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RESEARCH ARTICLE

Combating a Global Threat to a Clonal Crop:
Banana Black Sigatoka Pathogen
Pseudocercospora fijiensis (Synonym
Mycosphaerella fijiensis) Genomes Reveal
Clues for Disease Control
Rafael E. Arango Isaza1,2☯, Caucasella Diaz-Trujillo3☯, Braham Dhillon4☯¤a, Andrea Aerts5,
Jean Carlier6, Charles F. Crane7, Tristan V. de Jong3¤b, Ineke de Vries3, Robert Dietrich8,
Andrew D. Farmer9, Claudia Fortes Fereira10, Suzana Garcia11¤c, Mauricio Guzman12,
Richard C. Hamelin13,14, Erika A. Lindquist5, RahimMehrabi15¤d, Olman Quiros12¤e,
Jeremy Schmutz5, Harris Shapiro5¤f, Elizabeth Reynolds16, Gabriel Scalliet17,
Manoel Souza, Jr.18¤g, Ioannis Stergiopoulos19, Theo A. J. Van der Lee3, Pierre J. G. M. De
Wit20, Marie-Françoise Zapater6, Lute-Harm Zwiers21¤h, Igor V. Grigoriev5, Stephen
B. Goodwin7*, Gert H. J. Kema3,20*

1 Escuela de Biociencias, Universidad Nacional de Colombia, Medellín, Colombia, 2 Plant Biotechnology
Unit, Corporación Para Investigaciones Biológicas, Medellín, Colombia, 3 Plant Research International,
Wageningen University and Research, Wageningen, The Netherlands, 4 Department of Botany and Plant
Pathology, Purdue University, West Lafayette, Indiana, United States of America, 5 US Department of
Energy Joint Genome Institute, Walnut Creek, California, United States of America, 6 CIRAD, UMR BGPI,
Montpellier, France, 7 USDA-Agricultural Research Service, West Lafayette, Indiana, United States of
America, 8 Syngenta Biotechnology Inc., Research Triangle Park, United States of America, 9 National
Center for Genome Resources, Santa Fe, United States of America, 10 Embrapa Mandioca e Fruticultura,
Cruz das Almas, BA, Brazil, 11 University of Lavras, Lavras, Brazil, 12 National Banana Corporation of
Costa Rica (CORBANA), La Rita de Pococí, Limón, Costa Rica, 13 Department of Forest and Conservation
Sciences, The University of British Columbia, Vancouver, BC, Canada, 14 Natural Resources Canada,
Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada, 15 Department of Genetics,
Seed and Plant Improvement Institute, Karaj, Iran, 16 General Bioinformatics at Syngenta Crop protection
Jeallots Hill International Research Centre, Bracknell Berkshire, United Kingdom, 17 Syngenta Crop
Protection, Münchwilen AG, Stein, Switzerland, 18 Embrapa-LABEX Europe, Wageningen, The
Netherlands, 19 University of California, Davis, Davis, California, United States of America, 20 Wageningen
University, Laboratory of Phytopathology, Wageningen, The Netherlands, 21 CBS-KNAW Fungal Diversity
Center, Utrecht, The Netherlands

☯ These authors contributed equally to this work.
¤a Current address: University of Arkansas, Fayetteville, Arkansas, United States of America
¤b Current address: University Medical Center Groningen, Groningen, The Netherlands
¤c Current address: KeyGene, Wageningen, The Netherlands
¤d Current address: Seed and Plant Improvement Institute, Karaj, Iran
¤e Current address: Laboratorio LAMA S.A., San José, Costa Rica
¤f Current address: WaferGen Inc, Fremont, California, United States of America
¤g Current address: Embrapa Agroenergy, Brasília DF, Brazil
¤h Current address: Avans Hogeschool, Lectoraat Biobased Products, Breda, The Netherlands
* Steve.Goodwin@ARS.USDA.gov (SBG); gert.kema@wur.nl (GHJK)

Abstract
Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseu-
docercospora fijiensis (previously:Mycosphaerella fijiensis), is the most significant foliar
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disease of banana worldwide. Due to the lack of effective host resistance, management of

this disease requires frequent fungicide applications, which greatly increase the economic

and environmental costs to produce banana. Weekly applications in most banana planta-

tions lead to rapid evolution of fungicide-resistant strains within populations causing dis-

ease-control failures throughout the world. Given its extremely high economic importance,

two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic link-

age map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotranspo-

sons, making it the largest genome within the Dothideomycetes. Melting-curve assays

suggest that the genomes of two closely related members of the Sigatoka disease complex,

P. eumusae and P.musae, also are expanded. Electrophoretic karyotyping and analyses of

molecular markers in P. fijiensis field populations showed chromosome-length polymor-

phisms and high genetic diversity. Genetic differentiation was also detected using neutral

markers, suggesting strong selection with limited gene flow at the studied geographic scale.

Frequencies of fungicide resistance in fungicide-treated plantations were much higher than

those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium ful-
vum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified

PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hyper-

sensitive-like response. This result suggests that Calcutta 4 could carry an unknown resis-

tance gene recognizing PfAVR4. Besides adding to our understanding of the overall

Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide

treatment schedules to combat this pathogen and in improving the efficiency of banana

breeding programs.

Author Summary

Black Sigatoka or black leaf streak disease, caused by the ascomycete fungus Pseudocercos-
pora fijiensis, inflicts huge costs on banana producers, due to crop losses and expenses for
disease control. The global banana export trade relies on Cavendish clones that are highly
susceptible to P. fijiensis. Sustainable production of the world’s number one fruit requires
a better understanding of host resistance and sophisticated management of fungicide resis-
tance in the pathogen. In the P. fijiensis genome sequence we identified an effector that
induced an HR-like necrosis on a resistant banana accession but not on a susceptible culti-
var. If validated, this assay may be useful for identifying resistance in banana breeding pro-
grams. We also used the genomic sequence to develop highly polymorphic molecular
markers for analyzing P. fijiensis field populations and identified a strong enrichment
(nearly 100%) for fungicide resistance markers in fungicide-treated banana plantations
compared to untreated wild-type populations. This rapid evolution of fungicide resistance
poses an immediate threat to sustainable banana production.

Introduction
Black Sigatoka or black leaf streak disease (BLSD), caused by the Dothideomycete fungus Pseu-
docercospora fijiensis (previously:Mycosphaerella fijiensis) [1], is a major threat to global
banana production [2]. The disease is part of the Sigatoka complex, which involves two other
closely related pathogens in addition to P. fijiensis: P.musae (previously:M.musicola) causal
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agent of yellow Sigatoka disease; and P. eumusae (previously:M. eumusae) causal agent of the
eumusae leaf spot disease. Among the three species, P. fijiensis is the most aggressive and pre-
dominant member of the Sigatoka disease complex worldwide. These pathogens occur exclu-
sively on the foliage of bananas and plantains, with continuous sexual and asexual
reproduction in nature [1,3–5].

BLSD was first reported in the Sigatoka Valley of the Fiji islands during the 1960s and has
since spread to nearly all banana-producing areas worldwide. It can only be managed by inten-
sive fungicide applications, requiring weekly interventions throughout the year in most pro-
duction areas. Black Sigatoka inflicts huge costs on global banana production, surpassing US
$500 million per year [6]. Expenses for fungicide treatments usually represent more than 35%
of total production costs [7,8]. Infection with P. fijiensis also results in crop losses and massive
indirect costs by inducing early ripening of the fruit, making it unsuitable for sale with concom-
itant effects on the export trade and the retail sector.

Export banana cultivars are sterile, triploid plants that can only be propagated clonally and
are grown in huge monocultures of genetically identical individuals. The international banana
trade is based solely on a few closely related clones of the Cavendish type, all of which are
highly susceptible [6]; disease management, therefore, relies primarily on fungicide applica-
tions with enormous environmental impacts [9]. Moreover, the selection pressure on P. fijiensis
populations continuously reduces the efficacy of fungicides resulting in control failures and
unmanageable levels of disease [2,7]. Therefore, there is an urgent need for scientific discover-
ies that will lead to the development of better methods for protecting banana crops, both for
export fruit production and for small holders around the world who rely on bananas as a staple
food [2].

Taxonomically, Pseudocercospora belongs to the order Capnodiales in the class Dothideo-
mycetes, previously known as the Loculoascomycetes [10], which is the largest and most diverse
class of ascomycete fungi comprising over 20,000 species. Dothideomycete fungi include endo-
phytes and epiphytes of plants, but also saprobes degrading cellulose and other complex carbo-
hydrates of dead plants, and plant pathogens [11]. The latter cause a range of diseases in
various key food, fiber and fuel crops, including Zymoseptoria tritici (septoria tritici blotch of
wheat) [12], Venturia inaequalis (apple scab) [13], and Leptosphaeria maculans (blackleg of
Brassica crops) [14]. Therefore, genome sequences of several Dothideomycetes have been pub-
lished [15–22] or are in the process of being completed (http://genome.jgi.doe.gov/
dothideomycetes/dothideomycetes.info.html). The genome sequence of Z. tritici is the refer-
ence for all other Dothideomycetes as it is the only one that has been completely finished [21].

The poor experimental amenability of P. fijiensis has significantly hampered progress in
understanding its basic biology [9] and the development of research tools. For instance, infec-
tion assays are cumbersome due to the need for very specific environmental conditions with
respect to temperature, light and relative humidity, and the slow development of the disease
that may take up to 50 days until symptoms are expressed [23,24]. Therefore, basic information
on pathogenesis is not available and almost nothing is known about the genetic basis of disease
resistance in banana germplasm [25,26]. Hence, new tools and research methods are needed to
better understand the disease and ensure continued production of the world’s number one
fruit, which is a staple food for millions of people in many developing countries.

A previous comparative analysis of 18 Dothideomycetes genomes [19] included that of P.
fijiensis isolate CIRAD86 for a global analysis of genome organization and evolution. However,
P. fijiensis was not the primary focus of that analysis and few specifics were discussed. Here we
focus on the genome sequence of P. fijiensis isolate CIRAD86, describe the sequence of a sec-
ond isolate, CIRAD139, and analyze in detail the species’ genome structure, content and
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function with a goal of delivering new data that could give clues for global disease management
of this devastating banana pathogen.

Results

Sequencing, assembly and annotation of the P. fijiensis genome
The genomes of the P. fijiensis isolates were sequenced using either Sanger technology
(CIRAD86) or Illumina for resequencing (CIRAD139a). The final assembly size of ~74 Mb
consisted of 56 scaffolds with the largest at 11.8 Mb and an N50 of 50 Kb. Inclusion of a newly
made genetic map facilitated assembly of the physical genome (S1 Table).

Genetic map construction involved 376 loci that segregated in the progeny of the mapping
population, among which 322 (233 DArT, 86 SSR, 3 minisatellite) markers were mapped into
19 linkage groups (Fig 1). The number of loci per linkage group varied from 2 to 35 with an
average of 17 and linkage groups 1, 2, 8 and 9 contained the largest numbers of markers with
35, 29, 31 and 26, respectively. Map distances between consecutive markers varied from 0 to
20.4 cM with the largest gaps between markers on linkage groups 14 and 17, of 6.1 and 20.4
cM, respectively (Fig 1).

After filtering for EST support, completeness and similarity to other species, 13,107 genes
were structurally and functionally annotated. The average gene length in the version 2 assem-
bly is 1,833 nt with 3.62 exons per gene; 88%, are complete with start and stop codon, 74%
have similarity support, and 49% have Pfam domains (S2 Table). Most of the gene models
(96%) are located in 12 scaffolds, numbers 1–10, 12 and 19. Gene density in these 12 scaffolds
varies from 151 to 229 per Mb, but gene density for the remaining scaffolds larger than 0.5 Mb
drops to only 2 to 94 genes per Mb (S1 Table). More detailed information on the assembly,
annotation and EST support data can be found in S1 Text.

Genome structure
The Pseudocercospora fijiensis genome is greatly expanded. The 74-megabase genome of

P. fijiensis is greatly expanded relative to those of other related Capnodiales such as Sphaerulina
musiva (previously Septoria musiva with teleomorphMycosphaerella populorum), S. populicola
(previously Septoria populicola with teleomorphMycosphaerella populicola) and less related
species such as Dothistroma septosporum, Baudoinia compniacensis, and Z. tritici, but less so
compared to C. fulvum, the closest Capnodiales relative sequenced and only other Dothideo-
mycete with an expanded genome of 65 Mb (Fig 2). The predominant repetitive elements in
the P. fijiensis genome belong to the long terminal repeat (LTR) retrotransposons (50%) (Fig
3), which is much higher than in Z. tritici, but similar to the proportion seen in C. fulvum.
Compared to these other two species, the genome of P. fijiensis contained much higher per-
centages of repetitive DNA and unclassified transposons, whereas that of C. fulvum had the
highest percentage of non-LTR retrotransposons among the three species (Fig 3). The esti-
mated number of gene models is 13,107, which is approximately 28% and 34% higher than in
S.musiva and S. populicola, respectively (Table 1) and 7% smaller than C. fulvum. Using the
80:80 criterion [27], i.e., 80% sequence identity across 80% alignment length, all of the P. fijien-
sis repeat families were unique. However, using a 70:70 cutoff criterion, elements from 50 P.
fijiensis repeat families, amounting to 449 kb, were similar to those in the C. fulvum genome. A
non-LTR repeat family from P. fijiensis (family 6), with an average element length of 4.9 kb,
had the highest representation with 36 copies in the C. fulvum genome.

Analysis of repeat-induced point mutation (RIP) showed a clear CA<-> TA dinucleotide
bias in the repetitive elements identified in the P. fijiensis genome (Fig 4). Some families also
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showed a CT<->TT dinucleotide bias. A similar pattern has been observed in a number of
ascomycete genomes, including Parastagonospora nodorum [28].

Repetitive elements often clustered to form blocks of AT-rich DNA. When an average DNA
content of 45% or less was used to define AT-rich regions, a total of 1,865 AT blocks were iden-
tified in the P. fijiensis genome, ranging in length from 1 to 514 kb. These blocks account for 45
Mb (61%) of the P. fijiensis genome and 84% comprised repetitive sequences. A total of 482
(4%) genes were associated with the AT blocks. About 20% (96) of these genes have associated
annotations and 6% (28) can potentially be secreted.

If a lower value of 40% average percent GC is used, the number of AT blocks diminished
drastically to 640, amounting to a total length of 18 Mb or approximately 25% of the P. fijiensis
genome. Repetitive sequences make up 84% and 152 (1.2%) genes were associated with these
AT-rich blocks. Approximately 22% (33) of the genes associated with AT blocks have an anno-
tation and about 10% (15) have signal peptides.

The average RIP index was 0.2 in the AT-rich blocks as compared to a higher average RIP
index of 1.37 across the rest of the genome. Plots of the RIP index were very low (indicating a
high level of RIP) in the AT blocks (Fig 5A) but much higher (low RIP) in the regions of the
genome with lower AT content (Fig 5B). As expected, there was a strong inverse relationship
between GC content and the amount of RIP as measured by the index (S1 Fig). Very few of the
genes (just over 3%) in AT-poor (= GC rich) regions of the genome showed any evidence of
RIP (index of 1.0 or less) compared to a little over half (53%) of those in AT-rich regions
(Table 2). In contrast, all but two out of 7,674 repeats in AT-rich regions showed evidence of
RIP and almost 93% of those in AT-poor regions (Table 2). Exceptions were few and minor (S2
Fig).

Fig 1. Genetic linkage map of Pseudocercospora fijiensis constructed from segregation data at 322
loci (233 DArT, 86 SSR and 3 minisatellite markers) among 135 individuals of a cross between the
sequenced isolates CIRAD86 and CIRAD139A. The Diversity Arrays Technology (DArT) markers were
named according to the output of proprietary DArT analysis software. For each of the 19 linkage groups
(listed on top) the cumulative map distances (cM) as calculated using the Haldane mapping function are
shown to the left.

doi:10.1371/journal.pgen.1005876.g001

Fig 2. Phylogenetic analysis showing the placement of Dothideomycete species within the Capnodiales with expanded genomes. At least two
genome expansions may have taken place; one leading to the banana pathogen Pseudocercospora fijiensis and one that contributed to its close relative the
tomato pathogenCladosporium fulvum. Genome sizes and percentages of the genome containing repeat elements are indicated in parentheses.

doi:10.1371/journal.pgen.1005876.g002
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First-derivative graphs obtained for melting profiles of Z. tritici showed a narrow curve with
a single peak (Fig 6A); in contrast, those for P. fijiensis showed a broad curve with two peaks
with G+C contents of 39.4 and 51.6% indicating heterogeneity (S3 Table). This agreed with the

Fig 3. Comparison of repeat classes among Zymoseptoria tritici, the only Dothideomycete with a completely sequenced genome,
Pseudocercospora fijiensis andCladosporium fulvum, the only other Dothideomycete known to have a transposon-expanded genome.

doi:10.1371/journal.pgen.1005876.g003

Table 1. Comparative genome statistics of the version 2 assembly of Pseudocercospora fijiensis, and several other sequenced fungi in the order
Capnodiales.

Genome statistic P. fijiensis V
2.0

C. fulvum V
1.0

Z. tritici V
2.0

B. compniacensis
V1.0

D. septosporum
V1.0

S. populicola V
1.0

S.musiva V
1.0

Genome size 74 MB 61.11 MB 40 MB 21.88 MB 30.21 MB 33.19 MB 29.35 MB

Scaffolds 56 4865 21 19 20 502 72

Scaffolds > 50 Kb 28 N.A* 21 17 14 141 13

Largest scaffold 11.8 MB 0.53 MB 6.0 MB 2.03 MB 5.1 MB 1.06 MB 5.11 MB

Percent in scaffolds > 50
KB

99.8 N.A 100 N.A N.A N.A N.A

Gene models 13,107 14,127 10,952 10,513 12,580 9,739 10,233

Coverage 6.9× N.A 8.9× 43x 34x 18x 35x

*N.A. Data not available at respective genome site.

doi:10.1371/journal.pgen.1005876.t001
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GC plots of sequence reads from P. fijiensis, which clearly showed a double-peak phenomenon,
the lower peak corresponding to transposon-rich regions (Fig 6E).

The melting profiles obtained from the DNA of both P. eumusae and P.musae also demon-
strated a double-peak pattern of genomic G+C content. The G+C content pattern in P. eumu-
sae was almost identical to that in P. fijiensis with peaks at 39.6 and 51.6%. In P.musae, both
peaks corresponded to lower, albeit still comparable, G+C contents of 37.2% and 50.9% (Fig
6A–6D, S3 Table). Plotting genome size on a phylogenetic tree of the Capnodiales identified at
least two expansions, one leading to P. fijiensis and the second to the biotrophic tomato patho-
gen C. fulvum (Fig 2).

To estimate the age of the transposon expansion in the P. fijiensis genome, 1,147 bona fide,
full-length LTR retrotransposons were used. Of these, 529 elements (46% of the total) had
LTRs that were highly similar in terms of mutations accumulated over time with a hypothetical
insertion age of less than one million years (Fig 7). Many older elements also were identified
(Fig 7) but these decreased with time, indicating that most of the transposon insertions
occurred relatively recently.

Electrophoretic karyotyping suggests variability in genome content and/or organization
among isolates. Pulsed-field gel electrophoresis of the CIRAD86 and E22 strains showed
small and large chromosomes, but no chromosomes in the medium range of 1.5 to 3.9 Mb. Iso-
late CIRAD86 showed 11 bands representing chromosomes, four of which appeared to be com-
posed of double, co-migrating bands (Fig 8A). Small chromosomes were in the size range of
0.83 to 1.45 Mb. Bands of 0.95 and 1.03 Mb showed approximately twice the intensity and
were assumed to represent at least two chromosomes each (Fig 8A). Conditions for separation
of large chromosomes showed a band of 5.2 Mb, a co-migrating chromosomal band of 4.33
and a smaller band of 4.27 Mb (Fig 8B). Strain E22 showed at least 12 bands in total, five of
which likely contain co-migrating chromosomes. Small chromosomes were in the range of
0.70–1.45 Mb, and large chromosomes had estimated lengths between 4.05 and 6.80 Mb

Fig 4. Repeat-induced point mutation (RIP) dinucleotide bias in Pseudocercospora fijiensis genome. A
clear CA <-> TA dinucleotide bias is observed in P. fijiensis repetitive families, indicating that RIP likely occurs
and mutates CA nucleotide pairs to CT.

doi:10.1371/journal.pgen.1005876.g004
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(Fig 8B). Additionally a comparison of small chromosomal bands of different strains originat-
ing from a single banana field showed that every isolate contained between five and nine small

Fig 5. Comparison of the amount of repeat-induced point mutation (RIP) between AT-rich blocks andmore GC-rich
regions of the Pseudocercospora fijiensis genome asmeasured by the RIP index (CpA+TpG)/(ApC+GpT). (A) AT-rich
blocks have a lower RIP index indicating a depletion of RIP-susceptible sites due to a higher frequency of RIP compared to (B) an
AT-poor region (higher GC) of the genome, which has a higher RIP index reflecting very little RIP. Four AT-rich blocks are shown
along with one AT-poor region for comparison. Length of each block in kilobases is shown along the x-axis and the RIP index (CpA
+TpG)/(ApC+GpT) is shown on the y-axis.

doi:10.1371/journal.pgen.1005876.g005

Table 2. The repeat-induced point mutation (RIP) index calculated as (CpA+TpG)/(ApC+GpT) for gen-
esa and repeatsa in AT-poor and–rich regions of the Pseudocercospora fijiensis genome.

Number of genes in Number of repeats in

RIP index AT-poor blocks AT-rich blocks AT-poor blocks AT-rich blocks

0.0 0 0 1 3

0.5 80 134 343 7,062

1.0 291 37 62 607

1.5 8,699 128 30 2

2.0 1,937 22 1 0

2.5 18 0 1 0

3.0 1 0 0 0

Total 11,026 321 438 7,674

a The minimum sequence cutoff length for this analysis was 500 bp. A lower RIP index indicates a higher

frequency of RIP mutations and vice versa.

doi:10.1371/journal.pgen.1005876.t002
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chromosomal bands with unique length polymorphisms (S3 Fig), indicating substantial varia-
tion in genome content and/or genome organization among individuals.

Fig 6. First-derivative graphs of melting curves of four different Dothideomycetes. Examples of first-
derivative graphs of melting curves obtained for Zymoseptoria tritici (A), Pseudocercospora fijiensis (B), P.
eumusae (C) and P.musae (D). E: A plot of G+C contents from sequence reads of P. fijiensis. This graph is
very similar to the melting-curve analyses showing the difference in G+C content between the genomes of P.
fijiensis and the other banana pathogens versus the Z. tritici genome.

doi:10.1371/journal.pgen.1005876.g006
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Synteny analysis suggests a core set of 12 chromosomes. Analysis of similarity between
the genomes of different Dothideomycetes shows a high degree of conservation of genes in syn-
tenic scaffolds. Mesosynteny was observed between P. fijiensis and all other Dothideomycetes
analyzed, including the Capnodiales B. compniacensis, Cercospora zeae-maydis, C. fulvum, D.
septosporum (Fig 9), S.musiva (S4 Fig), Zasmidium cellare and Z. tritici, the Pleosporales
Cochliobolus heterostrophus, L.maculans, Pyrenophora tritici-repentis and P. nodorum, and the
Hysteriales species Hysterium pulicare. Microsyntenic blocks of up to 10 Kb were found only
with the closest relatives C. fulvum, D. septosporum and Z. tritici (S.musiva was not tested for
this analysis). No macrosynteny was observed between P. fijiensis and any of the presently
sequenced Dothideomycetes.

Using Z. tritici as a reference it is clear that gene content is conserved among large blocks of
chromosomes. For example, scaffold 1 of P. fijiensis shows synteny with chromosomes 1, 4 and
5 of Z. tritici, scaffold 2 with chromosomes 2, 10 and 13, whereas scaffold 6 of P. fijiensis shows
synteny only with Z. tritici chromosome 6 (S5 Fig). Interestingly, no significant synteny was
found between any of the scaffolds of P. fijiensis and the dispensable chromosomes of Z. tritici
(Fig 10), supporting the hypothesis of their independent origin, possibly by recent horizontal
transfer, in the latter species [17].

Fig 7. The numbers of long terminal repeat (LTR) retrotransposons in hypothetical age bins from less than one to more
than 20million years. Estimated age of each transposon was calculated using the number of differences between its left and right
repeats. These are considered identical at the time of insertion so all changes are likely due to mutations that occurred after
transposition. All transition mutations were excluded to minimize the effects of repeat-induced point mutation.

doi:10.1371/journal.pgen.1005876.g007
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Most of the synteny found in P. fijiensis with Z. tritici as well as with all other Dothideomy-
cetes tested is present in scaffolds 1 through 10, 12 and 19. In addition, these scaffolds showed
the highest percent of genes with expression data (0.8% or greater), all of which suggest that
these 12 scaffolds might represent the core genome. Many of the smaller scaffolds in the P.
fijiensis genome have the physical characteristics observed for dispensable chromosomes in Z.
tritici; they are smaller, with lower G+C contents and gene densities (S1 Table). Based on these
criteria, the core genome of P. fijiensis comprises 63.9 Mb or almost 87% of the genome, while
the remaining 13% may be a dispensome.

Analysis of the synteny plots also showed some past chromosomal rearrangements. For
example, approximately 22% of the gene content of the central part of scaffold 1 of P. fijiensis
was missing from the largest scaffolds of D. septosporum (Fig 9) and S.musiva (S4 Fig), and
instead was found on scaffolds 8 and 7 of those species, respectively. This difference also was
seen in the comparison with the more distantly related Z. tritici (S5 Fig), although the result
was not as clear and more chromosomes were involved. In a direct comparison, scaffold 1 of D.
septosporum showed complete mesosynteny with scaffold 1 of S.musiva (S6 Fig), suggesting
that the central part of P. fijiensis scaffold 1 might have translocated after the divergence of all
three species from an unknown common ancestor. The chromosome that likely supplied the
translocation, corresponding to scaffolds 8 and 7 in D. septosporum and S.musiva, respectively,
showed 1:1 mesosynteny in the direct comparison between those two species (S6 Fig), but also
showed mesosynteny with P. fijiensis scaffolds 12 and 19 (Figs 9 and S4). This suggests that
scaffolds 12 and 19 of P. fijiensismay belong to a single chromosome that has not been assem-
bled completely. Similar analyses identified a possible translocation or incomplete assembly

Fig 8. Electrophoretic karyotypes of two strains of Pseudocercospora fijiensis. A) Bands separated
with conditions for small chromosomes. Lane 1, chromosomes from Saccharomyces cerevisiae as high-
molecular-weight (HMW) marker; lane 2, strain CIRAD86; lane 3, strain E22. B) Bands separated under
conditions to resolve medium and large chromosomes. Lane 1, chromosomes from Schizosaccharomyces
pombe as HMWmarker for large chromosomes; lane 2, strain CIRAD86; lane 3, strain E22; lane 4,
chromosomes from Hansenula wingei as HMWmarker for medium chromosomes in size. Marker sizes are in
Kb.

doi:10.1371/journal.pgen.1005876.g008

The Pseudocercospora fijiensisGenome Described and Applied

PLOS Genetics | DOI:10.1371/journal.pgen.1005876 August 11, 2016 12 / 36



involving scaffolds 3 and 8 of P. fijiensis, which correspond to scaffolds 5 (Fig 9) or 4 (S4 Fig)
of D. septosporum and S.musiva, respectively.

Re-sequencing of P. fijiensis isolate CIRAD139A shows a 12% difference in genome con-
tent. Among the more than 73 million reads of paired-end sequence data obtained for isolate
CIRAD139A, 60% could be aligned uniquely to the P. fijiensis reference genome of isolate
CIRAD86 (S4 Table). Another 28% of the reads aligned to multiple locations in the reference
sequence, most likely due to duplications or repetitive elements in the genome. Almost 12% of
the reads did not map to the reference, suggesting that some genome content present in CIR-
AD139A could be absent in the reference strain.

The numbers of polymorphisms varied widely among scaffolds roughly in proportion to
size, and the number of SNPs was much higher than for indels on all scaffolds analyzed (S5
Table). Mean SNP frequency on each scaffold calculated across a 10-kb window was more uni-
form, ranging from 59.2 for scaffold 13 to 84.1 for scaffold 11 (S5 Table). Plotting the SNP den-
sity relative to gene density for the 21 largest scaffolds containing 99% of all gene models
separated the scaffolds into two groups. One group contained most of the largest scaffolds and
showed lower variability in SNP counts, while the second contained scaffolds with low gene
densities and showed much more variability in SNP counts.

Genome content
Decreased numbers of pathogenicity-related genes. Cell wall degrading enzymes

(CWDEs) that break down physical barriers, including cutin, are important pathogenicity fac-
tors, particularly in necrotrophic fungi. Comparison of the number of genes related to cell wall
degradation in P. fijiensis with those in other fungi revealed a significant reduction, particularly
when compared to necrotrophic Dothideomycetes. Cutinases, xylanases and chitinases are

Fig 9. Dot plot showingmesosynteny between the scaffolds of Pseudocercospora fijiensis and
Dothistroma septosporum.

doi:10.1371/journal.pgen.1005876.g009
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reduced three to five fold when compared to three fungi in the Pleosporales: P. nodorum, P. tri-
tici-repentis and C. heterostrophus (Table 3). Additionally, carbohydrate-binding proteins,
including those with chitin-binding and cellulose-binding modules as well as β glucosidases
also are reduced (Table 3). EST support was found for four chitinases, 18 glucosidases, one cel-
lulose binding and four chitin binding genes.

Fig 10. Genome-wide nucleotide comparison between Zymoseptoria tritici (lower half of the circle) and Pseudocercospora fijiensis
(upper half of the circle). The longest 28 scaffolds from P. fijiensis are shown. Gene content is conserved but is scattered among different
chromosomes between these two fungi. There were no significant hits to dispensable chromosomes of Z. tritici (14–21). The 12 major scaffolds of
P. fijiensis showing synteny are labeled in dark blue-green and the other 16 scaffolds are labeled in orange.

doi:10.1371/journal.pgen.1005876.g010
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Similar to the CWDEs, the P. fijiensis genome shows a relatively low number of genes
involved in the production of secondary metabolites, such as polyketide synthases (PKSs), with
approximately half the number of genes found in the necrotrophs P. nodorum, P. tritici-repen-
tis and C. heterostrophus. Contrary to the situation for PKSs, genes encoding non-ribosomal
peptide synthetases (NRPSs) are not reduced in P. fijiensis. Its genome encodes 13 NRPSs and
one hybrid NRPS-PKS, which is comparable to the numbers found in other Dothideomycetes
(Table 3). However, EST support was found for only six of the PKS genes and four of the NRPS
and the hybrid NRPS-PKS genes. This low level of EST support might be a sampling phenome-
non due to the EST coverage; none of the libraries came from in planta conditions where these
genes are more likely to be expressed.

The P. fijiensis secretome. Filamentous fungal pathogens are able to modulate resistance
responses in the plant cell by secreting a class of proteins known as effectors. In many fungal
pathosystems, effectors are important pathogenicity or virulence factors that determine the
success of a fungal infection [29,30]. The majority of described fungal effectors share many
characteristics and belong to the class of small, secreted, cysteine-rich proteins (SSPs) [29]. A
search of the genome with the above criteria showed that P. fijiensis possesses 172 genes encod-
ing SSPs (smaller than 300 AAs in size) with four or more cysteine residues. Sixty-two percent
of the P. fijiensis SSPs have no blast hits (107 proteins), 21% (37 proteins) have assigned GO
terms and 23% have InterPro IDs other than SignalP (40 proteins). Thus, the number of poten-
tial SSP-encoding genes in P. fijiensis is 31% and 8% lower than in the genomes of P. nodorum
(250 genes) and Z. tritici (187 genes), respectively (S7 Fig). These results accord with Ohm
et al. [19] who found reduced numbers of SSPs in several Capnodiales.

Among the identified SSPs, one shows high similarity to C. fulvum Avr4, which is known to
have a chitin-binding domain and is a well studied effector in the C. fulvum-tomato interaction
[31]. This P. fijiensis putative Avr4 (PfAvr4) homolog is a 121 amino acid protein present on
scaffold 4 from co-ordinates 183261–183623 and was shown to protect Trichoderma viride cell
walls against hydrolysis by plant chitinases through chitin binding and to trigger a Cf4-medi-
ated hypersensitive response (HR) in tomato [32,33]. Additionally, three homologs of C.

Table 3. Comparison of selected gene families with potential roles in pathogenicity among five Dothideomycete fungi and the saprotrophic Sor-
dariomycete Neurospora crassa.

Pseudocercospora
fijiensis

Zymoseptoria
tritici

Parastagonospora
nodorum

Pyrenophora
tritici-repentis

Cochliobolus
heterostrophus

Neurospora
crassa

Peptidases 189 187 381 265 248 168

Cutinases 7 6 0 8 13 0

Beta Glucosidase
activity

9 2 6 13 13 3

Chitinases 5 3 36 17 21 8

Chitin binding 5 2 35 13 16 3

Cellulose binding 4 0 18 46 55 26

Xylanases 7 5 31 21 31 5

NRPS 13 11 18 13 11 5

Polyketide
synthases

11 12 21 28 21 4

Map kinases 5 5 12 5 4 4

Peroxidases 29 22 32 26 28 10

Carbohydrate
Metabolic process

127 77 231 204 209 129

O-glycosyl
hydrolase activity

77 51 129 97 106 77

doi:10.1371/journal.pgen.1005876.t003
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fulvum effector Ecp2 were found, one of which was able to induce different levels of necrosis or
HR in tomato lines depending on whether they lack or contain a putative corresponding Cf-
ECP2 protein [32,33]. It seems highly likely that at least some of these P. fijiensis effector pro-
teins that are similar to known effectors in C. fulvum will play a role in pathogenicity or viru-
lence of P. fijiensis on banana.

Genome function
Functional analysis of a putative effector protein. Infiltrations into banana and tomato

leaves were performed to test the hypothesis that PfAvr4 acts as an avirulence factor in banana.
Two different varieties were infiltrated with different concentrations of PfAVR4. Physical dam-
age (small tear and occasional slight necrosis limited to the site of infiltration) caused by either
the syringe or the fermentor medium was similar among varieties (Fig 11) and was less intense
in tomato plants (Fig 11B). Both large and small plants ofM. acuminata var. Grand Naine
showed only physical damage with an occasional slight chlorotic effect at the infiltrated area
(Fig 11A) after infiltrating the PfAVR4 protein; no hypersensitive response (HR) was observed
at 10 days post infiltration (dpi) regardless of the protein concentration used.

In contrast, PfAVR4 triggered a clear HR-like necrosis when infiltrated into leaves ofM.
acuminata ssp. burmannicoides var. Calcutta 4, which has resistance against P. fijiensis (Fig
11A). The necrosis was already visible on large plants at 4 dpi, and was stronger by 10 dpi at
both concentrations of PfAVR4. In small plants the earliest necrosis was observed at 10 dpi.
Fermentor medium triggered a slight necrosis on both small and large plants of var. Calcutta 4,
but this was very different from the HR-like necrosis induced by PfAVR4 and the combined
effect triggered by the fermentor product (Fig 11A). Furthermore, tomato plants without a
resistance gene (Cf0 plants) showed only physical damage following infiltration, while those
containing the Cf4 resistance gene showed a HR to crude fermentor products containing
PfAVR4 and to the purified PfAVR4 protein (Fig 11B).

Analyses of fungicide resistance and molecular markers within populations. In total,
621 hierarchically sampled P. fijiensis isolates were genotyped and partially phenotyped and
showed that the commercial (sprayed) plantations were entirely or nearly fixed for quinone
outside inhibitor (QoI) or strobilurin resistance (92–100%), whereas all 87 isolates sampled
from the wild type, unsprayed San Carlos population were sensitive (S6 Table). Subsequently,
we used the genome sequence to develop primers for five Variable Number of Tandem Repeat
(VNTR) loci enabling population diversity analyses that were combined with assessment of the
mating type loci. We observed that the ratios between the two mating type allelesmat1-1 and
mat1-2 are not significantly different from 1:1 in each individual population as well as the over-
all total number of isolates (S6 Table), and that the VNTR loci in all populations are in gametic
equilibrium and hence, could be used to estimate genetic differentiation between populations,
which was small but statistically significant (S7 Table).

Discussion
The genome of P. fijiensis is the largest among all of the Dothideomycetes sequenced to date; it
is 3.4 times larger than that of the Dothideomycete with the smallest genome, Baudoinia comp-
niacensis, 1.85 times larger than that of Z. tritici and 1.2 times larger than that of C. fulvum,
which is related to P. fijiensis and also has an expanded genome [18]. Almost all of the
increased size is due to the proliferation of LTR retrotransposons, as described here and in
another publication [34]. The thermal denaturation results indicate that G+C content hetero-
geneity is not limited to P. fijiensis, but also occurs in its close relatives within a monophyletic
clade of banana pathogens. Based upon the observed similarity of DNA composition between
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Fig 11. Infiltration of purified protein of the putative effector gene PfAvr4 from Pseudocercospora
fijiensis into leaves of banana and tomato. A: Infiltrations into leaves of resistant and susceptible banana
varieties. B: Infiltrations into leaves of tomato with or without theCf4 resistance gene known to interact with
PfAVR4. Experiments were done with crude fermentor product and concentrated or diluted product.
Fermentor medium alone and water were used as controls.

doi:10.1371/journal.pgen.1005876.g011
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these three banana pathogens, we predict that the genomes of both P. eumusae and P.musae
also are expanded and that all three pathogens that often co-occur in nature seem to have a
recent common ancestor [4].

The only other member of the Capnodiales known to have a similarly expanded genome is
the biotrophic tomato pathogen, C. fulvum [18]. Based on the positions of the species with
expanded genomes on the phylogenetic tree (Fig 2), there appear to have been at least two inde-
pendent expansions in genome size within the Capnodiales, one involving P. fijiensis (and
most likely related banana pathogens) and another for C. fulvum. Lack of similarity between
the transposable elements in the genomes of P. fijiensis and C. fulvum supports the hypothesis
of independent expansions in each genome.

The terminal repeats of LTR retrotransposons are identical at the time of insertion and this
provides a means to estimate the relative ages of transposable element insertions. This phe-
nomenon has been very useful for estimating transposon insertion times in plants [35,36] but
is less useful for fungi where RIP greatly increases the rate of mutations in repetitive sequences.
Using this approach in the basidiomycete Laccaria bicolor, three periods of transposon inser-
tion were identified, ranging in age from 0 to 59 million years ago (Mya) [37]. Whether RIP
occurs in L. bicolor is not known, but its genome does not contain the genes known to be
required for RIP in other fungi [38] and no evidence for RIP was found among transposons in
the genomes of other members of the Agaricomycotina [39] so it seems unlikely. Therefore,
this approach for estimating the ages of transposon insertions is most likely valid for L. bicolor.

A similar analysis of LTRs of transposons in the genome of Z. tritici yielded hypothetical
insertion ages ranging from 0 to 5.7 Mya, with the strong caveat that the times were probably
vastly overestimated due to RIP [40]. Even with the bias introduced by RIP, the estimated ages
of transposon insertions in the genome of Z. tritici were an order of magnitude younger than
those in L. bicolor, indicating that they must have occurred relatively recently. A more accurate
approach to estimating transposon age in the presence of RIP would be to exclude the RIP-sus-
ceptible sites from analysis [41]. Using this approach, transposon insertions in L.maculans and
closely related species in the Pleosporales, another large order of the Dothideomycetes, mostly
were relatively recent, within the past four million years [41, 42]. For P. fijiensis, the results of a
similar analysis clearly suggest a recent, rapid burst of LTR retrotransposon insertions. The
young age and high proliferation rate of around 46% of the LTR retrotransposons suggest that
P. fijiensis has a highly dynamic genome. Such a recent, high level of activity of retrotranspo-
sons can have evolutionary as well as regulatory implications for gene expression that can be
better understood using genomic comparisons with other closely related species.

Large genome expansions due to amplifications of repetitive elements have been observed
in other plant-pathogenic fungi. The published genome sequences and analyses of the powdery
mildew fungi Blumeria graminis f. sp. hordei, Erysiphe pisi and Golovinomyces orontii show a
marked genome expansion with a massive proliferation of non–LTR retrotransposons and a
corresponding decrease in gene content [43]. The missing genes in these obligate biotrophs
include enzymes for primary and secondary metabolism, carbohydrate-active enzymes, trans-
porters, and secreted proteins such as effectors. The genome of P. fijiensis also shows a moder-
ate decrease in certain gene families associated with pathogenicity such as PKSs and CWDEs
when compared to necrotrophic Dothideomycetes such as P. nodorum or P. tritici-repentis
[16]. In a similar way, the hemibiotrophs Z. tritici [17], S. populorum and S. populicola [19,22]
also show a marked decrease in CWDEs [19], although not to the extent seen in the powdery
mildews. This reduction in Z. tritici is thought to have evolved as a mechanism to evade detec-
tion by host defenses during stealth pathogenesis [17]. This hypothesis also could fit the life-
style of P. fijiensis since it has an even longer biotrophic phase of up to 28 days before necrotic
symptoms start to appear so may have a greater need for stealth [23]. However, the association
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is not perfect because the reduction in CWDEs in Z. tritici is greater, particularly for β
glucosidases.

Thus, within Ascomycetes there seems to be a correlation between pathogenic lifestyle (bio-
trophic vs. hemibiotrophic vs. necrotrophic) and diversity of certain gene families such as PKSs
and CWDEs. This correlation does not hold up when extended to other fungal groups. For
example, rust fungi are obligate biotrophs with greatly expanded genomes due to either the
proliferation of LTR retrotransposons similar to P. fijiensis for the wheat stem rust pathogen
Puccinia graminis, or to class II DNA transposons for the poplar rust fungusMelampsora lar-
ici-populina [44]. However, in both rusts gene numbers were greatly expanded including those
for SSPs that may be involved in interactions with their hosts [44]. Thus, evolution of a bio-
trophic lifestyle has involved very different changes in the genetic architecture of fungal
genomes, from the vast reductions in gene content noted in the powdery mildew fungi to huge
expansions for the rusts. Hemibiotrophs such as P. fijiensis fall in the middle of the continuum.
The one constant is the increased genome size due to transposons, which seems much more
common in biotrophic and hemobiotrophic pathogens compared to necrotrophs or
saprotrophs.

The mechanisms of these transposon expansions remain mostly unknown. The two main
unanswered questions revolve around the source of the invading elements and the mechanism
by which they proliferate. The most obvious source would be their host plants, but so far there
appears to be little evidence that transposons are being transferred from hosts to their patho-
gens. Biotrophic fungi should be the most suited for acquiring transposons because they are
restricted to growing in a very limited ecological niche and have specialized feeding structures
to retrieve nutrients from their hosts. For P. fijiensis, a search of the banana genome sequence
revealed that transposable elements account for almost half of theMusa sequence with LTR
retrotransposons representing the largest part [45,46], so the transposons might have come
from banana. If not from the hosts, then they most likely have been acquired from other fungi
or pests that are associated with the hosts. Horizontal transfer of genes has been shown in
other fungi such as P. nodorum [47] and Fusarium oxysporum f. sp. lycopersici [48] and it
could occur for transposons. Horizontal transfer has the potential to broaden host range and
pathogenicity of fungal pathogens or even create a new pathogen from a non/pathogenic strain
[47,48]. Solving the mystery about the origin of invading transposons is important for under-
standing the dynamics of fungal genome expansions, and the causal agents of the Sigatoka
complex on bananas represent a good model to address such a question.

A little more is known about the mechanisms for transposon expansion after they have
been acquired. Almost all fungi are capable of Repeat-Induced Point (RIP) mutation, a mecha-
nism for identifying and mutating repetitive sequences [39,41,49–52]. For transposons, the
mutations caused by RIP prevent successful translation of the genes coding for transposon
movement proteins so they become inactive and can no longer replicate. This provides a very
effective defense against transposon expansions in most fungi. In the powdery mildew fungi,
the genetic machinery required for RIP was missing [43] and this likely allows unrestricted
multiplication of transposons. For the rust fungi, no mechanisms for genome expansion were
proposed or tested [44].

For P. fijiensis, rid, the only gene known to be required for RIP, is present and the reading
frame appears to be intact. Repetitive sequences in the genome of P. fijiensis show high fre-
quencies of the C to T transitions that are characteristic of RIP, so this phenomenon seems to
be active. Because RIP is only active during meiosis, a possible explanation for fungi with exten-
sive asexual phases could be that transposon expansion occurs during asexual reproduction
and then is slowed by RIP during rare sexual reproduction. If transposons have expanded
enough and RIP is not completely efficient, some intact copies of transposons could remain
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after meiosis to continue expanding during the next extended asexual phase. This explanation
is possible in P. fijiensis; although it has been classically considered to be primarily reproducing
by sexual mating, more recent studies suggest that asexual reproduction also plays an impor-
tant role during epidemics [53,54]. Transposon expansion most likely occurs episodically when
RIP or other mechanisms are relaxed, but when and how these episodes occur is currently
unknown.

In Z. tritici, a different type of genome expansion occurred through the acquisition of a
large set of dispensable chromosomes, referred to as the dispensome [17]. The Z. tritici dispen-
some contains at least eight chromosomes with no known function that appear to have been
acquired by horizontal transfer from an unknown donor more than 10,000 years ago [17,55].
Such a large number of dispensable chromosomes with no known effects on fitness so far is
unique among fungi. Many potential dispensable chromosomes were identified among the
genomic scaffolds of P. fijiensis based on the characteristics of known dispensable chromo-
somes in Z. tritici. However, dispensability still has not been proven for P. fijiensis. None of the
P. fijiensis linkage groups were missing in progeny isolates, one of the hallmarks of dispensable
chromosomes in Z. tritici [56]. However, this is not surprising because none of the linkage
groups corresponded to any of the putative dispensable scaffolds. If P. fijiensis does contain a
dispensome, it is different from that in Z. tritici because there was almost no similarity between
the dispensable chromosomes of Z. tritici and any of the scaffolds of P. fijiensis, or vice versa.
This raises the intriguing possibility of separate events leading to horizontal transfer of large
numbers of chromosomes between species in the Capnodiales and other fungi.

Electrophoretic karyotyping of P. fijiensis showed a remarkable level of variability among
isolates, even those coming from the same population. This chromosome length and number
polymorphism was also described previously in P. fijiensis [57] and in other fungi [58–60]. The
mechanisms of such variation include chromosome rearrangements during meiotic recombi-
nation and the presence of dispensable chromosomes [61]. From a different perspective, it has
been shown that chromosomal reshuffling can drive evolution of virulence in asexual plant-
pathogenic fungi [62]; thus both sexual and asexual life cycles could be a source of chromo-
somal variation. This could constitute a mechanism of adaptation to environmental changes
such as selective pressure from chemical fungicides. Field isolates karyotyped in this work were
collected in Costa Rica in an area with a high level of fungicide applications.

Overall, P. fijiensis chromosomes are larger than those from other Ascomycetes, including
its completely sequenced relative Z. tritici [17]. Remarkably, P. fijiensis contains a scaffold
larger than 10 Mb, which is at the limit of PFGE resolution. Chromosomes of this size have
been observed in other fungi [63–65] but they are not common. Medium-sized chromosomes
were not found, similar to previous records for Mexican isolates [57]. Interestingly, the seven
smallest main scaffolds, including the smallest calculated core chromosome (0.61 Mb) and six
of the putative dispensable chromosomes did not appear in PFGE, as CIRAD86 did not show a
chromosome smaller than 0.8 Mb. The total number of chromosomes separated by PFGE is at
least 11, and probably up to 15 when possible co-migrating bands are counted separately, in
addition to the five unresolved largest scaffolds.

The availability of a genome sequence enables the identification of genes that might be
involved in pathogenicity, including those encoding putative effector proteins. Fungal effectors
are proteins that aid pathogenicity, usually by subduing host defenses. However, these same
proteins affecting pathogenicity also can be recognized by the host resistance proteins, trigger-
ing a defense response and making them advantageous or disadvantageous to the pathogen
depending on the host genotype. Bioinformatic analysis of the P. fijiensis genome identified
many putative effectors, including one that appears to be a homolog of the Avr4 effector in the
related Dothideomycete, C. fulvum [31]. The P. fijiensis putative Avr4 homolog PfAvr4 was on
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scaffold 4 adjacent to repeats of 617 and 2765 bp and a 6-kb AT-rich block with a GC content
of 39.3%, similar to known effectors in other fungi, which often are in AT-rich regions [41,55].
Other genes in this region of the P. fijiensis genome were different from those in Z. tritici and
C. fulvum, indicating little synteny among genes around the PfAvr4 homologs in related spe-
cies. Previous research showed that PfAvr4 is a functional homolog of the CfAvr4 virulence fac-
tor in C. fulvum, and that, despite a low amino acid identity of only 42%, it could be recognized
by the Cf4 resistance protein to stimulate an HR in tomato [32]. However, whether PfAvr4
could be recognized by banana cultivars had not been tested until now.

The response of the banana varieties to the PfAVR4 protein strongly suggests that it acts as
an avirulence factor that is recognized by a resistant banana accession where it elicits an HR-
like necrosis. Most probably this protein has a function similar to that of its homolog in C. ful-
vum where it is an effector that facilitates disease in susceptible cultivars of tomato and can be
recognized by the Cf4 receptor in a resistant tomato cultivar to elicit the HR [31]. To our
knowledge, this is the first fungal effector known to induce a cultivar-specific, HR-like necrosis
in banana, suggesting thatM. acuminata ssp. burmannicoides var. Calcutta 4 most likely has a
functional R gene that recognizes PfAVR4, and which appears to be a functional homologue of
Cf4 in tomato. Additional experiments are needed to thoroughly test the hypothesis that var.
Calcutta 4 contains an HR-inducing resistance gene effective against P. fijiensis. These could
include analysis of progeny from controlled crosses between var. Calcutta 4 and a susceptible
banana to test for co-segregation of necrosis induced by PfAVR4 and resistance to P. fijiensis,
or deletion of PfAvr4 to test whether the resulting mutant becomes virulent to var. Calcutta 4.
However, these experiments would be challenging due to experimental limitations in this
pathosystem: crosses in banana frequently suffer from segregation distortions due to the occur-
rence of translocations and functional analyses in P. fijiensis are not routine.

The banana var. Calcutta 4 has been a source of resistance against fungi, bacteria and nema-
todes inMusa breeding programs [66,67]. It is one of the most resistant accessions in field eval-
uations against P. fijiensis populations from around the world, with the exception of some
isolates from the Pacific islands and Papua New Guinea [68], which are considered as the cen-
ter of origin of the disease [5]. In addition, var. Calcutta 4 has shown resistance to crude
extracts from P. fijiensis [69,70]. The identification of PfAvr4 as a likely avirulence factor in var.
Calcutta 4 provides a major advance for banana breeding programs aiming at increasing the
level of resistance against black Sigatoka. Purified effector proteins can be used to identify
other resistance genes and to facilitate rapid selection of resistant progeny from segregating
populations. The current selection process in resistance breeding is inadequate as it exclusively
relies on field evaluations, and is slow because black Sigatoka has a latent period of a month or
longer and the banana cycling time, depending on the species, is approximately 10–15 months.
Similar experiences slowed down resistance breeding in wheat to Z. tritici until the elucidation
of its mating system showed single-gene inheritance of pathogenicity factors that facilitated
more precise isolate characterizations and subsequent R-gene discovery [17,71–74]. Other
potential genes involved in pathogenicity are discussed in supporting S2Text.

QoIs represent a class of fungicides that initially showed impressive efficacy against many
plant pathogens [75]. However, resistance evolved rapidly and soon rendered the compound of
little use in multiple pathosystems [76]. Diagnostic primers for the mitochondrial cytb gene
showed that P. fijiensis is no exception, as the three commercial and frequently sprayed planta-
tions were nearly or completely fixed for resistance. This is a remarkable shift compared to
analyses performed during 2000–2003 when only part of the population was resistant [77].
Interestingly, the San Carlos population, which was not sprayed with fungicides, is still entirely
sensitive. This result suggests limited genetic exchange between these populations that are sep-
arated by about 100 km. Nevertheless, even limited gene flow could have an impact on
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untreated areas. Because the selection pressure exerted by strobilurins is quite strong, the resis-
tance frequency rapidly increases from a low number of resistant individuals to widespread
resistance soon after fungicides are used, particularly since these compounds do not prevent
sexual reproduction [78]. This prompted us to process the P. fijiensis genome sequence with a
bioinformatics pipeline to develop VNTR markers for rapid PCR-based population analyses to
compare with a priori neutral markers. Nonetheless, some genetic differentiation occurs
between the populations as already described earlier in Costa Rica using microsatellite markers
[79]. However, because populations have not yet reached mutation–drift equilibrium, gene
flow could not be estimated using classical genetic models based on genetic differentiation
[79]. Fortunately, new indirect [80] and direct [53] methods have been recently used to provide
estimates of dispersal in P. fijiensis that could be integrated in theoretical and spatially explicit
models to predict spatial patterns of fungicide resistance evolution under different manage-
ment strategies.

The availability of the CIRAD86 genome sequence and the resequence data of CIRAD139
for P. fijiensis will blunt its continued threat to global production by facilitating the develop-
ment of resistant cultivars in banana breeding programs. The rapid development of fungicide
resistance and extreme variability of the P. fijiensis genome among isolates coupled with a high
level of sexual reproduction make this pathogen highly adaptable to changing environmental
conditions. Diversifying and increasing the level of host resistance in banana may be the only
way to slow the devastation caused by this fungus in the future.

Materials and Methods

Fungal culture conditions and DNA extraction
Pseudocercospora fijiensis isolate CIRAD86 (mat1-1mating type, originating from Cameroon
in 1988) was chosen for sequencing because it is the epitype for the species, has been the subject
of intensive analyses previously and is one parent of an existing mapping population [81]. CIR-
AD139a (mat1-2, originating from Colombia in 1990) was used for resequencing. CIRAD86 is
maintained at the CBS-KNAW Fungal Biodiversity Centre (CBS 120258).

Mycelia for DNA extraction were grown in 1L Erlenmeyer flasks containing 200 mL of PDB
(potato dextrose broth; Becton Dickinson, NJ, USA) shaken at 120 rpm at 28°C. Mycelial mats
produced during culture were filtered to remove the broth and lyophilized. Samples containing
50 mg of lyophilized mycelia were placed in 2 mL tubes and ground with a Hybaid Ribolyser
(model n° FP120HY-230) for 10 s at 2500 rpm with a tungsten-carbide bead. DNA was
extracted from the ground mycelia using the Wizard Magnetic DNA Purification system (Pro-
mega, Netherlands) for food according to instructions provided by the manufacturer.

Genomic sequencing, genetic mapping, assembly and annotation
Whole-genome shotgun sequencing and assembly of the P. fijiensis genome were done using
Sanger sequencing of three different-sized libraries (3- and 8-kb plasmids, and 40-kb fosmids)
as described previously for Z. tritici [17] and other species [82]. The initial version 1 assembly
was improved by aligning the physical scaffolds to a genetic linkage map constructed using
Joinmap V 4.0 software [83] to analyze the segregation data for 322 markers that were scored
on 135 progeny of the cross between isolates CIRAD86 and CIRAD 139A [81]. For each molec-
ular locus, a goodness-of-fit analysis was performed to test for deviation from the expected 1:1
segregation ratio at a 1% significance level. Linkage groups were established using a minimum
LOD score of 9.0 and final mapping was achieved by combining two or more linkage groups
belonging to the same chromosome. The order of the markers on each chromosome was deter-
mined using a minimum LOD score of 1.0, recombination threshold of 0.4, jump of 5.0, ripple
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value of 1 (default) and Haldane’s mapping function as parameters. In cases of uncertainty,
some markers were removed and the order was recalculated until a more stable order was
achieved.

Three methods were used to identify the P. fijiensis repetitive sequences. Repeated sequences
in the genome were identified de novo using RECON [84] and the k-mer based method
RepeatScout [85]. A custom set of repeats and the RepBase Update library of 234 fungal repeats
[86] were then used to mask the P. fijiensis genome using RepeatMasker (http://www.
repeatmasker.org/) [87].

Repeat families with 10 or more elements identified by RepeatScout were annotated and
classified into categories based on the presence of protein domains (BLAST [88]). Structural
features including Long Terminal Repeats (LTRs) and Terminal Inverted Repeats (TIRs) were
verified using the EMBOSS [89] software package. Sequences with no known proteins or struc-
tural features were grouped into the unclassified category.

Identification and annotation of protein-coding genes were performed using the JGI Anno-
tation Pipeline, which takes multiple inputs (scaffolds, ESTs, and known genes), runs several
analytical tools for gene prediction and annotation, and deposits the results in the JGI fungal
genome portal MycoCosm (http://jgi.doe.gov/fungi) [90] for further analysis and manual
curation.

Several gene-prediction programs falling into three general categories were used to annotate
the repeat-masked assembly as described by Ohm et al. [19]. The resulting set of putative genes
was then filtered for the best models based on EST and similarity support to produce a non-
redundant representative set. This representative set of filtered gene models from the auto-
mated annotation pipeline was subject to further analysis and manual curation as described by
Goodwin et al. for Z. tritici [17] and by Ohm et al. [82] for more recently sequenced species.
Measures of model quality included proportions of the models complete with start and stop
codons (88% of models), those that were consistent with ESTs (30% of models) and those sup-
ported by similarity with proteins from the NCBI NR database (74% of models) as summarized
in S8 Table.

Functional annotations for all predicted gene models were made using SignalP [91],
TMHMM [92], InterProScan [93], and BLASTp [88] against the nr, SwissProt (http://www.
expasy.org/sprot/), KEGG [94] and KOG [95] databases as described by Ohm et al. [19]. Multi-
gene families were predicted with the Markov clustering algorithm (MCL) [96] to cluster the
proteins using BLASTp alignment scores between proteins as a similarity metric. Functional
annotations are summarized in S9 Table. Manual curation of the automated annotations was
performed using the web-based interactive editing tools of the JGI Genome Portal to assess
predicted gene structures, assign gene functions, and report supporting evidence. Gene models
predicted by the JGI annotation pipeline were also analyzed using the program Blast2GO [97]
with an E-value of< 10−6. Blast2GO assigns GO terms based on the BLAST definitions. Com-
parisons between groups of genes for enrichment of GO terms were done by using Fisher’s
exact test implemented in the Blast2GO program.

Potential secreted proteins were identified with a python script made to run all gene models
through SignalP 3.0 [98] and subsequently filtered for proteins that had no transmembrane
domains, no signal anchor motifs, were fewer than 300 amino acids in length and had at least
four cysteine residues. The gene models that fulfilled these criteria were considered as potential
SSPs.

For re-sequencing of isolate CIRAD 139A, a paired-end library was made using the standard
Illumina library prep protocol with NEB reagents. Average insert size of the library was 272
base pairs. Sequencing was done on an Illumina GAIIx in one lane of a 54-cycle paired-end run
using 36-cycle version 5 SBS Kits. The flow cell was built using a version 4 paired-end cluster
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generation kit. Eventually, 37 million reads were obtained for a total yield of 4 gigabases. Paired
reads were aligned to the P. fijiensis v2 Assembly reference scaffolds using GSNAP (2010-03-09
release), allowing up to 3 mismatches or 1 indel and with end trimming enabled. Uniquely
aligned reads were then used to call variant sites using the Alpheus pipeline, requiring that a
variant have support from at least two reads with an average quality of bases of at least phred
10 and at least 80% of the reads covering the site calling that variant. Nonsynonymous SNP dif-
ferences were assessed against the coding regions in the P. fijiensis v2 Frozen Gene Catalog
20100402.

To survey the non-synonymous SNPs in the annotated protein set of CIRAD86, a simple
analysis of functional bias in variant proteins was conducted using a ranking comparison
approach. All genes were ranked based on their non-synonymous SNP count (normalized for
coding sequence length) and two selected gene sets were compared with the whole-genome set.
The two sets used for comparison were the 1500 most-variant proteins (Set V) and the 1500
least-variant proteins (Set C), taken from the list of genes ranked by non-synonymous SNP
count. The annotation files for the P. fijiensis v2 Frozen Gene Catalog 20100402 were used as
the source of GO terms for the genes. The ranked frequency of occurrence of GO terms in the
gene annotations for the whole genome was compared with those for Sets C and V.

Repetitive element analysis
For each repetitive element family, a subset of elements with lengths within 50% of the longest
element was aligned using clustalX [99]. These alignments were submitted to RIPCAL [28] to
determine the dinucleotide bias observed in repetitive elements. RIPCAL estimates 'RIP domi-
nance' for each dinucleotide containing a cytosine. It is the ratio of a given dinucleotide (e.g.,
CA) to the sum of the other three dinucleotides (CG/CC/CT).

To test for isochores in the P. fijiensis genome, a contiguous stretch of sequence with an
arbitrarily chosen average GC content of less than 45% was categorized as an AT block. Cus-
tom python scripts were used to calculate the percent GC across the genome, to generate AT
blocks and to calculate the average percent GC across the AT blocks and those fewer than 500
bp apart were merged into blocks of at least 1 kb in length, which were retained and analyzed
for their composition and distribution of repetitive sequences and genes.

To estimate and compare the amount of RIP between the AT-rich blocks and the rest of the
genome, a custom python script was written using a 500-bp sliding window with a step size of
100 bp. The amount of RIP was calculated as an index (CpA+TpG)/(ApC+GpT) and estimated
separately for each of the AT-rich versus AT-poor regions in the genome. The RIP index mea-
sures the depletion of the RIP targets CpA and TpG; thus, lower values of (CpA+TpG)/(ApC
+GpT) are indicative of a higher degree of RIP [28].

To estimate the ages of transposon insertions, LTR retrotransposons were identified and
annotated using the LTRharvest [100] and LTRdigest [101] modules in GenomeTools [102].
LTR sequences from these elements were aligned using ClustalW [99] and manually curated to
estimate the numbers of mutations that had accumulated over time. All transition mutations
were ignored in this analysis to remove the bias caused by RIP. Age of the LTR retrotranspo-
sons was calculated using the average rate of 1.09 × 10−9 substitutions/site/year as proposed for
fungal sequences [103].

To test whether the transposons in the P. fijiensis genome were unique, a comparison was
made to transposable elements (TEs) in the genome of C. fulvum, the only other sequenced
fungus in the Capnodiales with an expanded genome. RepeatMasker [85] was used to mask the
C. fulvum genome using the repeat database from the P. fijiensis genome. The resulting file was
parsed using the 80:80 rule of Wicker et al. [27], i.e., 80% identity across 80% length to identify
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repeats in common between the two genomes. Another run was done at a 70:70 cutoff to allow
for greater divergence generated by RIP.

Generation and analysis of EST sequences
The CIRAD86 strain was grown in three culture media for production of cDNA libraries:
yeast-glucose broth as a rich medium (10 g of yeast extract and 30 g of glucose per liter); mini-
mal nutrient medium (1 g of KH2PO4, 1 g of KNO3, 0.5 g of MgSO4�7H2O, 0.5 g of KCl, 0.2 g
of glucose, 0.2 g of sucrose per liter); and minimal nutrient medium without a nitrogen source
(as above but without KNO3). Fungal mycelia were grown in each medium at 25°C for 10 days
with a photoperiod of 12 hours using cool-white fluorescent light on a rotary shaker at 100
rpm. Mycelia derived from all three in vitro conditions were harvested by filtration and ground
in liquid nitrogen. The RNA was isolated by the trizol method with the RNeasy kit (Qiagen,
Netherlands) with 2 g of starting material. RNA quality and quantity were assessed by spectro-
photometer and by gel electrophoresis according to standard procedures. For cDNA library
construction, first-strand cDNA synthesis was done using polyA+ RNA, reverse transcriptase
(SuperScriptII (Invitrogen, CA, USA)) and an oligo dT-NotI primer (5' GACTAGTTCTA-
GATCGCGAGCGGCCGCCCT15VN 3'). Second-strand synthesis was done by E. coli DNA
ligase, polymerase I and RNaseH before end repair with T4 DNA polymerase. The SalI adaptor
(5' TCGACCCACGCGTCCG and 5' CGGACGCGTGGG) was ligated to the cDNA and
digested with NotI before selecting the size range by gel electrophoresis. Sizes were 0.6–2 kb
and 2–10 kb. The cDNA of P. fijiensis grown in yeast-glucose medium was divided into librar-
ies CBBT and CBHU (0.6-2kb) and CBHT (2-10kb). The cDNA from culture on minimal
nutrient medium was divided into libraries CBBW and CBHX (0.6-2kb) and CBBU and
CBHW (2-10kb), and for the libraries of culture on minimal nutrient medium without nitro-
gen source, cDNA was divided into libraries CBBX and CBHY(0.6-2kb). The size-selected
inserts were cloned into the pCMVSPORT6 vector (Invitrogen) and digested with SalI and
NotI. Ligated vectors were transformed into ElectroMAX T1 DH10B cells (Invitrogen).

Sequence reads from cDNA libraries were trimmed of vector, linker, adapter, poly-A/T, and
other artifact sequences with the Cross-match software. Internally developed software at the
JGI-DOE identified short patterns and low-quality regions (Q15). The longest high-quality
region of each read was counted as an EST. Clustering of ESTs was performed based on pair-
wise alignments generated using the Malign software, a modified version of the Smith–Water-
man algorithm [104], which was developed at the JGI for use in whole-genome shotgun
assembly. ESTs sharing an alignment of at least 98% identity with 150-bp overlap were
assigned to the same cluster. For each cluster of EST sequences, a consensus sequence was gen-
erated by running the Phrap software [105,106].

Functional analysis of a putative effector protein
Plantlets ofM. acuminata ssp. burmannicoides var. Calcutta 4 (recognized as a resistant stan-
dard for BLSD) were multiplied and rooted in vitro, whereas Cavendish “Grand Naine” tissue
culture plants were hardened for three to four weeks in a greenhouse environment. Subse-
quently, all plantlets were grown for three months (small plants), and some plants of var. Cal-
cutta 4 and “Grand Naine” were grown for eight months (large plants) in a controlled-
environment greenhouse compartment at 25°C with a relative humidity of>80% and 16 hours
of light per day.

Plants of tomato (Lycopersicum esculentum) cv. Moneymaker (MM), which has no known
Cf resistance genes (Cf0), or an isogenic line previously transformed with the Cf4 resistance
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gene were grown under greenhouse conditions as described by Stergiopoulos et al. [32] during
3–4 weeks.

The mature protein from the P. fijiensis putative effector gene PfAvr4 was produced heterol-
ogously by culturing Pichia pastoris isolate GS115 in a fermentor as described previously [107].
Following production in the fermentor, the protein was further purified from excess liquid
medium and smaller proteins by filtration through a 3-kDa membrane (Amicon Ultra-15 Cen-
trifugal filter unit, Millipore, USA).

Infiltration of the complete fermentor product or purified PfAVR4 protein into banana and
tomato leaves was done by injection with a 1-mL syringe with no needle. Infiltrations on
banana leaves were done at the original concentration and a six-fold higher concentration. For
tomato, all infiltration materials were diluted fifty or seventy-five times prior to infiltration.
Samples of the fermentor medium and water were infiltrated separately as negative controls for
all plants. At each infiltration point, the observed water soaking of tissue was marked with a
permanent marker. Observations were recorded with an Olympus C-8080 digital camera at
four and 10 days post infiltration (dpi) on banana leaves, and at 6 dpi for tomato plants. Pro-
tein preparation and controls were infiltrated in at least two banana leaves from each genotype
in small and large sizes, with at least 3 repetitions per leaf. Infiltrations in tomato plants were
performed in at least 4 leaves with one repetition.

Thermal denaturation assays
The thermal denaturation method of Marmur and Doty [108], performed basically as
described by Smith et al. [109], was used to estimate G+C contents of DNA from P. fijiensis iso-
late CIRAD86 (CBS120258) plus that from the closely related banana pathogens P.musae (iso-
late UQ430; CBS121371) and P. eumusae (isolate CBS122457) as well as the previously
sequenced Z. tritici isolate IPO323 (CBS115943) [17]. Genomic DNA was isolated from cul-
tures grown in PD broth at 25°C on a rotary shaker (150 rpm) following the procedure
described by Raeder and Broda [110] and was dissolved in 0.1X SSC. Melting curves were
obtained on a Perkin-Elmer λ25 spectrophotometer equipped with a thermal programmer.
The G+C contents were calculated from the Tm values (melting/transition temperature)
derived from the peaks of the first derivatives of the melting curves [111]. DNA from Candida
parapsilosis isolate CBS604 (Tm in 0.1 x SSC, 70.6°C) [3] was used as a calibration control.
Determinations were performed at least twice for each isolate.

Phylogenetic analysis
Phylogenetic analysis showing the placement of species within the Capnodiales with expanded
genomes was done using Internal Transcribed Spacer regions (ITS). DNA sequences were
downloaded from GenBank with the following accession numbers: AF181692 for Z. tritici,
EU514233 for P. eumusae, EU514265 for P.musae and EU514248 for P. fijiensis or obtained
from genome data available at the Fungal Genome portal at JGI. Sequence alignment was done
using MUSCLE [112] and the phylogenetic tree was generated with MEGA 6.0 [113] using a
Maximum Likelihood statistical method and the Tamura 3-parameter substitution model. Sup-
port for the nodes of the tree was estimated by bootstrapping with 1000 replications.

Electrophoretic karyotyping
Isolates of P. fijiensis grown for 3 weeks in PD broth at 28°C, 150 rpm, were blended and
grown for 48 hrs in the same medium at 20% strength amended with 1 μM tricyclazole.
Decanted culture was washed with 1 M sorbitol, and added to 40 mL of OM buffer (1.2 M
MgSO4, 10 mM K phosphate, pH 5.8 with 700 mg of glucanase (Sigma, Germany), 256 mg of

The Pseudocercospora fijiensisGenome Described and Applied

PLOS Genetics | DOI:10.1371/journal.pgen.1005876 August 11, 2016 26 / 36



yatalase (Takara, Japan), 7500 U of β-glucuronidase (Sigma) and 0.8 g of driselase (Sigma)) in
a ratio of ~1:3 (mycelium:buffer). The enzymatic treatment was incubated at 33°C and shaken
at 50 rpm for 4.5 hrs.

Protoplasts were filtered through a plastic mesh of 30 μm and washed 3 times with 1 M sor-
bitol in sterile conditions. When the concentration was at least 1 × 108 per mL, protoplasts
were embedded in low-melting point (SeaKem Gold) agarose at a final concentration of 0.5%.
Agarose plugs were treated with proteinase K as described previously [114], washed with cold
50 mM EDTA, and kept in the same solution at 4°C until used.

Chromosomes of P. fijiensis were separated in a CHEF DR-II system (Bio-Rad, Nether-
lands). Small chromosomal bands were discriminated as described before [57] using the chro-
mosomes of Saccharomyces cerevisiae (Bio-Rad) as a high molecular weight (HMW) standard.
Large chromosomes were separated in a 0.8% low-melting point (SeaKem Gold) agarose gel,
with 0.5% TBE buffer at 11°C, and 50 V for 195 hrs with switching times from 4800 to 1800
sec, and 24 hrs from 1800 to 1300 sec, followed by 20 hrs at 60 V from 1300 to 800 sec, and
finally 27 hrs of 800 to 600 sec at 80 V. HMW standards were Schizosaccharomyces pombe and
Hansenula wingei chromosomes (BioRad). Agarose gels were stained with SYBRGold (Invitro-
gen) and destained in water for 30 and 20 min, respectively, observed under a UV transillumi-
nator and recorded with an Eagle Eye II (Stratagene) still video system.

Whole-genome comparisons and synteny analyses
Two tools, Circos [115] and MUMmer [116], were used for structural analysis of the P. fijiensis
genome. A nucleotide-based similarity search was done between the masked P. fijiensis and Z.
tritici genomes and visualized using Circos [115], whereas protein comparisons between the
masked genomes were done using Promer [116]. Proteins with greater than 60% identity were
reported.

Proteins in P. fijiensis and Z. tritici with at least 50% amino-acid identity and match length
were grouped as orthologs using OrthoMCL [117] and synteny blocks were determined using
Orthocluster [118]. The Z. tritici protein dataset also was compared to two other phylogeneti-
cally distant Dothideomycetes in the order Pleosporales, P. nodorum and P. tritici-repentis.

Fungicide sensitivity and population analyses
To analyze the frequencies of molecular marker alleles and fungicide resistance within popula-
tions, four farms in Costa Rica were sampled during 2008 (S8 Fig). San Pablo, Zent, and Carta-
gena are located in Limón province, where bananas are grown at high density on large
plantations and diseases are controlled by using chemical fungicides. These farms are located
in the main Costa Rica banana production area with approximate sizes of 285, 342 and 64 ha,
respectively. A fourth farm, San Carlos (0.5 ha), is located in Alajuela province and is isolated
geographically from the principal banana-production area. Leaf tissue was collected from ten
banana plants from each farm. Ascospores were discharged from the pseudothecia onto water
agar [119] and single ascospores were transferred immediately to 15 x 100-mm petri dishes
filled with potato dextrose agar (PDA). Between eight to ten ascospores from each sample
point were placed on each dish of PDA. After 4 days colonies were transferred to Mycophil
agar (Becton Dickinson Microbiology Systems, Cockeysville, MD) and incubated for 15 days at
25°C under continuous fluorescent light for colony growth and conidial production. Eventu-
ally, 649 isolates were collected and analyzed for phenotypic and molecular variability.

To obtain DNA for population genetics analyses, mycelia of 190 isolates from each of the
three commercial plantations and of 95 isolates from the San Carlos population were harvested
and lyophilized for 24 hours. Genomic DNA was extracted using the Wizard Magnetic DNA
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Purification System for Food Kit (Promega, Madison, WI, USA) according to the manufactur-
er’s instructions and 2 μL per sample were quantified using a NanoDrop ND-1000 Spectropho-
tometer (NanoDrop Technologies, Wilmington, DE, USA). Mating type (mat) PCR assays
[120] were performed in a 50-μL total volume containing 50 ng of template genomic DNA, 2
mMMgCl2, 600 μM dNTPs, 5 μM of each primer, and 0.4 U of Taq DNA polymerase (Roche,
Mannhein, Germany). Temperature cycling was carried out with the following program: 94°C
for 2 min, 40 cycles of 94°C for 1 min, 70°C for 30 s and 72°C for 1 min, and a final elongation
period of 10 min at 72°C.

Analysis of VNTR markers was done as reported previously [121]. For genotyping strobi-
lurin resistance, primers were developed on the basis of the G143A mutation in the cytb gene
[122] to identify sensitive and resistant P. fijiensis field strains (S10 Table) in 20-μL aliquots
containing 50 ng of template genomic DNA, 2 mMMgCl2, 600 μM dNTPs, 5 μM of each
primer and 0.4 U of Taq DNA polymerase (Roche, Mannhein, Germany). Temperature cycling
was conducted with the following program: 94°C for two min, 40 cycles of 94°C for one min,
70°C for 30 s and 72°C for one min, and a final elongation period of 10 min at 72°C. Amplicons
were separated by electrophoresis using 1% (format and cytb assays) or 3% (for VNTRs) aga-
rose gels containing 0.3 μg/mL ethidium bromide, in 0.5× TBE buffer at 120 V for approxi-
mately 1 h (format and cytb assays) or 5 h (for VNTRs) and were visualized and photographed
using a UV transilluminator and Eagle Eye II (Stratagene) still video system.

To analyze the data, frequencies of the two mating types within each population and in the
overall sample were tested for deviation from a 1:1 ratio with χ2 tests. A molecular multilocus
haplotype was constructed for each isolate by combining the allelic data at all five VNTR loci.
Gene diversity within each population (HS) in total and by locus was calculated using GenAlEx
6.4 [123]. Total diversity over the entire sample (HT), mean gene diversity within populations
(HS), genetic differentiation among populations (GST) and the corrected, standardized measure
of genetic differentiation (G”ST) were calculated using GENODIVE Beta version 2.0 [124]. In
all cases, HT andHS refer to the unbiased estimates as developed by Nei [125]. Pairwise esti-
mates of G”ST and of Jost’s differentiation (D) [126] also were calculated with GENODIVE.
Multilocus haplotype diversity was calculated with multilocus (http://www.bio.ic.ac.uk/evolve/
software/).

Supporting Information
S1 Text. Additional information on genome sequencing, assembly and EST support.
(DOCX)

S2 Text. Additional potential pathogenicity-related genes present in the P. fijiensis genome.

(DOCX)

S1 Fig. The strong positive association between RIP index (where a high index value indi-
cates low RIP) and GC content shows that RIP in P. fijiensis is mostly restricted to repeti-
tive elements rather than genes.
(TIF)

S2 Fig. The RIP index in genes and repeats in AT-rich and–poor regions of the P. fijiensis
genome. RIP is mostly absent from the genes but highly prevalent among the repeated ele-
ments of the genome.
(TIF)
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S3 Fig. Separation of small size chromosomal bands by electrophoretic karyotyping of five
field isolates and the CIRAD139A strain of Pseudocercospora fijiensis. Lane 1, chromosomes
from Saccharomyces cerevisiae as high-molecular-weight (HMW) marker; lanes 2 to 6, differ-
ent field isolates from the Cartagena farm; lane 7, the CIRAD139A strain. Marker sizes are in
Kb.
(TIF)

S4 Fig. Dot plot showing mesosynteny between the scaffolds of Pseudocercospora fijiensis
and Septoria musiva.
(TIF)

S5 Fig. Dot plot showing mesosynteny between the scaffolds of Pseudocercospora fijiensis
and Zymoseptoria tritici.
(TIF)

S6 Fig. Dot plot showing mesosynteny between the scaffolds of Septoria musiva and Dothis-
troma septosporum.
(TIF)

S7 Fig. Small secreted proteins in the genome of Pseudocercospora fijiensis compared to
those in the genomes of three other Dothideomycetes.
(TIF)

S8 Fig. Locations of farms in Costa Rica that were sampled to obtain isolates of Pseudocer-
cospora fijiensis for analyses of mating type, fungicide resistance and population genetics.
Farms Cartagena, San Pablo and Zent are in a major banana-production area and are sprayed
heavily with fungicides; the San Carlos farm is in an area of plantain production (mostly resis-
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