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The common feature of the present notes is that they are concerned
with the equilibvrium prices of pure exchange smooth economies; differentiability
is the key techﬁical concept. They have two main themes: (i) the search
of conditions for the uniqueness of equilibrium in terms of the sign
of the Jacobian determinant of the excess demand functions; and (ii) the
study of continuity ﬁroperties in the large of the equiiibrium,correspondence.

Note I investigates the first question. A very general result is given.
It is motivated by the work of K. Arrow and F. Hé.hn [2], I. Pierce and
J. Wise [11], and E, Dierker [7]. |

Notes II and III, which should be read together, introduce initial
endowvments explicitly and pose problems of the folloﬁing type: how does
the equilibrium corfespondence (i.e., the correspondence which assigns to
every initial endowmenit allocation its equilibrium price wvectors) behave
over paths connecting any two arbitrary initial endowments configurations?
Which connectedness properties does it have? As a conclusion one could say
that the results obtained, as well as the obtaineble ones, are very limited,
indeed.

Admittedly, paths in the initial endowment space lack interpretation
in the Walrasian general equillibrium framework in which the problem is dis-
cussed. The point is, however, that instructive conclusions can be drawn
from the weak nature of the results arrived at. One feels that if this
analysis cannot be pursued very far in the simplest of the models, thén
pessimism is called for about its possibilities in the temporary equilibrium

context, where it properly belongs.




Note I#®

Excess demand functions eare naturally endowed with boundary conditions.
Can one exploit this fact to obtain uniqueness of equiiibrium‘theorems in
terms of the sign of the Jacobian determinant of those finctions? This
problem has recently been studied by I. Pierce and J. Wise [11] and by K.
Arrow and F. Hahn [2]. 1In this note we give a very general result along
this line. In esseﬁce, it amounts to no more than a reformulstion of a
thecrem of E. Dierker_[T}, but since our boundary gondition and general set-
up are sllghtly different, we provide a proof.

In substance the reéult says that if the Jacobian determinant has
uniform nonzero sign on the equilibrium price set, then this set iz a
singleton. Focusing atiention on the sign over the equilibrium price set,
rather than the whole price domain, has the decisive advantage that, as it
should be, the conclusion is independent 6f the normalizgtion procedure,

We state the proposition for excess demand functions in which a good
plays the role of numeraire. Besides following tradition we proceed in
this manner because this case is of interest in itself (sometimes a numeraire
is naturally distinguished) and because, as it will be Justified, there is

no loss of generality in doing so.

1/

The commodity space is_Rguw- The 2-th commodity is a numeraire.

#] am indebted to Y. Younés for comments and encoursagement.

1The following notation shall be maintained throughout the paper: sub-
scripts denote vectors {regarded as columns), superscripts components of vectors;
X >> y mesns x> yl for every i, % > ¥ means xl > yl for every i and x # ¥y
X >y means X >y or x = y; ¥' 1s the transpose of xj BE+ = {x €R%: x > 0},

xy = ) x'yt, x,y ER®. Dglx) denotes the derivative map of g: A +R", A CR"
i .
(assumed to be continucusly differentisble). Sequences are denoted by < >.

The boundary of A CR™ is 3A. B (x) = {x' eR™ Ix - x'f <€}, xR I = [0,1].
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Let f: Bi:l + R be a Cl (excess demand) function'satisfying:

{1.1) There is a real number k such that, for every 1 <i < ¢ -1

-1

iy o & < £*(p) and -pfp) > k.

and p €R

2-1 - .
‘Let E, = {p €R, "+ £(p) = 0}; f is regular if IDF(p)| # 0 for every
p € B, Ve state a {rather weak) boundary condition which, roughly, means

that every commedity 1s desirable:

' -1 2-1
(1.2) (i) 1Ir <p,> * P € R, > P, ER

n - then there is N such that,

whenever n > N, fl(pn) > 0 for some i with p* = O.
(11) I <lp > » = and <lf(p )l> > O, then there is ¥ such that,

whenever n > N, fl(pn) < 0 for some i
Note that in (i) and (ii) above i may depend on n.

Proposition 1. ILet f be regqular and satisfy (1.2). If p,.p, € By

imply sign IDf(pl)1 = sign [Df(pg)[ then E, is a one-element set.

Remark 1. OFf course, if f is regular, the stated condition is a neces-

sary one. Note that Proposition 1 also gives an existence result.

We now justify our claim that normalization matters are irrelevant.

Suppose that £ derives from a nonnormalized Cl excess demand function
2 5

e J‘R_H_ -+ R"” satisfying:
(1.3) PF(P) = 0 and F(AP) = F(P) for every P €R? and 1 > 0
(1.4) There is r EIRQ guch that F(P) >> r for every P E]Ri;

(1.5) If<P>>PE mai+ ~ {0}, ghen <rP > > =,




The last condition ((1.5)), with (1.3) and (1.4), is eguivalent to the
desirability hypothesis used by G. Debreu [5] and by K. Arrow and F. Hahn
(1, p. 31]. The latter authors prove (Theorem 4.8) that it is always
satisfied by excess demand functions generated by consumers with strictly
positive initisl endowments and convex, strictlylmonotone preferences. We

have:

(1.6) f satisfies-(1.2).

L=l

H_,ht?=(p4)€ﬁi.ommmﬂy;w{lﬁ)mm(L5L

P .
> > ma++ ~ {0}

Progof. If p €R

(1.2(1)) holds. Let <Hpn§> > o, <ﬂf(pn)ﬂ> + 03 then <ﬂPnH

vhich implies <IF(B_)I> + =, or <[F*(E)[> > ®; by (1.4), <F/(P)> > 4.
Since P F(P ) = 0, there is N > 0 such that if n > W, then fl(pn) = Fl(Pn) <0

for some 0 < i < & - 1, This ends the proof of (1.6).

Let u:.Ri+ + R be an arbitrary ot function such that a-l{l) # ¢ and

Da{P) >> 0 for every P EFBi+. Define the ¢* manifold Aa = m_l(l) and, for

PEA,, let my (A ) dencte the perpendicular projection map of R* on Tp(Aa}

Py _ B ,
. 4 ¢

P T o = wlp)

the tangent space of A st P. Define ¥ : A + R” by Fa(P) ﬂTp(Aa).(-,

dote that F is a vector field on A i.e., Fa(P) e TP(AQ) for every P.

Therefore, for every P &€ Aa’ the determinant ]DFu(le of the linear transforma-
tion DFa(P): TP(Au)-+ TP(Au} is well defined. ZEvery (smooth)'normalizgtion
procédure can be expressed in this manner, In particular, the one used by

I. Pierce and J. Wise [11] corresponds to the case where o is linear with
strictly positive coefficient vector and the one in Pr0position 1 above to

the case whe;e'a is linear with coefficient vector (0,...,0,1). We say that

F is regular and sign invariant if for some ¢ with the above prescribed
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properties one has sign iDFa(Pl)[ = sign |DF&{P2)[ # 0 whenever P ,P,

I3 = P P .
and *Q{Pl) F&(fg) 0, Then:

(1.7) Regularity and sign invariance of F are well defined, i.e.,

independent of the a chosen.

Proof., Ttis immediately seen that if this were not true the following
situation would necessarily arise: for some o with the prescribed properties
and P € A such tﬁat'ﬁéfﬂ = 0, one has SDF&{P)I =0, i.e., ﬂTP(Au)DF(P)v =0
for some v # O such that Da(P)v = 0. Therefore, either DF(P)v > 0 or
DF{P)v < 0. Differentiating Walras' identity, F(P) + PDF(P) = PDF(P) = 0;
hence DF(P)v = 0 and, since v is linearly independent of P, rk DF(P) < ¢ - 1

vhich implies }DFQ,(P)[ = 0 for any admissible a?, a contradiction.

Thefefore, by Propoéition 1, (1.6}, and {1.7), if ¥ satisfies {1.3)=~{1.5}
and is regulsr and sign in#ariant, then, ﬁp_to scalar multiplication, an
equilibrium vector is uniquely.determined.

Proposition 1 inclu&ea, as ép€cial caées, the ana}ogoua theorems
in K. Arrow and F. ﬁahn [2] and in T. Pierce and J. Wise [11]. The boundary

more natural
condition we use is weaker and /than the one postuleted in [11] {see ¥. Arrow
end T. Hahn [2, Ch. 2, p. 29] and H. Wiksido [10, Ch. 6, p. 32h] for dis-
cussion and examples on boundary conditions for excess.demand functions);
Theorem 3 in [11] and 15 in [2, p. 236] follow the rouamdabout (and noninde-
pendent of normalization) method of establishing the invertibility of the
vhole excess demand function; Theorem 14 in [2] is closer in spirit to

Proposition 1 {or, rather, vice versa) but the condition given there involves

the signs of the minors of the Jaccbian matrix,




Remark 2, For later reference we point out that it is proved that 1f I is

regular and satisifes (1.2), then ] sign |Df(p)f = (ﬂl)ﬂ$la

o

proof of Proposition 1. By (1.2) Ep is compact. Let ipl < s for every

p € E,. Suppose there was a sequence <p, > such that <|p [> =+ = and
£(p_) P, . '
I£(p )1 |

for every n. Then, for every n, ﬁpnﬁﬁf{ﬁn)n = pnf(pn) < =k

{by {1.1)). Hence 11m.ﬁf(pn)ﬁ = 0 which, by (1.2 (ii)) would imply qg for

P

-
i

some 1 and M, a contradiction., Therefore there Is r > s such that if ol

Al £{p)
44 o PSR TECLS

us now to conclude that there are p eiRi:

3

pER i # 'igii“ An analogous argument (using (1.2 {1))) permits

L and ¢ > 0 such that, defining

L= {p E‘Ef’__:l: p* > e for ail i and dpl < r} and g: L ->E£"l by g(p) =p - P,

' - (p) £(p) . .
one hags p € Int.L, E, C L and ~§T*T~*# for every p € 3L. This means .
P > Pr i)l 7 Je(o)] P E

1 -1

that we can find & O~ function f{p): L » R, such that ? equals f in a

neighborhood of E., t(p) = 0 only if p € E;,and F1oL = glaoL {take

Mp) = v(p)t(p) + (1 - v(p))glp) for an appropriate v: L » [0,1]).

oL = glal, T and é have the same

a
The proocf is coneluded. Since T

algebraic muber of fized points, l.e., ) sign |DH(p)| = sign |De(®p)|
pEE .
(see P, Alexandrov [1, Theorem 2.22, vol. 3, p. 135] and J. Milnor [8, Ch. 61).

Hence, using the hypothesis, #(Ef) = | X sign|Dr(p)|| = |sien |De(p}|] = 1.
DEE
TR
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Tn this note we introduce initial endowments explicitly and study the

configuration of equilibrium prices over arbitrarily separated initial

endowments patterns. We deal with & 62 excess demand function F: Ei+X.Bi§ + R
satisfying
2 Al
(2.1) PF(P,u) = 0 for every (P,w) ER_ xR 3

N

{2.2) F{3P,w) = F(P,u) for every (P,u) E{Rf_+ x R, and X €R_:

L

4o then <ﬂF(Pn,mn)H> > o,

(2.3) I <P_,u > > (Pysu) € ;;IRL ~ {0} xR

e 2 [y %
Let f: S++ % R + R

-1
- pe the function derived from F by taking

the ¢-~th good as numeraire. Define the equilibrium correspondence

N

W E++

Bi:l by Wlw) = {p eﬁff: £(p,0) = 0}, The critical set of
endowments is C = {w' € BEN: for some p' € W(w'), [Dpf(p',w')l = 0}.

It is known (see G. Debreu [5]) that W behaves well locally. Namely,
N

for almost every initial endowment w there is a neighborhood & C R+' of w

. . q
and q(< «) ¢t 1-1 functions Q,: O~ 2" such that £.(6¢) = w{&) and
i s

=
@3(8) N @i(eﬁ = ¢ if 1 # §. ' One refers to this property as "stability"
of Won & Tt implies that if w: I % o is continuous.then ap, € w{w(1}))

is uniquely detérmined by a choice of py € W{v(0)) and a continuity require-
ment {(i.e., that prices do not jump). It is simple td see that this does

not necessarily hold for asrbitrary displacements of the initial w. The
problem is that although the set of exceptional economiesgééz.ﬂeglsgue measure
zero it is still a highly troublesome one. The purpose §f this note is to

investigate which, however weak, mlobal propertles the correspoudence W may

stiil have.

L




Suppose that the economy is initially at Wy and thaﬁ, being free to
(and staying in equilibrium)

choose Py E‘W(mo), we want to rveach in a continuous manner/some predetermined
w, end py E_W(wl) (for exsmple, the pair w s Py may maximize a given Social
Welfare Function); this is possible because, under very general condi-
tions, the graph of W_is arcwise comnected (for a formal proof see P, Balasko
[3]). However, it is realistic to assume that not every initial endowment
path i3 allowable and it is, therefore, of interest to krow if analogous

results hold when constraints are imposed.

For the case in which w(wl) is unigue an snswer is embodied in:

Proposition 2. Let A C Rif be an open, arcwise connected set and
EANC, 7 Then there are continuous functions w(e): I + A,

Wpsliy
ple): I +—B§:l such that w{0) = Wy w(l) = w, and p € Ww(t)) for every t.

Remark 3. It is always true thet, under the hypothesis made, for every

continuous function w: I ¢-REE the graph of W] w has & component intersecting

1
;e {0} ana Bii x {1} (F. Browder {4, Theorem 2]). What we prove is that

IR++

for "almost every" path in the initial endowment space this component is

an embedding of I.

Remark 4. The result in the Proposition is a weak one. In particular,
one would like to predetermine the initial endowment path which is not
nossible in general. Ancther limitation is the following: once the path of

: equilibrium
initial endowments and Py have been picked the reguirement that the/price

path be continuous does not uniquely determine it. Without "central inter-

vention" the economy may "derail" when crossing the critical set C.




Proof of Proposition 2., let & ve the set of C:L functions a: I » R_‘f_’f

topologized by the ¢t norm: le - a‘lll = gup fa(t) - a’ (&) + sup IDa(t) = Do’ ().
t t

Let B ve the subset of ¢ formed by the elements o for which we can

a coptinuous o 4 '
find o'e & and/p(+): I~ R." with «'(I) = o(I) and p(t) = W(a'(t)) for

every t.

£=1

S ®' ™y £ (p,t) = 2(,a(8)).

For every o € {Z define £,: R

A - N
Let 3 = {0 € 5: 0 ig a regular value of foz}; B={aec B: o0),a{l) & Cl.

(2,4) & is a dense subset of /2.

. A . . A
Proof. We prove that 7B is dense. The proof for T is completely

analogous.

Let 6 > 0 and o € /7 be given. Since any o can be Cl approximated by

a C° function (see J. Munkres {9, p. 39]) we can assume that a is .

: [ L L ) 2y
For every ¢ €R/ let c' = (c,O,...,O_) €R_,. Define ot R, x I +R, by
ale,t) = al(t) + ¢’ o, = al+,e). Clearly, a, € (f and for c¢' small enough
fo = uc,ﬂl < 4. _
. L1 2 . =1 ; - . .
Define G: R/~ xR, = T + R by G({p,c,t) = T{p,ole,t}). It is easily
seen (see, for example, E. Dierker and ¥, Dierker [6]} that G is a regular map,
Therefore G—l(O) is a 02 (941)-manifold and we have, by Sard's Theorem (see

J. Milnor [8, p. 16]) that for almost every c € r¥

+? 0 is a regular value of

A .
fa 2_/ Hence 79 is a dense subzet of /2.

gMore precisely, Sard’s Theorem asserts that almost every c & T{f’_ is a
regular value of the projection map: T3 G_l(O) - Ri, {p,c,t) = c. But ¢
is & regular value of t if apnd only if 0 is a regular wvalue of fle,e,),

i.e., of £ .
o
e
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k)
Remark., {3 is also open.

F-3
(2.5) & ¢ H.
o

=1

-t x I is a Cl manifold so that

2 -
Proof. Let o € 7. Then £, 0) CR

(7, Milnor [8, p. 13]}

af;l(o) = a(af;l x I) N f;l(O) =
_ -l -1 - o =1
= (£ (0} n (B~ x {0}) L (£ (0} n(m, " x {1})).
By (2.3), f'l(o) is compact. Therefore {see J. Milnor [8, Appendix 1])

it is a finite disjoint union of segments and circles, i.e.,

k e
f-l(o) ={J 1, U |J U,, vhere the I,'s and U,'s are diffeomorphic images
. i=1 ¢ a=kel ' * '

of I and the unit cirele, respectively.
Let (pg,tg), (pi,t%), i=1,...,k, designate the end points of the

segnents I,. Since (p?,t?) e af;l(o), 1=1,...,k, h = 1,2, it follows that

t? =0 or t? =
i i

{0} & C, which implies that if p € W(a(0)), then {p,0) = (p?,O) for some

1. Therefore p? e W(a(0)) or p? € w{a(1)). By hypothesis,

l1<i<k,hs= 0,1. Since #(a(0)) is odd (see Note I, Remark 2) we have that
k > 0 and for some O g_i?‘g_k? pg,, pi,:do not belong to the same of the
sets W(a(0)), W(a(1)). Suppose by, & W(a(0)) ma pl, € Wla(1)).

The proof ié completed for if g I - Ii' is a diffeomorphism and s Mo
the projections of Rill x I onto Riﬂl_ana I respectively, we have that
o = Uy o g and pl=) = Hy © g(+) are as desired. |

To conclude the proof of the proposition let 01,62 C A be such that
wy € Gy, 0y €6,, & UO, C~€. Then by (2.4) and (2.5) we can find o € 2]
with «(0) o all) € o, and a{I) C A; the proposition follows, then, by the

definition of & and the stability of W on o, and o, (see . Debreu [5]).




11

Note IIL

In this note the definition and assumptions of the previous note
are maintained, We discuss the following problem (see Remark b of Note II

for motivaetion):

N

- N
{3.1) Let Wy sty €R,, be given. Find continuous functions w: I +-B§J,

5: 1 Ri;l such that:
(1) E(Q} = Wy »(1) = w3
(11) plt) € w(d(s)), t € I;

(iii) There is ¢ > 0 such that, for every 0 < t <1, if

p' € W(H(t)) and ip' - p(t)] < & then p' = p(t).

In éontrast to Note II, here no constraints are imposed on the initial
endowment path, but strong demands are made on the equilibrium price one.

We conjecture that the solvability, in general, of problem (3.1} is not
guaranteed by our assumptioﬁs. A counterexample is lacking. In the sequel

we pursue a line of attack which is natural and yields some ({very weak) results.

f:l x Bi+ -+ Rznl denote the excess demand function of the i-th
f=-1 N AN
o+ SRR

Let_fi: R
‘consuner and define F: R by Flp,w) = (fl(p,wf,...,fm(p3mN)).

We assume:

(3.2) Every.fi is continuocusly differentiable and is originated by

maximization of a preference relation,

AN

iy PEVW(w) and t €1 let

=t{w + Flp,0)) + (1 - %)w.

21
++ ?

For eve wER
i p,t

Note that p € W(wp t) for all t. For every i, Wy EERf+, p €ER the

]

(2-1)x{g-1) substitution term metrix and the income gradient vector at
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Qil 33

(p, pYwy + mi) of the i=th consumer demand function are dencted by
J=1

8 (p), b,(p,w;) respectively. ILet Sm(p) =

S (p). Thus:
W, . w
1 1

i i

-5

LN

(3.3) For every w €R_,

p € Wlw):

N
D_f(pw, ) = 8,(p) -0 - t) izl £ (D)o} ()

i

- +
(1 t)Dpf(p,wP’O) tDpf(p,wP’l).
Therefore IDpf(p,wp t)! is an 2%-th degree polynomial in t.
! L]
Under reasonable assumptions (namely, no "ecorners" on the indifference
curves of at least one individual) problem (3.1) woulid have a solution if for

every w € Rif there was p € W(w) such that

(3.4) Por some € > 0 and t € I, if p' € W{wp L) and Ip' - ol <€

?

then p' = p.

N

Clearly, if given w € R++,

we could find a.p E'Ri;l satisfying:

{3.5) p€ W), [D f(p,@ )| # 0 for every t €1,
by p,t

then (3.4) would also’hold. -In:fact, (3.4) and (3.5) are almost
equivalent:
(3.6} If p € Wlw) and there are t',t" € I such that |Dpf(p,wp t')l’
]

]Dpf{p,wp tn)! have opposite signs then {3.4) does not hold.
3

Proof, Since ]Dpf(p,wp t)l is a noneonstant polynomial in t, there is
-]
0<tT<l,8>0such that if ¥ =8 < ' <%, T < t" <% + 3§, then

{Dpf(p,wp’t,}l, ]Dpf(P’wp,t"}] have opposite signs. Suppose that (3.4) holds?
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then a straightforward argument yields the existence of 0 < &' < §, v > 0
and two maps g',2" IR_’::J' >R such tnat g'] 98, (p) = "] 3 (p) = r| 2B (p),
¥ = - - 1 = . a b
g'| B o(p) = £ ’wp,t—ﬁ)' B p(p)s 8 [ B jp(p) = £ ,wp,t+6)[ B /p(p)s £(p) # 0

for every p € aBY(P) and p is the only zero of g' or g" on BY(p).

1}

As in the proof of Prorosition 1 this should imply signlDf(p,mP ) |

s 46!
sign]Dg"(p)[ = sign!Dg'(P)l; signfo(p,wp T 6‘)1’ a contradiction.
JI-

Therefore {3.4) does not hold.

So, one is led to focus attention on condition (3.5). We know (see

LN
++?

p € W(w) sueh that sign|D £(p.w)] = (-1

Bote I, Remark 2) that if for w € R f(+,w) is regular, then there is =

1. 1t is clear, then, that this

is a necessary condition for the existence of a p satisfying {3.5) (if

' . . . | =
]Dpf(p’wp,l)l # 0 .then by (3.2) W(wp l) is a singleton, go SlgnlDPf(p,w )

P,l
g~1
)T

]

(-ZL}j?'ml and therefore, by (3.5), sign]Dpf(p,m)l = (~1 But it is

far from sufficient; the folicwing simple example shows that even if DDf(p,w)

is a stable matrix, {3.5) may fail.

Example., Let N = 3, & =3, Initial endowments are u

l = (09192) ]

w, = (1,30,0), wy = (2,0,30). At the equilibrium price vector P = (1,1,1)

excess demands are, respectively, (1.2,0,-1.2), (0,-25.5,25.5), (-1.2,25.5,-24.3);

2 1
"3'3"3'30) s (

{(nonnormalized) substitution term matrix for every consumer is

L
. . . 1l 2 1
income gradient vectors are, respectively, (§3§30), { 3

Wl

1
5'§5 ); the

11
L5y 3
111 1
3|3 1t 3¢
101
2 7 -1

It is clear that utility functions for the three individuals can be exhidited




1ib

yielding these features. We have

Dpf(p,w) =

!
! i
o
i i
TR
s
w

a stable matrix but

-1 .3
Dpf(p’mp,i/Q) ) [h.'TE» -1

has a negative determinant.

Sufficient conditions for (3.5) to hold cen be given in very particular

{and@ familiar) cases.

£
Proposition 3. Let w EER+E, p € Ww). Assume that w,mp 1 & C.
-]

Then (3.5) holds if any of the following hypotheses is fulfilled:
(1) DPF(P,m} has the {Weak) gross substitute sign pattern; P = (p,1);

(ii) sign|p flp,}] = (-1)*

and either 2 = 2 or N = 2,
(iii) Every preference relation is homothetic at wy + fi(p,mi)
(i.e., bi(p,wi)-= A(mi + fi(p,mi)) for some » > 0) and there is

2 . '
c €:R++such that for every i, we = Y.C for some Yy 2 03

(iv) bl(p,wl) = L., = bN(p,mN).

Remark 5. IExcept for the case N = 2, all the hyvotheses imply that,

under a tatdnnement process, p is a stable eqpilibriqu

Proof of Proposition 3. Since Sw(p) (= Df‘(p,mD 1)) is negative definite

>

it is clear from (3.3) that if Dpf(p,m) is negative quasi-semidefinite (i.e.,

g matrix H is



i

negative quasi-semidefinite if H + H' is negative semidefinite) then (3.5)

holds. This is the case if (i) is satisfied: let H = D F(P,«), then by

(2,1) and (2.2) P(H + H!) = 0, so H + H' has a quasi-dominant negative
D_f(p,w)

diagonal and therefore ¥ is a stable matrix (see K. Arrow and 7. Hahn [2,

12.4]); since it is symmetric it is negative definite. Likewise, if (ii)

N )
(resp., (iv)) holds, then 121 fi(p’wi}bé(P’wi) equals izl fi(p,mi)fi(p,wi)

{resp., Q)3 therefore, in both cases, Dpf(p,m) is negative semidefinite.

Finally, (3.5) will hold if signlef(p,m)] = (-1)%*?! ana Dpf(p,mp t) is
i ]

a linear function of t. This is the case {see (3.3)) if & = 2 or if

¥ =2 (the coefficients of the powers of t greater than 1 vanish).
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