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Summary

Censuses of tropical forest plots reveal large variation in biomass and plant 
composition. This paper evaluates whether such variation can emerge solely 
from realistic variation in a set of commonly measured soil chemical and 
physical properties.

Controlled simulations were performed using a mechanistic model that 
includes forest dynamics, microbe‐mediated biogeochemistry, and 
competition for nitrogen and phosphorus. Observations from 18 forest 
inventory plots in Guanacaste, Costa Rica were used to determine realistic 
variation in soil properties.

In simulations of secondary succession, the across‐plot range in plant 
biomass reached 30% of the mean and was attributable primarily to nutrient 
limitation and secondarily to soil texture differences that affected water 
availability. The contributions of different plant functional types to total 
biomass varied widely across plots and depended on soil nutrient status. In 
Central America, soil‐induced variation in plant biomass increased with mean
annual precipitation because of changes in nutrient limitation.

In Central America, large variation in plant biomass and ecosystem 
composition arises mechanistically from realistic variation in soil properties. 
The degree of biomass and compositional variation is climate sensitive. In 
general, model predictions can be improved through better representation of
soil nutrient processes, including their spatial variation.

Introduction



Seventy years ago, Leslie Holdridge divided the Earth's land areas into 
bioclimatic classes or ‘life zones’ based on water and energy considerations 
(Holdridge, 1947). While undoubtedly a useful concept, bioclimatic 
classifications treat terrestrial ecosystems as homogeneous on scales over 
which climate is approximately constant. This scale, from this point forward 
the ‘regional’ scale, can operationally be defined as the size of a few climate 
model grid cells (c. 100s of km). For practical purposes, homogeneity on 
regional scales has also been assumed by some techniques used to analyse 
observational data. For example, carbon dioxide (CO2) flux maps do not 
account for fine‐scale environmental variability and therefore exhibit little 
subregional‐scale variability (Beer et al., 2010). Similarly, tropical vegetation 
biomass and CO2 fluxes simulated by mechanistic ecosystem models tend to 
be homogeneous on regional scales because these models are rarely driven 
by fine‐scale environmental variation (Sitch et al., 2003, 2015; Levy et al., 
2004; Thornton et al., 2007).

Ecological theory has long held that variability in ‘state factors’ (soil parent 
material, relief, time, potential vegetation, climate) (Jenny, 1941) should 
support subregional spatial variation in ecosystem functioning. In tropical 
ecosystems, observations have identified substantial subregional‐scale 
variation in biogeochemical functioning (Townsend et al., 2008), above‐
ground biomass (Jubanski et al., 2013; Avitabile et al., 2016), and plant 
nutrient limitation (Augusto et al., 2017). Although, the mechanisms by 
which fine‐scale environmental variation might affect regional‐scale 
averages in the tropics are not yet well understood, the effects are known to 
be large in other ecosystems (Pappas et al., 2015).

Here, we evaluate whether realistic subregional‐scale variation in soil 
properties can lead to large variation in ecosystem model simulations. While 
there is a two‐way interaction between plants and soils (Binkley & Giardina, 
1998; Waring et al., 2015a; Fujii et al., 2017), we are here focused on 
geologically inherited soil properties. Soil geology and parent material are 
typically heterogeneous on subregional scales, with this heterogeneity 
having been dubbed ‘geodiversity’ (Gray, 2008; Ruban, 2010). Steep 
gradients of topography, soil weathering status, and dust deposition over 
relatively small spatial scales can amplify local biogeochemical and 
hydrological heterogeneity in tropical forests (Townsend et al., 2008). This 
site‐level variation in soils has been empirically linked to variation in 
vegetation. For example, soils in Neotropical forests are strong predictors of 
species distributions (Clark et al., 1998; John et al., 2007; Fayolle et al., 
2012; Condit et al., 2013; Figueiredo et al., 2018; Werden et al., 2018) and 
variation in soil parent material globally has been linked to differences in 
phosphorus (P) limitation of plant productivity (Augusto et al., 2017). By 
contrast, dynamic vegetation models have typically represented only a few 
aspects of geodiversity (especially soil texture), and have rarely explored 
how geodiversity on subregional scales affects model outcomes.



To address this problem, we have developed a novel coupled model that 
brings together several characteristics from existing models. First, we 
simulate vegetation dynamics using the vegetation demographic model ED2,
a model that has previously performed well in tropical forests (Levine et al., 
2016; Xu et al., 2016; Longo et al., 2018). Second, we account for P 
limitation of vegetation productivity (Goll et al., 2012; Yang et al., 2014; 
Wang et al., 2015b; Q. Zhu et al., unpublished). The importance of P 
limitation is underscored by the sensitivity of plant nutrient limitation to soil 
parent material (Cleveland et al., 2011; Augusto et al., 2017). Third, we 
explicitly simulate microbial and enzyme processes because these processes
can be essential for capturing ecosystem responses to environmental change
(Allison et al., 2010; Wieder et al., 2015; Georgiou et al., 2017; Camenzind et
al., 2018). For example, explicit representation of microbes facilitates the 
modelling of time‐varying microbial community stoichiometry and other 
processes that can only be implicit in a first‐order decomposition model 
(Tang & Riley, 2015). We also explicitly simulate enzyme dynamics. Enzymes
catalyse the conversion of polymers to plant‐ and microbe‐available 
monomers, with different enzymes targeting different elements. Fourth, we 
mechanistically simulate plant−microbe competition for nutrients (Zhu et al.,
2016, 2017). This competition is driven in part by the concentrations of plant
and microbe nutrient transporter enzymes. Our mechanistic approach is 
distinct from both the common relative demand (Thornton & Rosenbloom, 
2005) and microbes‐satisfied‐first (Gerber et al., 2010) assumptions.

In this study, we apply our coupled model to a tropical dry forest (TDF) site in
Costa Rica and regionally throughout Central America, where TDFs are 
common. TDFs have been observed to have large variability in both soils and
vegetation (Powers et al., 2009; Balvanera et al., 2011; Powers & Perez‐
Aviles, 2013; Waring et al., 2016). Across TDFs, total soil P varies over 100‐
fold and plant species and their functional traits such as foliar P sort strongly 
over soil P gradients (Becknell & Powers, 2014). The degree of both plant P 
and plant nitrogen (N)‐limitation varies on regional scales (Campo, 2016). 
Both mature (Becknell et al., 2012) and recovering (Poorter et al., 2016) 
TDFs exhibit strong spatial variation in above‐ground biomass (AGB), and 
AGB variation has previously been statistically correlated with soil properties 
(Becknell & Powers, 2014).

We tested three hypotheses in the context of model simulations. First, 
variation in soil chemical and physical properties will lead to large, sustained 
variation, rather than transient variation, in plant biomass during secondary 
succession (H1). Second, because plant functional types (PFT) have different 
nutrient requirements and different modes of nutrient acquisition, variation 
in soil nutrient availability will lead to variation in PFT composition, even at 
the level of presence/absence (H2). Third, there will be a soil fertility−climate
interactive effect on biomass and functional group composition (H3). 
Specifically, biomass will be more sensitive to soil fertility at high‐
precipitation sites than at low‐precipitation sites because wetter sites are 



more likely to be limited by geologically related variables such as P than by 
climate‐related variables like precipitation. Similarly, soil fertility variation 
will lead to more variation in PFT composition at high‐rainfall sites, where 
water limitation is minimal, than at low‐rainfall sites.

Materials and Methods

Field sites, soil properties, and climate

We carried out grid cell‐level and regional analyses. Grid cell‐level analysis 
focused on Guanacaste, Costa Rica (Supporting Information Fig. S1) due to 
the availability of detailed soil and vegetation information from 18 well 
characterised plots in Sector Santa Rosa of Guanacaste Conservation Area 
and Parque Nacional Palo Verde of Arenal‐Tempisque Conservation Area 
(Powers et al., 2009). All 18 plots fall within 100 km of each other, a spatial 
scale that is comparable to the resolution of climate models. The mean 
annual temperature at both Santa Rosa and Palo Verde is 25°C. Observed 
mean annual precipitation (MAP) varies slightly over this grid cell, with the 
1980–2017 average near Santa Rosa being 1708 mm 
(https://www.acguanacaste.ac.cr/investigacion/datos-meterologicos) and the 
2008–2017 average near Palo Verde being 1690 mm 
(https://tropicalstudies.org/meteoro/default.php?pestacion=1).

Soils in this region are Inceptisols with some Vertisols (Soil Survey Staff, 
1999). They are developed from diverse parent materials including volcanic 
ignimbrite and basalt at Santa Rosa, and limestone and colluvium at Palo 
Verde (Hartshorn, 1983; Leiva et al., 2009). Sites also have varied 
disturbance histories. Like most TDFs (Miles et al., 2006), these plots are 
undergoing secondary forest succession and have ages ranging from 5 to 60 
yr (median = 19.5). Measured soil properties are listed in Table S1. Across 
the 18 plots, total P varies from 31 to 1272 ppm, and per cent clay varies 
from 17% to 36%. They present a two‐fold gradient in total soil N (from 0.21 
to 0.55%). N and P seem to exert independent effects on plant community 
structure (Waring et al., 2015b). Sand content, % C, and C : N ratio also vary 
widely across plots. Trees in these sites have been censused annually since 
2007 and biomass has been estimated (Becknell & Powers, 2014).

Our regional‐scale analysis focused on Central America, but also included 
southern Mexico, parts of northwestern South America, and several 
Caribbean islands (Fig. S1). This region was selected because it includes 
most of the northern hemisphere Neotropical dry forests. The availability of 
soil and climate data throughout this region is not uniform. Gridded products 
for some climate and soil variables exist (for example from the World Data 
Centre for Soils), typically at the 50–200 km scale. However, this scale again 
is typical of a climate model grid box and often does not fully account for 
subregional‐scale heterogeneity.

Model description



We coupled three models: ED2, MEND and N‐COM. All of these models have 
individually been evaluated in tropical forests (Xu et al., 2016; Zhu et al., 
2016; Wang et al., 2019). We briefly describe the models here. Further 
details are provided in Methods S1. The model code is provided in Methods 
S2.

ED2 is a vegetation demographic model (VDM) that simulates the growth, 
mortality, and recruitment of tree cohorts (Medvigy et al., 2009). Cohorts are
characterised by their PFT, size and stem number density. Cohort size is a 
vector quantity and includes leaf carbon (C), wood C, fine root C and non‐
structural C. Plant height and diameter at breast height are allometrically 
related to wood C. Competition for light and water follows previous model 
versions and is described in Methods S1.

ED2 has previously been evaluated at the relatively nutrient‐rich Palo Verde 
site under the assumption of no nutrient limitation (Xu et al., 2016) and that 
version of the model formed the starting point for this analysis. Here, we 
present a new concept of plant nutrient dynamics in ED2 (for details, see 
Methods S1). In our nutrient‐enabled model, each cohort has non‐structural 
C, N and P pools that do not have fixed stoichiometry. When C, N and P are 
initially acquired, they accumulate in the non‐structural pools. The model 
deploys these resources to construct structural tissue (leaves, fine roots and 
wood) according to the same allocation rules developed for previous model 
versions (Medvigy et al., 2009). Each type of structural tissue has a fixed 
stoichiometry (Table S2), and therefore structural growth can be limited by 
either C, N or P. Before litterfall, retranslocation transfers fixed fractions of C,
N and P from structural pools to non‐structural pools. The C, N and P non‐
structural pools have maximum sizes that are set equal to twice the amount 
of C, N, and P, respectively, contained in a full canopy of foliage. Any C that 
builds up in excess is immediately subject to waste respiration, and excess N
and P are released to the soil.

We have also developed plant strategies for mitigating resource limitation. 
Our previously published version of the model (Xu et al., 2016) included four 
TDF PFTs which spanned a range of conservative to acquisitive traits, listed 
in Table S2. None of these PFTs is a nitrogen fixer. Because nitrogen‐fixing 
legume trees figure prominently in these forests (Powers et al., 2009; Gei et 
al., 2018), we created four new nitrogen‐fixing PFTs. These fixer PFTs are 
parameterised exactly the same as the original four PFTs, except that they 
may fix nitrogen (J. H. Levy‐Varon et al., unpublished). Depending on a fixer 
cohort's N economy, it can upregulate or downregulate fixation and pay a 
carbon cost associated with the metabolism and nodule maintenance of 
fixation (Gutschick, 1981). While fixation augments soil‐available N, the fixer 
still can become N‐limited as the total amount of N acquired by the plant is 
constrained by a maximum rate of fixation (Table S2). Finally, we allowed 
cohorts to increase allocation to fine roots when they are C‐limited and have 
relatively low water potentials, indicative of water limitation (Methods S1). 
Cohorts do not increase their fine roots when they are nutrient limited 



because, in preliminary simulations, the nutrient cost of building fine roots 
exceeded the nutrient benefit of the additional roots as the soil nutrient 
supply was exhausted. This parameterisation is also consistent with a recent 
TDF nutrient fertilisation experiment in Costa Rica that reported increases in 
fine roots in response to P fertilisation (Waring et al., in press).

Although ED2 (and its predecessor, ecosystem demography (ED)) have long 
contained a simple representation of soil N biogeochemistry (Moorcroft et al.,
2001), the model's soil nutrient cycling has not received much evaluation 
and has even been deactivated in many previously published studies. There 
is no published version of ED2 that includes P dynamics. Rather than develop
and test an entirely new soil biogeochemistry model for N and P cycling, we 
coupled an existing biogeochemical model with explicit microbial 
mechanisms of soil organic matter (SOM) decomposition (that is enzymatic 
catalysis) to ED2. This model, MEND (Wang et al., 2013, 2015a) was selected
because all MEND state variables correspond to physicochemically or 
biologically distinguishable entities and the multiple SOM pools are 
measurable; it is relatively simple but accounts for key abiotic and biotic 
factors; it has been evaluated in subtropical and tropical forests (Wang et al.,
2017, 2019); it contains explicit microbial and enzyme pools; and it can 
represent soil N and P dynamics (for details, see Methods S1).

Nutrient competition between plants, microbes, and soil surfaces was 
simulated using the mechanistically based N‐COM model (Zhu et al., 2016) 
(see Methods S1). N‐COM determines the partitioning of multiple resources 
(nitrate, ammonium, phosphate) between multiple substrates (plant and 
microbe carrier enzymes and soil mineral surfaces) (Zhu et al., 2016, 2017) 
using the Equilibrium Chemistry Approximation (Tang & Riley, 2013). 
Parameter values for MEND and N‐COM are the previously published default 
values and are given in Table S3.

Simulations

We ran thousands of simulations that varied in soil properties, external 
nutrient input (deposition and fertilisation rates), model parameter values via
sensitivity analysis, and climate forcing. These simulations are described in 
this section and summarised in Table S4.

Our ‘primary’ set of 18 simulations was designed to identify the effects of soil
properties on ecosystem functioning and composition (Hypothesis 1). Each of
these 18 simulations was initialised with the observed soil state (OSS) in one 
of the 18 Guanacaste inventory plots (Powers et al., 2009). The OSS 
consisted of bulk density, % sand, % clay, % C, C : N ratio, total P and 
extractable P (Table S1). Details of how these data are used to initialise the 
model are given in Methods S3. The bulk density and soil texture were held 
constant throughout each simulation, while other soil variables, including 
nutrient concentrations, were variables updated by ED2‐MEND‐NCOM. In this 
version of the model, soil texture affected soil hydrology and thermal 



conductivity only, although we recognise that soil texture can also affect soil 
surface adsorption capacity.

Several configurations were the same in all simulations. The initial 
vegetation always consisted of an initial stem density of 1000 stems ha−1 
with a height of 2 m for all PFTs. Although this initial condition is undoubtedly
a simplification, it was adopted because the vegetation condition at the 
times of agricultural abandonment was not known. It is likely that different 
plots were affected differently by seed dispersal, small‐scale disturbances, 
and the existence of remnant trees (Powers et al., 2009). These primary 
simulations were run for 35 yr to reflect a typical time since agricultural 
abandonment in this area (Calvo‐Alvarado et al., 2009). This time scale is 
shorter than the time required for simulated vegetation and soils to 
equilibrate and so many model variables, including plant biomass, were 
expected to exhibit transient behaviour. Given our soil and climate initial 
conditions, it is more appropriate to think of these simulations as secondary 
succession that would follow a near‐complete harvest of the current‐day 
plots, rather than secondary succession that actually ensued (and which we 
cannot reconstruct due to lack of observed conditions at the times of 
abandonment). Simulations were forced with contemporary gridded climate 
data from 2000 to 2012 (Sheffield et al., 2006). This date range intentionally 
avoids some strong anomalies, including the unusually short wet season in 
2014 and the exceptional El Niño‐related drought in 2015 (O'Brien et al., 
2018). We repeatedly recycled the 2000–2012 data to obtain a 35‐yr 
meteorological record. Although the simulation design was more geared 
toward our mechanistic hypothesis testing than prediction, we compared 
simulated and observed biomass as a reality‐check.

We also assessed model nonlinearities expected from Jensen's inequality, 
that is whether the average of a function is equal to the function of the 
average (Ruel & Ayres, 1999). Results from the 18 primary simulations were 
averaged, and then compared with results from a single simulation for which 
the initial soil state was the average of the 18 OSS (Table S4).

To quantify the effects of variation in soil nutrient status vs variation in soil 
texture (via its effects on hydrology), we modified our primary set of 
simulations to represent a nutrient fertilisation experiment. We refer to these
fertilisation simulations as our ‘+NP’ simulations (Table S4). N deposition was
set to 125 kg N ha−1 yr−1 and P deposition was set to 50 kg P ha−1 yr−1. This 
level of fertilisation is the same as that being used in an ongoing experiment 
in Guanacaste (Waring et al., in press) and elsewhere in the tropics (Wright 
et al., 2011). Observed site‐level rates of atmospheric N deposition (c. 2.2 kg
N ha−1 yr−1; M. Gei, unpublished) are comparatively small. Comparison of 
these +NP simulations to the primary simulations allowed us to attribute 
differences in biomass (Hypothesis 1) and composition (Hypothesis 2) to 
nutrient limitation.



We carried out additional simulations to evaluate the sensitivity of model 
results to variation in several parameters (Methods S3). Parameters were 
selected for sensitivity analysis that have been associated with key 
processes (Reed et al., 2015), and/or because their sensitivity had not 
previously been evaluated in ED2, MEND or N‐COM. Motivated by simplicity 
and the limited information about parameter correlations, we carried out a 
one‐parameter‐at‐a‐time sensitivity analysis (Murphy et al., 2004). Sensitivity
analysis was carried out for both our primary and +NP simulations (Table 
S4).

The parameters that were varied were the constant rate of P release due to 
physical and chemical weathering, the maximum rate of phosphatase 
activity, plant nutrient carrier enzyme abundance relative to fine root 
biomass, microbial nutrient carrier enzyme abundance relative to microbial 
biomass, the soluble P leaching proportion (proportion of soluble P lost per 
proportion of soil water leached), and the dissolved organic matter (DOM) 
leaching proportion (proportion of DOM lost per proportion of soil water 
leached). Note that DOM includes dissolved organic C, N and P. Baseline 
values of these parameters and parameter ranges are given in Methods S3.

To evaluate the effect of background climate and therefore test Hypothesis 
3, we carried out regional primary and regional +NP simulations over the 
domain shown in Fig. S1. Simulations were carried out at the 1° scale, 
consistent with the gridded climate forcing (Sheffield et al., 2006). The 18 
regional primary simulations corresponded to each of the 18 OSS of the 
primary simulation set; that is each of the 18 simulations assumed one 
homogenous value of OSS across the region. We then conducted an 
additional 18 simulations for our regional +NP treatment. For these regional 
primary simulations (Table S4), we did not use soil information specific to 
each grid cell because extensive plot‐level soil measurements at < 1° scale 
were not available throughout our domain. The grid cells therefore differed 
only in terms of climate forcing, which simplifies the interpretation of the 
results with respect to H3. We do not interpret the results as regional 
predictions; predictions would require simulations with the location‐specific 
soil properties.

We carried out several other regional‐scale simulations to probe the 
sensitivity to our assumptions about soil texture and nitrogen fixation 
(Methods S3).

Analysis

Estimation of biomass (above ground plus below ground) at the ecosystem or
PFT level was direct: the biomass of either all cohorts (ecosystem‐level 
biomass) or all cohorts of the same PFT (PFT‐level biomass) was summed. To
quantify variation over the 18 OSS, we used the biomass range (maximum 
minus minimum). We did not use percentiles because it was unknown to 
what degree any individual plot corresponded to conditions on the landscape
as a whole; that is whether a particular plot corresponded to 50%, 1%, or 



1/18th of the landscape. We similarly reported other aspects of forest 
functioning: gross primary production (GPP), microbial biomass, microbial 
respiration, and NH4, NO3, and soluble P concentrations. Because these 
quantities vary on a wide range of time scales, we averaged them over the 
final 5 yr of our primary simulations and compared results across OSS.

In our regional‐scale analysis, we computed the biomass mean and range 
across the 18 OSS. However, we expressed the biomass range as a 
percentage of the mean because climate drives spatial variation in biomass 
even in the absence of variation due to OSS.

We also assessed variation in ecosystem composition over the 18 OSS. Here,
‘composition’ refers to the proportion of biomass (not stems) in each PFT. We
have adopted two approaches to evaluating compositional differences. First, 
we computed the variance in the biomass proportion across the 18 OSS, for 
each model PFT. This variance has the advantage of being relatively simple 
to interpret: a larger variance might suggest stronger filtering by the soils. 
Second, we computed an entropy index (Methods S3). Large values of the 
entropy index indicate that a PFT does not ‘prefer’ particular OSS; small 
values of the entropy index indicate that the soils strongly filter the PFT.

Results

Observed and simulated biomass

We compared plant biomass from our primary simulations to the biomass 
observed at the 18 plots in 2008. For consistency, we extracted the time 
point for each simulated plot that corresponded to the actual plot age in 
2008. We omitted two plots which had ages older than the simulation length 
of 35 yr. In both the observations and the model, biomass was strongly 
sensitive to stand age (Fig. 1). Although the simulated biomass was mostly 
within the range of the observations, it was nevertheless biased low. The 
observations also showed more scatter than the simulations. After 
accounting for stand age, we found no significant correlation between 
biomass and soil properties in the simulations (Fig. S2; Notes S1).



Local‐scale variation in the primary simulations

In our 18 primary simulations, the simulated biomass C increased from its 
initial condition of nearly zero to 100 Mg C ha−1 at 35 yr (averaged across 18 
OSS), but with large variation (Fig. 2a). The biomass range (defined as the 
largest biomass accumulation across all OSS minus the smallest biomass 
accumulation) increased rapidly over the first two simulated decades and 
then stabilised at c. 30 Mg C ha−1 (Fig. 2c), 30% of the mean. This result 
supports H1. The biomass from the single simulation initialised with the 
average OSS was 104.1 Mg C ha−1 at 35 yr, 4% larger than the average of 
the 18 primary simulations, reflecting Jensen's inequality.





The magnitude of plant biomass variation was similar to the variation in GPP,
microbial biomass, and microbial respiration (Table 1). However, plant‐
available nutrient pools exhibited larger variability across OSS.

How much of the plant biomass variability across soils was due to the 
hydrological effects of soil texture vs soil nutrient status? In +NP simulations 
with baseline parameter values, plants maintained sufficiently small C : N 
and C : P ratios such that construction of new tissue was not nutrient limited 
(Fig. S3). These simulations had a median biomass of 116 Mg C ha−1 and a 
range of c. 12 Mg C ha−1 at 35 yr (Fig. 2b). Therefore, the +NP simulations 
had a larger median and much smaller range than the primary simulations 
(Fig. 2c). Similarly, variation in GPP, microbial biomass, microbial respiration, 
NH4, NO3 and soluble P were also reduced (Table 1).

Variation in the OSS affected PFT diversity in our primary simulations (H2). 
We considered only three of the model's PFTs because these three 
constituted > 95% of the observed biomass (averaged across OSS). Roughly,
these PFTs corresponded to a conservative fixer, an acquisitive non‐fixer, 
and an acquisitive fixer (PFTs 2, 5 and 6, respectively, in Table S2). 
Substantial variability across OSS was evident in the biomass of each of 
these PFTs in the primary simulations (Fig. 3a–c), with proportions varying 
from 0% to 60%. Less variability was evident in the +NP simulations (Fig. 3d–
f).



Sensitivity analysis

We assessed the sensitivity of accumulated biomass at 35 yr to model 
parameter values. The median biomass across soil types was highly sensitive
to the DOM leaching proportion (Fig. 4a): simulations with a large DOM 
leaching proportion accumulated over an order of magnitude less biomass 
than simulations where DOM leaching was small or absent. The effect of 
soluble P leaching proportion was qualitatively similar, but quantitatively 
smaller (Fig. 4b). Sufficiently low values of the plant enzyme‐to‐fine root ratio
led to a near‐collapse of plant biomass; as this variable increased, plant 
biomass approached a maximum of c. 115 Mg C ha−1 (Fig. 4c). The reverse 
occurred when the microbial enzyme‐to‐microbial biomass ratio was varied: 
for low values of this parameter, plant biomass was relatively large, but high 
values of this parameter led to a near‐collapse of plant biomass (Fig. 4d). By 
contrast, plant biomass was less sensitive to either the weathering rate (Fig. 



4e) or the maximum rate of phosphatase activity (Fig. 4f); the model showed
only slight plant biomass increases with increasing values of these 
parameters. Regardless of parameterisation, the range in predicted biomass 
was typically either comparable to, or larger than, the range associated with 
our baseline parameter set.

When we subjected the +NP treatment to sensitivity analysis, there was little
sensitivity of plant biomass to the nutrient‐related parameters (Fig. 4). The 
only exceptions were associated with the most extreme assumptions about 
plant and microbial enzyme abundances. Therefore, we again found that 
fertilisation led to an increase in median biomass and a large decrease in 
biomass range, indicating a stronger control on biomass range from nutrient 
availability than from the soil texture effects on water availability. Soil‐driven
variability in PFT abundance persisted in our sensitivity analysis (Figs S4 and 
S5, Notes S1).

Regional‐scale analysis



Our regional‐scale analysis characterised the effects of climate on biomass 
range and PFT composition and was used to test H3. Overall, there was a 
general tendency to have smaller biomass ranges in the north and larger 
ranges, up to 80%, in the south (Fig. 5a). Simple linear regression indicated a
positive relationship between biomass range and MAP (R2 = 0.53; P < 
0.0001) (Fig. 5b). However, there was a trend in the residuals (P = 0.003): 
the residuals tended to be positive for low values of MAP and negative for 
high values of MAP. Provided the outlier point at a MAP of 6875 mm was 
removed, breakpoint regression (R package ‘segmented’; Muggeo (2008)) 
identified a breakpoint at 1556 mm, with a negative (positive) relationship 
between MAP and biomass range for MAP smaller (larger) than the 
breakpoint. In our +NP regional‐scale simulation, the biomass ranges were 
generally smaller, and never larger than 30% (Fig. 5c). The largest ranges 
emerged in the north of the domain. There was a strictly decreasing linear 
relationship between MAP and biomass range (P < 0.0001) (Fig. 5d), and in 
this case there was no discernible pattern in the residuals. Low‐precipitation 
grid cells were more sensitive than high‐precipitation grid cells to 
assumptions about soil texture variation (Fig. S6; Notes S1). Although there 
was regional variability, nitrogen fixation generally reduced variation across 
OSS (Fig. S7; Notes S1).



On the regional scale, the entropy index ranged from −1.13 to −0.003 for 
our primary simulation (Fig. 6a). In nearly all grid cells, fertilisation resulted 
in less negative entropy values (−0.33 to 0.0) (Fig. 6b), indicating a more 
random sorting of PFTs across OSS. In both the unfertilised and fertilised 
cases, the entropy index was uncorrelated with MAP.



Discussion

Model‐data comparison

Because we lack initial conditions at the time of agricultural abandonment 
(Powers et al., 2009), it is impossible to configure a simulation to be exactly 
consistent with field plots. Nevertheless, most of our simulated biomass 
values were comparable with the observed values (Fig. 1), except for a low 
bias in the older plots. This bias may be due to errors in the initial conditions 
(for example reflecting uncertainty in the abundance of remnant trees at the 
time of abandonment) and/or errors in the simulated growth, mortality, and 
recruitment rates. We think it unlikely that errors in growth predominate. In a
previous analysis, we found that simulated growth rates in nutrient‐rich plots
compared favourably with observations (Xu et al., 2016). Furthermore, our 
+NP simulation results (Fig. 4) show that, even without nutrient limitation, 
biomass amounts near the maximum observed values were not simulated. 
Given the 30 yr timeframe of the simulations, it is unlikely that recruitment 
errors predominate. Therefore, we regard mortality overestimation to be the 
most likely cause of the bias.

Plant biomass was related to stand age in observations and simulations, but 
we found no simple relationship between plant biomass and soil properties. 
In the observations, this null result may simply be a consequence of random 
variation. However, it is consistent with previous studies which found that, 
after stand age, pH (a variable not used in our model) and the traits of the 
establishing plant community were the best predictors of biomass (Becknell 
& Powers, 2014), and weak community‐level tropical forest P limitation 
(Turner et al., 2018). The relationship between biomass and soil properties is
clearly multifaceted, with different factors potentially limiting at different 



stand ages or for different plant community composition. For example, N 
may be limiting earlier in succession (Batterman et al., 2013) and P later in 
succession.

Soil‐mediated biomass variation

We evaluated the hypothesis that landscape‐scale variation in soil properties
would lead to sustained variation in plant biomass in our model simulations 
(H1). For our grid cell‐level simulations of secondary succession in 
Guanacaste, the biomass range across OSS (Table S1) was c. 30% of the 
mean (Fig. 2). This model result is consistent with several observational 
tropical forest studies at the landscape and regional scale that have reported
a positive correlation between biomass and either soil fertility or clay fraction
(Laurance et al., 1999; Zarin et al., 2001; de Castilho et al., 2006; Slik et al., 
2010). Positive soil fertility effects on biomass have also been observed 
across landscape gradients (Becknell & Powers, 2014) and fertilisation 
experiments in TDFs (Campo & Vázquez‐Yanes, 2004).

On larger scales, the situation is more complex, in both our simulations and 
in observations. In accord with H3, we found that the simulated effect of soil 
properties on biomass range depended on MAP (Fig. 5). Meanwhile, previous 
observational work found that biomass across Amazonia was been negatively
related to soil fertility, and correlated with spatial distributions of plant taxa 
and traits (Malhi et al., 2006; Saatchi et al., 2007; Quesada et al., 2012). 
Determining whether our model would capture such observations in 
Amazonia is beyond the scope of this study, in part because the list of PFTs 
that we consider here (Table S2) is not representative of Amazonia.

We used a sensitivity analysis to scrutinise our simulation result that a 
realistic range of OSS can directly lead to a large range in accumulated 
biomass. Indeed, this result regarding biomass range was nearly 
independent, both quantitatively and qualitatively, of particular choices for 
parameter values (Fig. 4). Nevertheless, the average biomass (across OSS) 
can be very sensitive to parameters. In particular, parameters related to 
leaching and to specific rates of plant and microbe nutrient acquisition had 
demonstrably strong effects. These parameters can pertain to both N and P 
dynamics (Methods S1), and we recognised both of these nutrients as 
potentially limiting biomass accumulation in TDFs (Campo, 2016; Augusto et 
al., 2017). Future modelling efforts and experiments (and preferably both in 
concert) should be aimed at improving representations of leaching and plant 
and microbial nutrient acquisition processes (Notes S2).

While observational studies can assess variation of biomass across OSS, it is 
more difficult for gradient‐based analyses to attribute biomass variation to 
particular soil properties because more than one soil property usually varies 
across a gradient (Quesada et al., 2012). An advantage of a modelling 
approach is that it is straightforward to carry out attribution analysis. In 
particular, we set out to distinguish the hydrological effects of soil texture 
from the effects of soil fertility. In our +NP simulations, we eliminated plant 



nutrient limitation in all but a few cases of parameter values (Fig. 4). 
Comparing our fertilised and unfertilised grid cell simulations at Guanacaste, 
we concluded that soil texture variation probably accounted for less than half
the range of simulated biomass (Fig. 4).

Soil‐mediated variation in ecosystem composition

We found large variation in ecosystem composition, even at the level of 
presence/absence (H2), across soil types in our primary simulations (Figs. 
3a–c, 6a). This result is consistent with observations in Indian TDFs that also 
identified variation in ecosystem composition with soil texture (Jha & Singh, 
1990) and species distribution modelling of Amazonia that strongly 
correlated species’ distributions with a composite ‘soil’ variable (Figueiredo 
et al., 2018). However, these particular observational analyses did not 
explicitly control for soil fertility as distinct from soil texture. Werden et al. 
(2018) did address this issue, and found that more species sorted over soil 
chemistry gradients than soil texture gradients. We built on that analysis 
through comparison of our primary and +NP simulations. This comparison 
controls for the hydrological effect of soil texture and, therefore, is able to 
directly implicate soil fertility as the causal driver for differences in 
composition in our simulations.

Compositional variation could generally emerge for more than one reason in 
model simulations. While it could be that soil type strongly filters for 
particular PFTs, it could also be that different soil types do not filter at all 
and, therefore, PFTs would establish on different soil types at random. We 
present here two arguments that PFT composition is filtered by the OSS in 
our simulations rather than at random. First, our sensitivity analysis showed 
that PFTs were consistently variable (Fig. S4). For most parameter settings, 
the standard deviation (across OSS) of the proportion of each PFT was 
strongly peaked. Such consistency would not be expected if the soils did not 
filter for particular PFTs and PFTs were therefore randomly distributed. 
Second, we found that fertilisation strongly increased our entropy index (Figs
6, S5). This result means that PFTs are more randomly distributed across soil
types in the +NP simulations than in the primary simulations. Therefore, the 
primary simulations more strongly filter for PFTs than the fertilised 
simulations.

In our simulations, different plant strategies and trait values have different 
degrees of success, depending on soils (Figs. 3a–c, 6; Notes S2). In the 
Guanacaste grid cell, the biomass was dominated (> 95%) by three PFTs. 
This level of functional diversity is much less than that observed in nature, 
but is more than the level of functional diversity exhibited by a traditional 
dynamic global vegetation model that, by design, only includes one or two 
tropical tree PFTs and is constrained by climate envelopes (Fisher et al., 
2015). Our deterministic result therefore presents an interesting complement
to other recent models that have replaced the PFT approach to modelling 
diversity with a trait‐based approach in which the traits of individual plants 



or cohorts are stochastically assigned and then tracked (Pavlick et al., 2013; 
Scheiter et al., 2013; Sakschewski et al., 2015). The simulated probabilities 
of different trait combinations varied across Amazonia and depended largely 
on climate. We suggest that realistic accounting for geodiversity and 
allowing for stochastic variation in plant traits are complementary 
approaches for simulating observed trait distributions.

Soil‐mediated variation in other ecosystem properties

In our primary simulations, below‐ground resource pools exhibited larger 
variation across OSS than plant or microbial biomass, GPP, or microbial 
respiration (Table 1). This result indicates that, in the model, vegetation and 
microbes can partially compensate for OSS variation. Symbiotic N fixation 
acted as a compensatory mechanism (Fig. S7), and other likely mechanisms 
include changes in PFT composition and variable microbial stoichiometry. 
Compared with the primary simulations, variation in the +NP simulations was
smaller for all variables.

From hypothesis testing to prediction

We used a mechanistic model to evaluate hypotheses regarding the effect of
soil nutrients and texture on plant biomass accumulation and ecosystem 
composition. However, models have other uses, including prediction. Further 
benchmarking is necessary before ED2‐MEND‐NCOM could be used for that 
purpose, but we argue that such efforts would be worthwhile in that they 
could provide a perhaps unique view of nutrient constraints on CO2 
fertilisation, for example. The next steps in this direction should include a 
comprehensive evaluation of the coupled model against available 
observations of demographic rates, productivity, composition, as well as 
below‐ground biogeochemical cycling and allocation. In addition, as 
mentioned above, the PFT list should be expanded so that it is more broadly 
representative of tropical forests.

Our results pose challenges for Earth system models (ESMs). Because fine‐
scale geodiversity data are limited, we advocate that modellers and 
empiricists collaborate to chart a course forward. Given ample observations, 
OSS could be constructed and an ensemble of ESM simulations could be 
carried out, with each ensemble member corresponding to an OSS. Grid‐
scale biomass can be computing by taking an ensemble average. However, 
bias may be incurred if limited computational resources limit the number of 
simulations that can be done. In our case study, we found that a single 
simulation with average soils overestimated biomass, and we expect this 
result to be general. The reason is that biomass has a non‐linear relationship 
with soil fertility, and eventually saturates at high soil nutrient availability. 
Evidence for saturation is seen in our +NP simulations: there is very little 
sensitivity to nutrient‐related parameters at high nutrient levels (Fig. 4). 
Then, because of Jensen's inequality (Ruel & Ayres, 1999), an ensemble of 
simulations that fully captures soil variation would have a smaller average 
biomass than a single simulation initialised with an average OSS.



Our simulations demonstrate that variation in soils can be mechanistically 
linked to variation in plant biomass and PFT composition. A more 
sophisticated representation of geodiversity in models would therefore be 
likely to improve simulations and enhance understanding of vegetation 
functioning and composition. While further steps are needed to better 
resolve variation in nutrient cycles, the effects of geomorphological variation 
and subgrid hydrological interconnectivity (Balvanera et al., 2011; Jucker et 
al., 2018; Schwantes et al., 2018) should also be considered within an 
overarching framework. Going forward, determining such impacts of 
geodiversity across tropical ecosystems should be a high‐priority research 
goal.
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