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Disease Transmission Models for Public Health Decision Making: Analysis of
Epidemic and Endemic Conditions Caused by Waterborne Pathogens

Joseph N. S. Eisenberg,1,2 M. Alan Brookhart,2 Glenn Rice,3 Mary Brown,3 and John M. Colford, Jr.1,2

1Center for Occupational and Environmental Health and 2School of Public Health, University of California, Berkeley, California, USA;
3U.S. Environmental Protection Agency, Office of Research and Development/National Center for Environmental Assessment, Cincinnati,
Ohio, USA

Infectious diseases are a major cause of mor-
bidity and mortality worldwide. In a recent
study by the World Health Organization,
ranking the global burden of diseases, five of
the top seven diseases in developing coun-
tries were caused by infectious pathogens
(1). Although infectious diseases are not as
prevalent in developed countries, the emer-
gence of human immunodeficiency virus,
hepatitis C, Lyme disease, Cryptosporidium,
and others has resulted in a resurgence of
public health concern with infectious dis-
ease. To obtain regional estimates of disease
burden, data are often collected through sur-
veillance activities. These patterns of disease
discerned through surveillance are caused by
complex interactions of social, biologic, and
environmental processes. Although surveil-
lance information can be used to estimate a
crude measure of disease burden, seldom can
it provide information on the specific under-
lying causes of disease. Models of disease
transmission, on the other hand, can provide
a framework from which to address these
questions of causality. Because an under-
standing of the specific causes of disease is
crucial in attempts to design effective inter-
vention and control strategies, these models
can be useful in decision making.

One fundamental property of infectious
diseases, including diseases caused by water-
borne pathogens, is that these complex inter-
actions always result from an infectious
individual or environmental source transmit-
ting the pathogen to a susceptible individual
(2). In this article we provide a perspective
suggesting that a thorough understanding of
the system of interdependent transmission

pathways is crucial in formulating sound
public health policy decisions. The theoreti-
cal framework proposed explicitly models
the transmission pathways of waterborne
infectious pathogens that cause disease. We
demonstrate that this model structure offers
a framework that can be applied when data
are limited. With limited data, the model
can be used to assess which data must be col-
lected to improve understanding of the rele-
vant processes, as well as to provide
sensitivity information for decision making.
Targeted interventions to reduce disease
then may be more responsibly designed and
their potential impacts more thoroughly
analyzed using the model framework.

The epidemiology of diseases caused by
waterborne pathogens suggests that illness
arises in two broad settings: outbreaks and
endemic transmission. A large number of
observed cases occur from outbreaks and can
be reasonably characterized by incidence data
collected through outbreak investigations. By
contrast, few data are available with which to
evaluate endemic transmission. Therefore, the
epidemic and endemic conditions necessarily
require different quantitative approaches.
After a brief introduction to waterborne trans-
mission models, we present two case studies
to illustrate the use of these models in both
outbreak and endemic settings.

The Use of Mathematical
Models as Tools for Public
Health Policy
Developing effective public health policy
requires integrating large collections of infor-
mation that are diverse, highly variable, and

uncertain. The types of data relevant to eval-
uating disease attributable to waterborne
pathogens range broadly from microbiologic
profiles to clinical syndromes. Microbiologic
data include the occurrence of pathogens 
in the environment and survival of the
pathogen under varying climatic and envi-
ronmental conditions. Clinical data include
duration of illness, duration of infectivity,
duration and degree of protection due to
prior exposure to the pathogen, and the
transmission potential in various human
populations.

Transmission potential is an integrated
measure of both infectivity and an individ-
ual’s opportunity for contact with the envi-
ronment and other infectious individuals.
The microbiologic and clinical data combine
to provide valuable information on the nat-
ural history of the pathogen and its ability to
cause disease in human populations. Each
factor involved in disease transmission is
known to varying degrees of certainty. Many
factors are highly uncertain because of either
a limited number of studies in the literature
or technologic limitations in measurement.
Disease transmission also has a high degree
of variability because of heterogeneity in
humans, microorganisms, and environmen-
tal conditions. Heterogeneous human popu-
lations can be characterized by various
factors such as age or immunocompromised
status. Mutation and adaptive mechanisms
result in variations in virulence factors
among the genotypes of microorganisms,
leading to the heterogeneity observed in
these populations. Climatic variations and
human interventions are major causes of the
variation in environmental conditions. One
important feature of a disease transmission
model is the insight it provides into how
each factor affects disease burden and how
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Developing effective policy for environmental health issues requires integrating large collections
of information that are diverse, highly variable, and uncertain. Despite these uncertainties in the
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information for decision making. One type of information that a model can provide is the sensi-
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the uncertainties and sources of variability
inherent in environmental systems affect the
resulting uncertainties in policy decision
making.

Mathematical models that describe infec-
tious disease transmission can be traced back
to the early 1900s with Sir Ronald Ross’s
work on the relationship between mosquito
population levels and the incidence of
malaria (3), and William Hamer’s work
examining measles epidemic patterns (4).
Both Ross and Hamer postulated that epi-
demic and endemic patterns depended on
the rate at which susceptible individuals con-
tacted infected individuals. This postulate
has been the cornerstone of disease transmis-
sion models throughout the 20th century
(5). In the case of malaria, Ross suggested
that mosquitoes mediate this contact rate
and used this model to justify mosquito con-
trol as a viable option to decrease disease
incidence. In the case of measles, models
such as that used by Hamer have been
instrumental in helping to develop vaccine
programs (6). In recent years, transmission
models have been used extensively to study
epidemic and endemic infectious disease
processes for a wide array of infectious dis-
eases such as measles, tuberculosis, and more
recently human immunodeficiency virus
infection (5). In general, these models follow
the postulate of Ross and Hamer that the
rate at which susceptible individuals within a
population become infected (the transmis-
sion rate) is proportional to both the current
number of infectious and current number of
susceptible individuals (7). Surprisingly,
despite the increase in the use of disease
transmission models to study infectious dis-
ease processes and despite the known, mas-
sive public health problems associated with
infectious diarrhea and gastrointestinal ill-
ness worldwide, few publications have
examined disease transmission through
waterborne pathogens. Two of these
publications, by Eisenberg et al. (8) and
Brookhart et al. (9), demonstrate the impor-
tance of both disease transmission and the
immune process in understanding risk, and
are discussed below.

Framework for Decision
Making: Model Development
Transmission pathways: the conceptual
model. Disease transmission models closely
track the disease status of the population
under study throughout the natural history
of the disease in a population. Therefore,
output of the model may consist, for exam-
ple, of the number of susceptible, infectious,
and protected (because of prior exposure to
the pathogen) individuals as a function of
time. These functions are called state vari-
ables, and the disease state at any given time

can be assessed by looking at the appropriate
model output. Risk, as measured by inci-
dence, can be estimated from the model as
the per capita transmission rate of susceptible
individuals into the infectious state. The spe-
cific categories of disease status used in the
model are determined by the pathogen being
modeled. Each category is one state variable;
for example, the susceptible state variable
tracks the number of susceptible individuals
as a function of time. This model framework
works best for pathogens that reproduce
within the host, such as bacteria, viruses, and
protozoa (5). An alternative framework that
best addresses transmission of helminth
pathogens is discussed elsewhere (5).

Once the disease states are defined, the
different transmission pathways to be mod-
eled determine the details of the model
structure. The life cycle of the pathogen dic-
tates transmission pathways. In contrast with
noninfectious disease, where risk is indepen-
dent of the disease status of the population,
in infectious diseases the source of pathogens
ultimately becomes the infected hosts. The
risk of infection and illness, therefore, is
related not only to the concentration of
microbial pathogens in the environment but
also to the number of infected hosts (2). For
pathogens in which humans are the only
host, the degree of environmental contami-
nation is related to the number of infected
people. For example, as more people become
infected with rotavirus in a community, the
likelihood that uninfected individuals will
become infected rises. For many infectious
diseases, the causative pathogen reproduces
within the human host. In substantial con-
trast to noninfectious diseases (e.g., toxic
exposures), the human host therefore acts as
an amplifier in the disease transmission
process. For a pathogen to persist in a popu-
lation, it must reproduce in sufficient num-
bers within a given host to allow infection of
additional hosts. Some infectious diseases
(e.g., Salmonella serotypes other than S.
typhi) have nonhuman hosts. If these diseases
are maintained within an animal population
and sporadically introduced to human hosts,
they are referred to as enzootic. In general,
humans can become infected through inges-
tion, inhalation, or dermal contact with
pathogens.

We are concerned here with the path-
ways associated with waterborne pathogen
transmission. One salient feature of water-
borne pathogens is their ability to survive in
the environment outside of a host. The
duration of survival varies widely from pre-
sumably very short time periods to many
years under favorable circumstances. This
environmental phase largely dictates the pos-
sible transmission pathways a waterborne
pathogen can exploit in completing its life

cycle. Pathways include transmission a) from
person to person, b) from person to environ-
ment to person, and c) from environment to
person. Person–person transmission is often
associated with poor hygiene; such transmis-
sion can occur, for example, within house-
holds or other communal settings such as
schools, day care centers, and nursing
homes. Person–environment–person trans-
mission is often associated with environmen-
tal contamination of water sources; such
transmission can occur, for example,
through water used for drinking or recre-
ation. Environment–person transmission is
often associated with sources of contamina-
tion external to the population under study,
including animal sources and human sources
from other communities. 

The magnitude of these different trans-
mission pathways often dictates the optimal
intervention and control. Possible control
measures include the treatment of water or
other environmental media, limiting expo-
sure to water or other environmental media,
and prevention of contamination through
sanitation and hygiene measures. Each of
these interventions not only may reduce the
disease burden associated directly with its
pathway but, critically, may also reduce indi-
rect transmission from other pathways by
decreasing the amount of contamination.
The degree of contamination, and therefore
the degree of risk, depends on the contribu-
tion and interactions of all of the different
environmental transmission pathways. This
interdependency of pathways makes obvious
the fact that determining the most effective
control strategies requires an understanding
of the complete transmission cycle.

The transmission cycle has two impor-
tant features other than the interdependency
of pathways. One is the potential for an
individual to be infectious but not sympto-
matic. These asymptomatic individuals are
usually mobile because of lack of illness and
have a high potential to spread a pathogen
widely throughout a community. The sec-
ond feature is the protection conferred to a
host after exposure to a pathogen, that is,
acquired immunity. For some pathogens
(e.g., hepatitis A), once a person has been
infected, he or she will never contract the ill-
ness again; the protection is lifelong.
However, for most waterborne pathogens
the protection conferred to a host after expo-
sure to the agent of disease is partial and
temporary. For example, an individual with
protective immunity from prior exposure
may require a larger dose for infection to
occur or for symptoms to develop. Such par-
tial protection may last for months or years.
This property of infectious disease has major
implications for transmission both within
and between populations. The greater the
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number of individuals who are partially pro-
tected, the smaller the pool of susceptible
individuals who are at risk of infection. This
in turn implies that the pool of newly
infected individuals will be smaller in the
future. The decreased number of infected
individuals in the future means decreasing
contamination, decreasing the exposure risk.
Offsetting this decrease in exposure are pop-
ulation dynamic processes such as birth and
immigration that will increase the number of
susceptible individuals.

Disease transmission models for enteric
pathogens. We can conceptualize an epi-
demiologically based characterization of risk
by dividing the population into distinct
states regarding disease status. Epidemiologic
states may include susceptible, diseased
(infectious and symptomatic), immune
(either partial or complete), and carrier
(infectious but asymptomatic) populations.
Over time, members of the population may
move between these states. Factors affecting
the rate at which members move between
states include level of exposure to an envi-
ronmental pathogen, intensity of exposure to
individuals in the infectious or carrier state,
and the temporal processes of the disease
(e.g., incubation period, duration of disease,
duration of protective immunity). This con-
ceptual modeling methodology is dynamic
and population based; that is, the risk of
infection manifests at the population level.
Specifically, in the transmission of infectious
diseases (but not of diseases due to chemical
exposure), the risk of disease due to
pathogen exposure depends on the disease
status of the population and potentially on
the contact patterns within the population.

Figure 1 is a diagram of a transmission
model for enteric pathogens. Each box repre-
sents one state of the system. Five of the six
states represent the epidemiologic states of the
population: S, susceptible; E, latent (infected
but noninfectious and asymptomatic); IS, dis-
eased (infectious and symptomatic); IA, carrier
(infectious but asymptomatic); P, immune
(either partial or complete). The sixth state,
W, represents concentration of pathogens in
the environment. Members of a given state
may move to another state based on the
causal relationships of the disease process.
For example, members of the population
who are in the susceptible state may move to
the diseased state after exposure to a patho-
genic agent.

To describe the epidemiology of enteric
pathogen transmission, the conceptual
model includes both state variables and rate
parameters. State variables (S, E, IA, IS, and
P) track the number of individuals in each of
the states at any given point in time and are
defined such that S + E + IA + IS + P = N
(i.e., the sum of the state variables equals the

total population). The rate parameters deter-
mine the movement of the population from
one state to another. In general, the rate
parameters are β, the rate of transmission
from a noninfected state, S, to an infected
state, E, due to both environmental (e.g.,
drinking water) and person–person exposure
to a pathogen; α, the rate of movement from
exposure to illness; δ and σ, the rates of
recovery from an infectious state, IS or IA,
respectively, to the postinfection state, P; γ,
the rate of movement from the postinfection
state (partial immunity), P, to the suscepti-
ble state, S; φ, the rate of shedding of
pathogens into the environment by infec-
tious individuals; and ξ, the per capita
mortality rate of the pathogen in the envi-
ronment. An additional parameter in the
model, ρ, represents the proportion of
asymptomatic infections. For more mathe-
matical detail pertaining to the model, see
previous publications (8,9).

The rate parameters are estimated
through literature review. These parameters
may be functions of other variables also
determined through literature review, or
may be determined through site-specific data
where possible and appropriate. One techni-
cal aspect of this approach is that the
distribution of time that members of the
population spend in each of the states is
assumed to be exponential. In some cases,
this assumption is unrealistic. Relatively
straightforward methods, however, modify
the model structure so that the time spent in
each state is other than exponential (10).

A fundamental concept in disease trans-
mission models is the reproduction number,
RO, defined as the number of infections that
result from the introduction of one index
case into a population of susceptible individ-
uals. Therefore, RO is a measure of the abil-
ity of a pathogen to move through a
population. RO > 1 suggests that the
pathogen is multiplying within a community
and that prevalence is increasing, whereas

RO < 1 suggests that the disease is dying out
of the population. An average RO of 1 sug-
gests that the disease is endemic in the popu-
lation. Various methods estimate RO for
different pathogens and in different environ-
mental settings (11). Measles, for example, is
a highly infectious respiratory-transmitted
disease and has been estimated to have an
RO of approximately 14. Polio, on the other
hand, a waterborne pathogen, has an RO of
approximately 6. The reproduction number
for a waterborne pathogen is a function of
the different pathways of transmission. For
example, for the model shown in Figure 1,
RO is composed of two terms, one for per-
son–person transmission and the other for
person–environment–person transmission:

In this expression, each term has a β factor
that represents the transmission potential of
the pathogen and a factor that represents the
average duration of infectiousness. The last
term has a factor that represents the propor-
tion of pathogens that survive the environ-
mental phase of its life cycle. 

Application to the Outbreak
Condition
In the United States, outbreaks are responsi-
ble for a large component of the measured
incidence for waterborne pathogens (12,13).
Whether or not these outbreak cases repre-
sent a significant portion of the total disease
burden associated with waterborne pathogens
is debated because endemic cases of water-
borne disease are poorly measured by existing
surveillance systems (14,15). However, a
thorough understanding of the causes of
these outbreaks is necessary to understand
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Figure 1. Schematic diagram of transmission model. t, independent variable representing time. Solid lines
represent movement of individuals from one state to another. Dashed lines represent movement of
pathogens either directly from infectious host to susceptible host or indirectly via the environment. State
variables and parameters are defined in the text.
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the full transmission process and to develop
preventive measures. In this section, we
describe how the information embedded in
the disease transmission model structure,
coupled with the incidence data from
outbreaks, can inform health policy deci-
sions. The 1993 waterborne outbreak in
Milwaukee, Wisconsin, provides a good case
study because extensive data were collected
during the outbreak investigation.

Case study: analysis of the Milwaukee
Cryptosporidium outbreak. In March 1993
an outbreak of cryptosporidiosis occurred in
Milwaukee, caused by a contaminated water
supply (16). An estimated 403,000 cases of
watery diarrhea occurred in the greater
Milwaukee area (Figure 2). Investigation of
the water treatment facilities suggested that
from 23 March to 9 April, one of the two
plants serving the area failed to adequately
remove Cryptosporidium oocysts.

We analyzed this outbreak to examine
the possible combination of factors that
could bring about the time series of inci-
dence rates observed during the 1993
Milwaukee cryptosporidiosis outbreak.
These factors include both clinical properties
and surveillance data. Clinical properties
include dose response, person–person trans-
mission rates, incubation period, duration of
immunity, duration of symptoms, percent
infected that become symptomatic, and rate
of pathogens shed into the environment by
infectious individuals. Surveillance data
include nonoutbreak incidence levels of
cryptosporidiosis, levels of oocysts in surface
waters before and during the outbreak, and
treatment efficiency both before and during
the outbreak. We used an epidemiologically
based mathematical model to integrate and
analyze these data in the context of the
Cryptosporidium outbreak (10).

Traditionally, epidemic phenomena that
have been analyzed through simulation stud-
ies of transmission models have provided
qualitative insight into the dynamics of dis-
ease transmission. These models have proven
valuable because they are process driven—
they are an actual representation of how the
transmission system is thought to operate.
Less commonly, these models are used infer-
entially through statistical methods, allowing
us to estimate confidence intervals on the
parameters of the transmission model based
on the incidence data. As described below,
we used the latter, statistical approach to
explore the plausibility of different parame-
ter sets and to provide insight into the epi-
demic process.

Analytic approach: developing inferences
from the incidence data based on model and
parameter values. Fundamental to our statis-
tical approach was the linking of a mathe-
matical model to the data through a

statistical likelihood function. We achieved
this by using a deterministic mathematical
model to generate predicted incidence data.
The likelihood function incorporated the
predicted and observed data, returning a
value that represents an empirical measure of
the plausibility of the observed incidence
data. Higher values of the likelihood func-
tion correspond to a closer fit between the
predicted incidence from the mathematical
model and the actual observed incidence.

The primary obstacle to likelihood esti-
mation and statistical inference in mechanis-
tic models is that they typically contain many
parameters and are nonlinear or even non-
identifiable. As a consequence, the likelihood
function contains many local maximum val-
ues and the solution contains complex inter-
dependence among the parameters.

With this in mind, we considered several
methods of conducting estimation and infer-
ence suggested by standard statistical theory.
The approach we found most useful was
based on the profile likelihood function.
Maximum likelihood estimates are obtained
by fixing a set of parameters of interest over a
range of values and then maximizing the full
likelihood over the remaining “nuisance”
parameters. The likelihood ratio test provides
a reference value for evaluating particular
parameter sets. Those sets with profile likeli-
hood values above the reference value are
considered reasonable and are included in the
confidence interval, whereas those below are
rejected as implausible. This approach leads
to robust confidence intervals and is compu-
tationally simpler than alternative approaches
(e.g., confidence intervals based on the infor-
mation matrix or Markov chain Monte Carlo
methods). The computational advantages
derive from the ability to fix parameters that
are either interesting or troublesome, so that
the remaining optimization problem is sim-
plified. Prior information about nuisance
parameters (e.g., duration of infection) can
be incorporated into the estimation approach
by constraining the particular parameter to a
range of realistic values.

We used this approach to analyze two
separate mathematical models of the
Milwaukee outbreak. We constructed these
models to investigate two hypotheses con-
cerning the routes of disease transmission
during the outbreak. The first model allows
transmission to occur either through envi-
ronmental transmission from contaminated
water or through person–person transmis-
sion. This model represents the generally
accepted theory that the outbreak was a
direct result of a treatment failure combined
with an influx of oocysts from the environ-
ment (16). In the context of Figure 1, this is
realized by setting φ to zero, to prevent any
person–environment–person transmission.

The second model we considered allows
for delayed secondary transmission. This
type of transmission can be expected to arise
when a significant person–environment–per-
son transmission route exists. In Milwaukee,
Lake Michigan both supplies the drinking
water and receives treated wastewaters.
Conceivably, oocysts shed from a small
number of infected people before the epi-
demic could have survived wastewater treat-
ment, reentered the drinking water supply,
and contributed to the outbreak.

The details of these methods and the fol-
lowing results are presented elsewhere
(9,10). In this article, we briefly describe
results in the context of health policy.

Results and conclusions. Figure 1 shows
the maximum likelihood fit of the incidence
data collected in a retrospective survey (16).
Analysis of the first model focused on esti-
mating the asymptomatic proportion, the
rate of person–person transmission for
Cryptosporidium infection, and the degree of
water treatment failure. We found that the
asymptomatic proportion in the models was
critical in understanding other characteristics
of the epidemic. For example, a high esti-
mate of the asymptomatic proportion sug-
gested that there was an exhaustion of the
susceptible population: If 66% of infections
were asymptomatic and 400,000 were symp-
tomatic cases, that would suggest a total of
1.2 million infections (75% of the popula-
tion). Epidemic theory suggests that the epi-
demic would die out because of the
exhaustion of susceptible individuals. In par-
ticular, the degree of water treatment failure
is closely tied to the asymptomatic propor-
tion. Therefore, identifying the asympto-
matic proportion as a key parameter was
crucial to delineating a situation in which
closing the treatment plant prevented a sig-
nificant number of cases versus a situation in
which plant closure prevented only a small
fraction of cases.

Person–person transmission was not pre-
viously believed to have been a major con-
tributor to the Milwaukee outbreak (17).
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Figure 2. Maximum likelihood estimate of the
outbreak. 
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Our analysis supported this view. In a sce-
nario of strong person–person transmission,
the number of observed cases will grow
steadily over time until the susceptible popu-
lation becomes exhausted. Instead, what was
observed was a relatively constant rate of
incidence followed by an explosive outbreak.
The dynamics from a model incorporating
strong person–person transmission cannot
be made to exhibit this pattern of incidence.

Analysis of the second model suggests that
delayed secondary transmission (person–envi-
ronment–person)in combination with treat-
ment failure could have explained the
Milwaukee outbreak. Profile likelihood esti-
mation of water treatment failure, length of
the delay period, and asymptomatic rate has
fielded particular values of these parameters
that could have given rise to the outbreak.
Although this depiction is plausible, within
the context of the model and the observed
data from the outbreak, more work needs to
be done to understand whether these parame-
ter sets are themselves realistic regarding other
information. For example, what is the mini-
mum time required for oocysts to move from
the wastewater back to the drinking water? Or
what fraction of excreted oocysts could be
expected to make the journey and remain
infectious? These issues can be addressed
using existing knowledge about the hydrology
of the water and sewer system in Milwaukee
and Cryptosporidium epidemiology.

Application to the Endemic
Condition
Although most reported cases of diseases
attributed to waterborne pathogens are gen-
erally from outbreaks (because of the struc-
ture of existing surveillance systems), we
have evidence that endemic transmission
may account for an even larger portion of
the disease burden. Estimates of the inci-
dence of diarrheal disease come from
prospective studies such as the one con-
ducted in Tecumseh, Michigan, between
1965 and 1971 (18). More recently,
Payment et al. (19) conducted a tap water
intervention study that estimated a compara-
ble incidence value. In addition, this study
attributed an estimated 35% of the illnesses
to the drinking water. In an analogous inter-
vention trial, Kay et al. (20) found a signifi-
cant risk associated with swimming in the
ocean in four beaches in the United
Kingdom. Based on these data the U.S.
Environmental Protection Agency (EPA) has
focused its regulatory activities on reducing
risks associated with the endemic condition.
As opposed to the situation with outbreaks,
we have no available incidence data from
which to assess risk directly. We therefore
use models to provide indirect estimates of
risk. The standardized modeling tool that

the U.S. EPA uses is risk assessment. The
following section discusses the risk assess-
ment methodology in the context of disease
transmission models.

Risk assessment. Attempts to provide a
quantitative assessment of human health
risks associated with the ingestion of water-
borne pathogens have generally focused on
static models that calculate the probability of
individual infection or disease as a result of a
single exposure event (21–24). This frame-
work is based on a model for the assessment
of risk associated with chemical exposure
(25) and, as such, does not address a number
of properties that are unique to infectious
disease transmission, including secondary
(person–person or person–environment–per-
son) disease transmission and immunity.

The limitations of treating infectious dis-
ease transmission as a static disease process,
with no interaction between those infected
or diseased and those at risk, have been illus-
trated in studies of Giardia (8), dengue (2),
and sexually transmitted diseases (26). The
U.S. EPA realized that infectious disease
processes had features significantly different
from disease processes caused by chemical
exposure and began preliminary work by
sponsoring a workshop in 1996, from which
a working group developed a microbial risk
framework (27). In contrast to the previ-
ously used chemical-based framework, the
U.S. EPA microbial risk framework does
allow incorporation of disease-specific epi-
demiologic data, such as incubation period,
immune status, duration of disease, rate of
symptomatic development, and exposure
data such as those processes affecting the
pathogen concentration. However, the U.S.
EPA framework falls short of explicitly
incorporating features of the disease trans-
mission process that highlight the distinction
between infectious disease risk and a more
conventional static risk process (28).

Models using the chemical risk paradigm
are static and assess risks at the individual
level—the probability that a person exposed
to a given concentration of pathogens will
have an adverse health effect, regardless of
adverse health effects on other individuals.
Although this underlying assumption of
independence is valid for disease associated
with chemical exposure, it is not appropriate
for most infectious disease processes. The
risk of a person becoming infected depends
not only on direct exposure to environmen-
tal pathogens via contaminated environmen-
tal media but also on exposure to other
currently infected individuals through inter-
actions within the population. One implica-
tion of this secondary infection process is
that, by definition, risk manifests at a popu-
lation level rather than at an individual level.
Another implication is that risk calculations

are dynamic in nature; that is, the overall
risk calculation is based not only on risk of
current exposures (environmental or social)
but also on risk of exposures from all subse-
quent secondary infections.

The following section describes a quanti-
tative method of providing information for
the risk assessment process in an endemic set-
ting. Unlike for outbreak conditions, few data
are available for analysis for endemic condi-
tions, so traditional statistical techniques are
not useful. We present alternative approaches
that can provide information valuable for the
decision making process. As we show below,
an outcome of this study was the finding that,
even in the presence of uncertainty and vari-
ability, a significant amount of information is
obtainable in both the data collected from
experiments and the mechanistic knowledge
of the environmental system. Moreover, the
results of these simulations inform us on the
level of uncertainty in risk, as well as identify-
ing parameters that drive uncertainty and
require better definition.

Case study: exposure to Giardia from
swimming. To illustrate the use of transmis-
sion models in risk assessment, Eisenberg et
al. (8) developed an exposure scenario in
which swimmers were exposed to Giardia
from a recreational swimming impound-
ment filled with water reclaimed from com-
munity sewage. Because they had no
incidence data from which to evaluate the
model, the focus of that study was to com-
pare two conditions: one in which the swim-
ming impoundment water was not the
exposure vehicle and one in which water was
an exposure vehicle.

Analytical approach: sensitivity of para-
meters to outcome. In this simulation study,
the model is used to assess the risk for expo-
sure scenarios in which no incidence data are
available. Because a traditional likelihood
approach requires incidence data as well as a
measure of uncertainty of those data, we
needed an alternative approach. We based
this alternative approach on the idea that
rather then fitting the model to the data out-
put as in the preceding case study, the
output can be characterized as either a back-
ground endemic condition or an outbreak
condition. In this manner, the output is clas-
sified into one of two categories. To obtain
the output to be classified, probability distri-
butions are assigned to each model parame-
ter and multiple simulations are conducted.
Specifically, for each simulation, a set of
parameter values is obtained by randomly
sampling the parameter distributions. The
distributions are uniform unless the parame-
ter range spans more than two orders of
magnitude, in which case a log-uniform dis-
tribution more efficiently explores the full
range of values. Assigning a bounded uniform
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or log-uniform distribution to each parameter
allowed us to include data from various litera-
ture sources without bias toward one value or
another. We then applied a binary classifica-
tion algorithm to each simulation output, in
which the output either passes or fails a set of
criteria. This binary classification is essen-
tially a goodness-of-fit criterion based on
whether or not the output is representative of
the data. We then analyzed the multivariate
parameter distribution associated with a
background/above background classification
using the classification and regression tree
(CART) algorithm, which builds a tree based
on minimizing the classification error (29).
The details of this approach are given in a
previous publication (8).

The model used in this study was a vari-
ant of Figure 1 in which contamination of
the swimming impoundment could occur
either from direct shedding of pathogens by
infected swimmers, designated λ, or from
community sewage that is treated before
being recycled, designated T. We compared
two transmission scenarios to analyze the rel-
ative risk of contracting giardiasis while
swimming. The first scenario described a sit-
uation in which reclaimed water was not the
exposure vehicle. We used the results to
establish a baseline prevalence with which to
compare the effects of the next scenario,
ingesting water while swimming in an
impoundment supplied with water reclaimed
from the wastewater of the community. The
output variable used in the analysis was the
average daily prevalence of disease over the 1-
year simulation period. The outcome was
binary, either background prevalence levels
consistent with nonoutbreak conditions and
suggesting insignificant risk levels, or above
background levels suggesting that a signifi-
cant risk is associated with being exposed to
the swimming impoundment.

Results and conclusions. Analysis of the
model suggested that the output classification
was most sensitive to the value of the shed-
ding parameter, λ, the rate at which infectious
swimmers shed pathogens into the swimming
impoundment. We identified two regions:
region 1, defined by λ ≤ 2 × 104 pathogens
shed/swimming event, and region 2, defined
by λ > 2 × 104. Figure 3 illustrates these two
regions. We initially classified 19% of the
3,022 simulations as an outbreak (see first
node of tree). Of those 3,022 simulations,
CART identified 2,266 simulations in which
λ ≤ 2 × 104 and classified only 9% of these as
an outbreak. We labeled these simulations
region 1. We labeled the remaining 756 sim-
ulations region 2, in which λ > 2 × 104, of
which 48% were classified as an outbreak. 

Within region 1, whether a simulation
was classified as a background, low-risk
condition was most sensitive to the value of

the water treatment parameter, T. The subre-
gion within region 1 composed of those sim-
ulations in which T > 2 × 103 were classified
as a background region. Within region 2, on
the other hand, whether a simulation was
classified as a background, low-risk condition
was most sensitive to the duration of a swim-
ming event, εF, and the frequency of swim-
ming events, εT. These two exposure
parameters are incorporated into the trans-
mission parameter, β2, shown in Figure 1.
Figure 3 illustrates the two subregions within
region 2 categorized as low exposure: εT ≤
1.6 and εF ≤ 23.3, and εT > 1.6 and εF ≤ 9.6.

The magnitude of the shedding parame-
ter, λ, determined the optimal control strat-
egy. If the magnitude was low and within
region 1, then centralized control realized
through water treatment (option 1) would
be the optimal control option. However, if
the magnitude was high and within region 2,
then localized control realized through limit-
ing exposure (option 2) would be the opti-
mal control option. If a risk manager,
therefore, must decide between option 1,
ensuring that centralized treatment is above
2.6 log removal (T > 2 × 103), and option 2,
limiting swimming in the impoundment,
our risk assessment suggests that λ is the cru-
cial parameter to refine. Furthermore, if λ is
already estimated, Figure 3 can help decide
the best control option and help estimate the
degree of confidence that should be placed
on that decision. For example, if λ is esti-
mated to be at point A on Figure 3, the
model indicates that shedding would have to
be (2 × 104 – A)/A greater before option 1

would cease to be the optimal control.
Likewise, if λ is estimated to be at point B,
then shedding would have to be (B – 2 ×
104)/B less before option 2 would cease to be
the optimal control.

Discussion

In this article we have demonstrated that
using disease transmission models to identify
data gaps and to aid in decision making pro-
vides a crucial link between science and pol-
icy while simultaneously coping in a
responsible fashion with existing data gaps.
In the context of issues related to infectious
disease, the appropriate model describes the
disease process at a system level; that is, it
describes the transmission pathways. A sys-
tem-level model has the potential to provide
insight into which factors play a role in the
transmission of pathogens to humans and
therefore influence risk estimates. In the ini-
tial model development phase, features of a
conceptual model are rigorously defined by a
set of equations. At this level, data gaps are
identified as those data required to define
key factors of the disease process that are not
available in the literature. In the analysis
phase of the modeling process, sensitivity
studies can provide information on the sig-
nificance of these data gaps regarding a par-
ticular question of interest. In this analysis
phase, the identification of data gaps can be
translated into research needs. Although
model analysis can identify research activities
that would improve uncertain risk estimates,
decisions often cannot wait for this research
to be completed. Models also can play a role
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Figure 3. Classification diagram. The numbers in the ovals are the percentages of simulations that are
classified as an outbreak condition, and below each oval is the number of simulations used to calculate
this value. Parameters used in the classification are the shedding rate, λ; the water treatment efficiency,
T; the time spent swimming in each event, εT; and the number of swimming events per year, εF .
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in this decision-making process by defining
the level of certainty associated with a given
decision.

These two features of the modeling
process, identifying data gaps and aiding in
decision making, are illustrated by the two
case studies described in this article. The
Giardia risk assessment case study shows a
clear gap in shedding rate data—the rate at
which infected swimmers contaminate a
swimming pool. The analysis phase was fur-
ther able to quantify the sensitivity of the
rate of shedding to the risk estimate. The
sensitivity analysis not only identified this
parameter as central to decreasing the uncer-
tainty of the risk estimate but also defined
the necessary degree of resolution. In the
Giardia example, we were interested in the
sensitivity of parameters to control decisions:
option 1, to improve the level of water treat-
ment, and control option 2, limiting expo-
sure. The analysis showed that, in general, if
the decision is to adopt control option 1, the
model provides the degree to which a para-
meter value estimate, such as the rate of
shedding, would have to vary for control
option 1 to cease to be the optimal option.
This analysis also places a limit on the degree
of resolution needed; we needed only
enough data on shedding to be confident
that the rate of shedding estimate is within
region 1 rather than region 2.

In the analysis of the Cryptosporidium
outbreak, we found that when we con-
strained the proportion asymptomatic to the
lower part of its distribution, [0, 0.6], its
parameter value was insensitive regarding the
incidence time series estimate of the out-
break. However, when constrained to the
upper part, [0.6, 1.0], its parameter value
was quite sensitive. For example, an asymp-
tomatic rate of 0.7 would suggest that we
had exhausted the pool of susceptible indi-
viduals and that the outbreak would have
ended independent of whether or not the
drinking water plant was closed on 9 April.
Recent serologic data from the Milwaukee
outbreak suggest that the asymptomatic pro-
portion of individuals was between 0.5 and
0.7 (30). As with the Giardia risk assessment
example, the data gap was evident at the
model development phase; however, not
until we concluded the analysis phase was it
evident how and why the asymptomatic rate
was a sensitive parameter requiring better
identification.

Risk managers accept the responsibility
of using risk analyses to choose the best
course of action to reduce risk of disease.
The best course of action is determined after
considering a series of feasible intervention
options. In a decision process, risk managers
identify specific objectives that may be
attained through implementing different

interventions. When faced with choices
among different interventions targeting
infectious diseases, risk managers can use dis-
ease transmission models to project the
reduction in infectious diseases attained by
each intervention. When making a decision,
risk managers would consider the reduction
in the predicted number of infectious disease
cases associated with each intervention along
with other factors such as economic and
social impacts.

The systemic perspective of disease trans-
mission models provides an opportunity to
quantify the impacts of interventions at dif-
ferent points in the pathogen transmission
cycle. For example, interventions in the treat-
ment and delivery of drinking water can
occur at 4 levels: a) The risk manager could
improve the watershed quality of the source
water through reduction of combined sewer
overflows or improvements in private septic
systems; b) drinking water treatment systems
can be improved by increasing the number of
barriers in the treatment process or by
increasing the efficacy of an individual bar-
rier; c) delivery systems can be improved
through replacement of older pipes to reduce
the risk of incursions or the addition of
booster systems to maintain a high residual;
d) finally, individuals may purchase a filter or
a disinfection device for water in their homes. 

This last intervention affects only the resi-
dents of the home. Watershed and treatment
system improvements potentially reduce the
entire population’s exposure to pathogens
from drinking water. Interventions at the
other two levels reduce drinking water
pathogen exposures to a fraction of the popu-
lation, but this fraction may be more suscepti-
ble to the pathogen. For example, the
interventions may target a retirement com-
munity. Each of these interventions can be
accounted for in the disease transmission
model, in the context and presence of
different modes of disease transmission, per-
son–person, person–environment–person,
and person–environment.

Identifying data gaps and obtaining
information on parameter sensitivity that
would help in the decision making require a
modeling approach to risk assessment with
two essential features. The first important
feature is the use of a mechanistic model in
which the parameters all have biologic
meaning. The second essential feature is the
use of analytic tools that can assess uncer-
tainty and sensitivity associated with com-
plex models. In statistics, models are used to
analyze data and therefore the data drive the
structure of these models. A goal of statistical
analysis is to assess how well the model can
predict the data. Statistical techniques provide
approaches for making inferences about the
parameter values and for assessing statistical

significance. The parameters of these statisti-
cal models have no biologic meaning. In
contrast, the model structure introduced in
this article describes the transmission process
of an infectious disease, so the parameters of
the model have biologic meaning. Rather
than being driven by the data, the model
structure is driven by the process. In this
way, the model structure is a summary of the
relevant information and is independent of
the data. In addition, these model parame-
ters also can be constrained from indepen-
dent information. Therefore, incidence data
can be interpreted in the context of what is
already known about the disease process.
Although this is clearly a powerful approach,
the downside of this approach is that these
models are generally more complex than a
traditional statistical model and therefore are
more difficult to analyze.

Besides the fact that disease transmission
models are complex, another technical chal-
lenge is the variable availability and quality
of the data used in the analysis. The two case
studies presented here illustrate the range in
data quality. The Cryptosporidium outbreak
study had data that represented accurately
the incidence during the outbreak period, so
a more traditional likelihood approach was
promising. Given the complexity of our
model, however, we considered a profile
likelihood or Bayesian approach more
tractable because they allow analysis of mod-
els with large numbers of parameters.
Because we were interested in obtaining con-
fidence intervals, we chose to use the profile
likelihood approach. An example of using
the Bayesian approach in public health deci-
sion making is given elsewhere (31).

For the Giardia study, we had no avail-
able data from which to analyze the model.
For this analysis, an interest in those parame-
ter combinations that produce a high-risk
condition suggested a binary classification
approach. A likelihood approach simplifies to
a binary classification when the uncertainty
of the data is uniform. In general, when one
is not confident enough in the data to sup-
port a point-by-point goodness of fit, and
information exists on general features of the
data (such as timing and number of modes),
a criterion-based approach can be developed
to implement the binary classification.

Our perspective is that the power of this
modeling approach lies in its ability to pro-
vide sensitivity information for the decision-
making process. Decision makers need to
know how sensitive a given decision is to the
uncertainties associated with the disease
process. The models presented here help
quantify this sensitivity by allowing us to esti-
mate the level of confidence that can be
attributed to a given decision. Additionally,
these analyses provide information on the
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types of research needed to increase that confi-
dence. In this way policy, can be informed by
the current state of scientific knowledge, based
on both what is known and what is unknown.
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