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We summarize here the results presented and subsequent discussion from

the meeting on Integrating Hebbian and Homeostatic Plasticity at the

Royal Society in April 2016. We first outline the major themes and results

presented at the meeting. We next provide a synopsis of the outstanding

questions that emerged from the discussion at the end of the meeting and

finally suggest potential directions of research that we believe are most

promising to develop an understanding of how these two forms of plasticity

interact to facilitate functional changes in the brain.

This article is part of the themed issue ‘Integrating Hebbian and

homeostatic plasticity’.
1. Introduction
Here we provide an overview of the topics presented at the meeting on Integrat-

ing Hebbian and Homeostatic Plasticity at the Royal Society in April 2016. We

also summarize the major themes and questions that arose from the subsequent

discussions. Firstly, one of the more pleasant and surprising take away mess-

ages from the meeting was the overall agreement between the conclusions

drawn from the data in numerous preparations, brain areas and approaches

to alter activity patterns and levels. We found that there are several general

principles that repeatedly emerge across approaches.

One of the more pleasant and surprising take away messages from the

meeting was the overall agreement between the conclusions drawn from the

data in numerous preparations, brain areas and approaches to alter activity
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patterns and levels. We found that there are several general

principles that repeatedly emerge across approaches.

(1) Stabilizing mechanisms are likely necessary to keep Heb-

bian changes to the system under control, otherwise

activity becomes extreme, either too high or too low.

(2) Multiple mechanisms of both Hebbian and homeostatic

plasticity are repeatedly observed across varied experi-

mental and theoretical works.

(3) These mechanisms can stabilize numerous cellular and

network parameters—overall firing rate, subthreshold

activity and individual synaptic weights.

(4) Hebbian and homeostatic mechanisms have striking simi-

larities observed among different brain regions in vivo
and in vitro, suggesting that many of these mechanisms

may be common across brain regions.

We review these general principles in turn, and then dis-

cuss important future directions to address inconsistencies

and missing points in our current understanding.
60158
2. The necessity of stabilizing mechanisms
One question that is frequently raised outside of the homeo-

static plasticity field is whether or not these stabilizing

mechanisms are actually necessary for proper brain function.

This question has been repeatedly addressed by theorists and

modellers, and their work typically indicates that without

some form of stabilization of firing rates or synaptic weights,

network models that can store memory patterns in recurrent

synaptic strength become unstable, typically in the direction

of activity being too high [1–4]. These runaway increases

in activity emerge from the fact that most Hebbian strength-

ening mechanisms are dependent on coincident firing

between the pre- and post-synaptic neurons, and this process

involves a positive feedback loop: namely, the more frequent

coincident activity in a group of neurons is, the more likely

that synapses connecting these neurons are strengthened.

These strengthened synapses further increase coincident

activity within the group and very quickly, in a positive

feedback loop, activity pathologically increases.
3. Mechanisms of homeostatic stabilization
If some form of stability is necessary, what mechanisms may

provide this stability and what properties do these mechan-

isms have? Four major mechanisms were reported at this

meeting, although this list is not comprehensive of the

possible mechanisms, nor are they mutually exclusive.

(1) Synaptic scaling.

(2) Changes to inhibition through inhibitory cell activity or the

strength and number of inhibitory synapses onto excitatory

cells.

(3) Constraints and intrinsic fluctuations of spine size

dynamics (which likely reflect changes in synaptic

strength and thus overlap to some degree with stabilizing

mechanisms).

(4) A sliding threshold for long-term potentiation (LTP)

and long-term depression (LTD) induction (i.e. meta-

plasticity or the Bienenstock, Cooper and Munro

(BCM) theory).
(a) Synaptic scaling
The first experimental evidence for synaptic scaling [5] demon-

strated that in response to a decrease in firing rate, the synaptic

weights of the population of the excitatory post-synapses on a

cell were increasingly scaled in size by a multiplicative factor,

such that the relative weights of the synapses were preserved

(and vice-versa in response to an increase in activity). Many

studies have confirmed this original result in vitro [6], as well

as ex vivo in acute slices prepared from both juvenile and

adult animals that had previously undergone in vivo depriv-

ation [7–14]. Synaptic scaling does have layer-specific

properties in cortex, where scaling in layer 4 is limited to

early development [7], but layer 5 [12,15] and layer 2/3 [10]

can scale throughout adulthood. Numerous molecular mech-

anisms have been implicated in mediating synaptic scaling,

including TNF-alpha [15–17], which may be regulated via

astrocytic activity and N-methyl-D-aspartate (NMDA) receptor

expression [18], retinoic acid [19], among many others (for a

review, see [20,21]). Increases in TNF-alpha have been reported

to increase and decrease the density of a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) and gamma amino-

butyric acid-A (GABAA) receptors, respectively, in the plasma

membrane [17].

(b) Rapid changes to levels of inhibition
In addition to synaptic scaling, which takes several days

in vivo, altering the levels of inhibition and generally the bal-

ance between excitation and inhibition on a given cell is a

frequently observed mechanism used to stabilize activity in

the brain. Reducing the levels of inhibition onto excitatory

neurons is consistently observed following loss of input in

cortex [10,22–27] and has been hypothesized to be a first

step in circuit reorganization following input loss [28].

Changes in inhibition can occur via a reduction in the

number [12,22,24,26,27,29–33] or strength of inhibitory

synapses onto excitatory cells [33], as well as a reduction in

the firing rate of the inhibitory neurons following deprivation

either temporarily during development [11,34] or for longer

time courses in adulthood [29]. Changes in inhibitory tone

may be modulated via astrocytes [35] or NMDA receptor

input [36]. Changing the activity of inhibitory neurons pro-

vides an important homeostatic mechanism by which

activity levels can be rapidly (within seconds) adjusted

through the increase or the decrease in the firing rate of inhibi-

tory neurons to prevent short-term increases in activity levels

that would be associated with pathological activity such as sei-

zures; however, recent work suggests that minimizing changes

to inhibition helps maintain temporal coding in the network,

which is shaped by the inhibitory circuit [37], so some main-

tenance of inhibitory tone is likely essential for the circuit.

Adjusting synaptic strength or neuronal excitability occurs

over much longer time courses of hours [6], which would

be much too slow to account for activity peaks that would

potentially cause pathological over-excitation.

(c) Changes and fluctuations in spine sizes
Dendritic spines—the location of excitatory synapses—can

change in size in response to long-term potentiation (LTP)

and long-term depression (LTD) [38,39] or while synaptic

scaling occurs [12,40], in a way that likely at least partially

reflects changes in synaptic strength. Limits on the sizes of
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dendritic spines provide yet another mechanism by which

stability can be achieved in the brain. Given that spine size

has a maximum [39], synapses cannot be strengthened inde-

finitely [41]. Furthermore, spine size is not only controlled by

LTP, LTD and during synaptic scaling, but also by intrinsic

fluctuations that happen even in the absence of neural

activity [42]. Fluctuations of spine size increase approxi-

mately linearly with the initial size and this relationship

explains the steady-state distribution of spine sizes with a

long tail [42,43]. A simulation study of recurrently connected

networks suggests that such fluctuations can stabilize net-

work activity by constitutively restoring the spine size

distribution close to the physiological steady-state distri-

bution, while ongoing Hebbian plasticity forms and

maintains cell assemblies [44,45]. In addition to changes in

the structural size of synapses, the properties and activation

of NMDA receptors within a synapse have been implicated

in monitoring overall changes to activity levels [46].
 2:20160158
4. Parameters of homeostatic balance
In order for these mechanisms to be truly homeostatic, they need

to restore cellular and synaptic activity levels back closely to pre-

perturbation levels. What characteristics of the circuit are being

stabilized by these mechanisms that make this process homeo-

static? There is experimental evidence for three balance

parameters: firing rate homeostasis, subthreshold activity

homeostasis, and synaptic weight homeostasis, and any of

these three parameters, when incorporated into the appropriate

theoretical model, may stabilize the network to prevent

pathological neuronal dynamics or learning [1,3,4,47–58].

First, firing rate homeostasis was initially described

with the first experimental evidence of synaptic scaling [5],

and altering cellular [59] and network firing rate has consist-

ently evoked a response of the induction of homeostatic

mechanisms [5,7,11,12,29,60]. Several studies have now

demonstrated that neurons will recover their firing rates

in vitro [5,59] and in vivo [11,12,29,60], in parallel with the

induction of homeostatic mechanisms, and that neurons in

the developing visual cortex have a firing rate set point to

which they return after deprivation [60]. Recent work has

also suggested that subthreshold changes in activity levels

are sufficient to induce homeostatic mechanisms, specifically

synaptic scaling [61], although whether these changes restore

subthreshold activity levels remains unexplored.

The sliding threshold proposed in the BCM theory would

provide an additional method by which firing rates could be

homeostatically modulated [47]. By rapidly and superlinearly

increasing the threshold for inducing LTP as background

firing rates get higher and decreasing the threshold as back-

ground firing rates are lower, synapses would be unlikely

to be strengthened if activity rates were too high. This sliding

threshold model would provide an internal mechanism by

which activity levels never become too high or too low.

There is considerable experimental evidence for the existence

of such a sliding threshold, including both evidence of struc-

tural and functional plasticity, which has been reviewed

extensively elsewhere [62]. However, the timescale of the slid-

ing threshold is an important factor for determining the

stability [63], and the theoretically predicted supralinear

relation of the threshold with background firing rate is

awaiting further experimental evidence.
Homeostasis of synaptic weights [64,65] provides an intri-

guing alternative to homeostatic regulation of firing rate, since

constraining synaptic weights would be an effective mechanism

for guiding activity-dependent circuit organization. Recent

work [66] suggests that overall synaptic weight is conserved

on a dendritic branch, thus preventing too much activity that

would result from an over strengthening of synapses.
5. Interactions with mechanisms of Hebbian
plasticity

Hebbian mechanisms have been largely reviewed elsewhere

and are well summarized in one of the position papers in

this issue [46]. An important feature of these Hebbian mech-

anisms in relation to their interaction with homeostatic

mechanisms is that their time courses and effects can be

wildly different. Hebbian mechanisms are synapse specific

and can be implemented over milliseconds (short-term plas-

ticity) to hours (long-term LTP/LTD), whereas synaptic

scaling occurs cell-wide and can take a few days to com-

mence in vivo [6,15,16,67]. Hence, there is a considerable

disparity between the effects and time courses between

these homeostatic and Hebbian mechanisms. Theoretical

work suggests that separating the expression mechanisms

(e.g. spine size or membrane AMPA density) for these two

processes can minimize their interface and prevent oscillatory

instability of synaptic weight, which could result from the

delay in the negative feedback of the homeostatic plasticity

[53]. However, since multiple timescales are involved in

both Hebbian and homeostatic mechanisms, further experi-

mental characterization of these disparate time courses is

essential going forward [68].
6. Similarities across brain regions in vivo
For both Hebbian and homeostatic mechanisms, there are

striking similarities of plasticity responses across numerous

regions of cortex and varying plasticity induction paradigms

(for a review, see [69]). Starting with homeostatic plasticity,

similar mechanisms are invoked following sensory depriv-

ation in both somatosensory [15,26] and visual cortices

[7,10–15,22,24,27,60], where decreases in inhibition precede

any Hebbian mechanisms and synaptic scaling is reliably

induced in a layer-specific manner [7,26,70]. Hebbian mech-

anisms have correlates in synaptic structural plasticity, in

which LTP is correlated with the formation of new spines

[71,72], and LTD is associated with the loss of pre-existing

spines [73]. The in vivo upregulation of spine dynamics has

been observed following sensory deprivation in somatosen-

sory cortex [74–77], olfactory cortex [78,79], auditory cortex

[80] and visual cortex [74,77,81–83], and following learning

in motor cortex [84–86] where the memory of the learned

motor task depends on the newly formed synapses [87].

The interactions between Hebbian and homeostatic plasticity

have largely been described in the visual cortex following

monocular deprivation, where it is proposed that the Heb-

bian process of LTD [88] is followed by an increase in

synapse strength [89]. The similarities across somatosensory,

motor and visual cortices may suggest that mechanisms of

homeostatic and Hebbian plasticity are conserved across

brain regions, at least in cortex.
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7. Future directions and major questions going
forward

While a number of general experimental and theoretical

properties emerged from this meeting, a large number of out-

standing questions remain to be answered related to how

Hebbian and homeostatic plasticity interact to facilitate

normal function and circuit plasticity. Here, we outline the

major questions that were discussed at the meeting.
.org
Phil.Trans.R.Soc.B

372:20160158
(a) Interactions between theoretical and experimental
approaches

The field could generally benefit from tighter interactions

between theoreticians and experimentalists. One area for

potential expansion is in the interaction between theory and

experimental approaches that focus on detailed mechanistic

work, as well as more general behavioural/in vivo work.

Linking results at different levels of investigation, while a

general issue in neuroscience, is particularly important to

understanding the interaction between homeostatic and

Hebbian plasticity. Work in this field has to some degree

diverged into two categories. First, systems approaches that

include in vivo work done in anaesthetized or behaving ani-

mals [11,12,14–16,29,60,67] and theoretical work that models

the overall dynamics of the systems [1,3,4,47–55,57,58,90].

These systems studies importantly provide insight into mech-

anisms that are used in the intact brain and how activity

levels are affected by these mechanisms, but have limited

control of other secondary inputs from outside of the main

pathways studied that may provide compensatory mechan-

isms. So these experiments often cannot pinpoint the exact

inputs and brain states affecting activity levels or the relative

changes to the pre- and post-synaptic cells, particularly

in behavioural experiments where the animals are free to

experience their environment (somewhat) naturally. These

limitations make it difficult for the in vivo experiments to pro-

vide detailed information—for example, the originating brain

area from which inputs are lost following deprivation—to

these theoretical studies, where the localization of activity

changes (pre- or post-synaptically) and knowledge of the

rules for circuit reorganization would be useful. As a result,

predictions from theory to in vivo experiments and vic-

eversa thus far are limited to qualitative aspects. The

second focus of experiments is at the molecular and cellular

experimental level, where numerous molecular mechanisms

have been described to play a role in both homeostatic

[17,19,21] and Hebbian [91] plasticity, as well as their inter-

actions [92,93]. While new molecular and systems tools

make it easier to link these molecular and cellular mechan-

isms to in vivo experiments, for example, through the use of

Cre-dependent expression of target mechanisms, the brain’s

redundancy, evidenced by observed compensatory pathways,

can make it difficult at times to tease apart the precise roles of

individual molecules in the healthy brain. Importantly, the

theory and molecular experiments may have greater potential

for interaction, which to date has been largely unexplored, as

theoretical models can predict the time course and spatial

scale of action of a molecular cue that would be necessary to

facilitate plasticity [94]. Given our knowledge of these potential

molecular cues in vivo and in vitro, this is one area where theor-

etical work could be instructive in linking the systems
experiments with the molecular and cellular experiments. Simi-

larly, mechanisms involved in the recovery of individual

neurons tuning following sensory deprivation in vivo
[11,12,14–16,29,60,67,95] could be explained via theoretical

work. Theoretical models using attractor dynamics or hidden

states [96,97] could be implemented to better understand how

interactions between individual cells and the network of cells

facilitate the recovery of activity following deprivation and

maintain the same properties of individual cells from prior to

deprivation [95,98]. Overall, better interaction between molecu-

lar/cellular and systems level experiments and theory will be

critical to understand the underlying details of the mechanisms

of plasticity and how they are implemented in vivo.

(b) Timescales of homeostatic and Hebbian plasticity
interactions

One of the important questions to emerge from this meeting is

how the disparate timescales of homeostatic and Hebbian plas-

ticity could interact to maintain firing rate homeostasis and

overall stability. The main issue emerges from the fact that

homeostatic plasticity mechanisms occur over a very slow

time course, hours at their fastest [99], whereas Hebbian plas-

ticity can occur over a period of seconds to minutes [46].

Given that recurrent excitation and synaptic strengthening

can happen very quickly, the stability mechanisms described

by the classic homeostatic mechanisms are not rapid enough

to stop runaway excitation. Theoretical models have described

approaches that facilitate network stability with these disparate

time courses [53], but at the same time suggested the need for a

fast downregulating homeostatic mechanism to avoid seizure-

like activity [68]. One possible explanation for this discrepancy

between theory and experiment is that a majority of experi-

ments focus on upregulating homeostatic mechanisms that

occur after input loss and a decrease in activity levels. With

the upregulation of activity, a longer time course might be sen-

sible, given that short-term deceases in activity levels could be

for a number of reasons—for example, in visual cortex, entering

a dark room could potentially reduce visual cortical activity. If

activity returns when you enter the light again, having quickly

upregulated the strengths of synapses in response to the dark

stimulus would result in too much activity with light stimu-

lation. Hence, upregulating homeostatic mechanisms may

occur over a longer time course to ensure that the reduction of

activity is (semi) permanent before the system compensates

for these changes. Additionally, using a wide dynamic range

of activity is optimal for information coding in the brain [100].

Therefore, adjusting the firing rate set point too quickly

would minimize the range of activity patterns and rates that

encode input to a cell and in theory reduce its computational

power [53]. As a result, homeostatic adjustments may be

slower when activity levels are not dangerous for toxicity.

These results could suggest the potential for a non-sym-

metric up- and downregulation, like that observed for LTP

and LTD, where potentiation can occur more reliably and

quickly [46]. As for experimental evidence for homeostatic

downregulation, work in cortical cultures indicates that it is

possible [5,20], but approaches for extended increases in

activity in vivo remain elusive. The difficulty of maintaining

heightened activity in vivo for extended periods of time, may

speak to the existence of a fast downregulating homeostatic

mechanism that has yet to be experimentally observed. The

relevant timescales for both homeostatic and Hebbian
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plasticity mechanisms remain an unanswered question and a

critical one for understanding their interactions.

(c) Spatial scales of synaptic plasticity and homeostatic
set points

Similar to the issue of timescales, understanding the spatial

scales of both homeostatic and Hebbian mechanisms are criti-

cal for considering their interactions. Homeostatic

mechanisms can be implemented at the level of individual

synapses [101], dendritic branches [66,102–105], single cells

[5,59] and the network [29], but obviously the interactions

between these spatial scales will play an important role in

overall firing rate homeostasis. For example, if the activity

at all individual synapses is homeostatically regulated, then

activity in dendritic branches, single cells and the network

would be affected (and somewhat regulated) by that local regu-

lation. The spatial scale of plasticity implementation is another

area where molecular and cellular experiments may match up

well with theory. Many of the more local implementations

(individual synapses, dendritic branches and volume sur-

rounding glial cells) of plasticity mechanisms may be

governed by second messengers and molecules acting in

these local environments. Thus, examining the relevant spatial

scales in theoretical models [106] may offer predictions for the

spatial and temporal characteristics of molecules that would

potentially facilitate some of the activity effects observed in

these models and in the in vivo data.

Understanding the spatial scales of the implementation of

plasticity mechanisms may also provide insight into the

spatial scales for the set points of activity or synaptic

weight to which these homeostatic mechanisms are returning

the synapse, branch, cell or network. Whether homeostatic

mechanisms are balancing spontaneous firing rate, evoked

firing rate, a combination of those two [60], the weight of

excitatory synapses [66] or subthreshold activity [61,107]

remains unclear. One possibility is that there may be multiple

spatial set points and the specific set point is regulated by

homeostatic mechanisms implemented at that spatial scale.

So balancing neuronal firing rates in the network would

occur via network level homeostatic mechanisms, and balan-

cing synaptic weights in a dendrite would occur through

dendritic branch-level implementation of homeostatic mech-

anisms. How and when these different set points and

homeostatic mechanisms are implemented at these spatial

scales remain unanswered questions and are important for

understanding how these plasticity mechanisms occur in vivo.

(d) How do mechanisms interact?
Numerous homeostatic plasticity mechanisms (synaptic scal-

ing, changes to the balance between excitation and

inhibition, changes in excitability, spine size fluctuations;

[99]) and Hebbian mechanisms (short-term plasticity, short-

term potentiation, LTP, LTD [46]) have been described. These

mechanisms have largely been studied in isolation and there

is limited understanding of how these mechanisms may inter-

act. For example, are multiple homeostatic mechanisms

engaged in an individual cell following input loss? If so, do

they all have the same threshold of activity change? Previous

work [13] indicates that different forms of deprivation

induce different homeostatic mechanisms in layer 2/3 of the

visual cortex ex vivo, suggesting that the exact nature of
changes in activity levels and patterns may influence how

and which homeostatic mechanisms are engaged. Addition-

ally, if a cell does engage multiple mechanisms, the order of

engagement and further interactions between mechanisms

remains unresolved. Multiple studies suggest that the

reduction of inhibition levels occurs immediately after sensory

deprivation [11,23–26,32], but the consequences for sub-

sequent homeostatic or Hebbian mechanisms is not clear.

Consequently, it is an important future topic to explore how

individual mechanisms, as well as their interactions, affect be-

haviour. For example, at a mechanistic level, while TNF-alpha

knockout mice show clear abnormalities in sensory responses

[15,16], it is yet to be explored if this affects behaviours requir-

ing sensory acuity. At a more general level, it is intriguing

to explore the interaction between different mechanisms,

as they can compensate for each other [108] and their

combination can achieve a non-trivial functional outcome.

In addition to the interactions among the homeostatic

mechanisms themselves, the relationship between the Heb-

bian and homeostatic mechanisms is not particularly well

understood. Following monocular deprivation, circuit reor-

ganization is proposed to occur via LTD [88], followed by

the homeostatic mechanism of either synaptic scaling [89] or

changing the sliding threshold to favour LTP [62], but whether

homeostatic mechanisms are only engaged after the cell has

induced Hebbian plasticity past some threshold (as may be

the case with monocular deprivation) or if these homeostatic

mechanisms are constantly at work to never allow activity to

get too far out of range is unclear. One issue in the field is

that given the sensitivity of the currently used experimental

approaches, one needs to induce a strong change in activity

or a significant loss of input in order to be able to measure

that homeostatic mechanisms have been engaged. With the

advent of new, more sensitive tools to both manipulate

activity (light-activated channels) and measure activity (volt-

age-sensitive dyes), these questions will likely be resolved in

the near future. Finally, while numerous molecules have

been identified to play a role in mechanisms of both types of

plasticity, there is an overlap between these molecular cues

[93]. The interactions between the molecular mechanisms of

Hebbian and homeostatic plasticity are largely unexplored

and are an important question for identifying how these

different types of plasticity are induced.

The study of homeostatic plasticity would also be greatly

advanced by the development of genetic and pharmacologi-

cal methods for regulating and preventing it. Hebbian

plasticity can be controlled genetically by numerous

interventions, from manipulating NMDA receptors through

CaM-kinase-II-alpha to scaffolding mechanisms involved in

receptor trafficking, and pharmacologically by D,L-2-amino-5-

phosphonopentanoic acid (AP5) and 3-(2-carboxypiperazin-

4-yl)propyl-1-phosphonic acid (CPP). Experimental manipu-

lation of homeostatic scaling has been achieved principally

by genetic or pharmacological alteration of TNF-alpha signal-

ling; no selective manipulation is yet known for regulation of

inhibition. It will be important for advances in the molecular

understanding of homeostatic plasticity mechanisms to lead

to additional tools that can be used in vivo and targeted to

specific cells. Without such tools, it will be difficult to dissect

the interaction of these two forms of plasticity further and

make better connections with theoretical studies.

To conclude, the ideas that emerged at this meeting

reinforced many of the general concepts that have evolved
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over the past 15–20 years—the mechanisms of homeostatic

plasticity (synaptic scaling, changes in inhibition), the recov-

ery of activity following input loss and the necessity for some

form of stability to balance Hebbian changes. Clear directions

for future research, together with important experiments

going forward include, (i) understanding the relevant time-

scales for both homeostatic and Hebbian changes and how

stability in the circuit can be maintained despite these differ-

ences in timescales, (ii) more effectively connecting theory

with molecular and systems level experiments, (iii) under-

standing the spatial scales of both the set points that the

cells and networks are trying to achieve and the implemen-

tation of plasticity mechanisms, (iv) characterizing the

interactions, both spatial and temporal, between mechanisms
of homeostatic and Hebbian plasticity, and whether the effec-

tor molecules are the same for these two forms of plasticity,

(v) understanding the molecular mechanisms for three

types of homeostatic plasticity—synaptic scaling, modulation

of inhibition and firing rate homeostasis, and (vi) under-

standing the temporal, spatial and mechanistic dynamics of

the understudied synaptic downscaling.
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