solid
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