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DATA-DRIVEN NON-MARKOVIAN CLOSURE MODELS

DMITRI KONDRASHOV, MICKAËL D. CHEKROUN, AND MICHAEL GHIL

Abstract. This paper has two interrelated foci: (i) obtaining stable and efficient data-driven
closure models by using a multivariate time series of partial observations from a large-dimensional
system; and (ii) comparing these closure models with the optimal closures predicted by the
Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are
introduced as both a generalization and a time-continuous limit of existing multilevel, regression-
based approaches to closure in a data-driven setting; these approaches include empirical model
reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer
structure of MSMs can provide a natural Markov approximation to the generalized Langevin
equation (GLE) of the MZ formalism.

A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess
how well it approximates the GLE solution. Sufficient conditions are derived on the structure
of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee
the existence of a global random attractor. This existence ensures that no blow-up can occur
for a broad class of MSM applications, a class that includes non-polynomial predictors and
nonlinearities that do not necessarily preserve quadratic energy invariants.

The EMR-MSM methodology is applied to a conceptual, nonlinear, stochastic climate model
of coupled slow and fast variables, in which only slow variables are observed. It is shown that
the resulting closure model with energy-conserving nonlinearities efficiently captures the main
statistical features of the slow variables, even when there is no formal scale separation and the
fast variables are quite energetic.

Second, an MSM is shown to successfully reproduce the statistics of a partially observed,
Lokta-Volterra model of population dynamics in its chaotic regime. The challenges here include
the rarity of strange attractors in the model’s parameter space and the existence of multiple
attractor basins with fractal boundaries. The positivity constraint on the solutions’ compo-
nents replaces here the quadratic-energy–preserving constraint of fluid-flow problems and it
successfully prevents blow-up.

1. Introduction and Motivation

1.1. Background. Comprehensive dynamical climate models aim at simulating past, present
and future climate and, more recently, at predicting it. These models, commonly known as gen-
eral circulation models or global climate models (abbreviated as GCMs in either case) represent
a broad range of time and space scales and use a state vector that is typically constituted by
several millions of variables.

While detailed weather prediction out to a few days does require such high numerical resolu-
tion, climate variability on longer time scales is dominated by large-scale patterns, which may
require only a few appropriately selected modes for their simulation and prediction [1]. For a
specific range of frequencies and targeted variables, one may try to formulate low-order models
(LOMs) for these purposes. Such models must account in an accurate way (i) for linear and
nonlinear self-interactions between a judiciously selected set of resolved high-variance climate
components; and (ii) for the cross-interactions between the resolved components and the large

Key words and phrases. Empirical model reduction, inverse modeling, least-mean-square minimization, low-
order models, memory effects, nonlinear stochastic dynamics, stochastic closure model.
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number of unresolved ones. Although the present article is motivated primarily by the need
for LOMs in climate modeling, similar issues arise in many other areas of the physical and life
sciences, and LOMs are becoming a key tool in various disciplines as diverse as astrophysics [2],
biological neuronal modeling [3], molecular dynamics [4, 5] or pharmacokinetic and pharmaco-
dynamic modeling [6].

In climate dynamics, the prediction of the El Niño-Southern Oscillation (ENSO) has attracted
increased attention during the past decades, since ENSO constitutes the dominant mode of in-
terannual climate variability, with major global impacts on temperature, precipitation, tropical
cyclones, and human health [7, 8, 9]; it has even been argued recently to have potential impacts
on civil conflicts [10]. The earliest successful predictions of ENSO were made using a dynamical
model governed by a set of coupled partial differential equations (PDEs) [11] that was itself a
highly reduced model by today’s standards. Subsequently, stochastically driven linear LOMs —
based either on observational data [12, 13, 14] or on dynamical model simulations [15] — have
been used for ENSO predictability studies as well as for real-time forecasting [16]. Nowadays,
modeling ENSO by such LOMs can be considered as a significant success story, although predict-
ing its extremes is still a challenge; a recent survey on real-time prediction skill of state-of-the
art statistical ENSO models compared to comprehensive dynamical climate models is given in
[17].

Real-time ENSO predictions based on the Empirical Model Reduction (EMR) method intro-
duced in [18, 19] have proven to be highly competitive.1 Within climate dynamics, the EMR
methodology has been successfully applied to the modeling of many multivariate time series on
different time scales, whether arising in observed air–sea interactions in the Southern Ocean [20],
in the identification and predictability analysis of nonlinear circulation regimes in atmospheric
models of intermediate complexity [21, 22, 23], in the modeling of the Madden-Julian Oscillation
(MJO) [24] or in the stochastic parameterization of subgrid-scale mid-latitude processes [25].

In these successfully solved climate problems, the key ingredient to modeling and predicting
the dynamics of the macroscopic, observed variables from partial and incomplete observations
of large systems is the appropriate use of some pre-specified self- and cross-interactions between
the macroscopic variables, supplemented by some auxiliary, hidden variables. In an EMR model,
these interactions are typically chosen to be quadratic or linear and the associated hidden vari-
ables are arranged into a “matrioshka” of layers. Each supplementary layer in this “matrioshka”
includes a hidden variable that is less auto-correlated than the one introduced in the previous
layer, until some decorrelation criterion is reached; see A. In practice, the unknown coefficients
at the main level and the additional ones are learned by means of multilevel regression tech-
niques; we refer to [26] for a review of the EMR methodology and a comparison with other
model-reduction methodologies.

Quite recently, a couple of papers [27, 28, 29] pointed out the possibility of undesirable
behavior in EMR models, and proposed to add energy-preserving constraints on the quadratic
terms in order to prevent such behavior. r. The idea of adding constraints to prevent blow-up
in an EMR formulation should clearly not be limited to the class of models that, in the absence
of dissipation, possess quadratic energy invariants: many models in climate dynamics do not
possess such invariants, e.g. models of the sea surface temperature (SST) field have energy terms

1 Barnston and colleagues [17] analyzed two dozen ENSO multi-model real-time predictions coordinated by
Columbia University’s International Research Institute for Climate and Society (IRI) over the 2002–2011 interval
and concluded that the “UCLA-TCD prediction (ensemble mean) has the highest seasonally combined correlation
skill among the statistical models exceeded by only a few dynamical models [...] as well as one of the smallest
RMSE.” Note that the former is based on models with a few tens of variables, while the latter have many millions
of variables.
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that are linear in temperature, rather than quadratic. On the other hand, in certain situations
that occur, for instance, in population dynamics [30, 31, 32, 33, 34, 35] or chemical kinetics
[36, 37, 38, 39, 40], while the nonlinearities might still be quadratic, introducing such constraints
might actually be counter-productive; see Section 7. The work of [28, 29] proposed multi-level
regression (MLR) models that did allow for quadratic interactions between the observed and
some of the hidden variables and showed that these interactions — given quadratic energy
invariants in the flow models to which they were applied — result in a stable, well-behaved
reduction of the full flow models. As their very name indicates, though, the fundamental feature
of the MLR models is still the multilevel structure proposed a decade ago in the original EMR
formulation.

The associated hidden variables in the original EMR formulation depend, due to this multilevel
structure, on the past of the observed variables and bring therefore memory effects into the
resulting low-dimensional stochastic models, in a fashion that is reminiscent of the closure models
in the Mori-Zwanzig (MZ) formalism of statistical mechanics [41] or of related optimal prediction
methods [42, 43]. The latter methods also deal with the problem of predicting just a few relevant
variables but from a different perspective than the EMR one, i.e. when the equations of the
original, full system are available. The connection between the EMR formulation and MZ-
type formalisms was first pointed out and illustrated by a simple example in the supporting
information of [44].

1.2. Outline. The background of this paper is thus provided by (a) the success of the EMR
methodology in the modeling and real-time prediction of spatio-temporal climate fields; (b)
the recent criticisms in [27, 28, 29] of potential vulnerabilities in the original version of this
methodology; and (c) its relationships with the closure methods suggested by the MZ formalism.
The purpose of the paper is, therefore, (i) to generalize further both the original EMRs and the
MLR models in [27, 28, 29]; (ii) to provide a mathematical analysis of data-based EMR models in
their continuous-time limit and of the generalizations thereof; and (iii) to illustrate the insights
and additional tools thus obtained by two simple applications.

We call the generalized and rigorously studied continuous-time limit of EMRs multilayer
stochastic models (MSMs). In Sec. 2, we formulate the closure problem in the presence of
partial observations and consider EMR models as a candidate solution to this problem. In
Sec. 3, we introduce MSMs and show that an MSM can be written as a system of stochastic
integro-differential equations (see Proposition 3.3). This system can lead in practice to a good
approximation of the generalized Langevin equation (GLE) of the MZ formalism, denoted here
by (GLE) and studied in Sec. 4. In this section, it is shown that the closure obtained by
the GLE is theoretically optimal, given a time series of data, rather than a known master
equation. Lemma 4.1 supports this statement, subject to the appropriate ergodic assumptions
and assuming an infinitely long multivariate time series of partial observations. The difference
between the standard way of building the GLE and an approach based on averaging along
trajectories, as in Lemma 4.1, is similar to the Eulerian versus the Lagrangian viewpoint in
fluid mechanics.

Sections 3 and 4 are fairly theoretical and the hasty reader who might be more motivated by
the applications can skip these two sections at a first reading and return to them later, after
seeing the usefulness of their theoretical results in Secs. 5–7. In Sec. 5, practical issues of apply-
ing the results of Secs. 2–4 to deriving accurate and stable EMRs are considered. In particular,
we will see that, under certain circumstances, an MSM can be understood as a Lagrangian
approximation of the GLE; see also Proposition 3.3. Numerical results for a conceptual sto-
chastic climate model proposed in [45] are presented in Sec. 6. These highly satisfactory results
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demonstrate, among other things, that the η-test formulated in Sec. 5 for the last-level residue
of an MSM does provide quite an efficient criterion for the degree of approximation of the GLE
solution by the appropriate MSM.

In Sec. 3 we also derive conditions on the cross-interactions between the constitutive layers of
a given MSM that guarantee the existence of a global random attractor. This existence ensures
that no blow-up can occur for a broad class of MSMs that generalize the class of EMR-like
models used so far, including but not restricted to the MLR models of [27, 28, 29]; see Theorem
3.1. This class includes non-polynomial predictors and nonlinearities that do not necessarily
preserve quadratic energy invariants, such as assumed in [28, 29]; see Corollary 3.2. The latter
results are illustrated in Sec. 7 by solving a closure problem arising in population dynamics that
possesses merely linear and quadratic terms, but requires a very different set of constraints to
prevent blow-up of the reduced model.

Finally, four appendices provide further details on EMR stopping criteria, on real-time pre-
diction using an MSM, on practical aspects of energy conservation, and on the interpretation of
MSM coefficients.

1.3. Multilayer stochastic models (MSMs) and integro-differential equations. In this
subsection, we take a detour into the deterministic literature of integro-differential equations
that will shed some further light on the ability of an MSM to provide an efficient closure model
based on partial information on the full model, as derived from a time series. The parallels drawn
herein between the two situations yield a broader perspective on the role of an MSM’s multi-
layer structure with respect to its representation as a system of stochastic integro-differential
equations, cf. Proposition 3.3 below.

The present remarks demonstrate the underlying relationships between multilayer systems of
ordinary differential equations (ODEs) and systems of integro-differential equations, and help
one understand why the multilayer structure of an MSM is essential in constructing a class of
stochastic differential equations (SDEs) susceptible to approximate a GLE. These observations
are actually rooted in older mathematical ideas from the study of models that involve distributed
delays [46, 47]; such models arise in theoretical population dynamics and in the modeling of
materials with memory [48, 49, 50], as well as in climate dynamics [51, 52].

Motivated by these remarks, we consider now the following system of integro-differential
equations

(1.1)
dxi
dt

= xi

(
bi +

n∑
j=1

aijxj +

n∑
j=1

γij

∫ t

−∞
gij(t− s)xj(s)ds

)
, i = 1, . . . , n;

this system models the population dynamics of a community of n interacting species, where
xi denotes the population density of the i-th species, b = (b1, b2, ..., bn) the vector of intrinsic
population growth rates, A = (aij) and Γ = (γij) denote the interaction matrices, and gij the
memory kernels that describe the present response of the per capita growth rate of a species
i to historical population densities xj . Volterra proposed such a system of integro-differential
equations to describe an ecological system of interacting species and investigated it for n = 2
[53, Chap. IV].
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We wish to show how system (1.1) can be recast into a system of ODEs, and assume for
simplicity at first that (1.1) takes the form,

(1.2)

dxi
dt

= xi

(
bi +

n∑
j=1

aijxj

)
, 1 ≤ i 6= p ≤ n; and

dxp
dt

= xp

(
bp +

n∑
j=1

apjxj + γpm

∫ t

−∞
gpm(t− s)xm(s)ds

)
,

for some p and m in {1, · · · , n}, i.e., that only a single equation exhibits memory effects. Fur-
thermore, the memory kernel gpm is assumed to be given by the Gamma distribution

(1.3) gpm(t) = Fk(t) =
αk

(k − 1)!
tk−1e−αt,

for some α > 0 and some positive integer k ≥ 1.
The key step is to note the recursion relation

(1.4)
dFk
dt

= αFk−1 − αFk

and to introduce the additional k new variables rj , with

(1.5) rj(t) =

∫ t

−∞
xm(s)Fj(t− s)ds, j = 1, . . . , k.

By differentiation we obtain that these auxiliary variables obey the following system of ODEs,

(1.6)

dr1
dt

= α(xm − r1),

drj
dt

= α(rj−1 − rj), j = 2, . . . , k.

This system is driven by xm. More precisely, the dynamics of the auxiliary variable r1 is directly
slaved to that of xm, while the other rj-variables are indirectly slaved to xm, since each variable
rj in a given layer 2 ≤ j ≤ k interacts with rj−1 in the previous layer, thus sharing a multilayer
structure reminiscent of the one in the original EMR formulation [18, 19].

These remarks allow us to recast the system of integro-differential equations (1.2) as the
following system of ODEs:

(1.7)

dxi
dt

= xi

(
bi +

n∑
j=1

aijxj

)
, 1 ≤ i 6= p ≤ n,

dxp
dt

= xp

(
bp +

n∑
j=1

apjxj + γpmrk

)
,

drj
dt

= α(rj−1 − rj), j = 2, . . . , k,

dr1
dt

= α(xm − r1).

The expansion procedure outlined above for the single memory effect in the simplified system
of Eq. (1.2) can obviously be carried out for any number of memory terms in any number of
equations, subject to the addition of a suitable number of linear equations; hence it can also be
applied to the general system of integro-differential equations in Eq. (1.1).
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One concludes that, for such a system integro-differential equations — if the kernels are
weighted sums of Gamma distributions, or more generally, if these kernels are solutions to a
linear system of ODEs with constant coefficients — then the original system can be transformed
into a system of ODEs. This transformation is known as the “linear-chain trick” [46, 54, 55]. Of
course, it is important to be able to go in the other direction as well. If one finds an interesting
solution of the ODE system (1.7), e.g. a periodic solution, then one wants to know if it does solve
(1.2) as well. In fact, it is not difficult to prove that any solution of (1.7) that is bounded on
the entire real line is also a solution of the integro-differential equation (1.2); see [55, Prop. 7.3].
Since the resulting system of ODEs (1.7) does not involve the knowledge of the past of the
xi-variables, one can say that a “Markovianization” of the original system has been performed
by suitably augmenting the number of variables; this augmentation procedure is actually well-
known in the rigorous study of systems with distributed delays, such as those that arise in the
modeling of materials with memory, for instance, cf. [48, 49, 50] and references therein.

This detour via a class of systems of integro-differential equations provides some general
guidance on how to “Markovianize” a broad class of GLEs of the type predicted by MZ closure
procedures. Such GLEs take necessarily the form of systems of stochastic integro-differential
equations. It is natural, then, to seek approximations to such MZ closures in the form of an
augmented system of SDEs whose main, observed variables are supplemented by appropriate
auxiliary hidden variables, and one expects the latter variables to interact with the main ones
and among themselves in a fashion suggested by the ODE system (1.7).

Of course, the corresponding interactions have to take a specific form, depending on the
applications. For dissipative systems, it is shown below that — given a natural energy that
has to be dissipated — simple estimates allow one to identify permissible interactions that
ensure the existence of dissipative MSMs; see Theorem 3.1 and Corollary 3.2. Within this class
of interactions, Proposition 3.3 ensures that a simple correlation-based criterion formulated in
Section 5 does address the problem of approximating the GLE by such MSMs.

The approach proposed in this article complements, therewith, more traditional techniques for
the Markovian approximation of the GLE. Typically, the latter approaches rely on a continued-
fraction expansion of the Laplace transform of the autocorrelation functions of the noise in the
GLE, as introduced by Mori [56], or on related approximations by rational functions of linear
GLE memory kernels [57, 58]. Still, the applicability of these Markov approximation techniques
is limited by relying on rather restrictive assumptions, such as systems with a separable, qua-
dratic Kac-Zwanzig Hamiltonian [57] or linear kernels, although non-Gaussian noise in the GLE
is allowed [57]. These restrictions led some authors to conclude that MZ models with linear,
finite-length kernels form a subclass of autoregressive moving average (ARMA) models [59, 60].

As shown in the body of this paper, our approach to the derivation of Markov approximations
to the GLE goes beyond these limitations and allows for nonlinear kernels as well as for non-
Gaussian noise; it applies, furthermore, to a broad class of dissipative, rather than Hamiltonian
systems. Nevertheless, the considerations in this subsection demonstrate the intuitive relevance
of the multilevel structure inherent in the EMR methodology — albeit initially designed from
a different perspective [18, 26] — for the derivation of closure models from a multivariate time
series of partial observations. This article shows, furthermore, that — when suitably generalized
— the multilayer EMR methodology provides an efficient means of deriving such closure models,
as well as facilitating their mathematical analysis.

2. The closure problem from partial observations and its EMR solution

As discussed in Secs. 1.1 and 1.2 above, we are motivated by the modeling of geophysical
fluid flows — as well as of more complex climate problems and of large-dimensional problems
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from other fields of science — based on a series of partial observations. We formulate below the
corresponding observation-based closure problem (P) and recall its EMR candidate solution,
such as initially proposed in [18, 19]. Generalizations of such an EMR solution are discussed in
Section 3 below.

One can consider the approach presented in this article as complementary to the derivation
of deterministic nonlinear dynamics from observations, in the spirit of Mañe-Takens [61, 62]
attractor reconstruction by phase-space embedding of a time series: instead of just trying to
reconstruct the attractor from a single time series or from a multivariate one [63, 64, 65], we at-
tempt to actually write down equations that will produce a good approximation of the attractor,
including both its geometry and invariant measure.

Several approaches can be used for this purpose. Among them are the recent time-lagged
polynomial sparse modeling technique for the nonuniform embedding of time series [66], or the
more traditional approaches based on ARMA models [67]. The nonlinear version of the latter
[68, 69] is somewhat closer to the EMR methodology, due to the combined presence of noise and
memory effects2. However, the EMR models differ in their parameter estimation by the top-to-
bottom multilevel procedure recalled below and subject to the stopping criterion described in A.
As we will see from the theoretical results of Section 3, the multilevel structure intrinsic to EMR
allows for a great flexibility in specifying various linear and nonlinear interactions between the
main-level and hidden-level variables, in order to design MSM generalizations of EMR models;
see Theorem 3.1 and Corollary 3.2 below. The same multilevel structure allows us furthermore
to relate MSMs to MZ models, as explained in Sections 4 and 5.

As mentioned earlier, MZ models provide optimal solutions to closure problems such as the
observation-based problem (P) formulated below. As we will see, EMR or their MSM general-
izations of Section 3 provide approximate solutions to such optimal solutions; see Section 6 and
7 for applications.

(P) Let {u(tk, ξj)} be a set of discrete observations of a given, spatio-temporal, scalar field,
where {tk = kδt}3, and the grid points {ξj} live in a spatial domain D, which can
be two- or three-dimensional. The amount of data is always assumed to be finite, i.e.
k ∈ {1, ..., N} and j ∈ J , where J is a finite set of multi-indices; often, the data set is
rather limited, and thus N is not as large as we would like. The goal is to find a model
that not only describes the evolution of the {u(tk, ξj)} observed so far, but also possesses
good prediction skills at future times, k > N , and at the same sites {ξj}.

When equations are available to describe the evolution of {u(tk, ξj)}j∈I in the domain D,
with card(I) >> card(J ), this problem is related to closure problems of a type that has been
widely studied in continuum physics, and a variety of approaches is available for dealing with
such problems [75]. In the general case, though, no equations are available for the evolution of
the full field UI := {u(tk, ξj)}j∈I , while the subfield UJ := {u(tk, ξj)}j∈J is assumed to consist
of partial observations from the field UI that contains subgrid information not resolved by the
field UJ .

The dynamics of the unobserved variables {u(tk, ξj)}j∈I\J is thus lacking and the main issue
is to derive an efficient parameterization of the interactions between the resolved and unresolved
— i.e., roughly speaking, the observed and unobserved — variables in order to derive equations
that model the evolution of the field UJ with reasonable accuracy. Furthermore, the scalar field

2Note that, in some sense, the EMR methodology can also be viewed as an extension of hidden Markov models
(HMMs) [70, 71] or of artificial neural networks (ANNs) [72, 73, 74], since the latter are generally nonlinear but
do not involve the memory effects inherent in the EMR methodology; see [24, 44].

3Here δt denotes the sampling interval of the data. For the sake of simplicity, we consider in this article data
that are uniformly sampled with a constant δt.
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u may interact with other fields that are not taken into account or not observed, which makes
an accurate modeling of the field UJ even more difficult. Typically, two-point statistics — such
as correlations or the joint probability density function (PDF) of the observed variables — are
used to assess the effectiveness and accuracy of the proposed closure model.

Besides these modeling aspects, the prediction requirement in the problem (P) above is clearly
challenging, in theory as well as in practice. It is well known that an inverse model may
approximate the data accurately over the training interval, while exhibiting poor prediction
skill on the validation interval during hindcast experiments, and performing even worse in real-
time prediction. Nonetheless and as mentioned in Sec. 1.1, the data-driven EMR procedure —
described in Steps 1–3 below— has proven to be quite skillful in real-time ENSO prediction [17].
For example, although the EMR-ENSO model of [19] is based on a leading subset of principal
components of the SST field that constitute only a small fraction of the total set of degrees of
freedom of the ENSO phenomenon; still, this EMR-ENSO model “has the highest seasonally
combined correlation skill among the statistical models, exceeded by only a few dynamical
models”; see footnote1.

As initially formulated in [18], after appropriate compression of the available data, cf. Step 1
below, the key idea consists in seeking forced-dissipative models of the form

(2.1)
δxk
δt

= −Axk +B(xk, xk) + F + “noise.”

Here xk = x(tk) is the d-dimensional column vector of the relevant variables to be modeled,
δxk/δt represents its rate of change in time, F is a column vector, A is a square d × d matrix,
and B(xk, xk) accounts for the bilinear interactions that influence the evolution of δxk/δt. The
noise term accounts typically for the effects of the unresolved variables — i.e., of subgrid-scale
processes or of other unobserved variables — on the dynamics of the observed variables, as
modeled by Eq. (2.1).

Often, this noise is simply assumed to be Gaussian and white in time but, in practice, its
amplitude may depend on the fluctuating variable x itself. It is, therefore reasonable to model
such a noise as state-dependent, and allow for it to possess non-vanishing correlations in time as
well as in space. Actually, Markov representation theorems ensure the existence of such a state-
dependent noise, as long as the original, possibly large-dimensional, deterministic, time-discrete,
observed dynamical system, possesses a relevant invariant measure that is physical in the sense
recalled in Section 4 below, cf. Eq. (4.3); see also Corollary B in the Supporting Information
of [76]. In the EMR methodology, this state-dependent noise is modeled by means of successive
regressions against the coarse observed variable x, until the time correlations of the residual
noise satisfy suitable decorrelation criteria.4

The main steps of the EMR procedure can be summarize as follows:

(i) Step 1: Data compression. Let B = {E1, ..., Ed} be an orthogonal basis5 that spans
a finite-dimensional Euclidean space of dimension d with associated norm ‖ · ‖, so that

4For the sake of clarity, the decorrelation criterion is recalled in A. Roughly speaking, the residual noise
has to have vanishing correlations at lag δt, i.e., at the sampling interval of the available data. The successive
minimizations, described in Steps 1–3 below, have been shown, in practice, to reach such a limit, within a
reasonable error, after solving only finitely many minimization problems; see [18, 19, 21, 26] and Remark 1 below.

5This basis is determined from the data; empirical orthogonal function (EOFs) are often used in EMR method-
ology, but other possibilities do exist [25, 26]; see also [77] for a comparison of different bases used in model
reduction.
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the following orthogonal decomposition of u(tk, ξj) onto B can be easily determined:

(2.2) u(tk, ξj) =
d∑
i=1

xi(tk)Ei(ξj).

In what follows, x(tk) is the d-dimensional column vector6 x(tk) := (x1(tk), ..., x
d(tk))

T.
Given this decomposition, the problem (P) is now restricted to the modeling and eventual
prediction of the time evolution of x(t) or even of just a few of its components. A data-
driven approach to this problem proceeds in the two following steps.

(ii) Step 2: Main-level regression. Given the multivariate time series {x(tk) : k =
1, . . . , N}, one seeks a deterministic column vector FN , a square matrix AN , and a
quadratic form BN (x, x) to achieve the following l2 minimization:

(2.3) [FN , AN , BN ] = argmin
F,A,B

(N−1∑
k=1

∥∥∥δxk
δt
− F +Axk −B(xk, xk)

∥∥∥2);

here δxk := xk+1 − xk, and xk = x(tk) represents the evolution in time of u(tk, ·) as
decomposed onto the basis B. Clearly, FN , AN and BN in Eq. (2.3) are meant to
approximate F , A and B in Eq. (2.1) so as to optimize in an l2-sense the evolution of
xk with respect to the data u(tk, ξj). The subscript N emphasizes the fact that FN , AN
and BN are estimated from the finite-length, multivariate time series {xk}k∈{1,...,N}.

(iii) Step 3: Multilevel regression. Let r
(0)
k := r(0)(tk) ∈ Rd be the d-dimensional regres-

sion residual associated with the l2-minimization problem of Step 2. We seek now a

d×2d rectangular matrix L
(1)
N cross-interactions, associated with the main-level residual

r
(0)
k and the main-level variable x, so that:

(2.4) L
(1)
N = argmin

L∈Rd×2d

(N−1∑
k=1

∥∥∥δr(0)k
δt
− L

[
(xk)

T , (r
(0)
k )T

]T∥∥∥2).
This main-level step is followed by solving a sequence of l2-minimization problems: for

each m of interest, we seek a d× (m+ 1)d rectangular matrix L(m) of cross-interactions,
which is given by:

(2.5) L
(m)
N = argmin

L∈Rd×(m+1)d

(N−1∑
k=1

∥∥∥δr(m−1)k

δt
− L

[
(xk)

T , (r
(0)
k )T , ..., (r

(m−1)
k )T

]T∥∥∥2).
This recursive sequence of minimizations is stopped when, for some m = p, the resid-

ual r
(p)
k δt has vanishing autocorrelation at lag δt, according to the stopping criterion

described in A.

From a practical point of view, the solution of the successive minimization problems described
above is subject to the general problem of multicolinearity, which arises from finite sample size
of the data set [18]. Multicolinearity can lead to statistically unstable estimates, in the sense
that the latter can be very sensitive to small changes in the data set. Various regularization
techniques exist to deal with this problem [78]; they rely mainly on penalizing the l2-functionals
in Steps 1–3 above, and they have been shown to be effective in yielding stable estimates for
the EMR models of various climate fields [18, 24, 26].

6If B denotes the set of EOFs, then the xi’s correspond to the principal components.
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Once the time-independent forcing term FN , the square matrix AN , the bilinear term BN ,

and the rectangular matrices {L(m)
N : m = 1, . . . , p} have been determined, we are left with an

EMR model of the form:

(EMR)
xk+1 − xk =

[
−ANxk +BN (xk, xk) + FN

]
δt+ r

(0)
k δt, k ∈ {1, ..., N},

r
(m−1)
k+1 − r(m−1)k = L

(m)
N

[
(xk)

T , (r
(0)
k )T , ..., (r

(m−1)
k )T

]T
δt+ r

(m)
k δt, 1 ≤ m ≤ p,

since, in general, p ≥ 1. This EMR models the dynamics of the multivariate time series {xk :
k = 1, . . . , N} of length N and should be able to predict it for k > N.

Note that, for prediction purposes, the model defined by Eq. (EMR) has to be initialized

appropriately in the past, along with estimating the hidden r(m)-variables from the observed
x, as explained in B. For the moment we turn to a natural continuous-time formulation of
Eq. (EMR) that will help set up a framework in which the EMR methodology will become
theoretically more transparent by benefitting from a natural MZ interpretation; see Secs. 3– 5.

Assuming that FN , AN , BN and {L(m)
N : m = 1, . . . , p} have converged once the amount of

data gets large enough7, we are formally left with an MSM that becomes, in the limit of δt→ 0
and N →∞:

(2.6)
dx =

[
−Ax+B(x, x) + F

]
dt+ r(0)dt, 0 < t ≤ T ∗,

dr(m−1) = L(m)
[
(x)T , (r(0))T , ..., (r(m−1))T

]T
dt+ r(m)dt, 1 ≤ m ≤ p.

Here [0, T ∗] corresponds to the time interval over which the data are available — also known as
the training interval — during which the MSM parameters of (2.6) have been estimated.

Note that in the theoretical limit above, the minimization functionals appearing in Steps 1–3
have to be replaced by their continuous analogues; this just means replacing the l2-functionals
by their L2(0, T ∗) version. The rigorous justification of such a limit is of course a nontrivial task
for general data. It implies in particular going beyond traditional finite-time convergence theory
for numerical methods applied to SDEs [80]. SDEs such as those considered in (2.6) involve only
locally Lipschitz coefficients, because of the bilinear term B, and thus require more sophisticated
techniques to prove strong convergence results of the solutions of (EMR)8 to the solutions of
(2.6), when the former system is interpreted as an Euler-Maruyama discretization of the latter.
Such a convergence can still be guaranteed, provided the nth moment of the exact and the
numerical solutions are bounded for some n ≥ 3; see [81, 82]. Leaving such considerations aside
in the present article, we focus here on theoretical MSM aspects that will turn out to be useful
from a modeling point of view, as shown in Secs. 3 –5.

Remark 1. Note that convergence results such as those mentioned above have been obtained
for SDEs driven by white noise. The system (2.6) is a system of random differential equations

(RDEs), in which the last-level noise term r(p) is not necessarily white according to the stopping
criterion recalled in A. Equation (2.6) can, however, turn out to be well approximated by a
genuine system of SDEs driven by a Wiener process W . Let us assume that the residual noise
r(p), obtained from the last level of Step 3 above, obeys the following scaling law as δt→ 0 :

(2.7) r(p)
√
δt ∼

δt→0
N (0, Q),

7in some appropriate weak sense [79].
8 in which FN , AN , BN and L

(m)
N would be replaced by F , A, B and L(m), respectively.
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where N (0, Q) denotes the normal distribution with zero mean and covariance matrix Q. Then

r(p)δt is a natural approximation of Q dW as δt→ 0, where dW denotes a d-dimensional white
noise process.

We emphasize, though, that the scaling law (2.7) may be violated by certain data sets and that
other scaling laws may apply to the stochastic process obtained in the limit of δt → 0. These
laws could lead, for instance, to MSMs driven by Lévy α-stable processes, as argued for certain
climate fields [83].

When the scaling of (2.7) is violated, one may wish to consider other types of interactions
than quadratic or linear in the learning stage of (EMR). Doing so may better explain the state
dependence of the main-level residual noise, and lead naturally to the more general class of MSM
considered hereafter.

3. MSMs: general formulation and random attractors

Motivated by the interest in more general problems than those posed by geophysical fluid
flows, we identify here a general class of MSMs that possess a global random attractor, whose
existence prevents the blow-up of model solutions. This class extends the one proposed recently
in [28, 29] and does not require the inclusion of energy-preserving nonlinearities to ensure the
existence of such an attractor.

3.1. MSMs and global random attractors. A natural extension of the MSMs introduced
in Sec. 2 can be written in compact form as follows:

(3.1)
dx = F (x)dt+ Πr dt,

dr = (Cx−Dr)dt+ Σ dWt.

Here r = (r1, ..., rp)
T is a p×q-dimensional vector with components that are q-dimensional each,

such that pq ≥ d, while C and D are respectively pq × d and pq × pq matrices, and Π is the
orthogonal projection from Rpq onto Rd. The matrix Σ is a (pq) × q-rectangular matrix whose
last q rows are equal to a positive-definite matrix Q and zero elsewhere.

Another, even more general extension can be written in the following form:

(MSM )

dx = f1(x)dt+ g1(u)dt

dy = f2(y)dt+ g2(u)dt+ Πrdt,

dr = h(u, r)dt+ Σ dWt.

Here u = (x, y) ∈ Rd×Rd′ and Π is the orthogonal projection from Rpq onto Rd′ ; for simplicity,

the functions f1, f2, g1, g2 and h are assumed to be continuous and locally Lipschitz in Rd×Rd′ .
The d × d′-dimensional vector y here plays the role of a hidden variable, similar to the d-
dimensional vector r0 introduced in (2.6), except that the y-variable is allowed now to contribute
nonlinearly to the dynamics of x via the vector field g1 and that it is not necessarily of the same
dimension as x, i.e. d′ may differ from d. Likewise, nonlinear effects are allowed this time for
both the hidden variables y and r. The generalization of (2.6) via d 6= d′ and nonlinear effects
in the second equation of (MSM) was proposed recently in [28, 29], but h there was assumed to
be linear.

Obviously, the cross-interactions between the observed and hidden variables, modeled here
by the terms g1, g2 and h, as well as the self-interactions contained in h and carried by f1 and
f2, have to be designed properly so that the system remains stable. Ref. [28] has addressed this
problem for the class of quadratic-energy–preserving nonlinearities, while keeping h linear, by
applying geometric ergodic theory to the Markov semigroup associated with such systems. In
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this section, we adopt an alternative approach and address the problem of existence of random
attractors for the more general class of inverse models governed by (MSM).

Remark 2. Note that random attractors may exist while the Hörmander condition used in [28]
is violated. Such a violation may arise, for instance, for stochastically perturbed system of ODEs
that exhibit a strange attractor and support a Sinai-Bowen-Ruelle measure µ, when the noise
acts transversally to the support of µ, along the stable Oseledets subspaces [84]. In other words,
random attractors may still exist for SDEs driven by degenerate noise and our present approach
may be viewed as complementary to that of [28]; see Theorem 3.1 and Corollary 3.2 below.
Furthermore, the random-attractor arguments used here are not limited to the case of white
noise and can be used to ensure the existence of non-degenerate solutions for MSMs driven by
more general noises [85], as proposed in [83]; see also Remark 1.

We proceed by transforming the system of SDEs in (MSM) into a system of RDEs that is
more amenable to the application of energy estimate or Lyapunov function methods, which we
use hereafter; see [86]. Mathematically, the benefits of dealing with the transformed system
instead of the original one relies on the Hölder property of Ornstein-Uhlenbeck processes, which
allows one to rely on the classical theory of non-autonomous evolution equations, parameterized
by the realization ω of the driving noise; see [87, Lemma 3.1 and Appendix A]. To perform this
transformation, we consider the following auxiliary pq−dimensional Ornstein-Uhlenbeck process,
obtained as the stationary solution of

(3.2) dz = −A0z dt+ Σ dWt,

where A0 is a positive-definite pq × pq matrix, that will be determined later on. The change of
variables r ← r − z transforms the system (MSM) into the aforementioned system of RDEs:

(3.3)

dx

dt
= f1(x) + g1(x, y),

dy

dt
= f2(y) + g2(x, y) + Π(r + z),

dr

dt
= h(u, r) +A0z,

and let us assume, for simplicity, that

(3.4) h(u, r) = −Dr + h̃(u, r),

with D positive definite and A0 = D.
Following the Lyapunov function techniques in [86] for the existence of random attractors, we

assume that there exists a map V : Rd+d′ → R+, which is continuously differentiable and has
the property that pre-images of bounded sets are bounded, e.g. V is polynomial. Furthermore,
we require that V verify the following conditions:

(H1) ∃ α, β > 0 : 〈f1(x),∇xV (u)〉+ 〈f2(y),∇yV (u)〉+ α · V (u) ≤ β, ∀ u ∈ Rd+d
′
,

(H2) ∃ a, b > 0 : 〈g1(u),∇xV (u)〉+ 〈g2(u),∇yV (u)〉 ≤ aV (u) + b, ∀ u ∈ Rd+d
′
,

(H3) 〈Πr,∇yV (u)〉+ 〈h̃(u, r), r〉 ≤ m1V (u) +m2‖r‖2,

(H4) ‖∇yV (u)‖2 ≤ γV (u) + C,
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where 〈f, g〉 is the Euclidean inner product in Rd+d′ .
For a given realization ω of the noise, we denote by V (t, ω) the values of V along a trajectory

u(t, ω) = (x(t, ω), y(t, ω)), and obtain, on the one hand, from the x- and y-equations in (3.3),

(3.5) dV (t, ω) =
( 2∑
i=1

〈fi(xi(t, ω)),∇xiV (t, ω)〉+ 〈gi(x(t, ω)),∇xiV (t, ω)〉
)

dt,

where we used the notations x1 = x, x2 = y; on the other, after multiplication of the r-equation
by r in (3.3), we get

(3.6)
1

2
d‖r‖2 + λ‖r‖2dt ≤

(
〈Π(r + z),∇yV (t, ω)〉+ 〈h̃(u, r), r〉

)
dt,

where λ > 0 denotes the smallest eigenvalue of D.
By adding (3.5) and (3.6), by using (H1)–(H3), and by applying the ε-Young inequality to the

term 〈Π2z,∇yV (t, ω)〉, we obtain that, for any ε > 0, there exists Cε > 0 such that

(3.7)
dV (t, ω) +

1

2
d‖r‖2 + (αV (t, ω) + λ‖r‖2)dt ≤

(
(a+m1 + εγ)V (t, ω)+

β + b+m2‖r‖2 + εC + Cε‖Π2z(t, ω)‖2
)

dt.

This inequality, in turn, leads to

(3.8) dṼ (t, ω) + κṼ (t, ω)dt ≤ (β̃ + ξ(t, ω))dt,

with Ṽ (t, ω) := V (t, ω) + 1
2‖r‖

2, β̃ = β + b+ εC, and

(3.9) κ = min(α− a−m1 − ε1γ; 2(λ−m2))

for some ε1 > 0, where

(3.10) ξ(t, ω) = Cε1‖Πz(t, ω)‖2.

Since the Ornstein-Uhlenbeck process z is stationary with respect to the canonical shift θt,
so is the process ξ(t, ω), which can be written without loss of generality as ξ(t, ω) = ξ(θtω); see
[88, Appendix A] and [89]. Recalling that

(3.11) lim
t→∞

z(t, ω)

t
= 0,

almost surely (see [87, Lemma 3.1]), we deduce that, for almost all ω, the positive random
variable

(3.12) R(ω) =
β

κ
+

∫ 0

−∞
eκsξ(θsω)ds,

is well-defined, provided that κ > 0, which we assume hereafter to be the case.
For ε > 0, the random set

(3.13) Bε(ω) := {v = (x, y, r) ∈ X : Ṽ (v) ≤ (1 + ε)R(ω)},

in X := Rd+d′ × Rpq is then, by assumption on V , almost surely bounded. One can conclude
forthwith that Bε(ω) is a random set that is pullback absorbing for the RDS ϕ generated by
(3.3); namely, for any bounded set B ⊂ X, there exists a positive random absorption time
t∗(ω,B) such that, for every t ≥ t∗(ω,B),

(3.14) Ṽ (ϕ(t, θ−tω)B) ⊂ Bε(ω),
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i.e. the compact random set Bε is absorbing every bounded deterministic set B of X. Standard
results from RDS theory (see [90, Theorem 3.11]) allow us then to conclude that a global random
attractor exists for the RDS generated by (3.3) and therefore for the one associated with (MSM).

We have thus proved the following theorem.

Theorem 3.1. Let us consider a system (MSM) that generates an RDS. Assume that there exists

a map V : Rd+d′ → R+, such that V ∈ C1(Rd+d′ ,R+), which has the property that pre-images
of bounded sets are bounded and that the conditions (H1)–(H4) hold. Assume, furthermore, that

for all u ∈ Rd+d′ and for all r ∈ Rpq,

(3.15) h̃(u, r) = h(u, r) +Dr,

with D a pq×pq positive-definite matrix, and that the structural constants involved in (H1)–(H4)
can be chosen such that

(3.16) κ = min(α− a−m1 − ε1γ; 2(λ−m2)) > 0

for some ε1 > 0, where λ denotes the smallest eigenvalue of D.
Then the system (MSM) possesses a global random attractor which is pullback attracting the

deterministic bounded sets of Rd+d′ × Rpq.

Interpretation and practical consequences. Condition (H1) of Theorem 3.1 identifies
a natural dissipation condition that the self-interactions terms f1 and f2 should satisfy in the
absence of coupling between the x- and y-variables and forcing from the r-equation. Condition
(H2) and conditions (H3, H4) indicate what the cross-interactions between the x- and y-variables,
on the one hand, and the effects of the forcing by the r-variable on the y-equation, on the other,
should satisfy for the system (MSM) to be pathwise dissipative in a pullback sense [89]. Condition
(3.16) dictates the appropriate balance between these combined effects for such dissipativity to
occur.

Conditions (H1)–(H4) may also prove practically useful in the design of an MSM. For in-
stance, when an appropriate energy V has been identified such that (H1) is satisfied, the cross-
interactions g1 and g2 can be designed according to the constraint

(3.17) 〈g1(u),∇xV (u)〉+ 〈g2(u),∇yV (u)〉 = 0,

while conditions (H3) and (H4) are easy to satisfy when V is quadratic and h̃ is linear, as in
[28, 29].

If V (u) = 1
2(‖x‖2 + ‖y‖2), it is quite natural to satisfy (H1) simply by seeking fi’s of the form

(3.18) fi(xi) = −Aixi +Bi(xi, xi) + Fi, i = 1, 2,

with x1 = x and x2 = y, while the linear parts satisfy the dissipation conditions

(3.19) 〈Aixi, xi〉 ≥ νi‖xi‖2,

and the bilinear parts satisfy the energy-preserving conditions

(3.20) 〈Bi(xi, xi), xi〉 = 0, i = 1, 2.

The constraint (3.17) becomes therewith

(3.21) 〈g1(x, y), x〉+ 〈g2(x, y), y〉 = 0,

and, given a linear h̃ and bilinear gi’s, Eqs. (3.20, 3.21) lead to a class of energy-preserving
MSMs considered in [28, 29]. For this class, Theorem 3.1 ensures the existence of a random
attractor provided that the structural constants involved satisfy (3.16).
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Clearly, the conditions of Theorem 3.1 allow for the design of a considerably broader class
of stable MSMs. For instance, a closer look at the constraint (3.17) allows us to formulate the
following corollary.

Corollary 3.2. Let us consider a system (MSM) for which d = d′, and that generates an RDS.
Assume that there exists a continuously differentiable map V : R2d → R+, such that condition
(H1) is satisfied and that pre-images of bounded sets under V are bounded.

Assume that there exists a continuously differentiable, scalar-valued function G on R2d such
that

(3.22) g1(u) = ∇yG(u), g2(u) = −∇xG(u),

and that G is a first integral of the flow associated with the Hamiltonian V , i.e. that the Poisson
bracket of G with V vanishes,

(3.23) {G,V } = 0.

Then, if conditions (H3, H4) are satisfied, the conclusion of Theorem 3.1 holds.

Proof. The proof of this corollary boils down to expanding (3.23) in canonical coordinates to
yield [91, p. 215]

(3.24)

d∑
i=1

∂G

∂yi

∂V

∂xi
− ∂G

∂xi

∂V

∂yi
= 0,

which, by using (3.22), is nothing else than (3.17). �

This corollary shows that, once the self-interactions terms f1 and f2 have been designed to
be dissipative, according to (H1), with respect to some energy V , the cross-interactions between
the main level variable x and the next-level hidden variable y can be derived from any constant
of motion G of the flow generated by the auxiliary Hamiltonian system

(3.25) ṗ = ∇qV (p, q), q̇ = −∇pV (p, q).

The determination of such cross-interactions can thus benefit from efficient symplectic integra-
tors techniques [92, 93] that we leave for future research.

Whatever the level of generality of the MSM formulation, though, the selection of the corre-
sponding allowable self- and cross-interactions should be balanced with the constraint of reduc-
tion of the unexplained variance contained in the residuals of the main and subsequent layers,
when compared to an MSM written in its original EMR formulation (2.6). This variance-based
constraint is also to be balanced against the correlation-based criterion formulated in Section
5 below. The latter criterion relies on a reformulation of an MSM into a system of stochastic
integro-differential equations that is described below, a reformulation that allows for a compar-
ison with the optimal closure model one can obtain from a time series of partial observations of
a large system; see Section 4.

Remark 3. In practice, an ensemble Kalman filter can be used to learn MSMs subject to con-
straints such as (3.20, 3.21) [28, 29]. In C, we describe an alternative approach, in which such
constraints can be naturally incorporated into the recursive minimization procedure described in
Section 2.
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3.2. MSMs as systems of stochastic integro-differential equations. In this section we
show how to rewrite an MSM as a system of stochastic integro-differential equations like those
that arise in the MZ formalism. We restrict ourselves here to the case of h in (3.4) being given
by

(3.26)
h(u, r) = −Dr + h̃(x),

g2(u) = g2(x),

i.e. we drop the dependence of h̃ (respectively of g2) on r and y (respectively on y), while D is
still a pq × pq positive-definite matrix.

In this case, the integration of the last equation in (MSM) gives, for r(0) = 0,

(3.27) r(t) =

∫ t

0
e−(t−s)Dh̃(x(s))ds+

∫ t

0
e−(t−s)DΣ dWs,

where the last integral is understood as a stochastic convolution in the sense of Ito [94, Chap.
5]. Denoting by S(t) the flow associated with ẏ = f2(y), we obtain likewise, for y0 = 0,

(3.28) y(t) =

∫ t

0
S(t− s)

(
g2(x(s)) + Πr(s)

)
ds,

with r(s) given by (3.27).
Let us assume, furthermore, that

(3.29) g1(u) = β(x, y) + Cy,

where C is a d × d′ matrix, while β(x, y) does not contain linear terms in the y-variable nor
homogeneous terms in the x-variable. Given these assumptions, we can use Eqs. (3.27, 3.28) to
rewrite the system of SDEs (MSM) as the following RDE with retarded arguments:

(3.30)
dx

dt
= f1(x) + G(t, xt) + ξ(t, ω),

with

(3.31) xt(s) := x(t+ s), −t ≤ s ≤ 0,

(3.32) ξ(t, ω) = C

∫ t

0
S(t− s′)

(
Π

∫ s′

0
e−(s

′−s)DΣ dWs(ω))
)

ds′.

Here G(t, xt) accounts for (i) the terms in (3.29) that come from β(x(t), y(t)), where y(t) has

been replaced by its expression (3.28); and (ii) the terms C
(
Π
∫ t
0 e
−(t−s)Dh̃(x(s))ds +

∫ t
0 S(t −

s)g2(x(s))ds
)
. Note that each of these terms is given by the following type of integral:

(3.33)

∫ t

0
F (t, s, x(s))ds;

the latter can be rewritten, by using (3.31), as follows:

(3.34)

∫ t

0
F (t, s, x(s))ds =

∫ 0

−t
F (t, t+ s, x(t+ s))ds =

∫ 0

−t
F (t, t+ s, xt(s))ds := F(t, xt),

which explains the functional dependence in (3.30) on the past history xt of x.
The abstract reformulation of (MSM) as a closed equation (3.30) that describes the evolution

of x shows that an MSM written in a closed form involves a functional dependence on the time
history of the observed variables. This important characteristic of a time-continuous EMR was
already highlighted, in a simpler context, in the Supporting Information of [44].



DATA-DRIVEN NON-MARKOVIAN CLOSURE MODELS 17

Note that ξ(t, ω) has a straightforward interpretation when taking into account the multilayer
structure of an MSM. Indeed, if we remember that the r-equation in (MSM) has p levels and if
we assume, furthermore, that the matrix D is block-diagonal and given by

(3.35) D = diag(D1, · · · , Dp),

where each Dj , j = 1, . . . , p, is a q × q matrix, it follows that ξ(t, ω) is obtained, due to the
assumption on Σ, as the following convolution

(3.36) ξ(t, ω) = C

∫ t

0
S(t− s)Πz1(s)ds;

here the stochastic process z1 is obtained from the successive integrations of the following
equations:

(3.37)

dzp = −Dpzpdt+QdW,

dzp−1 = −Dp−1zp−1dt+ zpdt,

dzp−2 = −Dp−2zp−2dt+ zp−1dt,

...
...

dz1 =−D1z1dt+ z2dt.

In other words, the process z1 can be rewritten in terms of repeated convolutions as follows

(3.38) z1(t) = κ1 ∗ · · · ∗ κp−1 ∗ zp(t),
where the kernels κk are given by the following exponential matrices;

(3.39) κk(t) = etDk , 1 ≤ k ≤ p,
and the κk will also be called memory kernels in the sequel.

In more intuitive terms, z1 is a stochastic process that results from the propagation of a
red noise through the successive linear MSM layers, up to the level just preceding the main
level, namely the y-equation in (MSM). Mathematically, the power spectrum of z1 is red and
its statistics are Gaussian. The interest of system (3.37) is that it facilitates the simulation of
such a “reddish” noise. This reddish noise is then convoluted with the possibly nonlinear flow
associated with ẏ = f2(y) to give rise to the stochastic process ξ(t, ω), which may therewith be
non-Gaussian.

We can now summarize the above analysis in the following proposition.

Proposition 3.3. Under the assumptions of Theorem 3.1, and if the conditions (3.26), (3.29)
and (3.35) are satisfied, then any solution of (MSM) emanating from (x0, 0, 0) satisfies the
following RDE with retarded arguments,

(RDDE )
dx

dt
=

(a)︷ ︸︸ ︷
f1(x) +

(b)︷ ︸︸ ︷
G(t, xt) +

(c)︷ ︸︸ ︷
ξ(t, ω),

where

(3.40) ξ(t, ω) = C

∫ t

0
S(t− s)Πz1(s)ds,

z1 solves (3.37), and S(t) is the flow generated by the vector field f2; moreover,

(3.41) G(t, xt) =

∫ t

0
S(t− s)g2(x(s))ds+ CΠ

∫ t

0
e−(t−s)Dh̃(x(s))ds+ β(x(t), y(t)),

with y(t) given by (3.28).
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Equation (RDDE) shows then that an MSM — with cross-interactions between the observed
and hidden variables subject to the conditions of Proposition 3.3 — decomposes the dynamics of
the observed variables into (a) nonlinear self-interactions, embedded in (c) a reddish background,
plus (b) state-dependent correction terms represented by convolution integrals. The reddish
background (c) stands for the cross-interactions and self-interactions that are not accounted for,
respectively, by the convolution terms in (b) and by the nonlinear terms in (a). This noise term
also accounts for the lack of knowledge of the full initial state due to partial observations. Stated
otherwise, the deterministic terms in (a) provide a Markovian contribution to dx/dt, while the
terms in (b) constitute a non-Markovian contribution via the past history of x, as t evolves, and
the (c)-term represents the fluctuations that are not modeled by the terms in (a) and (b); the
(c) term also accounts for the uncertainty in the knowledge of the full initial state, due to partial
observations [43].

We have thus clarified that any system (MSM), subject to conditions like those of Proposition
3.3, resembles the closure models derived by applying the MZ formalism; see [42, Eq. (6)] and
[42, 95, 96] for further details. A discrete formulation of an MSM — such as proposed by the
original formulation of an EMR in [18, 26] — presents, nevertheless, substantial advantages in
practice, since such a discrete system is in general much easier to integrate numerically than the
system of stochastic integro-differential equations (RDDE). This is particularly true in instances
where the memory kernel µk in (3.38) decay slowly, in the sense that the observed variables x
evolve on a time scale comparable to that of the decorrelation time of such kernels.9 Such a
situation is expected to occur when the separation of time scales between the observed and unob-
served variables is not as sharp as required, for instance, in applying stochastic homogenization
techniques [100]; see however the recent works [101, 102] for milder assumptions.

The observation that an MSM can be recast into a system of stochastic integro-differential
equations that resembles the GLE of the MZ formalism raises a natural question with respect to
our closure problem (P) formulated in Section 2, namely to which extent does an MSM provide
a good approximation of the GLE predicted by the MZ formalism? The next section sets up
the mathematical framework to address this problem, followed by the formulation of a simple
correlation-based criterion in Sec. 5 to solve it.

Our criterion is based on Proposition 3.3 and, in particular, on the representation of ξ(t, ω)
provided by (3.40); it helps provide information on the degree of approximation of the GLE by a
given MSM, in terms of the correlation between the residual noise term (c) in the (RDDE) and
the observed variables x(t). Such a criterion will turn out to be useful in applications, given the
fact that the GLE constitutes the optimal closure model that can be achieved from an infinite
time series of partial observations, as pointed out by Lemma 4.1 below.

4. Generalized Langevin equation (GLE) for optimal closure from a time series

In this section, we assume that the scalar field u(tk, ξj) in d dimensions, as expanded in (2.2),
is the spatial coarse-graining of a discrete field UI := {u(tk, ξj)}j∈I in n dimensions. Typically,

9In such a case, the direct numerical integration of (RDDE) becomes prohibitive, due to the cost of evaluating
the integral terms. Such numerical difficulties have limited, so far, the application of the MZ formalism in the
derivation of efficient closure models of partially observed high-dimensional systems for which the determination of
G becomes a non-trivial task in the case of the so-called intermediate-range memory effects; see [97]. Nevertheless,
in the case of long-range memory effects, the MZ framework was successfully applied to the Euler or Burgers
equations by deriving a so-called t-model [98, 99].
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card(I)=n� d and an expansion similar to (2.2) holds in n dimensions, that is:

(4.1) u(tk, ξj) =
n∑
i=1

yi(tk)Ei(ξj), j ∈ I, k = 1, . . . , N.

We also assume that the evolution of y is governed by the ODE system

(4.2) ẏ = R(y).

The goal of this section is to show how the GLE from the MZ formalism can be theoretically
derived from a time series. This mathematical derivation lays the foundations for seeking the
Markovian part of an MSM by regression methods in practice, as discussed and applied in
Secs. 5–7.

To simplify the presentation, we assume that the vector field R is continuously differentiable
on Y := Rn, endowed with the basis B′ = {Ei : i = 1, . . . , n}, such that the flow {Tt} associated
with it is well-defined for all t and possesses a compact global attractor A ⊂ Y [103]. We assume,
furthermore, that {Tt} possesses an invariant probability measure µ, which is physically relevant
[84, 89], i.e.:

(4.3) lim
T→∞

1

T

∫ T

0
ϕ(Tt(y))dt =

∫
A
ϕ(y)dµ(y),

for almost all y ∈ Y (in the sense of Lebesgue measure) and for any observable ϕ ∈ L1
µ(Y ).

Recall that, like all measures invariant under Tt, an invariant measure that satisfies (4.3) is
supported by the global attractor A; see, for instance, [50, Lemma 5.1].

We briefly outline now how the MZ formalism helps derive an abstract closure model for the
description of the dynamics of x = Py, where P is the projection from Y onto X := Rd and
the latter is endowed with the basis B = {Ei : i = 1, . . . , n}, d � n. By a closure model we
mean a model that describes the evolution of x(t) = Py(t) as a function of the x-variable only,
plus some possible forcing terms that model the information lost by applying P , i.e., due to the
partial character of the available observations. Our approach thus follows [42, 95], who rely on
the use of conditional expectation with respect to a meaningful invariant measure such as the
µ introduced above. This framework will allow us, further below, to prove the main result of
this section, formulated as Lemma 4.1. Practical consequences of this Lemma for MSMs are
discussed in Section 5 below.

For convenience, we denote by v : Y → X the projection P so that, in particular,

vi(y) := (Py)i , i = 1, . . . , d.

By differentiating vi(Tt(y)) with respect to time, we obtain

(4.4)

∂

∂t
vi(Tt(y)) = ∇y(vi(Tty)) · dTt(y)

dt
= ∇y(vi(Tty)) ·R(Tt(y)) = Lvi(Tt(y));

here L is the Lie derivative, acting on continuously differentiable functions h, along the vector
field R given by:

(4.5) Lh(y) := ∇h(y) ·R(y),

Note that, by definition, vi(Tt(y0)) is just the ith-component xi(t) of x(t; y0), namely the pro-
jection onto X of the solution of (4.2) emanating from y0 ∈ Y .
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By introducing — at this point only formally — the time-dependent family of Koopman
operators10:

(4.6) (Utu)(y0) := u(Tty0), y0 ∈ Y,

defined for observables u : Y → X that live in some appropriate functional space11, the
evolution of x(t; y0) = v(Tty0) is governed by the following system of linear, hyperbolic PDEs
with non-constant coefficients in n+ 1 variables:

(4.7)
∂

∂t
Utv(y0) = L(Utv)(y0), y0 ∈ Y,

where LΨ := (LΨ1, . . . ,LΨn), with L given by (4.5). Within the appropriate functional setting,
it can be shown that {Ut}t≥0 forms a genuine semigroup, i.e. it describes not only the dynamics
of v but of other observables as well, and its generator is given by L, i.e. Ut = etL. In other
words, L can be interpreted as the “rate of change” of Ut; see e.g. [107, Chap. 7.6], or [110] for
a more advanced treatment in the dual case of Perron-Frobenius semigroups.

The Liouville-type equation (4.7) can be rewritten in a more convenient form for our purposes;
in particular, we will see that the existence of an invariant measure µ satisfying (4.3) plays an
essential role in connecting the MSMs introduced in the previous section with the MZ formalism.
Let Z be the complement of X in Y , i.e.

(4.8) Y = X ⊕ Z,

and let Ψ : Y → X be a continuous function. The decomposition of Y allows us to split any
y ∈ Y as the sum x+ z, with x ∈ X and z ∈ Z; here both x and z are uniquely determined by
the projection v : Y → X and its complementary projection, IdY − v, respectively.

The existence of an invariant measure µ allows us next to define the conditional expectation12

of Ψ for each v(x),

(4.9) E[Ψ|v](x) :=

∫
Z

Ψ(y)dµx(z).

Here µx is the probability measure on the unobserved factor space Z obtained by disintegration
of µ above x, i.e., for all Borel sets B and F of Z and X, respectively, we have that:

(4.10) µ(B × F ) =

∫
F
µx(B)dm(x),

where m is the push-forward of the measure µ by v, i.e. m(F ) = µ(v−1(F )), for any Borel set F
of X.

10For further details about Koopman semigroups and operators, see [104, 105, 106, 107] and references therein.
For this article, it suffices to note that Ut describes the action of the flow Tt on observables u : Y → X.

11Such a space could be chosen to be for instance Dp = {u ∈ Lpµ(Y ;X) | Au := limt→0 t−1(Utu − u) exists}
for some p ∈ [1,∞], where the limit is taken in the sense of strong convergence [108, 109]. We do not consider
in this article the delicate question of the choice of functional spaces that characterize the mixing properties of
the flow Tt. Such considerations require typically spaces that take into account the stable and unstable manifolds
of the attractor, when the latter supports a Sinai-Bowen-Ruelle measure; see, for instance, [110] in the case of
Anosov flows. For a rigorous treatment in the context of Hamiltonian systems, see [111].

12Note that
∫
Z

Ψ(y)dµx(z) in Eq. (4.9) is finite by assuming that Ψ continuous, since the support of the
invariant measure µ, supp(µ) is compact. Actually, by the Fubini theorem [112], it suffices to assume that
Ψ ∈ L1

µ(Y ;X) for this integral to be well defined.
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The existence of µx such that (4.10) holds is ensured by the disintegration theorem of prob-
ability measures; see for instance [113, Section 10.2, pp. 341–351] or [114, Chapter 5]13. The
probability measure µx can be interpreted as reflecting the statistics of the unobserved variables
z when x has been observed; see [76] for further details.

Remark 4. From the definitions of L and v, we see that Lv corresponds to the vector field

(4.11)
v ◦R : X → X,

y 7→ (R1(y), ...., Rd(y)),

where R is the vector field governing the evolution of the full system (4.2). Thus Lv is but the
first d components of the vector field R and (4.7) corresponds then to the functional formulation
of

(4.12)
dx

dt
= v(R(x+ z)), x ∈ X, z ∈ Z,

where Y = X ⊕ Z.
The truncated vector field v ◦R is still a function of y and, in particular, it depends on the

unobserved variables z. It is then reasonable to seek the vector field in X that best approximates
Lv in a least-square sense, as weighted by the invariant measure µ, i.e. in L2

µ(Y ;X). In other
words, we seek an X-valued function of the observed, d-dimensional x only, which best approx-
imates the X-valued function Lv of the full, n-dimensional y. It is exactly this approximation
that provides the conditional expectation E[Lv|v] corresponding to the vector field

(4.13) v ◦R(x) :=

∫
Z
v(R(x+ z))dµx(z), x ∈ X, z ∈ Z.

The averaging with respect to the unobserved variables z that occurs in Eqs. (4.9) and (4.13)
becomes therewith intuitively clear.

Recalling now the stated purpose of deriving a closure model for x(t), Remark 4 above leads
naturally to decompose v ◦R into its averaged part, given by (4.13), and a fluctuating part,

(4.14) v(R(x+ z)) = v ◦R(x) + (v(R(x+ z))− v ◦R(x)).

The parametrization of the fluctuating part v(R(x + z)) − v ◦R(x) as a function of the x-
variable is at the core of the MZ-formalism. This task is achieved through the perturbation
theory of semigroups [109]. Leading up to this task, let us first note that, since L and Ut
commute, LUt = UtL [42], we can rewrite (4.7) as

∂

∂t
Utv = UtLv;

this, in turn, can be rewritten as:

(4.15)
∂

∂t
Utv = UtE[Lv|v] + Ut(Lv − E[Lv|v]).

Equation (4.15) is the functional formulation of (4.12), once (4.14) has been applied. The
interest of this formulation is that the variation-of-constants formula, in its Miyadera-Voigt form
[109, Section 3c]14, yields a decomposition of Ut into two terms; as we will see, these two terms
have useful interpretations in statistical mechanics [116, 117, 118, 119, 120].

13See also [90, §4] and [88, 89, 115] for disintegration of probability measures arising in RDS theory; in this
theory, the probability measure m on the right-hand side of (4.10) is typically replaced by the probability measure
P associated with the driving system.

14 The Miyadera-Voigt form of the variation-of-constants formula is also known as the Dyson formula in the
physics literature [42].
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The decomposition of Ut is achieved by considering the operator B, acting on appropriate
observables Ψ : Y → X,

(4.16) BΨ := E[LΨ|v],

as a perturbation of the operator L, and writing

(4.17) AΨ = LΨ− E[LΨ|v].

Using the notation Vt for the semigroup generated by A, the above-mentioned variation-of-
constants formula leads (formally) to:

(4.18) UtΨ = VtΨ +

∫ t

0
Ut−sBVsΨds.

It follows that the evolution of an observable Ψ : Y → X under Vs in (4.18) is described by
the following PDE in n+ 1 variables:

(4.19)
∂

∂t
VtΨ = AΨ = LVtΨ− E[LVtΨ|v].

Remark 5. Note that

(4.20)
∂

∂t
E[VtΨ|v] = E[

∂

∂t
(VtΨ)|v] = E

[
LVtΨ− E

[
LVtΨ|v

]∣∣∣v] = 0,

so that, if Ψ is orthogonal to the space spanned by functions of X = Im(v) alone, then E[VtΨ|v] =
0 for all t. For this reason, equation (4.19) is known as providing the orthogonal dynamics in
the MZ terminology.

According to this remark, by taking

(4.21) Ψ = Lv − E[Lv|v],

we have thus that VsΨ in (4.18) evolves in the subspace that is orthogonal to the space spanned by

functions of X. The term BVsΨ corresponds to the average vector field on X given by (VsΨ) ◦R,

where the average is taken over Z as in (4.13), so that
∫ t
0 Ut−sBVsΨds is a function that depends

on x ∈ X only. If x is given by the time-dependent function v(Tty0), then
∫ t
0 Ut−sBVsΨds is a

function of the past values of x, i.e., a memory term.
By applying (4.18) with Ψ = Lv − E[Lv|v] and using the expression of B given in (4.16),

the term Ut([Lv − E[Lv|v]) in (4.15) may be rewritten accordingly, and we arrive thus at the
following generalized Langevin equation (GLE) :

(GLE )
∂

∂t
Utv = R(Utv) +

∫ t

0
Ut−sG(v; ηs)ds+ ηt.

Here

(4.22) R(v) = E[Lv|v], G(v; ηs) = E
[
Lηs
∣∣v],

and

(4.23) ηt = Vt(Lv − E[Lv|v]);

see [42] for further details. As explained above, the integral term in (GLE) constitutes the non-
Markovian contribution to the evolution of Utv, and thus of v(Tty0); this contribution depends
on Us for the past interval 0 ≤ s ≤ t.

The term ηt is a source of fluctuations related to the partial knowledge x0 of the full initial
state y0 = x0 + z0. Recall that the conditional expectation E[Ψ|v], as defined in (4.9), of a
function Ψ in L2

µ(Y ;X) can be seen as the orthogonal projection P onto the space of X-valued
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functions that depend only on the x-variable; see Remark 6 below. Thus, by introducing the
complementary projector

(4.24) Q = (IdL2
µ(Y ;X) − P),

we obtain from (4.19) that ηt solves the following initial value problem:

(4.25)

{
∂

∂t
ηt = QLηt in Y,

η0(x0, z0) = v ◦R(x0 + z0)− v ◦R(x0), x0 ∈ X, z0 ∈ Z.

In other words, ηt gives the evolution in time, according to the orthogonal dynamics, of a
deviation η0(x0, z0) := v ◦R(x0 + z0)− v ◦R(x0) at time t = 0, with respect to the conditional
expectation (4.13).

Since z0 is distributed according to the disintegrated measure µx0 , the fluctuating term ηt can
be then interpreted as an X-valued random variable. Since E[η0|v] = 0, we deduce from Remark
5 that E[ηt|v] = 0 for all t > 0, i.e. the conditional expectation of ηt remains zero as t evolves,
so that ηt is uncorrelated with any function of v [43, 121].

Remark 6. Recall that we may regard E[Ψ|v] as the orthogonal projection of Ψ belonging to

(4.26) L2
µ(Y ;X) := {g : Y → X, measurable and such that

∫
Y
‖g(y)‖2dµ(y) <∞},

onto the space of functions of X, since for all function f : X → X such that f ◦ v ∈ L2
µ(Y ;X),

(4.27) E[‖Ψ− E[Ψ|v]‖2] ≤ E[‖Ψ− f ◦ v‖2],

where the expectation E(Φ) is taken here with respect to µ, that is:

(4.28) E(Φ) =

∫
A

Φ(y)dµ(y), Φ ∈ L1
µ(Y ).

Equations (GLE) are fewer in number than in (4.2), i.e. d � n, but this advantage is out-
weighed by the need to find the fluctuating term ηt as a solution of the orthogonal dynamics
(4.25), along with its requisite statistical properties, in order to simulate (GLE) accordingly.
What equation (GLE) does provide is a theoretical “master equation,” which can serve as a
basis for the design of various practical closure strategies.

With this purpose in mind, the following fundamental lemma shows that actually the reduced,
Markovian vector field R(v) in (GLE) can, in principle, be approximated from a time series,
when the latter represents partial observations drawn from a physical invariant measure.

Lemma 4.1. Assume that the main system (4.2) possesses an invariant measure µ that sat-
isfies the “physicality condition” of (4.3). Let v : Y → X denote the projection onto X =
span{E1, ..., Ed}, and let E(v, µ) be the closure in L2

µ(Y ;X) of the set of functions f : X → X

such that f ◦ v ∈ L2
µ(Y ;X).

Then, for almost all initial data y0 ∈ Y , in the sense of Lebesgue measure on Y ,

(4.29) argmin
f∈E(v,µ)

(
lim
T→∞

1

T

∫ T

0

∥∥∥dx

dt
− f(x(t; y0))

∥∥∥2dt) = E[Lv|v]

holds, where E[Lv|v] is the conditional expectation defined in (4.9), while x(t; y0) := v(y(t; y0))
with y(t; y0) denoting the solution y(t; y0) of (4.2) emanating from y0.



24 D. KONDRASHOV, M.D. CHEKROUN, AND M. GHIL

Proof. The proof uses the two facts that (i) µ is a physical invariant measure in the sense of
(4.3), and that (ii) E[Lv|v] is the projection, in L2

µ(Y ;X), of the rate of change of Utv onto X.

Let ϕ : Y → R denote the observable defined by ϕ(y) = ‖Lv(y)− f(v(y))‖2.
Note that the functional ϕ thus defined lives in L1

µ(A). To see this, first note that — from
(4.5) and the definition of L — it is not difficult to show that there exists C > 0 such that

(4.30) ‖Lv(y)‖ ≤ C‖R(y)‖, for all y ∈ A.
This bound, in turn, implies that Lv lives in L2

µ(Y ;X) and, since R is continuous, the global
attractor A is compact [103, Def. 1.3.] and the support of µ is contained in A; see e.g. [50,
Lemma 5.1] for this latter point. Combined with the assumption on f , we deduce that ϕ ∈ L1

µ(A)
and that it constitutes therewith an admissible observable.

Applying (4.3) along with the definition of the Koopman operator in (4.6) yields

(4.31) lim
T→∞

1

T

∫ T

0
‖LUtv(y)− f(Utv(y))‖2dt =

∫
A
‖Lv(y)− f(v(y))‖2dµ(y),

for almost all y ∈ Y . From (4.7) and (4.28), we obtain next that, for almost all y ∈ Y ,

(4.32)
inf

f∈E(v,µ)

(
lim
T→∞

1

T

∫ T

0
‖dx

dt
− f(x(t; y))‖2dt

)
= inf

f∈E(v,µ)

(∫
A
‖Lv(y)− f(v(y))‖2dµ(y)

)
,

= E
[∥∥Lv − E

[
Lv
∣∣v]∥∥2],

where (4.27) has been used to get the last equality.
Finally, by applying in the Hilbert space L2

µ(Y ;X) the classical projection theorem onto a

closed convex set [108, Theorem 5.2], we conclude that E
[
Lv
∣∣v] is the unique minimizer of

(4.33)

∫
A
‖Lv(y)− f(v(y))‖2,

and, therefore, of

(4.34) lim
T→∞

(1/T )

∫ T

0
‖LUtv(y)− f(Utv(y))‖2dt,

when f ∈ E(v, µ). Formula (4.29) is thus proved. �

Remark 7. One may want to assume the existence of a bounded non-wandering set Λ[76],
instead of a global attractor A, for the system (4.2) and thus relax condition (4.3) to hold only
for y in the system’s basin of attraction B(Λ). In this more general case, the conclusion of
Lemma 4.1 still holds for y0 ∈ B(Λ), i.e., for time series that relax towards the corresponding
statistical equilibrium µ whose support is contained in Λ. MSMs can still be efficiently derived
in such a context as shown in Sec. 7.

5. MSMs as closure models from time series: the η-test

A classical approach in MZ modeling consists of assuming something reasonable about the
statistics of the unobserved variables — e.g., on the basis of previous observations — and then
turn tothe formulation of Eq. (GLE) to determine an analytic or numerical approximation of
the terms that appear on the right-hand side; the resulting prediction methods based on the MZ
formalism go under the name of optimal prediction [42]. The main objective in such an approach
is to calculate the conditional expectation based on the assumptions made regarding the statistics
of the unobserved variables. When no analytical formula is available for the probability measure
that describes the distribution of the unobserved variables, empirical estimation methods are
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typically used; these empirical estimations often rely on a large set of trajectories integrated
over a short time interval.

For instance, maximum likelihood estimation techniques [122] can be used to find an ap-
proximation ν of the density of the unobserved variables as Gaussian mixtures; see [97] for an
application of such techniques to the non-Hamiltonian case of the Kuramoto-Sivashinsky equa-
tion. In certain cases, the Markovian term in (GLE) can be computed explicitly by relying on
the estimated ν, while other assumptions — such as the short-memory approximation or the
t-model [98, 99] — can then be used to deal with the non-Markovian term in (GLE) through
simulations of the full system; see [43, 97].

As mentioned already in Sec. 1.2, the difference in viewpoint between this classical approach
and an approach based on averaging along trajectories, such as supported by Lemma 4.1, is
similar to the Eulerian versus the Lagrangian viewpoint in fluid mechanics. In this analogy, the
approach advocated in this article corresponds to the Lagrangian viewpoint: measurements are
made along trajectories and the numerical construction of an MZ model relies on fewer initial
states, but requires longer runtimes, for large models, or longer data records, for observational
data. Recalling that the MZ formalism is built on the decomposition of the Koopman semigroup
given in (4.18), an approach based on averaging along trajectories is furthermore consistent with
other Koopman operator techniques developed recently for the spectral analysis of time series
[104].

The MSM approach to stochastic inverse modeling, as described above, can thus provide an
efficient way of deriving approximation of (GLE) in practice, by relying exclusively on available
time series, even when no prior knowledge about the full model is available. A key point to
achieving this, based on available time series alone, is the quality of the approximation by the
vector field f1 in (RDDE) of the genuine Markovian contribution in (GLE), on the one hand,
and the quality of approximation by the terms collectively labeled (b) in Eq. (RDDE) of the

non-Markovian contribution
∫ t
0 Ut−sG(v; ηs)ds in (GLE), on the other. Recall that the former

model the self-interactions among the observed variables and that the latter model the cross-
interactions between the observed and unobserved variables that occurred at the past times s,
0 ≤ s ≤ t.

A priori error estimates that may be useful in practice are difficult to establish at this level of
generality. However, the remaining term (c) in Eq. (RDDE) — when compared to the “residue”
ηt in (GLE) — can serve to formulate a correlation-based criterion to help determine how well
an MSM given by (RDDE) approximates (GLE). Indeed, by construction of the GLE, the noise
term ηt is uncorrelated with the observed time series x(t), due to the orthogonality property of
the dynamics in (4.25); see also Remark 5. Therefore, the corresponding term (c) in (RDDE)
can naturally serve for testing whether an MSM derived from the time series x(t) alone provides
a good approximation of the GLE.

The resulting η-test can be summarized as follows:

(T) The more Pearson’s correlation coefficient15 between ξ(t, ω) in (RDDE) and the observed
variable x(t) is close to zero, the better the approximation of the GLE (GLE) associated
with x(t).

In particular, to assert that an MSM model constitutes a good approximation of the (GLE)
associated with a given multivariate time series, the noise terms labeled (c) in Eq. (RDDE)
should not exhibit any x-dependence, since the x-dependence of the fluctuating terms is supposed
to be taken into account solely in the non-Markovian terms (b).

15 This coefficient is defined as the covariance of the two variables divided by the product of their standard
deviations.
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Interestingly, the multilayer structure of an MSM provides a simple way to compute the (c)-
term ξ(t, ω) of Eq. (RDDE), as provided by the representation formula (3.40) in Proposition
3.3. In that respect, the process z1 can be easily simulated by integration of (3.37), followed by
an integration of

(5.1) ξ̇ = f2(ξ) + Πz1.

Doing so provides a natural estimation of ξ(t, ω), up to multiplication by the matrix C from
(3.29), and thus allows for an easy estimation of Pearson’s correlation coefficient in the η-test
(T) formulated above.

It is important to keep in mind that the η-test only provides information on the x-dependences
of this residue that are not fully captured by the (a)- and (b)-terms in (RDDE). Hence this test
is more useful as an indicator in the design of the relevant constitutive parts of (MSM) such as
the fi’s and the gi’s, i = 1, 2, rather than providing an ultimate criterion to assess the modeling
performance of a given MSM.

Situations may indeed arise where the corresponding Pearson’s correlation coefficient is not
necessarily close to zero, while the corresponding MSM still performs very well in simulat-
ing the main statistical properties of the observed variables. In other words, although some
x-dependences may not be fully resolved by the deterministic terms, both Markovian and
non-Markovian, of an MSM, the contributions of these terms to simulating the main observed
statistics could prove to be negligible.

Such a situation is identified in Sec. 6 below for a conceptual stochastic climate model in
the presence of weak time scale separation; see panels (g) and (h) of Figs. 2 and 3, and panel
(d) of Fig. 5 in the following section. At the same time, the quality of reproduction of the
observed statistics is improved as Pearson’s correlation coefficient gets closer to zero; see panels
(a)–(f) of Figs. 2 and 3, and panels (a)–(c) of Fig. 5. Part of the reason for this success lies
in the energy-conserving EMR formulation discussed at the end of Sec 3.1 and in Appendix C.
Once adopted, this formulation makes the practical, discrete-time EMR consistent with the full
model’s structural features, as layed out in Sec. 6.

6. A conceptual stochastic climate model: Numerical results

6.1. Model formulation. We illustrate here the MSM approach to stochastic inverse modeling,
as described in Secs. 2–5, by deriving a closure model from partial observations of a slow-fast
system in which only the nominally slow variables are observed. The time-scale separation
between the nominally slow and fast variables ranges from a strong to a weak separation; in
the latter case, some of the slow and fast variables actually evolve on a similar time scale. This
example will show, in particular, the usefulness of the η-test introduced in Sec. 5, as discussed
at the end of this section. For simplicity and for the sake of reproducibility of the results, we
use here a simple conceptual climate model proposed in [45]; see also [123, 124]. Three features
of this four-dimensional model are of interest with respect to our closure problem (P) of Sec. 2.
First, the model is stochastic, which introduces de facto noisy observations. Second, the variables
that will be taken as unobserved, carry in fact most of the variance in this model; while this is
not the case in actual observations of atmospheric low-frequency variability (LFV) [125, 126],
it does present a challenging difficulty to the MSM approach. Third, the model exhibits natural
energy-preserving constraints that will be taken into account in the MSM formulation below.



DATA-DRIVEN NON-MARKOVIAN CLOSURE MODELS 27

The model obeys the following system of SDEs:

dx1 = {−x2(L12 + a1x1 + a2x2)− d1x1 + F1 + L13y1 + b123x2y1 + c134y1y2}dt,(6.1a)

dx2 = {x1(L21 + a1x1 + a2x2)− d2x2 + F2 + L24y2 + b213x1y1}dt,(6.1b)

dy1 = {−L13x1 + b312x1x2 + c341y2x1 + F3 −
γ1
ε
y1}dt+

σ1√
ε
dW1(6.1c)

dy2 = {−L24x2 + c413y1x2 + F4 −
γ2
ε
y2}dt+

σ2√
ε
dW2.(6.1d)

The parameter ε explicitly controls the time-scale separation between the model’s slow and fast
variables, namely the (x1, x2)-variables, and the (y1, y2)-variables, respectively. These variables
are coupled linearly, through the skew-symmetric terms, as well as nonlinearly; the nonlinear
coupling involves the triple coefficients bijk and cijk. The linear and nonlinear coupling can be
understood as additive and multiplicative noise forcing the slow-mode evolution, respectively.

The model set-up here follows [123], namely:

(6.2)
b123 = b213 = 0.25, b312 = −0.5,

c134 = c341 = 0.25, c413 = −0.5;

(6.3)
L12 = L21 = 1, L24 = −L13 = 1,

a1 = −a2 = 1.0, d1 = 0.2, d2 = 0.1;

and

(6.4)
F1 = −0.25, F2 = F3 = F4 = 0;

γ1 = γ2 = 1, and σ1 = σ2 = 1.

Note that, in agreement with the energy-conserving constraints of the EMR formulation in
Eqs. (C.1)–(C.5) of C, this toy model has a quadratic nonlinear part that conserves energy; for
example, the triple coefficients sum to zero, i.e.,

b123 + b213 + b312 = 0 and c134 + c341 + c413 = 0,

as in Eq. (C.3), while the linear part has pairwise skew-symmetric terms given by the values
of the coefficients L12, L21, L24 and L13, as in Eq. (C.4). Furthermore, the negative-definite
contributions of γ1, γ2, d1 and d2, as in Eq. (C.5), ensure the model’s dissipativity, cf. [86] and
[127, Sec. 5.4].

Finally, certain quadratic terms are absent from the model, as per Eq. (C.1), while the values
for a1 and a2 are set so that Eq. (C.2) is satisfied. The terms in bold characters in the first two
equations will be discussed further below.

6.2. Numerical results. We integrated Eqs. (6.1a)–(6.1d) for 104 time units by using the
fourth-order Runge–Kutta scheme for the deterministic part and the Euler-Maruyama scheme
for the stochastic part, with a time step of ∆t = 0.001. Only the slow model variables x1 and x2
are stored here, with a sampling rate of 0.05 time units. We applied an energy-preserving version
of (EMR), by using the constraints of Eqs. (C.1)–(C.5), in order to model the corresponding
multivariate time series of (x1, x2).

As the scale-separation parameter ε increases, and the scale separation decreases therewith
in the model, the decorrelation times steadily increase for the fast modes and decrease for the
slow modes; x1 and y1, in particular, exhibit the most pronounced changes; see Figs. 1(a)–(d).
For ε = 1.5, the autocorrelation functions for y1 and x1 become very similar, cf. Fig. 1(d), and
so there is no longer any formal separation of scales. Note that, in this case, the main level
of our resulting EMR model for evolving x1 and x2 does not include explicitly the unresolved,
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Figure 1. Autocorrelation functions of the model variables for Eq. (6.1). Panels (a)–
(d) correspond to the ε-values 0.1, 0.5, 1.0 and 1.5; see the color coding for the variables
(x1, x2, y1, y2) in the legend of each panel.

linear and nonlinear interactions marked in bold in Eqs. (6.1a, 6.1b). These contributions to the
dynamics of the observed variables (x1, x2), which result from their cross-interactions with the
unobserved variables (y1, y2), need to be properly parameterized by the EMR model’s hidden

variables {r(m)
t : 0 ≤ m ≤ p}, in order to reproduce the statistical behavior of (x1, x2) in terms

of their PDFs and autocorrelations.
The energy-preserving EMR model, fitted solely on the x1 and x2 time series, has two addi-

tional levels (p = 2) for all values of ε, according to the stopping criterion of A. Figures 2 and
3 present a comparison of the one- and two-dimensional (1-D and 2-D) PDFs, respectively, for
slow modes obtained by the energy-preserving EMR and the full model. The two figures show
clearly that the energy-preserving EMR model reproduces quite accurately both the univariate
and bivariate PDFs.

Figures 1 and 4 show how the autocorrelations and the variance, respectively, of the slow
and fast variables change when the scale-separation parameter ε varies between 0.1 and 1.5.
For ε = 0.1 (black line in Fig. 4), most of the variance is carried by the fast modes, whose
decorrelation time is much smaller in this case than that of the slow modes, while x2 has the
slowest autocorrelation decay, cf. Fig. 1(a). For ε ≥ 0.5 (colored lines in Fig. 4), the variance
in this model is distributed roughly equally between slow and fast modes, while observations
of atmospheric LFV show the slow, barotropic modes, on the 10–100-day scale, to be in fact
considerably more energetic than the synoptic-scale, baroclinic modes of 1–10 days [125, 126].

The 1-D PDF is mostly Gaussian for x1 (left column of Fig. 2) and strongly non-Gaussian
for x2 (right column of Fig. 2); neither changes noticeably with scale separation. The 2-D
PDFs in Fig. 3 are quite non-Gaussian, all four of them, and they do not change much in shape
or orientation with ε either. Moreover, Fig. 5 shows that the energy-preserving EMR model
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Figure 2. One-dimensional (1-D) probability density functions (PDFs) of the resolved
variables (x1, x2), as modeled by the EMR-reduced model (blue line) vs. the simulation
by the full coupled system in Eq. (6.1) (red line); the panels differ, from top to bottom,
by the model’s varying scale separation: ε = 0.1 in panels (a) and (b); 0.5 in panels (c)
and (d); 1.0 in panels (e) and (f); and 1.5 in panels (g) and (h). Left column (a, c, e, g)
PDFs for x1; and right column (b, d, f, h) PDFs for x2.

reproduces with very high accuracy changes in the autocorrelation function of x2, the model’s
slowest mode, for all values of ε. The energy-preserving EMR model does equally well for x1, as
long as the scale separation is sufficiently large, i.e. for ε = 0.1 and 0.5; see Figs. 5(a, b). For
ε = 1.0 and 1.5, there is no pronounced scale separation in the full model, and thus there is not
much difference in decorrelation time between the slow mode x1 and the fast mode y1. Hence
it is not surprising that the autocorrelation for x1 is reproduced somewhat less accurately, but
still reasonably well, cf. Figs. 5(c,d).

In summary, in the partially observed situation studied in this section, a discrete-version of an
MSM given by (EMR) and subject to the energy-preserving constraints described in C performs
very well when the variability of the discarded variables is much faster than that of the slow
variables. The EMR model performance is still remarkably good when the variability of the
excluded variables is similar in amplitude and time scale to that of the retained variables.

Since the number of levels in the EMR model is p = 2, the total number of EMR variables
is six, and thus it formally exceeds the total number of degrees of freedom of the full model
Eq. (6.1), namely four. This is the price to pay, though, for successful orthogonal, multilevel
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Figure 3. Same as Fig. 2, but for the two-dimensional (2-D) PDFs of the resolved
variables (x1, x2), as simulated by the full coupled system of Eq. (6.1) (left column) vs.
the 2-D PDFs of (x1, x2), as modeled by the EMR-reduced model (right column).

X1 X2 Y1 Y2
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

st
d.

de
v

 

 

¡=0.1
¡=0.5
¡=1.0
¡=1.5

Figure 4. Standard deviation of the model variables of the toy model governed by
Eq. (6.1), for different values of the scale-separation parameter, namely ε = 0.1, 0.5, 1.0
and 1.5. The slow modes (x1, x2) and fast modes (y1, y2) are on the abscissa; see legend
for color code.
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Figure 5. Autocorrelation functions of the resolved variables (x1, x2) in the full dy-
namics vs. the EMR-reduced dynamics, with varying scale separation ε = 0.1 − 1.5 in
panels (a)–(d). Color coding appears in each panel legend: the black and blue lines
are for the full model’s first and second component, while red and purple are for the
EMR-reduced model’s first and second component.

parameterization of the unresolved processes that were explicitly excluded from the main level
of the reduced model.

As discussed in Section 5, it can reasonably be asserted that an MSM written under its
form (RDDE) represents a good approximation of the GLE — i.e., the optimal closure model
predicted by the MZ formalism — as long as the noise term labeled (c) in Eq. (RDDE) is weakly
correlated in time with x; see the η-test (T) there.

For the model (6.1) at hand, the maximum absolute values of the corresponding component-
wise Pearson’s correlation coefficients are 0.11, 0.33, 0.42 and 0.47, for ε = 0.1, 0.5, 1.0 and 1.5,
respectively. As a consequence, the η-test allows one to conclude that the more the time-
scale separation is reduced, the more some of the (x1, x2)-dependences (in terms of correlations)
are not well resolved by the Markovian and non-Markovian terms conveyed by our energy-
preserving (EMR). However, as illustrated here, the contributions of such dependencies to a
good reproduction of the main observed statistics may turn out in practice to be negligible.
When that is the case, the resulting EMR model may still perform quite well; see panels (g) and
(h) of Figs. 2 and 3, and panel (d) of Fig. 5.

Finally, as predicted by the η-test proposed in Sec. 5 here, the reproduction of the observed
statistics is improved as Pearson’s correlation coefficient gets closer to zero; see panels (a)–(f)
of Figs. 2 and 3, and panels (a)–(c) of Fig. 5. Part of the reason for this success, in the case at
hand, lies in the energy-conserving formulation discussed at the end of Sec. 3.1 and in C.

Recall, though, as stated already in Sec. 1.1, that conservation of quadratic invariants, like
in Eq. (6.1) here, is the exception — rather than the rule — in full climate models that contain
thermodynamic variables, precipitation and chemistry, let alone in other areas of the physical
and life sciences. In the next section, we consider a population-dynamics model that does



32 D. KONDRASHOV, M.D. CHEKROUN, AND M. GHIL

contain quadratic coupling terms between variables but does not possess a quadratic energy to
be conserved, in absence of dissipation.

7. Reflected diffusion processes by MSMs and reconstruction of strange
attractors

7.1. The original model. Our second data-based closure example is the following classical
population dynamics model:

(7.1)
dNi

dt
= biNi

(
1−

n∑
j=1

aijNj

)
, 1 ≤ i ≤ n;

here Ni denotes the population size of the ith species relative to its carrying capacity, bi > 0
denotes its intrinsic growth rate, and the aij ’s denote the interaction coefficients: intraspecific
when i = j, and interspecific when i 6= j. We restrict ourselves to the case where aij ≥ 0,
which corresponds to the well-known competitive Lotka-Volterra system [53, 128]. Such systems
manifest certain generic features that make their study even more interesting. For instance, they
generate flows that — when restricted to the appropriate invariant sets — are topologically
equivalent to a broad class of flows generated by systems of first-order ODEs with polynomial
right-hand sides, such as the Lorenz system [129, 130].

This class of simple models exhibits a rich variety of dynamics, depending on the parameter
values, as long as the initial vector N0 lies in Rn+ := {Ni : Ni ≥ 0, i = 1 . . . , n}, although solution
blow-up is possible when a component of N0 is negative. Smale showed in [30] that — under the
aforementioned conditions and for any initial data in the cone Rn+ — a Lotka-Volterra system
(7.1) of five or more species (n ≥ 5) can exhibit any asymptotic behavior, including steady states,
limit cycles, n-tori, or more complicated attractors. This result has had a profound influence on
the theory of monotone dynamical systems in showing that competitive systems could display
more than simple dynamics; see [31, 32, 33, 34, 35].

In particular, the proof of Smale ensures the existence of a closed invariant set C which is
homeomorphic to the (n− 1)-dimensional simplex

(7.2) ∆n−1 = {Ni : Ni ≥ 0,
n∑
i=1

Ni = 1},

which is attracting every point (excluding the origin) in the domain Rn+; see [35, pp. 71-72]. The
set C is known as the carrying simplex since it “carries” all of the asymptotic dynamics associated
with (7.1), and its existence significantly reduces the set of possibilities in certain dimensions.
For instance, the existence of such a simplex implies that an attractor associated with (7.1)
cannot have a dimension greater than n− 1 so that, in particular, chaos cannot take place when
n = 3. This situation is obviously in stark contrast with that of three-dimensional ODE systems
with quadratic energy-preserving nonlinearities, such as the standard Lorenz system [131, 127],
although the dynamics of the latter is still realizable in a higher-dimensional Lokta-Volterra
system; see [130, Sect. 4].

In fact, as numerically shown in [132], the smallest dimension for which complicated dynamics
takes place on a strange attractor for (7.1) corresponds to n = 4. As already conjectured in [132],
homoclinic tangencies are responsible for the structural instability of such strange attractors
[133]; the latter can even experience sudden changes, and be brutally transformed into a steady
state, after a small change in parameter values; see [134, Figs. 3 and 4]. Another interesting
feature of (7.1) for n = 4 is the rarity of occurrence of chaotic behavior in a 20-dimensional
parameter space; see [133] and [134, Fig. 2].
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Furthermore, when chaos takes place for a particular set of parameters, the corresponding
strange attractor may not attract all the points of R4

+; in the latter case, it typically coexists
with simple local attractors, such as fixed points, and the attractor-basin boundaries are fractal,
as in [134, Fig. 5]. Finally, for a solution evolving on a typical strange attractor, the auto-
correlation function of each component decays at a nearly identical rate; see, for instance, the
red curves in Fig. 6 below.

The aforementioned features — lack of time-scale separation; rarity of strange attractors in
the parameter space; existence of fractal boundaries between attractor basins; and positivity of
the solutions’ components — greatly add to the difficulties in deriving a data-based stochastic
closure model able to simulate faithfully the statistics of solutions that evolve on a strange
attractor associated with (7.1) for n = 4; and especially so when only using a time series that
represents partial observations of such a solution. The stumbling block of lack of time-scale
separation has already been discussed. The combination of the two facts that (i) in general a
time series of partial observations of solutions evolving on a strange attractor can be rigorously
represented as a stochastic process that does depend on the unobserved variables (see Theorem
A in [76] and Corollary B in its supporting information; and that (ii) chaos takes place over
very small regions of the parameter space for (7.1) with n = 4, seriously hamper the learning of
any inverse stochastic model for the statistics of such partial observations.

Difficulties in estimating the correct statistical behavior can already be observed in the case
of full observations of a chaotic attractor [135]: when the corresponding four-dimensional time
series is corrupted by a Gaussian noise, the accuracy of the parameter values — as estimated
by simple regression — starts to degrade as the data become noisier [135, Table 1] and the
estimated behavior may quickly deviate from the original one; see [135, Fig. 3]. This divergence
is not surprising and has to be overcome with any other estimation approach, given the rarity
of occurrence of chaos in the model’s parameter space.

We show in the next subsection that — for the more challenging case of partial observations
— it suffices to add a positivity constraint to the standard EMR formulation (EMR) for our
MSM approach to allow one to derive closure models with very good statistical simulation skill.

7.2. Numerical results. The parameters of the system (7.1) for n = 4 read as follows:

(7.3) (aij)1≤i,j≤4 =


1 1.09 1.52 0
0 1 0.44 1.36

2.33 0 1 0.47
1.21 0.51 0.35 1

 , b =


1

0.72
1.53
1.27

 .

These parameter values are those used in [133, 134], for which numerical evidence of chaos
is well established. Time series of length l = 1.5 × 105 were generated by integration of (7.1),
using a standard Euler scheme with time step δt = 0.035 and initialized at

(7.4) N0 = (0.5, 0.2, 0.3, 0.7)T .

For such an initial state, the time series evolves on an approximation Â of the strange attractorA;
see left panel of Fig. 7 below. Only the the first three components (N1, N2, N3) are observed from
the integration of this four-dimensional system of ODEs, after removal of the initial transient.

In this population dynamics context, the first property any inverse stochastic model has
to satisfy is the positivity of its solutions’ components. This constraint can be seen as the
counterpart of quadratic-energy conservation in the present context; it leads to the following
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natural modification of an MSM in its EMR formulation (EMR) for such inverse models, namely

(7.5)
xk+1 = ΠKε

(
xk +

[
−ANxk +BN (xk, xk) + FN

]
δt+ r

(0)
k δt

)
, 1 ≤ k ≤ l,

r
(m−1)
k+1 − r(m−1)k = L

(m)
N

[
(xk)

T , (r
(0)
k )T , ..., (r

(m−1)
k )T

]T
δt+ r

(m)
k δt, 1 ≤ m ≤ p.

We adopt here the notations of Sec. 2, where xk = (N1(tk), N2(tk), N3(tk)), tk = kδt, the r
(m)
k

are three-dimensional vectors, and we recall that p is the number of levels for which the stopping
criterion of A is met.

Here ΠKε denotes the projection onto the convex set

(7.6) Kε := {(N1, N2, N3) ∈ R3
+ : Ni ≥ ε, 1 ≤ i ≤ 3},

for some appropriately chosen ε > 0 so that

(7.7) P Â ⊂ Kε,

where P Â denotes the projection of Â onto R3. Typically, ε can be chosen to be any positive
number smaller than the minimum of the first three observed components over the simulation
interval 0 < t ≤ l, which led us to choose ε = 0.12.

When the last-level residual in (7.5) is well approximated by an independent and identically
distributed (i.i.d.) Gaussian random vector (see Remark 1), the presence of the projection ΠKε
in (7.5) implies that the resulting recursive stochastic process belongs to a class of (discrete)
reflected diffusion processes; see e.g. [136]. It is the presence of this projector that ensures the
vector xk will have necessarily positive components when it obeys (7.5), in which the last residual
has been replaced by an i.i.d. Gaussian noise.

To simplify the estimation procedure of the coefficients in (7.5), a straightforward multilevel
regression procedure, such as described in Sec. 2, is performed but the projection is removed at
first. The simulation step is then performed by including the projection ΠKε , according to (7.5),
in order to avoid the negative values that could lead to blow-up.

Figure 6 show that the autocorrelation functions of the observed variables (N1, N2, N3) are
very well reproduced by an MSM (7.5) with p = 14 extra layers of hidden variables. The peculiar

Shilnikov-like shape of the attractor Â is also captured with relatively good accuracy, as shown
by a comparison of panels (a) and (b) in Fig. 7.

The fine, fractal-like structure visible in the MSM attractor reconstruction of Fig. 7b is, as
explained below, suggestive of the presence of degenerate noise in the MSM model. A closer
look at the numerically estimated coefficients in Eq. (7.5) reveals that the spectrum of the

grand linear part of the model — which involves the variables x, r(0), . . . , r(p−1), along with the
associated matrices — contains three unstable modes, while the noise part forces only a low-
dimensional subspace, spanned by a few stable, decaying modes. Such a combination of unstable
modes and partial forcing favors a violation of the Hörmander condition. Although we did not
formally verify that this is the case, Fig. 7b clearly shows that simple forward integration of
Eq. (7.5) does not reveal the symptomatic fuzziness that such a plot typically displays when the
SDE’s generator is hypoelliptic; see [89]. The fractal-like features observed here in Fig. 7b recall
Remark 2 in Sec. 3, to the extent that they argue for overall stable behavior being possible in
the presence of linearly unstable modes and of degenerate noise.

The relatively large number of extra layers, p = 14, can be significantly reduced by taking
into account the particular structure of the right-hand side of (7.1) in formulating the EMR
system, i.e. by using some a priori knowledge on the fi, the gi and the h to be specified in
(MSM). This number can be even further reduced if the geometric constraint (7.2) is taken
into account. The purpose here was merely to show that, even without any a priori knowledge
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Figure 6. Autocorrelation functions of the observed variables (N1, N2, N3) (red curves)
obtained by integration of (7.1) with aij and b given in (7.3), vs. those estimated from
the MSM-simulated dynamics (7.5) (blue curves), along with their standard deviations
(black curves).
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Figure 7. Strange attractor of the system (7.1): (a) Original strange attractor of the
system; and (b) its MSM reconstruction, both projected onto the (N1, N2) plane. Panel
(b) is obtained by simple forward integration of (7.5) for an arbitrary realization of the
estimated i.i.d. Gaussian noise.

on the dynamics, the learning of an efficient MSM closure is still possible by the use of simple
multilevel linear regression techniques, such as those proposed in [18, 19, 26] and described in
Sec. 2 here.
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Appendix A. EMR stopping criteria

The stopping criterion for adding levels to an EMR model is based on empirically testing (i)

whether the autocorrelations of the last-level residual ζt ≡ r(p)k δt approach zero; and (ii) whether

its covariance matrix at zero lag converges to a constant matrix Σ = ζTt ζt. For testing purposes,
we can assume without loss of generality that δt = 1. Part (i) of this stopping test is rooted in
a standard Durbin-Watson statistical test [137]. This test can also be understood in terms of
determining the variance of the regression residual for the additional level that would be added
to the EMR model by considering the increments δζk := ζk+1 − ζk.

When ζt is reasonably well approximated by a random Gaussian variable, i.e. ζt ∼ N (0, Q),
performing an extra regression for δζk, according to (2.5), results typically in regression coeffi-
cients that all approach zero, except the one corresponding to ζk itself, which approaches −1,
namely

(A.1) ζk+1 − ζk ≈ −ζk + γk;

this observation is numerically documented, for instance, in [18, Fig. 5]. Thus the regression
residual γk becomes identical to ζk+1 and is just a lagged copy of ζk, with lag 1. The coefficient
of determination R2

i for the i-th component of ζk, with i = 1, . . . , d, then becomes:

(A.2) R2
i = 1−

∑
k

γ2i,k∑
k

(ζi,k+1 − ζi,k)2
≈ 1−

∑
k

ζ2i,k+1∑
k

(ζ2i,k+1 + ζ2i,k)
≈ 1−

var(ζi,k)

2var(ζi,k)
= 0.5.

In other words, the fraction of unexplained variance resulting from the regression (A.1) ap-
proaches 0.5.

Convergence of the covariance matrix of ζt ∼ r
(p)
k to a constant matrix Σ = QTQ can be

checked numerically by computing its eigenvalues at each level of Eq. (EMR). This convergence
typically coincides with the convergence of R2

i to 0.5 in Eq. (A.2), for each of the components
of ζt.

Appendix B. Real-time prediction from an MSM, and initialization of the
hidden variables

This appendix is concerned with the initialization problem for real-time prediction based on
a time-discrete version of an MSM. The notations used herein are those of of Sec. 2 and of the
previous appendix.

To simplify the presentation, we stick to the case of an EMR in its original formulation,
namely a discrete system such as (EMR). To integrate (EMR) for predictive purposes requires
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some attention to the initialization of the hidden r(m) variables, m = 1, . . . , p, on the additional
EMR levels.

For illustration purposes, we consider here the simple case of a three-level model, namely the
main level and two additional ones, i.e. p = 2. This model is assumed to be trained on the
interval (0, T ∗), i.e. the model coefficients are obtained from the multivariate time series of
data available for t = kδt in this interval. The next point in the time series, T ∗ + 1, belongs
to the validation interval where we want to initiate prediction into the future. In other words,
we place ourselves in the real-time case, in which the model coefficients are no longer updated
with new observations after T ∗.

The right-hand side of (EMR) provides a practical way to initialize the hidden variables. By
assuming, as in A and without loss of generality, that δt = 1, one gets the following recurrence
relations:

r
(0)
k = f1(xk)− (xk+1 − xk),(B.1a)

r
(1)
k = L(0)[xk, r

(0)
k ]− (r

(0)
k+1 − r

(0)
k );(B.1b)

here f1(x) = −Ax+B(x, x) + F , and the last-level noise ξk has been dropped.
If we assume xT ∗ to be the last available observed data point, then (B.1) only provides the

hidden variables r
(0)
k and r

(1)
k up to their corresponding last values, namely r

(0)
T ∗−1 and r

(1)
T ∗−2,

respectively. Indeed, if xk+1 = xT ∗ , then Eq. (B.1a) only provides r
(0)
T ∗−1, from which Eq. (B.1b)

can only help determine r
(1)
T ∗−2, since r

(0)
T ∗ is not available.

On the other hand, if we assume that a new observation xT ∗+1 becomes available at T ∗+ 1 in
the validation interval, the value of the r(1)-variable can then be calculated beyond its previously

known value, i.e. r
(1)
T ∗−1 becomes available according to

(B.2)
r
(0)
T ∗ = f1(xT ∗)− (xT ∗+1 − xT ∗),

r
(1)
T ∗−1 = L(0)[xT ∗−1, r

(0)
T ∗−1]− (r

(0)
T ∗ − r

(0)
T ∗−1).

After such an initialization of the hidden r(1)-variable beyond its previously computed value,
the model prediction x̂T ∗+2 of xT ∗+2 from the initial data xT ∗+1 is then obtained by integrating
the r(1)-variable from the last level to the main one, according to:

(B.3)

r
(1)
T ∗ = r

(1)
T ∗−1 + L(1)[xT ∗−1, r

(0)
T ∗−1, r

(1)
T ∗−1] + ζT ∗−1,

r
(0)
T ∗+1 = r

(0)
T ∗ + L(0)[xT ∗ , r

(0)
T ∗ ] + r

(1)
T ∗ ,

x̂T ∗+2 = xT ∗+1 + f1(xT ∗+1) + r
(0)
T ∗+1.

Note that both r
(1)
T ∗ and r

(0)
T ∗+1 are now randomized due to the presence of the random variable

ζT ∗−1 on the last level. Hence the forecast uncertainty is properly accounted for in xT ∗+2.
Such an initialization and forecast procedure based on Eq. (1.2) can obviously be carried

out for any number of levels of an EMR. More generally, it can be extended to an explicit
Euler-Maruyama discretization of any stable MSM, given in its general form and satisfying the
hypotheses of Theorem 3.1. The discussion above emphasizes that, for such multilevel systems
and for real-time prediction purposes, the forecast has to be started several time steps back into
the past; the number of these steps must equal the number of hidden layers in (MSM). As an
illustration, Eq. (B.2) represents backward initialization of hidden variables in the past by going
from the main level to the last one, followed by their forward integration from the last level to
the main one into the future, as in (B.3).
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Appendix C. Energy conservation and its practical EMR aspects

In this appendix, we identify linear relations among the coefficients Bijk so that Eq. (3.20)
be satisfied. Since it is easier to introduce linear constraints in the least-square estimation of
the regression coefficients, we look for such constraints that are, in fact, both necessary and
sufficient for Eq. (3.20) to hold. These constraints ensure that quadratic nonlinearities in an
EMR formulation will preserve the energy ‖x‖2 for the Euclidean norm ‖ · ‖ associated with a
given basis. In another basis, these conditions remain valid, up to a linear change of coordinates.
There are three types of such linear equality constraints for B.

First, the coefficient Biii that corresponds to the quadratic term x2i in the equation for the
time evolution of xi is required to be identically zero:

(C.1) Biii = 0, i = 1, . . . , d.

In addition, there is a condition that involves the quadratic interactions xjxk and x2k in the
equation for xj , and x2j and xjxk in the equation for xk. This condition yields the following
skew-symmetric constraints for the two pairs of coefficients:

(C.2) Bjjk +Bkjj = 0, Bjkk +Bkjk = 0, 1 ≤ j 6= k ≤ d.
Finally, there are the quadratic interactions of type xjxk in the equation for xi that require the
sum of three EMR coefficients to be zero:

(C.3) Bijk +Bjik +Bkij = 0, 1 ≤ i, j, k ≤ d such that (i− j)(j − k)(k − i) 6= 0.

A condition like (3.19) for the matrix A to be positive definite can also be included in the
regression procedure, as necessary and appropriate. For particular applications that are con-
sistent with geophysical flow models, such as the one considered in Sec. 6, this condition can
be cast as a combination of linear equality and inequality constraints. The equality constraint
imposes skew-symmetry for off-diagonal terms:

(C.4) Aij +Aji = 0, i 6= j,

while the inequality one requires nonnegative diagonal terms:

(C.5) Aii > 0.

The total set of constraints is determined by a look-up through all possible occurrences of the
above types, Eqs. (C.1)–(C.5), and their number p scales as p ∼ d2, where d is the dimension of
x. For a quadratic EMR model such as (EMR), the total number of model coefficients P is also
of order d2. Hence the use of these constraints reduces considerably the number of independent
model coefficients, from P to P − p.

Note that energy conserving constraints have been used in model reduction techniques before
[27, 28, 29], cf. [138, 139]. In both these approaches, however, it is assumed that the full model
equations are known and available. In particular, refs. [27, 28, 29] used essentially parameter
estimation techniques to obtain the values of the parameters in a model of known structure.
The data-driven methodology proposed in this section, however, operates whether the full
governing equations that generated the data are known or not. Hence, Eqs. (C.1)–(C.5) are
new and of some interest, in particular in the highly realistic and frequently occurring case in
which a detailed — physical, chemical, biological or socio-economic — model of the process that
generated the data is not known.

In the unconstrained case, the coefficients for each component xi of x can be estimated
sequentially by the EMR methodolgy, while the energy-conserving constraints require estimation
of all model coefficients at the main level — i.e., A, B and F — simultaneously, by using
a grand matrix of predictors. The least-square minimization with constraints is solved via
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quadratic programming with a set of Lagrange multipliers, by using an active-set algorithm or
a projection method [140].

Appendix D. Interpretation of MSM coefficients

Here we focus on the question of interpreting coefficients of EMR or, more generally, MSM
models that have been constructed in the partial-observing situation. The emphasis is on a
simple but essential time-orthogonality property that the observed and hidden variables must
satisfy as a consequence of the multilevel regression procedure in the EMR and MSM methodol-
ogy. This time-orthogonality property typically yields different reduced-model coefficients than
those of the original full model, while still allowing the former to simulate the main statisti-
cal features of the observed dynamics. For illustration purposes, we use a simple linear-model
example borrowed from [27].

First we point out a basic but important property to be satisfied by the r(m)-variables once
the multilevel regression described in Sec. 2 has been applied. Let us recall that for classical —
i.e., unconstrained and nonregularized — least-square minimization, and in continuous time, a
regression residual r(0)(t) is necessarily orthogonal in the time domain to the predictor variables

x [78]. Likewise, the r(m)(t) variables are estimated so as to be orthogonal in the time domain

to the variables from the previous levels (x, r(0), . . . , r(m−1)),

(D.1)
〈x, r(m−1)〉L2 = 0;

〈r(j), r(m)〉L2 = 0, 1 ≤ j,m ≤ p− 1 with j ≤ m− 1,

with respect to the L2((0, T ∗);Rd) inner product defined by:

(D.2) 〈z, y〉L2 :=
d∑
i=1

1

T ∗

∫ T ∗

0
zi(t)yi(t)dt,

and for any vector-valued functionsz(t) = (z1(t), . . . , zd(t))
T and y = (y1(t), . . . , yd(t))

T.
The simple two-variable, linear model from [27] that we use is given by

(D.3)

(
dx
dy

)
=

(
a 1
q A

)(
x
y

)
dt+

(
0

σdW

)
;

x here stands for a slow, resolved variable, y for a fast, unresolved one, while the model coef-
ficients are a = −2, q = 1 and A = −1, with σ > 0. By using the standard Euler-Maruyama
scheme for SDEs [80, p. 305], one integrates the following finite-difference version of (D.3):

(D.4)

(
xi+1 − xi
yi+1 − yi

)
=

(
a 1
q A

)(
xi
yi

)
δt+

(
0

σξi
√
δt

)
,

where the ξi’s are real-valued random variables drawn independently from a normal distribution
N (0, 1).

In [27], standard least-square techniques (see appendices therein) were used to derive analyt-
ically an EMR model able to reproduce statistical features of the dynamics — such as decay
of correlations or the PDF — of the x-variable alone, by using only a finite-length time series
{xi : i = 1, ..., N} of the resolved variable obtained by integrating the full system given by Eq.
(D.4). According to Theorem 4.2 in [27], in the limit of N →∞ and δt→ 0, the resulting EMR
model’s linear part for the (x, r)T vector has different coefficients but the same eigenvalues as
the original (x, y) model of Eqs. (D.4).

We stress that the difference in model coefficients is solely due to the change of basis imposed
by the orthogonal dynamics of the “hidden” EMR variable r, according to the conditions given
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in (D.1). The related similarity transformation S : (x, y) → (x, r) of the model’s linear part is
simply

(D.5)

(
x
y

)
= S

(
x
r

)
, with S =

(
1 0
−a 1

)
, and S−1 =

(
1 0
a 1

)
.

In fact, the transformed version of the full model in continuous time, Eq. (D.3), is given by the
MSM

(D.6)

(
dx
dr

)
= S−1

(
a 1
q A

)
S

(
x
r

)
dt+

(
0

σdW

)
,

while the transformed version of the full model’s discrete form, Eq. (D.4), is equivalent to the
EMR model:

(D.7)

(
xi+1 − xi
ri+1 − ri

)
=

(
0 1

q −Aa a+A

)(
xi
ri

)
δt+

(
0

σξi
√
δt

)
.

Thus, the linear part of Eq. (D.7) shares the same eigenvalues as the linear part of Eq. (D.4),
while the random forcing in Eq. (D.7) is of the same amplitude, and the same nature, as in
Eq. (D.4); hence the model statistics of the simulated variables are identical in the limit of
N → ∞ and δt → 0. The only difference between Eq. (D.7) and Eq. (D.4) is that the hidden
variable r is orthogonal to x — while the original y variable is not.

The highly idealized situation analyzed here can obviously be generalized to a broad class of
stochastically forced systems that might, in particular, have a much higher number of resolved
as well as hidden variables.
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