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Negative viscosity from negative compressibility and axial flow shear
stiffness in a straight magnetic field

J. C. Li and P. H. Diamond
CMTFO and CASS, University of California, San Diego, California 92093, USA

(Received 24 December 2016; accepted 8 March 2017; published online 23 March 2017)

Negative compressibility ion temperature gradient (ITG) turbulence in a linear plasma device

controlled shear de-correlation experiment can induce a negative viscosity increment. However,

even with this negative increment, we show that the total axial viscosity remains positive definite,

i.e., no intrinsic axial flow can be generated by pure ITG turbulence in a straight magnetic field.

This differs from the case of electron drift wave turbulence, where the total viscosity can turn nega-

tive, at least transiently. When the flow gradient is steepened by any drive mechanism, so that the

parallel shear flow instability (PSFI) exceeds the ITG drive, the flow profile saturates at a level

close to the value above which PSFI becomes dominant. This saturated flow gradient exceeds the

PSFI linear threshold, and grows with rTi0 as jrVkj=jkkcsj � jrTi0j2=3=ðkkTi0Þ2=3
. This scaling

trend characterizes the effective stiffness of the parallel flow gradient. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4978956]

I. INTRODUCTION

Strong toroidal rotation and weak magnetic shear are

desirable for enhanced confinement in tokamaks. External

drives for rotation, e.g., neutral beams, will be insufficient

to assure MHD stability1 in future fusion devices, such

as ITER. Thus, intrinsic rotation is of interest. Weak or

reversed magnetic shear has long been known to enhance

microstability and confinement. Studies on enhanced

reversed shear,2 negative central shear,3 weakly negative

shear,4 etc., reveal this trend. For example, de-stiffened

states, with enhanced confinement, were observed in the

weak shear regime in JET.5 Therefore, intrinsic rotation at

weak magnetic shear is of particular interest. Intrinsic rota-

tion can be generated by background turbulence. Thus, in

tokamaks, intrinsic rotation usually tracks the driving gra-

dient of turbulence.6 This also poses the question of how

the flow gradient (rV/) interacts with, and scales with, the

driving gradient of turbulence (i.e., edge ion temperature

gradient (ITG) in the case of Ref. 6).

The controlled shear de-correlation experiment (CSDX)

is a cylindrical linear device with uniform axial magnetic

fields and turbulence driven intrinsic parallel flows. It offers

a well-diagnosed venue for the study of intrinsic flows in the

shear-free regime.7 Since most mechanisms for intrinsic par-

allel flow generation rely on magnetic shear,8 a new dynami-

cal symmetry breaking mechanism was proposed to account

for axial flow generation in CSDX. This mechanism does not

require a specific magnetic field configuration, so it can work

in regimes with and without shear. Symmetry breaking is

usually required to set a preferred direction for the flow, i.e.,

a finite hkki. The residual stress is determined by the corre-

lator hkhkki �
P

kkhkkj/kj2. Hence, asymmetry-specifically,

handedness-in the turbulent spectrum (j/kj2) is required to

obtain a nonzero residual stress. In CSDX, where the turbu-

lence is usually a population of electron drift waves (EDWs),

the growth/drive rate is determined by the drift mode

frequency shift relative to the electron drift frequency, i.e.,

ck � x�e � xk.9 A test flow shear (dV0k) changes the fre-

quency shift, setting modes with kkkhdV0k > 0 to grow faster

than those with kkkhdV0k < 0. Therefore, a spectral imbalance

in kkkh space develops, which sets a finite residual stress

dPRes
rk . The resulting residual stress drives an intrinsic flow,

and so reinforces the test flow shear. This self-amplification

of dV0k is a negative viscosity phenomenon. The residual

stress induces a negative viscosity increment, i.e., dPRes
rk

� jvRes
/ jdV0k. The basic scenario resembles that familiar from

the theory of zonal flow generation.10 The flow shear modu-

lation (dV0k) becomes unstable when the total viscosity

vTot
/ ¼ v/ � jvRes

/ j turns negative. Therefore, dV0k can be self-

reinforced via modulational instability. When the flow pro-

file gradient steepens enough, so that the parallel shear flow

instability (PSFI) is turned on, the mean flow gradient (rVk)

saturates at the PSFI linear threshold and the total viscosity

stays positive, due to the contribution induced by PSFI, i.e.,

vTot
/ ¼ vDW

/ þ vPSFI
/ � jvRes

/ j. In CSDX, the PSFI linear

threshold grows as jV0kjcrit=jkkcsj � ðkkLnÞ�2
,9,11 where Ln

� �ð@r ln n0Þ�1
. Therefore, the flow gradient tracks the tur-

bulence driving gradient (i.e., rn0) as rVk=jkkcsj � jV0kjcrit=

jkkcsj � ðkkLnÞ�2
. This scaling motivates us to wonder if

there is a generalized form of the Rice-type scaling.6,12

CSDX has straight magnetic fields, and thus is an impor-

tant limiting case for understanding flow generation at zero

shear. While existing models of axial flow generation in

CSDX are based on EDW turbulence, fluctuations propagat-

ing in the ion drift direction are observed.13 Such ion features

appear in the central region of the cylindrical plasma in

CSDX, where the density profile is flat. In addition, turbu-

lence driven by the ion temperature gradient (ITG) controls

momentum transport in tokamaks operated in enhanced
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confinement states, e.g., states with an internal transport bar-

rier (ITB). Also, intrinsic rotation tracks the edge tempera-

ture gradient.6 These trends beg the questions:

• How does negative compressibility turbulence, e.g., ITG

turbulence, affect momentum transport at zero magnetic

shear? Particularly, what happens in flat density limit?
• How does rVk saturate in ITG turbulence?
• With tokamaks in mind, how does this new mechanism

interact with conventional mechanisms which exploit

magnetic shear? What is the interplay of rVk and rTi0?

It has long been known that a finite parallel shear flow

(PSF) rVk can enhance ITG turbulence in sheared magnetic

fields.14 However, the detailed question of how the mean

flow gradient, rVk, and its perturbation, dV0k, affect flow

generation and saturation in ITG turbulence in a straight field

remains unanswered.

In this paper, we study the effects of ITG turbulence on

momentum transport in a straight magnetic field. In the

regime well above the ITG stability boundary, a perturbation

to the flow profile, dV0k, can reduce the turbulent viscosity.

dV0k breaks the symmetry by allowing modes with khkkdV0k
> 0 to grow faster than modes with khkkdV0k < 0. This results

in a spectral imbalance in khkk space. The residual stress set

by this spectral imbalance drives an up-gradient momentum

flux which induces a negative viscosity increment, i.e.,

dPRes
rk � jvRes

/ jdV0k with vRes
/ < 0. Thus, the total viscosity is

reduced, since vTot
/ ¼ v/ � jvRes

/ j. The mean flow gradient

driven by ITG turbulence is consequently steepened, since

rVk � PRes
rk =v

Tot
/ .

However, unlike the case of dynamical symmetry break-

ing in EDW turbulence, we show that symmetry breaking

induced by dV0k in ITG turbulence alone cannot amplify the

seed flow shear (dV0k). Therefore, ITG turbulence cannot

drive intrinsic flows in straight magnetic fields. In ITG turbu-

lence, the total momentum diffusivity vTot
/ remains positive,

because jvRes
/ j ¼ 1

3
v/. The growth rate of a flow shear modu-

lation is cq ¼ �vTot
/ q2

r , where qr is the radial mode number

of the modulation. A positive definite vTot
/ does not induce

modulational instability. This differs from the case of EDW

turbulence. Table I shows the comparison between symmetry

breaking in ITG and EDW turbulence.

The axial flow in CSDX can be driven by various exter-

nal sources. The axial ion pressure drop, induced by the loca-

tion of the heating source on one end of the cylindrical

plasma, can drive an axial flow. Biasing the end plate can

also accelerate axial ion flows by axial electric fields.

The flow gradient produced by external or intrinsic drive

ultimately must saturate due to PSFI-induced relaxation.

rVk can be enhanced by external drives, e.g., the axial ion

pressure drop and end plate biasing. When rVk is stronger

than the ion temperature profile gradient (rTi0), PSFI drive

controls the turbulence. Here, the relative strength between

rTi0 and rVk is measured by the relative length scale

LT=LV � @r ln Vk=@r ln Ti0. In turbulence controlled by PSFI,

both the residual stress and turbulent viscosity depend nonli-

nearly on rVk. As a result, the flow gradient saturates above
the linear threshold of PSFI and the saturated rVk grows

with rTi0. This implies a “stiff” rVk profile. An aim of this

paper is to calculate the scaling rVk=kkcs � ðkkLTÞ�a
of this

stiffness.

The scaling of the rVk profile stiffness reveals the final

state of the nonlinear interaction between rVk and rTi0. It

should be noted that PSFI co-exists with ITG turbulence.

Their relative strength depends on LT=LV . Because rVk and

rTi0 are coupled nonlinearly, they do not simply add up.

However, PSFI can be distinguished from ITG instability (at

least in simulation) by comparing their mode phases. The

mode phase is defined as

hk �
tan�1ðck=xkÞ; xk > 0;

pþ tan�1ðck=xkÞ; xk < 0:

(

Here, ck and xk are the growth rate and real frequency of the

mode. PSFI has zero frequency, which means hPSFI
k ¼ p=2,

while the ITG mode phase is usually hITG
k ¼ 2p=3. The theo-

retical concept of mode phase is related to the cross phase

between flow fluctuations, ~vk and ~vr, and thus can be mea-

sured in experiments, at least in principle. Also, since mode

phase affects Reynolds stress h~vk~vri, intrinsic flow profiles

are sensitive to the mode phase.

Comparison between symmetry breaking in EDW and

ITG turbulence drives us to wonder if flow reversal is possi-

ble in CSDX by a change in turbulence population from

EDW to ITG? More generally, can the idea that mode

change leads to flow reversals15 be tested by basic experi-

ments? The flow profile in CSDX is determined by the ratio

between the axial ion pressure drop DPi and the total turbu-

lent viscosity,9 i.e., Vk �
Ð a

r drDPi=vTot
/ , where a is the

plasma radius in CSDX. In EDW, although vTot
/ can turn neg-

ative at least transiently, it is finally forced positive by PSFI

saturation. In ITG turbulence, vTot
/ is positive definite, since

jvRes
/ j ¼ 1

3
v/. Therefore, there would be no argument for

flow reversal in the final state, even though fluctuation or

reversal may occur as a transient. Also, one can argue that

flow reversal, even if it exists in CSDX, does not track the

change in turbulence from EDW to ITG.

We neglect the momentum pinch effect in this work. In

addition to the diffusive and residual components, the paral-

lel Reynolds stress can have a momentum pinch term that is

proportional to the flow magnitude. Since the momentum

pinch is usually due to the toroidal effect in tokamaks,16–18 it

is neglected in this work, where we study linear devices that

TABLE I. Comparison of dV0k induced symmetry breaking in ITG turbu-

lence and electron drift wave turbulence. The total viscosity, vTot
/ ¼ v/

þ vRes
/ , determines the modulational growth rate of dV0k which is

cq ¼ �vTot
/ q2

r with qr being the radial mode number of the shear modulation

dV0k.

ITG turbulence Electron drift wave

Direction of correlator hkhkkidV0k > 0 hkhkkidV0k > 0

Viscosity increment by dPRes
rk vRes

/ < 0 vRes
/ < 0

Total viscosity vTot
/ Positive Can be negative

Modulations Stable Can be unstable
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have straight and uniform magnetic fields. In general, the

momentum pinch is of the turbulent equipartition variety,

and so jVpinchj=jv/j � 1=R0, where R0 is the major radius of

the tokamak. This is explained as a toroidal effect. It is possi-

ble to also have Ln scalings, i.e., jVpinchj=jv/j � 1=Ln, in cer-

tain parameter regimes. However, since this analysis does

not treat self-consistent evolution of density profiles, we

decided to omit a discussion of this rather sensitive, detailed

effect.

The rest of this paper is organized as follows: Sec. II

introduces the fluid model of the PSF-ITG system into a

straight magnetic field. Sec. III discusses the three regimes

that we consider in this work. Sec. IV summarizes the struc-

ture of results. Sec. V presents results on mode phase, sym-

metry breaking, and flow profile in each regime. Finally,

Sec. VI summarizes and discusses the results.

II. FLUID MODEL FOR THE PSF-ITG SYSTEM

We consider a system where the ion temperature gradi-

ent (rTi0) is coupled to the flow gradient (rVk), i.e., a cou-

pled PSF-ITG system of potential vorticity, ~q ¼ ð1�r2
?Þ/,

parallel flow, vk ¼ ~vk þ Vk, and ion pressure, pi ¼ ~pi þ P0,

with zero magnetic shear in cylindrical geometry

d

dt
1�r2

?
� �

/þ vE �
rn0

n0

þrk~vk ¼ 0; (1)

d~vk
dt
þ vE � rVk ¼ �rk/�rk~pi; (2)

d~pi

dt
þ 1

s
vE �
rP0

P0

þ C
s
rk~vk þ rkQk ¼ 0: (3)

Here, lengths are normalized by qs �
ffiffiffiffiffiffiffiffiffiffiffi
miTe0

p
=ðeB0Þ, time is

normalized by the ion cyclotron frequency x�1
ci , velocities

are normalized by the ion sound speed cs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
, and

the electrostatic potential is normalized as / � e~u=Te0. The

convective derivative is defined as d=dt � @=@tþ vE � r,

where vE ¼ B0 �r/=B0 is the E�B velocity. The kinetic

effect of Landau damping is retained by including the paral-

lel heat flux, with Hammett-Perkins closure Qk;k ¼ �vkn0ikk
~Ti;k. Here, the (collisionless) parallel heat conductivity is

vk ¼ 2
ffiffiffi
2
p

vThi=ð
ffiffiffi
p
p
jkkjÞ, and vThi is the ion thermal speed.

The ratio of specific heats is C¼ 3 in this model. The elec-

tron response is adiabatic, corresponding to Boltzmann

electrons, i.e., ~n ¼ /. Hence, ~pi ¼ ~Ti þ /=s, with the tem-

perature ratio defined as s � Te0=Ti0. Since the ion features

exist in the center of CSDX where the density profile is flat,

we take rn0 ¼ 0 throughout. Thus, the mean pressure gradi-

ent consists of only a temperature gradient, i.e., rP0

¼ rTi0. The linear dispersion relation for the PSF-ITG sys-

tem is

AX3 � C0 � V0ð ÞX� Dþ
ijkkjvk

cs
AX2 þ V0 � 1þ s

s

� �
¼ 0;

(4)

with X � x=jkkcsj, V0 � khkkqscsV
0
k=k2
kc

2
s ;A � 1þ k2

?q
2
s ,

C0 � 1þ ð1þ k2
?q

2
s ÞC=s, D � xT=sjkkcsj. xT is defined as

xT � �khqscs@r ln Ti0. In a linear device, such as CSDX,

s > 1, so jkkjvk=cs � 1=
ffiffiffi
s
p

< 1. Thus, terms involving

ijkkjvk=cs will be neglected.

rTi0 and rVk are coupled nonlinearly, because either

rTi0 or rVk can drive instability, by forcing

D � D

2A

� �2

� C0 � V0

3A

� �3

> 0: (5)

The growing mode has growth rate and frequency

ck ¼
ffiffiffi
3
p

2
jkkcsj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2A
þ

ffiffiffiffi
D
p

3

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2A
�

ffiffiffiffi
D
p

3

r !
; (6)

xk ¼ �
1

2
jkkcsj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2A
þ

ffiffiffiffi
D
p

3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2A
�

ffiffiffiffi
D
p

3

r !
: (7)

In Sec. V, we will see that in the presence of a shear flow V0k,

modes with khkkV
0
k > 0 grow faster than others. Therefore,

we take V0 � khkkV
0
k=k2
kc

2
s > 0.

The underlying instability drive is negative compress-

ibility. Both ITG instability and PSFI are negative compress-

ibility phenomena. Negative compressibility means that an

increase in density (compression in volume) leads to a

decrease in pressure. For the system studied here, the relation

between the pressure perturbation and density perturbation is

~pi �
C
s

k2
kc

2
s

x2
k

� C
s

khkkqscsV
0
k

x2
k

� xT

sjxkj

 !
~n:

Here, we have used the adiabatic electron response ~n � /k.

The compressibility becomes negative when either of ITG

instability or PSFI is above the threshold. Note that rTi0 and

rVk can act in synergy to turn the compressibility negative,

driving the system unstable.

Although coupled nonlinearly, PSFI and ITG instability

can be distinguished by different mode phases. PSFI is a

purely growing mode, so hk ¼ p=2. This is because (for

rTi0 ! 0), the dispersion relation becomes

AX2 � ðC0 � V0Þ ¼ 0; (8)

which gives a purely growing branch when V0 > V0crit � C0,

with growth rate ck ¼ jkkcsj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV0 � C0Þ=A

p
. In contrast, ITG

instability has a negative real frequency whose magnitude is

comparable to the growth rate. If rTi0 (the term D) domi-

nates the dispersion relation Eq. (4), then the resulting ITG

mode has complex frequency x � expði2p=3Þ½jxT jk2
kc

2
s=

ðsAÞ�1=3
, with mode phase hk ffi 2p=3.

III. INSTABILITY REGIMES

The nonlinear coupling between rVk and rTi0 signifi-

cantly increases the level of complexity of calculating the

residual stress and the flow profile. Therefore, we classify

the PSF-ITG system into three regimes (Fig. 1), determined

by length scales L�1
V � �@r ln Vk and L�1

T � �@r ln Ti0

032117-3 J. C. Li and P. H. Diamond Phys. Plasmas 24, 032117 (2017)



(1) The marginal regime is defined by D � 0, where PSFI

and ITG instability co-exist, and both of them are weakly

unstable. Thus, rVk and rTi0 are nonlinearly coupled in

this regime.

(2) The ITG regime is where the system is well above the

marginal state and rTi0 contributes more than rVk to

the magnitude of D, i.e., ðD=2AÞ2 > ðV0=3AÞ3 which

leads to

L
2=3
T

jkkj1=3LV

<
cs

Vk

3

22=3

A1=3

khqsð Þ1=3s2=3
: (9)

We show in Sec. V that, in this regime, although a test

flow shear dV0k induces a negative viscosity contribution,

the total viscosity is positive definite. Consequently, there

is no intrinsic flow driven by ITG turbulence in a straight

field. This is quite different from the case of EDW

turbulence.

(3) The PSFI regime is also well above the marginal state,

but where rVk contributes more than rTi0 to instability

drive, i.e.,

L
2=3
T

jkkj1=3LV

>
cs

Vk

3

22=3

A1=3

khqsð Þ1=3s2=3
: (10)

This gives the regime boundary above which PSFI con-

trols the turbulence

jV0kjreg ¼
3

22=3
A1=3 jxT j

sjkkcsj

 !2=3 jkkjcs

khqs

: (11)

External flow drives can enhance the flow profile gradi-

ent. Hence, rVk can exceed the PSFI regime boundary

(jV0kjreg). PSFI is nonlinear in rVk. Consequently, the

turbulent viscosity is nonlinear in rVk, and so rVk satu-

rates at jV0kjreg which is above the linear threshold of

PSFI. Thus, there is a clear distinction between the

threshold rVk profile and the saturated-or “stiff”-rVk
profile.

IV. STRUCTURE OF RESULTS

In this section, we summarize the key aspects of results

(Fig. 2). We consider (a) symmetry breaking by dV0k, (b)

mode phase, and c) flow profile in each of the three regimes.

A test flow shear dV0k can break the symmetry and induce a

incremental viscosity via the residual stress, i.e.,

dPRes
rk ¼ �vRes

/ dV0k. The sign of vRes
/ is determined by the

mode phase. Thus, vRes
/ has different signs in PSFI and ITG

turbulence. Finally, we need to calculate the flow profile, in

order to explore possibilities about flow saturation in the

context of negative compressibility turbulence, i.e., ITG and

PSFI turbulence. In the rest of the section, we discuss these

three aspects in detail.

A. Symmetry breaking by dV 0k

A perturbation to the flow profile, dV0k, breaks the kk !
�kk symmetry. hkhkki is linked to dV0k via the acoustic cou-

pling, rk~vk. In Sec. V, we will show that modes with

khkkdV0k > 0 grow faster than those without. This sets a spec-

tral imbalance in khkk space. Further, the finite residual stress

set by this imbalance is found to be a Fickian momentum

flux, i.e., dPRes
rk � �vRes

/ rVk. The viscosity increment

induced by residual stress then adds to the total viscosity, so

that vTot
/ ¼ v/ þ vRes

/ . Table II compares symmetry breaking

in the three regimes.

TABLE II. Characteristics of the three PSF-ITG instability regimes. Mode

phase is defined as the phase of complex mode frequency, i.e., x � xk

þ ick � jxjeihk . dhk is the phase of perturbed complex frequency, dx, due to

dV0k. vRes
/ is the incremental viscosity induced by dV0k. Since PSFI is driven

by rVk nonlinearly, the dV0k effect is nonlinear, so we do not consider its

linear effects, i.e., dhk and vRes
/ .

Marginal regime ITG regime PSFI regime

Primary turbulence drive rTi0 and rVk rTi0 rVk
dV0k induced spectral

imbalance

hkhkkidV0k > 0 hkhkkidV0k > 0 hkhkkidV0k > 0

Mode phase hk �p 2p=3 � p=2

Perturbed mode phase dhk p=2 p=3 NA

Sign of vRes
/ vRes

/ > 0 vRes
/ < 0 NA

FIG. 1. Regime defined by instability types and flow profile driven by the

PSF-ITG turbulence. The regimes are (1) marginal regime; (2) ITG regime;

(3) PSFI regime; and (4) stable regime. Parameters used for this plot are

khqs ¼ 0:4 and the ratio of specific heats C¼ 3.

FIG. 2. Diagram of the three roles played by rVk in the PSF-ITG system.
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B. Mode phase

The sign of residual stress is determined by mode

phase. Here, mode phase (hk) is defined as the phase of the

complex mode frequency, i.e., x¼xkþ ick � eihk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

kþ c2
k

q
.

Linearizing the response of ~vk;k, we can obtain the quasilin-

ear Reynolds stress19,20

h~vjj~vri ¼ �v/V0k þPRes
rk ; (12)

with the turbulent viscosity

v/ 
 <
X

k

i

x
k2
hq

2
s j/kj2; (13)

and residual stress

PRes
rk 
 <

X
k

i

x2

xT

s
khkkqscsj/kj2; (14)

where xT � �khqscs@rTi0=Ti0. Here, x � xk þ ick ¼ jxjeihk

is the complex mode frequency with mode number k, and so

i=x � eiðp=2�hkÞ and i=x2 � eiðp=2�2hkÞ. Therefore, the sign of

the residual stress is determined by hk, as PRes
rk � hkhkki

<ði=x2Þ � hkhkki cosðp=2� 2hkÞ.
Mode phase also determines the sign of vRes

/ , i.e., the

viscosity contribution induced by residual stress. In the pres-

ence of a test flow shear, dV0k, the residual stress induces a

momentum flux, dPRes
r;k ¼ �vRes

/ dV0k. The sign of vRes
/ is

determined by both the mode phase and its change due to

dV0k. The residual stress’ response to the test flow shear is

dPRes
r;k ��2

X
k

cos
p
2
þdhk�3hk

� � jdxj
jxj3

xT

s
khkkj/kj2; (15)

where dhk is the phase of perturbed complex frequency due

to dV0k, i.e., dx � jdxj expðidhkÞ. Since jdxj � khkkdV0k, the

sign of the residual stress-induced viscosity contribution is

determined by

vRes
/ � cos

p
2
þ dhk � 3hk

� �
: (16)

ITG instability and PSFI have different mode phases, leading

to different signs of vRes
/ . As a result, dV0k has different

effects on momentum transport in ITG and PSFI turbulence.

C. Flow profile

Although pure ITG turbulence cannot drive intrinsic

flows in straight field, rTi0 affects momentum transport, and

thus can regulate the flow gradient. In CSDX, the axial flow

can be driven by the axial ion pressure drop. In order to

uncover the ITG effect on the flow, we ignore the external

sources in the following analysis. Consequently, the flow

gradient within the center region of CSDX can be obtained

from r �P ¼ 0, where P is the total momentum flux.

Considering only the parallel Reynolds stress, the flow pro-

file gradient can be calculated from

@rh~vr~vki ¼ @rðPRes
rk � v/rVkÞ ¼ 0: (17)

The edge is accounted by boundary conditions for the flow.

The flow profile depends heavily on the boundary condi-

tion.9,21 The boundary layer in CSDX is controlled by cou-

pling between ions and neutral particles. Assuming that the

radial expansion of the boundary layer is negligible com-

pared to the plasma radius, we adopt a no-slip boundary

condition for Vk. As a result, the flow profile is VkðrÞ
¼ �

Ð a
r drrVk, where a is the radius of plasma.

V. RESULTS

In this section, we present results on mode phase, dV0k
induced symmetry breaking, and flow profile, for each of the

three regimes.

A. Marginal regime

When the PSF-ITG system is weakly unstable, i.e.,

D � 0, PSFI and ITG turbulence coexist. In this regime, rVk
and rTi0 are coupled nonlinearly, and a perturbation to the

mean flow profile raises the PSFI level and thus enhances the

flow dissipation.

We can obtain the linear thresholds for ITG and PSFI tur-

bulence. The PSF-ITG system can be viewed as an ITG sys-

tem in the presence of rVk. From the criterion Eq. (5), rTi0

can drive instability with a threshold depending onrVk

x2
T;crit rVk

� �
¼

4s2k2
kc

2
s C0 � V0ð Þ3

27A
: (18)

In the marginal state, i.e., x2
T � x2

T;crit, the growth rate and

real frequency are

ck ffi
ffiffiffi
3
p

3

jkkcsj2=3

2Asð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

T � x2
T;crit

q
jxT j2=3

; (19)

xk ffi �
jkkcsj2=3jxT j1=3

2Asð Þ1=3
: (20)

Meanwhile, the PSF-ITG system can also be viewed as a

PSFI system modified by rTi0. From the criterion Eq. (5),

the PSFI threshold can be obtained, and is

jV0kjcrit ¼
jkkcsj
khqs

C0 � 3A1=3 jxT j
2sjkkcsj

 !2=3
2
4

3
5: (21)

The growth rate, ck �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0kj � jV0kjcrit

q
, depends nonlinearly

on rVk. rTi0 enhances PSFI by lowering the PSFI thresh-

old. Therefore, in the marginal regime, PSFI and ITG insta-

bility coexist, and one can view this weakly unstable

turbulence in two equivalent ways: (1) ITG turbulence modi-

fied by rVk and (2) PSFI turbulence modified by rTi0.

The residual stress and turbulent viscosity are

PRes
rk ffi �

2
ffiffiffi
3
p

3

X
k

2Að Þ2=3

s1=3jkkcsj4=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

T � x2
T;crit

q
jxT j2=3

khkkqscsj/kj2;

(22)
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v/ ffi
ffiffiffi
3
p

3

X
k

2Asð Þ1=3

jkkcsj2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

T � x2
T;crit

q
jxT j4=3

k2
hq

2
s j/kj2: (23)

rVk and rTi0 are coupled nonlinearly in PRes
rk , viaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
T � x2

T;crit

q
. Therefore, PRes

rk cannot in general be decom-

posed into the sum of a rTi0 driven piece and a rVk driven

piece. Here, it is the frequency shift
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

T � x2
T;crit

q
which

determines the instability and thus sets the residual stress

and v/.

The residual stress requires symmetry breaking. A per-

turbation to the mean flow gradient, dV0k, breaks the kk !
�kk symmetry. As shown by Eq. (18), modes with

khkkdV0k > 0 have lower x2
T;crit than others. Therefore, these

modes grow faster because ck �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

T � x2
T;crit

q
. As a result,

a spectral imbalance in khkk space is induced. For example,

for V0k < 0, modes in the khkk < 0 domain have higher inten-

sities. Therefore, the correlator is set to be hkhkki < 0.

Further, the residual stress is set by the spectral imbalance as

PRes
rk ffi

2
ffiffiffi
3
p

3

X
fkjkhkk<0g

2Að Þ2=3

s1=3jkkcsj4=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

T � x2
T;crit

q
jxT j2=3

� jkhkkjqscsIk dV0k

� �
; (24)

where IkðdV0kÞ � j/kj2 � j/�kj2 accounts for the turbulence

intensity difference and so the summation is only over the

domain where khkk < 0.

This symmetry breaking mechanism induces a positive

increment to the turbulent viscosity. dV0k raises the PSFI

level, and so enhances the turbulent viscosity. We consider

the response of PRes
rk in the presence of a test flow shear dV0k.

The perturbed complex mode frequency due to dV0k is

dx ffi eidhk

ffiffiffi
3
p

2C0

jkkcsj2=3

2Asð Þ1=3

x2
T;crit

jxT j2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

T � x2
T;crit

q khkkqscsdV0k

k2
kc

2
s

;

(25)

with perturbed mode phase dhk ¼ p=2. dhk is the same as the

PSFI mode phase, indicating that dV0k enhances PSFI turbu-

lence. The mode phase in this regime can be obtained from

the complex frequency, which is

x ffi eihk
jkkcsj2=3

2Asð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2

T � x2
T;crit

q
ffiffiffi
3
p
jxT j2=3

; (26)

with mode phase hk ¼ p� � where � � arctanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

T � x2
T;critÞ=3x2

T

q
� 0. As a result, the residual stress in

response to dV0k can be written as a diffusive momentum flux

dPRes
rk ¼�vRes

/ dV0k with viscosity vRes
/ � cosðp=2þdhk�3hkÞ

¼ cosð3�Þ>0. This means the residual stress induces a posi-
tive increment to the turbulent viscosity. Following the same

calculation procedure as in Ref. 9, we can obtain the residual

stress in terms of rVk and dV0k, which is PRes
rk ðrVkþdV0kÞ

¼PRes
rk ðrVkÞ�vRes

/ dV0k, with

vRes
/ ffi 44=3

35=2

X
k

C2
0

A1=3

s5=3

jxT j2=3

k2
hq

2
s jkkcsj2=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
T � x2

T;crit

q j/kj2: (27)

Therefore, dV0k enhances flow dissipation.

One can also consider the rise in flow dissipation in

terms of parallel Reynolds power density. The parallel

Reynolds power density is defined as PR
k � h~vr~vkiV0k. It

accounts for the rate of energy coupled from fluctuations to

mean parallel flow. When PR
k > 0, mean flow gains energy

from fluctuations, and vice versa. The perturbed Reynolds

power due to dV0k is then dPR
k ¼ ð�v/dV0k þ dPRes

rk ÞV0k
¼ �ðv/ þ vRes

/ ÞV0kdV0k. Assuming that dV0k has the same sign

as V0k; vRes
/ > 0 increases the rate at which energy is coupled

from mean flow to fluctuations. Thus, flow dissipation is

enhanced.

Although the marginal pure ITG turbulence cannot drive

intrinsic flows in a straight field, it can influence the flow

profile driven by external sources. The final flow profile set

by ITG turbulence can be obtained from Eq. (17), which is

rVk ¼ PRes
rk =v/. Because rVk and rTi0 are nonlinearly

coupled via the frequency shift
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

T � x2
T;crit

q
, their effects

on the residual stress cannot be separated. However, the non-
linear dependence on rVk cancels, via the ratio between

PRes
rk and v/. In order to see the flow profile’s scaling with

rTi0, the factors induced by symmetry breaking effects are

ignored. As a result, the estimated residual stress is

jPRes
rk j 


2
ffiffiffi
3
p

3

X
k

2Að Þ2=3

s1=3jkkcsj4=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

T � x2
T;crit

q
jxT j2=3

jkhkkjqscsj/kj2;

(28)

which is an upper limit for PRes
rk since j

P
k khkkj/kj2j

�
P

k jkhkkjj/kj2. The fluctuation intensity, j/kj2, enters

both PRes
rk and v/, and so drops out of their ratio. Therefore,

the parallel flow gradient emerges as

jV0kj ¼
jPRes

rk rVk;rTi0

� �
j

v/ rVk;rTi0

� � � 24=3A1=3 jxT j
sjkkcsj

 !2=3 jkkjcs

khqs

:

(29)

The above scaling ofrVk can be illustrated on a back-of-

envelope level. Given by Eqs. (13) and (14), the ITG residual

stress and turbulent viscosity scale as PRes
rk � <ðixT=sx2Þ

and v/ � <ði=sxÞ, where x � xk þ ick is the complex

mode frequency, and xT � khqscs=LT is the ion drift fre-

quency. For ITG turbulence, ck � jxkj � ðjxT j=sÞ2=3
.

Therefore, the flow gradient scales as rVk � PRes
rk =v/

� ðjxT j=sÞ2=3jkkcsj1=3
.
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B. ITG regime

Now we consider ITG turbulence well above threshold

(x2
T � x2

T;crit) with the rVk effect as a first order correc-

tion. In this regime, a test flow shear dV0k induces a negative

correction to the viscosity. However, unlike the case of

electron drift wave (EDW) turbulence, the total viscosity in

ITG turbulence is positive definite. Therefore, no intrinsic
flow can be driven by ITG turbulence without symmetry
breaking due to the magnetic configuration. The difference

in flow dissipations between EDW and ITG turbulence

raises the question: is flow reversal possible in CSDX?

Even though the answer seems to be negative, it suggests

that speculations about flow reversal can be tested in funda-

mental plasma experiments.

The residual stress can be obtained using the growth rate

and frequency, which are

ck ffi
ffiffiffi
3
p

2

jxT j1=3jkkcsj2=3

sAð Þ1=3
1� xT;crit

2jxT j

� �2=3
" #

; (30)

xk ffi �
1

2

jxT j1=3jkkcsj2=3

sAð Þ1=3
1þ xT;crit

2jxT j

� �2=3
" #

: (31)

The leading order complex mode frequency is

x ffi ei2p=3 jxT j1=3jkkcsj2=3

sAð Þ1=3
; (32)

with mode phase hk ¼ 2p=3. Therefore, the residual stress

and turbulent viscosity in this regime are

PRes
rk ffi �

ffiffiffi
3
p

2

X
k

jxT j1=3A2=3

s1=3jkkcsj4=3
khkkqscsj/kj2; (33)

v/ ffi
ffiffiffi
3
p

2

X
k

sAð Þ1=3

jxT j1=3jkkcsj2=3
k2
hq

2
s j/kj2: (34)

dV0k induces a negative viscosity increment. Similar to

the case of marginal regime, the residual stress is set by the

spectral imbalance, which, given a flow shear dV0k < 0, is

PRes
rk ffi

ffiffiffi
3
p

2

X
fkjkhkk<0g

jxT j1=3A2=3

s1=3jkkcsj4=3
jkhkkjqscsIk dV0k

� �
: (35)

The perturbed complex mode frequency due to a test flow

shear dV0k is

dx ¼ eip=3 s
jxT j

� �1=3 khkkqscsdV0k

3A2=3jkkcsj2=3
; (36)

with the perturbed mode phase dhk ¼ p=3. Since ITG insta-

bility is well established (i.e., x2
T � x2

T;crit), the test flow

shear not only perturbs the growth rate, but also affects the

real frequency. Therefore, the perturbed mode phase carries

features of both PSFI and ITG mode phases. Since vRes
/

� cosð3hk � dhk � p=2Þ ¼ cosð5p=6Þ< 0, the residual stress

induces a negative viscosity increment, which is

vRes
/ ¼ �

ffiffiffi
3
p

6

X
k

sAð Þ1=3

jxT j1=3jkkcsj2=3
k2
hq

2
s j/kj2: (37)

This negative viscosity increment reduces the rate of energy

coupling from the mean flow profile to fluctuations, since the

Reynolds power density due to dV0k in this case is dPRes
k

¼ �ðv/ � jvRes
/ jÞV0kdV0k. Therefore, dV0k reduces flow dissi-

pation, and so can enhance the flow gradient, since

rVk � PRes
rk =v/.

However, dV0k cannot self-amplify, although it induces a
negative viscosity increment. The dynamics of dVk is deter-

mined by @tdV0k ¼ vTot
/ @2

r dV0k, with growth rate cq ¼ �q2
r v

Tot
/ .

Here, the total viscosity, vTot
/ ¼ v/ � jvRes

/ j, is positive defi-

nite, because jvRes
/ j ¼ 1

3
v/, which can be obtained by compar-

ing Eqs. (34) and (37). Since vTot
/ > 0, the growth rate cq is

negative, so the flow shear modulation is damped. This is

also shown by the Reynolds power density. Since vTot
/ > 0,

the Reynolds power density is negative, and thus energy is
coupled from a mean flow profile to fluctuations, although at

a reduced rate due to vRes
/ < 0. Table I summarizes the com-

parison between dV0k induced symmetry breaking in ITG tur-

bulence and electron drift wave turbulence.

In order to calculate the flow profile, we need to elimi-

nate the residual stress’ nonlinearity in rVk. In the ITG

regime, rVk effects can decouple from rTi0. This is because

rTi0 is well above the stability boundary, and dominates

over rVk in magnitude. Moreover, the residual stress indu-

ces an negative viscosity increment vRes
/ . Therefore, the

residual stress can be linearized as

PRes
rk ðrTi0; dV0kÞ 
 PRes

rk ðrTi0Þ þ jvRes
/ ðrTi0ÞjdV0k: (38)

The up-gradient component results from the symmetry

breaking by dV0k.
The negative incremental viscosity vRes

/ induced by the

residual stress regulates the transport of mean flow.

Therefore, in response to a mean flow gradient, the residual

stress can induce an up-gradient momentum flux, i.e.,

PRes
rk ðrTi0;V

0
kÞ 
 PRes

rk ðrTi0Þ þ jvRes
/ jV0k. This leads to Eq.

(39), which calculates the mean flow gradient. Such

“negative viscosity” phenomena are well known in geophysi-

cal fluid dynamics and magnetized plasmas.

With PRes
rk ðrTi0Þ; v/ðrTi0Þ and vRes

/ ðrTi0Þ given by

Eqs. (33), (34), and (37), the flow gradient is

jV0kj ¼
jPRes

rk rTi0ð Þj
v/ rTi0ð Þ � jvRes

/ rTi0ð Þj �
3

2
A1=3 jxT j

sjkkcsj

 !2=3 jkkjcs

khqs

:

(39)

Eq. (39) is an upper bound for the intrinsic V0k driven by ITG

turbulence. Again, rVk follows the general trend revealed

by scalings of Eqs. (13) and (14), i.e., rVk � ðjxT j=sÞ2=3

jkkcsj1=3
.
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Can there be flow reversal in CSDX, given the different

effects of ITG and EDW turbulence on momentum trans-

port? In tokamaks, reversal refers to the phenomenon, where

the global toroidal rotation profile spontaneously changes

direction. The rotation direction flips when density increases

and exceeds nsat, the critical density that triggers the transi-

tion from the linear ohmic confinement (LOC) to saturated

ohmic confinement (SOC) regime. Also, hysteresis is

observed as density is ramped down and the rotation direc-

tion flips back. The LOC to SOC transition is thought to be

triggered by a change in turbulence population from trapped

electron mode (TEM) to ITG. Thus, it is speculated that the

Ohmic reversal is due to a change in the sign of PRes
rk trig-

gered when the collisionality �� > ��crit, which corresponds

to n > nsat, tending to drive the turbulence to ITG. Recent

simulations show that a flip in the sign of PRes
rk can occur in

the weak shear regime.22

One wonders if these speculations about flow reversal can

be tested in basic plasma experiments. The positive definite

vTot
/ in ITG turbulence, in both weakly and strongly unstable

regimes, suggests that flow reversal-by a change in the mode

type from electron drift wave (EDW) to ITG-seems unlikely in

CSDX. With no-slip boundary condition, the flow profile in

CSDX is calculated in Ref. 9, which is

Vk ¼
ða

r

dr
aDPi

2q0LvTot
/

: (40)

Here, DPi is the ion pressure drop in the axial direction

induced by the plasma heating on one end of the cylindrical

tube. q0 is plasma density and L is the axial length of the

tube. When the major mode type flips between EDW and

ITG, the direction of pressure drop doesn’t change, so the

direction of flow depends on the sign of total viscosity, i.e.,

Vk � 1=vTot
/ . It should be noted that in the realistic ITG

regime of CSDX, the ITG residual stress may be weak, com-

pared to external flow drives. Thus, we view the axial DPi as

the main flow drive in the ITG regime here. In EDW, vTot
/ is

kept positive by the PSFI contribution, i.e., vTot
/ ¼ vEDW

/

þvPSFI
/ � jvRes

/ j > 0. Note that the nonlinear dependence of

vTot
/ on rVk determines the magnitude of a saturated flow

gradient. In marginal ITG turbulence, vRes
/ > 0 so vTot

/ is posi-

tive. Also, when ITG turbulence is well above the linear

threshold, even though dV0k drives vRes
/ < 0, the total viscosity,

vTot
/ ¼ v/ � jvRes

/ j, remains positive since jvRes
/ j=v/ ¼ 1=3.

Therefore, in ITG turbulence, vTot
/ is positive definite. As a

result, when the mode type flips from EDW to ITG, the sign of

vTot
/ does not change, and so the flow does not reverse.

C. PSFI regime

In CSDX, rVk can be driven and enhanced by various

external sources. When the flow gradient is above the PSFI

regime boundary, PSFI controls the turbulence. Note that the

PSFI regime boundary (jV0kjreg) is above the linear PSFI

threshold (jV0kjcrit). In the PSFI regime, both PSFI and ITG

instability are above their linear instability thresholds. Due

to the PSFI relaxation, the flow profile gradient saturates at

jV0kjreg, i.e., jV0kjcrit 
 jV0kj � jV0kjreg � ðrTi0Þ2=3
.

The turbulent viscosity by PSFI turbulence is nonlinear

in rVk, which leads to the saturation of flow gradient. The

growth rate and real frequency in the PSFI regime are

ck ffi
jkkcsjffiffiffi

A
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � C0

p
; (41)

xk ffi �
jxT j

2s V0 � C0ð Þ : (42)

The growth rate is nonlinear in rVk, while the real fre-

quency is negative as a result of rTi0 effects. Hence, the tur-

bulent viscosity is

v/ ¼
X

k

ffiffiffi
A
p

jkkcsj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � C0

p k2
hq

2
s j/kj2: (43)

The nonlinear dependence of v/ on rVk indicates that the

flow gradient can saturate. As a result, jV0kj saturates at the
PSFI regime boundary which is above the linear PSFI
threshold (Fig. 3), i.e.

jV0kj 
 jV0kjreg ¼
3

22=3
A1=3 jxT j

sjkkcsj

 !2=3 jkkjcs

khqs

: (44)

Therefore, the saturated flow gradient is above the linear

PSFI threshold, and grows with rTi0 as shown by Eq. (44),

i.e., jV0kjcrit=jkkcsj 
 jV0kj=jkkcsj � jrTi0j2=3=ðkkTi0Þ2=3
.

VI. DISCUSSION

In this paper, we have explored the physics of axial flow

generation in ITG turbulence, and of axial flow stiffness.

The main results in this paper are as follows:

FIG. 3. The additional flow drive can push the flow across the PSFI thresh-

old, triggering nonlinear PSFI relaxation. The flow gradient is then kept near

the PSFI regime boundary as a result of balancing between PSFI saturation

and total flow drive.
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• We have shown that pure ITG turbulence cannot drive

intrinsic flows in a straight magnetic field, but can induce

a negative viscosity increment, which reduces the turbu-

lent flow dissipation.
• PSFI saturates the flow gradient, when rVk is driven

above the PSFI regime boundary.
• The flow gradient saturates at the PSFI regime boundary,

which is above the PSFI linear threshold and tracks the

ITG drive, i.e., rVk=jkkcsj � ðrTi0Þ2=3=ðkkTi0Þ2=3
.

Below we discuss these results.

Negative compressibility leads to a negative viscosity

increment in a straight magnetic field. When the ITG turbu-

lence is well above its stability boundary, a perturbation to

the flow gradient dV0k results in a negative viscosity incre-

ment, vRes
/ < 0. The total viscosity is then reduced, i.e., vTot

/

¼ v/ � jvRes
/ j. However, dV0k cannot reinforce itself because

vTot
/ is always positive (since jvRes

/ j ¼ 1
3
v/). This means that

in order to drive an intrinsic flow, PRes
rk requires other sym-

metry breaking mechanisms that likely involve magnetic

shear. Therefore, there is no intrinsic flow driven by pure

ITG turbulence in straight fields. In CSDX, axial flows can

be driven by various external drives, e.g., end plate biasing

and axial ion pressure drop.

In straight magnetic fields, the flow gradient can saturate

due to PSFI relaxation. The flow gradient in CSDX can be

enhanced by various external sources. When rVk steepens

enough, so that PSFI drive dominates over ITG drive, flow

gradient saturates by PSFI relaxation. PSFI is nonlinear in

rVk, and so is the viscosity driven by PSFI turbulence.

Consequently, rVk saturates at the PSFI regime boundary

(which is above the linear PSFI threshold) and grows as

rVk � ðrTi0Þ2=3
. This scaling of flow gradient implies a

generalized Rice-type scaling, i.e., rVk � ðrTi0Þa, with

a ¼ 2=3.

We can also solve for the saturated flow gradient from

Eq. (40). The PSFI saturation effect can be accommodated in

Eq. (40) by introducing the PSFI induced turbulent viscosity

vPSFI
/ (given by Eq. (43)) when the flow shear is above the

PSFI stability boundary. As a result, the total viscosity is

vTot
/ ¼

vITG
/ � vRes

/ if jV0kj < jV0kjcrit

vITG
/ þ vPSFI

/ � vRes
/ if jV0kj � jV0kjcrit:

8<
: (45)

Hence, Eq. (40) becomes a nonlinear equation for rVk, due

to the contribution of vPSFI
/ . Since vPSFI

/ is nonlinear in rVk,
it becomes very strong compared to vITG

/ � vRes
/ when PSFI

is sufficiently excited. Therefore, the flow gradient solved

from Eq. (40) saturates at the PSFI regime boundary.

This generalized scaling of rVk with rTi0 indicates that

the interaction between the flow profile and the turbulence

drive exhibits simple trends. In ITG turbulence, rVk and

rTi0 are coupled nonlinearly. But due to the ITG residual

stress and PSFI saturation, their final states are constrained

by the scaling rVk � ðrTi0Þ2=3
.

Even though dV0k has different effects on electron drift

wave (EDW) and ITG turbulence, flow reversal by changing

the mode from EDW to ITG seems unlikely. As is known,

the axial flow in CSDX is driven by ion pressure drop in the

axial direction (DPi), which is Vk �
Ð a

r DPi=vTot
/ . In EDW,

the negative viscosity increment induced by dV0k can turn the

total viscosity negative in some transient state, i.e., vTot
/

¼ v/ � jvRes
/ j < 0. Nevertheless, in the final state, the self-

amplification of a test flow shear is saturated by PSFI, so the

total viscosity remains positive due to the PSFI contribution,

i.e., vTot
/ ¼ vEDW

/ þ vPSFI
/ � jvRes

/ j > 0. When ITG turbulence

is excited, vTot
/ driven by ITG is positive definite. Thus, for

the same flow boundary condition, the sign of vTot
/ does not

change, despite change in mode. Therefore, flow reversal in

CSDX will not track changes in turbulence.

The following works are proposed for the future. They

address remaining issues about flow generation and satura-

tion in CSDX. First, ion-neutral coupling mostly occurs in

the boundary layer in CSDX, where plasmas are partially

ionized. However, it sets the boundary condition for parallel

flows, and thus affects the global flow structure. Since the

flow profile is very sensitive to the boundary condition,

ion-neutral coupling is of great interest. Second, coupling

between perpendicular flow and parallel flow. In tokamaks,

poloidal flow and toroidal flow are coupled by sheared mag-

netic fields. Even though CSDX has straight field lines, the

parallel flow gradient (rVk) can be coupled to the perpendic-

ular flow gradient (rV?) via the turbulence.23 Particularly, a

sheared perpendicular flow can saturate the parallel flow gra-

dient in CSDX. Because both rV? and rVk are driven by

the background turbulence, their magnitudes are limited by

Reynolds power density, which measures the rate at which

fluctuations transfer energy to mean flows. The coupling

between perpendicular and parallel flows can also be viewed

as an extended predator-prey model24,25 in which rV? and

rVk are two predators (perhaps hierarchical) and the turbu-

lence is the prey. Third, reversal dynamics remains an open

question. As is known, flow reversal is unlikely in CSDX by

changing the mode from electron drift wave (EDW) to ITG,

because PSFI saturation of rVk in EDW turbulence keeps

the total viscosity positive. However, rV? saturation com-

plicates the problem of flow reversal. The bottom line is that

such predictions for flow reversal can be tested in basic

plasma experiments.
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