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Many applications today rely on storage and management of semi-structured in-

formation. Data stored in such databases often has to be shared with untrusted

third parties for research-related or other purposes, which makes privacy a funda-

mental problem. In this thesis, we study privacy-preserving publishing of hierar-

chical data, where an individual’s information in a database can be collected and

represented using a tree structure. We provide practical algorithms and solutions

regarding how some of the well-known privacy definitions (e.g., k-anonymity and

l-diversity), which were designed for tabular data, can be generalized and applied

to hierarchical data. We show that different solutions are preferable depending

on the needs and expectations of data recipients, in order to maximize data ap-

plicability and utility. Thus, we introduce a range of techniques to anonymize

hierarchical data. We experiment on realistic synthetic databases to test our al-

gorithms and validate our claims.
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CHAPTER 1

Introduction

Widespread use of computers and networked devices has contributed to various

things, including the ease of collecting and storing person-specific microdata. En-

tities such as governments, industrial and educational organizations may need to

share their data with untrusted third parties for research related or other purposes.

Oftentimes the data contains sensitive information that can violate individuals’

privacy, and therefore precautions need to be taken before the data can be pub-

lished to a third party. Researchers working in privacy-preserving data publishing

and data anonymization have been trying to find answers to questions such as how

these precautions can be defined, how data can be modified to meet these defini-

tions and goals, and whether data utility can be conserved while an “appropriate”

level of privacy is satisfied [17].

A typical scenario is presented in Fig. 1.1. Alice, Bob, Charlie and Dave are

some patients that had to visit the hospital due to certain health problems. The

hospital has a database that keeps track of the diagnoses its patients receive. Upon

being treated, data from these four individuals have been stored in the hospital’s

database. Our assumption at this point is that the data owner and publisher (in

this case, the hospital) are trustworthy, i.e., there are no “insider threats”. Later,

the hospital decides to share its data with a university, so that researchers can

use this data to test their hypotheses. Can this third party be trusted? Ideally,

the hospital needs to make sure that the data it provides is properly anonymized

so that an attacker cannot link individuals to their records in the database.
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Figure 1.1: Collecting and sharing individuals’ sensitive data

One popular way of dealing with this problem is data perturbation, which

distorts the data by adding random noise to existing records [6], swapping values

of fields [40] and/or supplying fake records based on statistical patterns observed

in the data. However, we will focus on cases where the data publisher would like

to be truthful, such that all records in the published dataset correspond to a real

life entity/occurrence. This motivates the need for proper anonymization [12].

The least one can do to protect privacy is to remove explicitly identifying

information (e.g., social security number, name) from a published dataset. This

is obviously a necessary step, but history has shown that it is not sufficient: An

early study [42] reports that gender, date of birth and 5-digit zip code are enough

to uniquely identify 87% of the United States population. In another work, it

has been shown that the triplet (gender, date of birth, zip code) can be used

to link voter registration records and medical data published by an insurance

company. The result reveals the medical records of the governor of Massachusetts

[43]. Somewhat recently, researchers from UT Austin showed that a so-called

anonymized Netflix dataset, made available for research, could be used to reveal

political preferences and other sensitive information about Netflix users [33].

An adversarial attempt is often carried out using background information and

quasi-identifiers (abbreviated “QI”) of individuals, i.e., attributes that do not

necessarily disclose individuals’ identity when used alone, but can be used in

2



(a) Public dataset (b) Hospital database w/ sensitive info

(c) 2-anonymous hospital database (d) 2-diverse hospital database

Figure 1.2: Record linkage attacks and possible defenses

combination and/or together with external databases to single out record owners.

Gender, nationality, date of birth and zip code are popular examples. Usage of

quasi-identifiers to identify records and infer sensitive values is often referred to

as a linkage attack [17].

Let us demonstrate the feasibility of privacy attacks through QIs using a ficti-

tious example. Assume that Alice’s information can be found in a public database,

such as the one in Fig. 1.2a, or an adversary knows Alice in real life and therefore

has information regarding her age, gender and the location of her home. Alice,

Bob, Charlie and Dave all visited the same hospital, and the hospital logged their

health conditions. Before publishing this sensitive database, the hospital thought

that it would be good idea to anonymize it first, hence removing everyone’s explicit

identifiers (e.g., names). They ended up with the table in Fig. 1.2b. The adversary

knows where Alice was hospitalized, so he starts searching for her record. Since

only the first tuple in 1.2b can refer to Alice, the adversary learns that Alice has

HIV.
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One of the most widely studied and well-known privacy protection methods

is k-anonymity [43][41]. In a k-anonymous table, for each existing combination

of QI values, at least k records in the dataset share the same combination [13].

In other words, each record is QI-wise indistinguishable from at least k − 1 other

records. This anonymization occurs via generalizations (i.e., replacing specific

values by more general ones) and suppressions (i.e., deleting some values or tuples)

[11]. Fig. 1.2c shows a 2-anonymization of the sensitive dataset. In this case, an

attacker can find that either the first tuple or the second belongs to Alice, but

has no way of telling exactly which one.

By definition, k-anonymity does not take into account the distribution of sen-

sitive values. For instance, upon linking Alice to the first two tuples in Fig. 1.2c,

the attacker may not learn which record corresponds to Alice; but he may still

learn that Alice suffers from HIV since both records have the same sensitive infor-

mation. This is a clear violation of Alice’s privacy, and is definitely undesirable.

Several sources acknowledge this problem, and point to possible countermea-

sures such as bounding an attacker’s confidence of inferring a sensitive attribute

using a publisher-specified threshold [45][47][27]. A popular and effective solu-

tion is l-diversity [31]. In its simplest form, l-diversity ensures that every QI-wise

indistinguishable block contains l sensitive values that are “distinct” from one

another, so that a sensitive attribute is “well-represented”. (There can be other

definitions for being “well-represented”, e.g., probabilistic definitions.) Notice that

l-anonymity is a prerequisite for l-diversity. Fig. 1.2d is 2-diverse, and therefore

unlike the 2-anonymous database, the adversary can no longer determine whether

Alice has HIV or asthma.

Most of the notions of privacy have been invented for and applied to tabular

(i.e., relational) data. However, the era of big data is certainly increasing the em-

phasis on collection of semi-structured data. This thesis focuses on hierarchically

structured data, that is, cases where an individual’s presence in a database can

4



be abstracted as a tree. XML documents, some spatio-temporal databases and

data warehouses can be represented hierarchically [37]. For example, a patient

may visit the same hospital several times receiving different diagnoses each time

and receiving applicable medication for each diagnosis. In this case, the patient’s

demographic information can be kept at the root, diagnoses can be placed as

children of the root and similarly, each medication can be associated with the

corresponding diagnosis.

Data formats suitable for representing hierarchical structures and trees are

manifold: XML, JSON and YAML are popular examples. Emergence of document-

oriented databases following the NoSQL trend (e.g., MongoDB) has contributed to

storage and management of structured data. Relational databases with snowflake

schemas can also store hierarchical data. In this paper we consider hierarchical

data, regardless of how it is stored. Our representation and discussion applies to

all storage schemes outlined above.

The objective of our study is to properly define existing notions of privacy on

hierarchical data. We then discuss practical methods that enforce these privacy

constraints. Anonymization causes loss in data utility, which we measure by ex-

tending popular metrics from the literature. Our algorithms aim to maximize data

utility while performing anonymization, but they are not dependent on the choice

of cost metric. Finally, we take a look at privacy-preserving partial publishing of

hierarchically structured multi-relational databases.

1.1 Related Work

Optimal k-anonymity has been shown to be NP-hard [32][26]. Due its popularity,

though, significant research has been put into implementing efficient algorithms

to achieve k-anonymity, most of which are based on heuristic approaches (e.g., ap-

proximation algorithms) and are suitable for tabular data, e.g., [5][22][25][44][2][38].
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l-diversity requires l-anonymity, therefore the problem of computing l-diverse ta-

bles with minimum information loss is also computationally challenging. [50]

shows that achieving optimal l-diversity through generalizations is NP-hard for

l ≥ 3. Among notable l-diversity algorithms are the ones presented in [31], [50]

and [29]. There are also other definitions of privacy, some of which are stricter

than the ones we will use, and others that have different requirements: δ-presence

[35], t-closeness [28] and anatomy [49] are some of the prevalent ones.

Even though multi-relational data mining [14] and extensions of single-tabular

methods to support multi-relational databases is an active area [20][16], hierarchi-

cal data privacy has not been adequately studied. [51] demonstrates that semi-

supervised learning algorithms may lead to privacy leakage in multi-relational

databases. For privacy preservation, one of the earlier studies considers multi-

relational k-anonymity [37]. This is closely connected to our work, and we provide

a generalized version of the setting presented in this paper. Some of our anonymity

algorithms are applicable to their setting, and we will make comparisons. There

are other sources (e.g., [53]) that allow several tuples in a database to originate

from the same individual, yet their discussion is limited to a single relation.

Related to our work are also [23] and [24]. [23] proposes to use a variation of

k-anonymity to control users’ access to XML databases. In contrast, we assume

that an adversary can fully access a database once it is published. In [24], authors

use anatomy [49] to anonymize medical data and electronic health records that

are represented in XML format. Anatomy releases quasi-identifiers and sensitive

values in seperate tables to eliminate linkage. On the other hand, our work is

explicit regarding which sensitive value corresponds to which data record. Fur-

thermore, our solutions are applicable to various scenarios of publishing and ways

of storage.

Relevant literature discusses the applicability of privacy notions such as k-

anonymity to a number of settings, including transactional databases and set-
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valued data [21][48], spatio-temporal databases and trajectory data [34][10], graph

data (where not only nodes but also edges, i.e., links between data, are required

to be anonymized) [52][30] and social networks [54]. The success of these recent

attempts motivated us to take a similar approach for hierarchical data anonymiza-

tion.

1.2 Contributions

In this thesis, we make the following contributions:

• We formalize the notions of k-anonymity and l-diversity on hierarchical data.

We explain why single-table methods are insufficient to preserve individuals’

privacy in hierarchical databases.

• We provide a clustering-based solution to achieve k-anonymity on hierar-

chical data. This solution does not depend on any assumptions regarding

the underlying dataset, or the utility cost metric used to compute infor-

mation loss. Our algorithm is shown to outperform the state of the art

multi-relational k-anonymity algorithm in [37].

• We enhance our k-anonymity algorithm to support l-diversity. We propose

extensions, which our evaluations show to be effective. We then compare the

data utility of k-anonymized and l-diversified datasets, in order to analyze

if the additional privacy l-diversity provides is worth the increased utility

cost.

• During all of the above, we assume explicit connections between records

belonging to an individual. We then relax this assumption to support cases

where “data ownership” is irrelevant for the data recipient (i.e., the end

receiver of published data). We formalize this problem on multi-relational

databases and illustrate its usefulness.
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• We provide a framework that anonymizes such datasets. We show that this

solution can be much more efficient and accurate for the relaxed problem in

hand compared to the previous k-anonymity solution.

1.3 Organization

The remainder of this thesis is organized as follows: An introduction to hierar-

chical data is given in the next chapter. Our introduction is based on multi-

relational databases with snowflake schemas rather than XML/JSON object rep-

resentations, not only because XML/JSON is trivial to understand and visualize,

but also because our definitions in Chapter 2 are re-visited in Chapter 5. We

solve the problem of k-anonymity on hierarchical data in Chapter 3, providing de-

tailed explanations of our functions and algorithms. We elaborate on our design

choices and evaluate our algorithms. In Chapter 4, we point out the problems

with “anonymity” and define the requirements for “diversity”. We incorporate

the notion of diversity into our solution, which appears to be significantly costly.

However, by extending our clustering algorithm, we can decrease these costs by

30-40%. In Chapter 5, we give a brief recap of our assumptions in previous chap-

ters, and explain how/when they can be relaxed. We undertake a problem that we

call “partial publication”: publishing only certain portions/relations of a multi-

relational database. We show how this problem is different than the previous ones,

and why less costly solutions could be found. We implement a solution that pro-

duces end results that preserve privacy and have low information loss. The final

chapter concludes this thesis and discusses potential directions for future work.
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CHAPTER 2

Problem Definition

2.1 Introduction to Hierarchical Data

We first provide formal definitions for the concepts considered in the previous

section and the basics of what will be covered in the remainder of this thesis. We

establish our initial discussion using multi-relational databases.

Definition 1 (Relation) A relation is a collection of tuples, in which each tu-

ple follows a certain schema S = (A1, A2, ..., An), where attributes A1, .., An are

categorized under one of:

- Explicit Identifiers (e.g., name, SSN). In that case they are projected out before

publication (and therefore from this point onwards we will ignore them).

- Quasi Identifiers (QI), which will be subject to generalizations and suppressions.

- Sensitive Attributes (SA), which will be left untouched.

- Join Keys (primary and foreign keys), which may be suppressed.

- Irrelevant attributes that bear no privacy risks, which can either stay or be pro-

jected out (from this point onwards, these will be ignored too).

Join keys are used to explicitly connect records to their ancestors and children,

and preserve the hierarchical structure of data. If join keys are generalized, we may

lose whom a tuple belongs to (see Fig. 2.3 and Fig. 2.4 for examples). Therefore,

only suppressions of join keys are allowed, and that may only happen when a

record (and its subtree, if applicable) is being fully deleted (i.e., suppressed).

9



Figure 2.1: Schema for transaction data.

As discussed earlier, we limit our study to multi-relational schemas that satisfy

certain constraints, from hereon to be referred to as snowflake schemas. We

now explain relevant properties of our setting.

Definition 2 (Central relation) A relation R is called the central relation of

a snowflake schema, if and only if R contains a primary key (a single attribute,

e.g., customerID; or a collection of attributes that qualify to be the primary key),

such that the primary key uniquely identifies (i.e., refers to) exactly one individual

in the population.

A snowflake schema should contain only one central relation. All relations

should have one foreign key, whereas the central relation has no foreign keys. In

our previous definition, we considered join key and QI attributes to be exclusive

of one another. In cases where they are not (i.e., a join key is also a QI), one may

trivially add a new attribute that copies the join key, and treat the new attribute

as a QI. Figures 2.1 and 2.2 contain examples of snowflake schemas.

Definition 3 (k-anonymity across multiple relations) Let MR be multi-

relational database with a snowflake schema. MR has a central relation CR with

primary key PK, and multiple other relations: MR = (CR,R1, R2, ..., Rn). Let

MR∗ contain a transformed version of the data in MR. We say that MR∗ is a

k-anonymized version of MR, if:

- MR∗ fully preserves the schematical structure of MR. That is, for every relation

in MR, there is a relation in MR∗ that has the same join key, quasi-identifier

10



Figure 2.2: Schema for education data.

and sensitive attributes. We denote the result MR∗ = (CR∗, R∗1, R
∗
2, ..., R

∗
n).

- Let U∗ denote the universal join of all relations in MR∗, computed using equi-

joins on join keys (primary and foreign keys), i.e.: U∗ = CR∗ ./ R∗1 ./ R
∗
2... ./

R∗n. Let σQI denote a legitimate selection query on U∗, constructed using quasi-

identifier attributes in one or more relations. Then, for all possible σQI , the query

πPK(σQI(U
∗)) should return either zero tuples, or at least k distinct tuples.

We allow no counterfeits (i.e., noise cannot be introduced to the data), there-

fore the following requirement should be added to the definition above:

- MR∗ is “correct”: For all relations R∗ ∈MR∗, each tuple t∗i ∈ R∗ is a properly

generalized or suppressed version of a tuple ti ∈ R, where R ∈MR.

2.2 Notation

Similar to how a snowflake schema can be represented (or how an XML object can

be viewed), we use a tree structure to visualize the data. For example, Fig. 2.3

contains data from three of the tables in Fig. 2.2. Converting this data into our

11



Figure 2.3: Sample education data.

Figure 2.4: Converting data in multiple relations into trees.

notation, we get the trees in Fig. 2.4. Each tuple is represented using one tree

node where join keys are used to establish connections between affiliated nodes.

Quasi-identifiers are written as labels within nodes, and sensitive values sit right

beside the nodes they are associated with. The shape of a tree node in our example

has no significance (they are just there for extended clarity regarding levels and

depth). We feel that it is trivial to encode the same information in XML (or any

other markup language that can be used to store hierarchical data, e.g., JSON),

hence we do not provide examples for these cases.

Next, we should define the notion of k-anonymity on tree-structured data.

One can see that Definition 3 is essentially an application of this, targeting multi-

relational databases. The definition that we give now is concerned with all types

of hierarchical data. It should be noted that the trees we have are rooted and

labeled. Root nodes always originate from the central relation, which means there

12



should be one tree per individual in our database. The ordering of siblings bears no

significance (although for clarity we mimicked the order in Fig. 2.3 while drawing

Fig. 2.4), i.e., trees are unordered.

Definition 4 (Tree isomorphism - rooted, labeled, unordered trees) Let

tree T1 be defined by a set of vertices V1 and a set of edges E1. Another tree T2

with vertices V2 and edges E2 is isomorphic to T1 if and only if there exists a

bijection function f : V1 → V2 such that:

- f(x) and f(y) are adjacent if and only if x is adjacent to y.

- The root node is conserved, i.e., denoting the root of the first tree as r1 ∈ V1 and

the second tree as r2 ∈ V2, f(r1) = r2.

- All pairs of vertices matched by the function f (i.e., all pairs x ∈ V1 and f(x) ∈

V2) share the same labels.

Definition 5 (k-anonymity on hierarchical data) A set of trees T1, T2, ..., Tk

form a k-anonymous group, if and only if all possible pairs (Ti, Tj) where Ti ∈

T1, T2, ..., Tk and Tj ∈ T1, T2, ..., Tk are pairwise isomorphic. A forest (collection

of trees) F is k-anonymous, if all trees in F belong to some k-anonymous group.

2-anonymous versions of the two trees in Fig. 2.4 are given in Fig. 2.5. There

are multiple ways of transforming these trees to fit the definition of k-anonymity,

and the one shown in Fig. 2.5 is just one of them. The quality of these anonymiza-

tions depend mainly on how much data utility is lost (according to a given

cost metric). In other words, an anonymization that fits the requirements of

k-anonymity and yields the lowest utility loss is most desirable. For example, one

can delete the whole branch that has course CS13* in both trees, and the result

would still be k-anonymous. However, that would result in higher data loss.

During the anonymization procedure shown, the trees have undergone certain

changes which can be analyzed under two categories: (1) Generalization and sup-

pression of quasi-identifier values. These correspond to changes in node labels,
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Figure 2.5: 2-anonymous trees.

e.g., Millstein and Palsberg have been generalized to PL Professor. (2) Removal

of nodes and subtrees, e.g., the subtree rooted at CS143 has been pruned. From

a relational perspective, this translates to suppressing a tuple, including its join

key. (If the join key is not suppressed, this would convey the information that the

student has taken a class, but the name of that class is hidden.)

2.3 Rationale

Some obvious questions to ask are whether our definitions are needed and to what

extent our scheme can preserve privacy. We investigate answers to these questions

in this section. First, we will model an adversary that has partial knowledge of QIs

in multiple relations. Notice that this is a different type of adversary compared

to what is generally depicted in linkage attacks. This will help us demonstrate

the need for cross-relational k-anonymity. Second, we will argue that single-table

k-anonymity algorithms, as discussed in the literature, are not sufficient to ensure

k-anonymity in hierarchical data. Third, we will consider the limitations of k-

anonymity and suggest improvements.

Observation 1 An adversary may use cross-references and links between data

nodes to violate individuals’ privacy.
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Suppose that our adversary knows that a student is studying Computer Sci-

ence, which allows him to deduce that this individual is one of the two in 2.4.

The adversary also knows that this individual is taking CS132 (alternatively, the

adversary knows he’s taking CS143, or the adversary knows he’s taking three

classes). With this information, the adversary learns the GPA, class grades and

evaluations given by this student. The adversary did not need full knowledge of

QI values in one node/relation, but could use partial QI information from multiple

nodes/relations to increase his chances (i.e., confidence) of singling out the target

individual.

Let us consider a second adversary, one that knows the student was born in

1994 and is studying Computer Science. In this case, assume that the central

relation has been properly 2-anonymized. Therefore the adversary can narrow

potential candidates down to two trees, but cannot proceed further. However,

if the remaining relations are not anonymized, the only extra information that

the adversary needs is “Student has TA1 as his teaching assistant for CS111” or

“Student is taking CS131” or “Student is taking CS143”. (Any one of these three

will be sufficient to distinguish the target individual.) So, just anonymizing one

relation and not dealing with the remaining ones does not protect privacy, either.

Observation 2 In a hierarchical [multi-relational] database, anonymizing each

level [relation] independently fails to protect privacy.

Observation 3 Flattening hierarchical data into one giant relation and then run-

ning single-table k-anonymity algorithms on the resulting relation fails to protect

privacy.

For a detailed discussion on observations 2 and 3, the reader is referred to

[37], which shows that single table anonymization algorithms cannot acknowledge

owners of tuples (i.e., parent-child relationships). Also, each individual may have
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an unbounded number of entries in a flattened table. Hence, anonymizations

are not consistent between multiple relations. For example, consider the data in

Fig. 2.3. In the first table, S1 and S2 are 2-anonymized. In the second table,

though, the following anonymization is perfectly valid from the point of view of

a single-table anonymization algorithm: SG1 and SG2 are 2-anonymized, SG3

and SG4 are 2-anonymized, SG5 is suppressed. However, it is obvious to see that

this does not protect individuals’ privacy: An adversary learns S1 took 3 classes,

higher than the number of classes S2 took.

The papers cited above also illustrate that converting the database to an ap-

propriate bitmap, or generalizing/suppressing join keys, or considering join keys

as sensitive attributes (or quasi-identifiers) are all undesirable; since these meth-

ods either overly reduce data utility or cannot provide satisfactory privacy. We

therefore conclude that it is necessary to employ the definitions of k-anonymity

that we have given and provide solutions applicable to this new problem.

Observation 4 k-anonymity does not consider the distribution of sensitive val-

ues, and hence fails to conceal sensitive information that lacks diversity.

In a k-anonymous group of trees, if the sensitive value of a certain node is

the same in all k trees, then an adversary can learn this sensitive value simply

by looking at the group and not singling out the individual. For example, both

students in Fig. 2.4 might have received the same letter grade in CS111. There are

certain ways to aid this problem, such as the use of l-diversity on trees. However,

we should note that such definitions are stricter than k-anonymity, and usually

result in higher data loss.
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Figure 2.6: Part of a domain generalization hierarchy for courses.

2.4 Assumptions

2.4.1 Generalization Hierarchies

As stated earlier, we achieve anonymity using generalizations and suppressions on

QI values. In case of generalizations, we make use of pre-defined domain gener-

alization hierarchies (DGH). We assume that a tree-structured DGH is available

for each categorical attribute. Having such a taxonomy of values has been widely

adopted in the literature [28][29][19][18].

Fig. 2.6 contains a sample DGH for university courses. Leaves of the DGH

should contain all possible values that can be observed in the input (i.e., all courses

offered at the university). The best (i.e., least costly) generalization of two values

in the DGH is often their most recent common ancestor, e.g., it is most suitable

to generalize CS111 and CS118 as CS11*, whereas CS111 and CS143 can be

generalized as CS Undergrad according to this DGH.

For numeric or continuous attributes (defined on a range), we say that either

a pre-specified domain generalization hierarchy is available or a generalization

scheme is easily inferable from the data. Fig. 2.7 provides a DGH for numerical

attribute year of birth.
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Figure 2.7: Part of a domain generalization hierarchy for years of birth.

2.4.2 Information/Utility Loss Metrics

Generalizations and value suppressions both cause loss of data utility, as specific

values are either replaced with more general ones or completely obscured. Various

metrics were proposed and used in relevant literature to calculate costs of these

operations. LM [22], DM [5] and CM [22] are some examples. The Classification

Metric (CM) is suitable when the purpose of anonymization is to train a classi-

fier [19]. The Discernibility Metric (DM) penalizes tuples only according to the

size of equivalence classes they are in, i.e., how many tuples (in our case, entiti-

ties/individuals) are indistinguishable from it. We will therefore use an adaptation

of the Generalized Loss Metric (LM) in our examples and evaluation (also known

as the InfoLoss or VInfoLoss metric in some sources, e.g., [8]). Our algorithms,

however, are not dependent on the cost metric used, i.e., a user may define a new,

monotonic cost metric that can be plugged in to our solution. (Monotonicity is

required so that “more general” values that will appear in the final output are

always penalized more than less general ones. For example, for years of birth,

generalizing 1980s and 1991 to * should receive higher penalty than generalizing

1991 and 1993 to 1990s.)

Let us first define the LM cost of individual data values. Let T be the DGH

of a QI, and let M denote the number of total leaf nodes in T . Let val be the

value observed for that QI in our data tuple, and let Mval denote the number of

leaf nodes in the subtree rooted at value val within the DGH. Then, the LM cost

of val is: LM(val) = (Mval− 1)/(M − 1). For example, the LM cost of CS11* in
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Fig. 2.6 is (3-1)/(# of total classes offered - 1). Leaves of a DGH have LM costs

of zero, the root of a DGH has LM cost equal to one, and all remaining nodes

have costs between 0 and 1.

We now extend this definition to hierarchical data. Let f(val) be a function

that retrieves the LM cost of an individual value val as defined above. Let F ∗ be

an arbitrary forest that was subject to anonymization. Let R denote a tree, N

denote a node in a tree, |N | denote the number of QIs in N , and N [k] denote the

value of the k’th QI in N . The LM cost of F ∗:

LM(F ∗) =

∑
R∈F ∗

∑
N∈R

|N |∑
i=1

f(N [i])∑
R∈F ∗

∑
N∈R
|N |

(2.1)

This definition is produced based on our tree representation. For the same

definition expressed in multi-relational terms, refer to [37]. One can verify that

the LM cost of a forest is normalized to a value in the range [0,1]. Deleted (pruned)

nodes are considered to be fully suppressed (i.e., all their QIs are replaced by * ),

and hence receive the maximum penalty possible per node (which is 1).
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CHAPTER 3

Anonymity in Hierarchical Data

In this chapter we examine a utility cost-aware function that can 2-anonymize two

input trees, and then construct a clustering-based algorithm based on this function

that allows generation of k-anonymous groups of trees for arbitrary values of k.

We first outline some further notation and helper functions below.

3.1 Preliminaries

Let a denote a tree node that consists of 0 or more QIs and sensitive attributes. A

node may have an arbitrary number of children, which we denote by a1, a2, ..., an.

Furthermore, let tree(a) denote the tree rooted at a. In case of the cardinality

symbol, assume that when it’s used on tree nodes (e.g., |a|) it returns the number

of children a has. In all other cases (e.g., used on sets, lists etc.) it returns the

number of elements in that set/list.

The examples given in Fig. 2.4 and Fig. 2.5 contain one “type” of node per

level (for simplicity), e.g., nodes at depth 1 are all classes taken by the student,

nodes at depth 2 are all evaluations given by the student. In a more general case,

each level may contain nodes with different schema (in a multi-relational setting,

this would refer to tuples in different relations), e.g., as in Fig. 2.2, nodes at depth

2 could also be books bought by the student. We have to account for cases in

which multiple “types” of nodes co-exist at each level. It is often inappropriate to

anonymize such nodes with one another, since they will most likely have different
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type and number of QIs. This is addressed by the following function:

compatible(a,b): Returns true if two tree nodes (a and b) are schematically

compatible to be anonymized (i.e., if database is multi-relational, originating from

the same relation), false otherwise.

Next, we need to support generalization of compatible tree nodes. The follow-

ing function takes as inputs two compatible nodes and transforms them so that

they will be QI-wise indistinguishable.

generalize(a,b): Given two tree nodes a and b, finds and performs the lowest

cost generalization of a and b’s QIs according to their DGH and a cost metric

(e.g., LM).

Not only the function described above, but also the anonymization procedure

presented later will perform certain changes to trees (e.g., replacing QI values,

deleting nodes/subtrees etc.). We need a way to calculate the cost of such op-

erations, i.e., How much utility is lost while converting a tree to its anonymized

version, according to a given cost metric?

calculateCost(tree(a),tree(a′)): Given a tree rooted at a and its modified ver-

sion a′, calculates the cost incurred by the modifications.

Finally, we introduce a function that allows deep copying trees. A deep copy

is needed whenever we need to change a tree in certain ways but would not like

to apply these changes to the original tree yet.

copyTree(a): Given a tree node a, deep copies the tree rooted at a and returns

the copy.

3.2 Anonymizing a Pair of Trees

Converting two arbitrary trees to a 2-anonymous pair is pivotal due to two reasons:

First, we have to support such a procedure so that our overall solution can produce

k-anonymous groups, as we intend to use this function as the main building block
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for the rest of our algorithm. Second, we propose to use this function also as an

indication of how similar two trees are, i.e., the “distance” between trees will be

calculated as the cost of making them anonymous. If very little information would

be lost by anonymizing a certain pair of trees, they are feasible candidates for one

another, so the distance between them should be small.

In addition to the points above, given a fixed pair of trees as inputs, the func-

tion itself should be able to produce 2-anonymous versions of them with as little

information loss as possible. Going back to Fig. 2.4, the following anonymization

would also be legitimate: CS111 in the first tree is anonymized with CS132 in the

second tree and CS143 in the first tree is anonymized with CS111 in the second

tree (their children are also taken care of accordingly). However, the cost of this

anonymization would be higher, since both of the nodes that are matched have

to be generalized as CS Undergrad, as determined by their DGH in Fig. 2.6. In

that regard, the choice of pairwise matching at each level has huge impact on the

accuracy and information loss implied by the overall procedure.

We present a top-down anonymization function in Algorithm 1 and call this

function anonymize. It can be studied in four steps; the starting point of each

step is labeled on the algorithm. Step 1 checks whether the root nodes can be

anonymized. If they can, they are matched and their QIs are generalized. If they

are incompatible, their trees will be pruned. In step 2, the algorithm checks if

further calculation is needed: Pairings and recursive steps need only be performed

if both trees have children to be matched. Step 3 attempts to find the lowest-cost

pairing between the two nodes’ children. It does so using a look-ahead approach:

It makes recursive calls to figure out “what would happen if these two children

were actually paired and anonymized together”. Notice that this requires several

recursive calls on the deep copies of children. This implies that a suitable match

is calculated not only by the QI values in the current level, but also taking into

account the deeper levels; i.e., children are treated as subtrees and matched with
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Algorithm 1 Top-down anonymization

Input: Two trees rooted at a and b respectively
Require: |a| ≤ |b|. Otherwise a and b can be interchanged as the first step within

the procedure.
1: procedure Anonymize(tree(a),tree(b))
2: if ¬ compatible(a,b) then . Step 1
3: delete tree(a), tree(b)
4: return
5: generalize(a,b)
6: if |a| > 0 and |b| = 0 then . Step 2
7: delete tree(a1), tree(a2), .., tree(an)
8: return
9: else if |a| = 0 and |b| > 0 then

10: delete tree(b1), tree(b2), .., tree(bn)
11: return
12: else if |a| = 0 and |b| = 0 then
13: return
14: pairs ← [] . Step 3
15: for i = 1 to |a| do
16: minCost ← +∞
17: pairedIndex ← φ . some special character
18: for j = 1 to |b| do
19: if j ∈ pairs or ¬ compatible(ai,bj) then
20: continue . skip current iteration of inner loop

21: a′i ← copyTree(ai)
22: b′j ← copyTree(bj)
23: anonymize(tree(a′i),tree(b′j))
24: cost ← calculateCost(tree(ai),tree(a′i))
25: cost ← cost + calculateCost(tree(bj),tree(b′j))
26: if cost < minCost then
27: minCost ← cost
28: pairedIndex ← j

29: pairs.append(pairedIndex)

30: for i = 1 to |a| do . Step 4
31: if pairs[i] 6= φ then
32: anonymize(ai,bpairs[i])

33: for i = 1 to |a| do
34: if pairs[i] = φ then
35: delete tree(ai)

36: for j = 1 to |b| do
37: if j /∈ pairs then
38: delete tree(bj)

39: return
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appropriate subtrees (as opposed to being treated as nodes and matched with

appropriate nodes). Also, the pairing here is done greedily, as explained in the

next paragraph. Finally, in step 4, the best pairing found in the previous step is

applied to the trees. Recursive calls are made to dive into each pair of children

that are matched. Children for which no suitable pair could be found will be

pruned in the clean-up phase (lines 34-39). A sample run is given in Fig. 3.1.

The choice of greediness in step 3 comes from the fact that the complexity of

finding all pairings between two sets is high. This becomes a significant problem

when the branching factor of input trees are large. Let a have n children and b have

m children, where m ≥ n. The total number of possible pairings between their

children is (as determined by the total number of permutations):
(
m
n

)
∗ n!, which

implies exponential complexity. We reduce this to quadratic complexity (O(m2)):

a1 is paired with one of b’s children, then a2 is paired with one of the remaining

unmatched children of b etc. Although we do not formally present results for this

greedy versus optimal search cases, we did implement and test both. Even with our

small datasets with average branching factors of 6-7, clustering with greedy search

took < 5 minutes, whereas clustering with optimal search took several hours to

complete. We therefore concluded that, for any practical database, optimal search

with exponential complexity is infeasible.

3.3 Clustering for k-Anonymity

We designed a clustering algorithm based on the notion of agglomerative clustering

to create groups of k-anonymous trees for k > 2. Other clustering approaches are

also viable, such as the application of various well-known techniques (e.g., k-

means) or the use of clustering methods that are created specifically for data

privacy, e.g., [1], [3] (although most of such algorithms are only evaluated on

tabular or single-relational data). Our main design concern was to create an
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(a) The algorithm takes two trees as inputs.

(b) First, root nodes are matched and generalized.

(c) Next, the algorithm finds a suitable pairing between nodes at depth 1. Notice

that CS132 in the second tree is matched with CS143 instead of CS131 in the first

tree, although CS131 looks like a more lucrative candidate based on its label. The

algorithm recognizes that matching CS131 with CS132 would result in higher data loss

in the next step, since CS132’s children would have to be pruned.

(d) After the pairing is complete, each pair is handled independently.

(e) Once the two subtrees containing CS111 are taken care of, the algorithm moves on

to the next pair (CS143-CS132).

Figure 3.1: Algorithm 1 anonymizing two trees step by step, in a top-down manner
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algorithm that does not rely on any other parameter than k.

Algorithm 2 Clustering procedure

Input: A forest of n trees (t1, t2, .., tn) and parameter k
1: procedure ClusterTrees
2: Initialize n clusters, such that the cluster representative of each ci is ti
3: Build initial n× n distance matrix dist
4: for i = 1 to n do
5: for j = 1 to n do
6: if i ≤ j then
7: dist[i][j] = +∞
8: else
9: Copy cluster representatives

10: Use anonymize on these copies
11: Calculate cost of anonymization, i.e., distance between ci and cj
12: Insert cost to dist[i][j]

13: while multiple active clusters exist do
14: Find ci and cj that have minimum distance in dist
15: Merge ci and cj using anonymize
16: Update cluster representatives
17: if resulting cluster has ≥ k trees then
18: Remove cluster from distance matrix
19: else
20: Update distance matrix

21: if there is a left-over (residual) cluster then
22: Delete trees within that cluster

Algorithm 2 provides a high-level description of our clustering procedure. We

use the concept of cluster representatives: Each cluster has a representative tree

that summarizes all the trees within the cluster. Distance between two clusters is

found by computing the distance between their representatives. When two clusters

are merged, updating their representatives is a simple call to the anonymize

function. Individual trees (i.e., a cluster of size p will contain p trees from the

initial input) can be kept with or without updates. (Updating them on the fly

will require multiple additional pairwise calls to anonymize and therefore might

be undesirable.)

Notice that multiple calls to the anonymize function will be needed within

this algorithm: (1) while building the initial distance matrix, (2) merging clusters
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Figure 3.2: 2-anonymous trees in a cluster and their cluster representative.

and updating cluster representatives, and (3) updating the distance matrix after

two elements are clustered (i.e., re-calculating distances from the resulting cluster

to other active clusters).

We draw a sample cluster representative that would be generated if the two

trees in Fig. 2.5 were placed in the same cluster. This process is depicted in

Fig. 3.2. Since k-anonymity requires indistinguishability with respect to QIs,

the cluster representative shares exactly the same QIs as the (anonymized ver-

sions of the) trees within its cluster. Adjacency information of nodes is also un-

changed. Sensitive attributes of matching nodes (implied by the pairwise mapping

of anonymize while children are paired with each other) are collected together

as a set. For example, the first student received A- from CS111 and the other

student received B, so their cluster representative summarizes this in a collec-

tion/set {A-, B}. We should clarify that this is treated as a set of values for one

sensitive attribute, rather than multiple sensitive attributes. A node containing m

sensitive attributes should have m such sets. Since a cluster representative itself

is essentially a tree, the functions and procedures described in previous sections

require no or trivial modifications to work on cluster representatives.
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Figure 3.3: Sample run for Algorithm 2, with 3 trees. The leftmost two trees are

clustered first, and the third tree joins afterwards. Intermediate and final cluster

representatives are drawn above.

3.4 Experiments

3.4.1 Experimental Setup and Datasets

We generated synthetic datasets to test the utility and speed of our algorithms.

We use a schema similar to the one in Fig. 2.2. Our data consists of students

from Sabanci University’s Computer Science (CS) program. We obtained actual

data that contains the GPA and (partial) individual course grade information of 30

students from this year’s graduating class. We simulated remaining students based

on this sample, with the guidelines explained in the next paragraph. Algorithms

were implemented in Java, and all experiments were conducted on a quad-core 2.40

GHz machine with 12GB main memory. Our setup was running 64-bit Windows

8 operating system and Java v8 u25. Comparisons are made in terms of execution

time and information loss. We use the LM metric as defined earlier to quantify
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how much data utility is lost, where lower cost implies preferable data sanitization.

We assumed that approximately the same number of students graduate every

year, and set their year of birth according to their year of graduation. We simu-

lated GPA values using a normal distribution, where the mean and the standard

deviation were determined by the GPA scores of our sample. According to Sa-

banci University’s CS program requirements, we ensured that all students took

the obligatory classes. We randomly assigned a fixed (required) number of classes

from the pool of core classes, and a varying number of technical area electives.

Students’ grades were determined by their GPA and the type of class (e.g., we

observed that most students perform better in obligatory classes.) We assumed

that a student would buy 0 to 2 books for each class.

According to the university’s graduation requirements, we calculated the triple

ratio (o:c:t), where o: number of obligatory classes, c: number of core classes, and

t: average number of technical electives. To test with different sizes of datasets

with varying branching factor, we reduced the number of classes a student would

take, while keeping the ratio (o:c:t) constant. The pool of available classes was

also downsized accordingly (for each category). As a result, we report results

on three datasets: small, medium and large. The small dataset contains ∼7000

tuples, the medium dataset contains ∼14000 tuples and the large dataset contains

∼19000 tuples.

Proper DGHs were created for each QI. Birth years were generalized as in

Fig. 2.7. Courses were first generalized according to their level and then accord-

ing to department, e.g., CS301 → CS3** (CS third year) → CS. Books were

generalized according to the type and level of class they were affiliated with.
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(a) Small dataset (b) Medium dataset

(c) Large dataset

Figure 3.4: Utility costs for increasing values of k

3.4.2 Results and Comparison

We implemented the state-of-the-art multi-relational k-anonymity presented in

[37]: MiRaCle. We run our datasets through the solution presented here and

then compare our results to the cost of anonymizations generated by MiRaCle.

During our implementation and tests, we assumed default parameters for the

MiRaCle algorithm, as described by its authors. There is a threshold parameter

th in MiRaCle, and the authors experiment with different th (in the range [0-1])

to find the most suitable value for their experimental dataset. We repeated our

experiments with various th ranging from 0 to 1, with increments of 0.1. While

comparing MiRaCle with our algorithm, we picked the th value that led to the

best anonymization (i.e., lowest data utility loss).

We summarize our results in Fig. 3.4. We should clarify that we picked the
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Figure 3.5: Execution time for the three experimental datasets.

best th and anonymization for all values of k and datasets independent of other

ks (as opposed to a fixed th for all k). We denote these “best” values we got from

MiRaCle as MiRaCle (best). Our graphs compare MiRaCle with our solution for

varying values of k from 2 to 30. As expected, as the k value increases, costs of

anonymization are also higher. This is simply because satisfying larger k offers

increased privacy, but is also more demanding to satisfy.

We see that our solution produces better k-anonymizations for the vast ma-

jority of k values in the small and large datasets. Results are tied overall in

the medium-sized dataset, with our algorithm outperforming MiRaCle for some

values of k, and vice versa for others. We think that a particular strength that

we have is that our solution is not dependent on any parameters. On the other

hand, MiRaCle’s performance relies on a “good” choice of th. We observed that

in the worst case MiRaCle can produce an output that has abruptly high utility

loss (e.g., 7-8 times higher than its best case anonymization) and in the average

case its output is 2-3 times more costly than its best case. These are both often

significantly worse compared to our solution. Furthermore, a user might have to

run MiRaCle numerous times with different th to get the best anonymization,

but this might be undesirable since the process of anonymization can take several

hours on large datasets, and re-running experiments might cause unnecessary loss

of time and resources.
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Finally, we report results regarding the efficiency of our solution. As Fig. 3.5

implies, our algorithms can complete within a reasonable amount of time on com-

modity hardware, running on data with several thousand tuples. We see that

our solution is faster with smaller values of k. There is an observable increase in

execution time as k moves from 2 to 8, but it stabilizes from that point onwards.

It should also be noted that the volume of data is a significant factor in efficiency,

as anonymizing the medium dataset takes approximately 3 times the time it takes

to anonymize the small dataset. Likewise, anonymizing the large dataset is ∼4

times more time-consuming. Nevertheless, anonymizing and publishing a dataset

is a one-time cost. One can argue that this process can be done overnight, and

has no bearing on a real-time system. Therefore, efficiency might not be the most

crucial issue, and slower but more accurate algorithms might be worth employ-

ing. There is also the chance of using multiple independent machines: Say that

UCLA wants to release data regarding all students. It’s reasonable to assume that

students from its CS program will have significantly different entries (in terms of

classes taken etc.) than students from a social sciences program. Hence, it should

be possible to divide data into groups of relevance and then run the clustering

algorithm on each group to anonymize them independently.
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CHAPTER 4

Diversity in Hierarchical Data

As noted in Chapter 2, k-anonymity is a privacy definition that ignores sensitive

attributes and therefore it is susceptible to attacks when all trees in a QI-wise

indistinguishable group share the same sensitive value. Or, if 80% of that group

have the same sensitive value, an adversary can be 80% confident regarding the

sensitive value of an individual that he determined is within that group. Another

type of attack is the background knowledge attack [31]: Say that an adversary

knows that a friend of his has applied to grad school, and this friend also told

him that he was rejected because his GPA was not good enough. Equipped

with this information, the adversary starts hunting for his friend’s records in a

4-anonymous education dataset published by his friend’s undergrad institution.

Using QI values, the adversary links his friend to one of 4 records in the database,

but cannot proceed further. However, the adversary sees that 3 of the students

in that group have GPA > 3.8. Then, he can be fairly confident that his friend’s

data record is the 4th (remaining) one. The privacy leak in this case occurs due to

a lack of diversity in sensitive values. If GPA scores were more evenly distributed

within anonymized groups (i.e., the GPA values of the four students had more

variety) then it would have been possible to avoid this problem. The notion of

l-diversity formalizes and addresses this issue.
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4.1 Defining Diversity

We need to first clarify what it means for a set of observed values to be “diverse”.

In line with existing literature and basic notions, we define the following diver-

sity requirement: A sensitive attribute is either categorical or continuous (on

a range). For categorical attributes (e.g., letter grade), an l-diverse set must con-

tain l distinct values. For continuous attributes (e.g., GPA), the allowed range is

divided into non-overlapping buckets (pre-defined by the user, does not have to be

of equal size etc.), e.g., the GPA range [0.00-4.00] can be divided into 4 buckets:

[0.00-1.00], ..., (3.00-4.00]. An l-diverse set must contain values from l different

buckets, e.g., the values {2.34, 3.20} are 2-diverse but {2.34, 2.36} are not.

Note that there are other instantiations that take into account the probability

of occurrence of a sensitive value in the dataset, e.g., entropy l-diversity and

recursive (c, l)-diversity. These are usually considered to be more restrictive [31].

Recall Definition 4 and Definition 5 from Chapter 2: We determine anonymity

(and isomorphism) between two trees using a bijection function that maps T1’s

vertices to T2’s vertices. Each pair of vertices that are matched by this bijection

function f are required to share the same adjacency information and label. We

extend this definition to support l-diversity as below.

Definition 6 (l-diversity in hierarchical data) We say that trees T1, .., Tk

form an l-diverse group, if:

- They are QI-wise indistinguishable: All possible pairs (Ti, Tj), where Ti ∈ T1, .., Tk

and Tj ∈ T1, .., Tk, are pairwise isomorphic.

- Sensitive attributes of each corresponding node adhere to the diversity require-

ment: For 1 ≤ i ≤ k − 1, let fi be a bijection function that maps T1’s vertices

to Ti+1’s vertices, as in the definition of pairwise tree isomorphism. Let T1’s

vertices be labeled as v11, v
1
2, v

1
3, .., v

1
n. Then, there should exist a set of functions

{f1, f2, .., fk−1} such that ∀x ∈ {1, 2, .., n}, the set {v1x, f1(v1x), f2(v
1
x), .., fk−1(v

1
x)}
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(a) Two input trees (b) 2-anonymous trees

(c) 2-diverse trees (d) 2-diverse trees

Figure 4.1: Multiple ways of diversifying two trees

contains l sensitive values that satisfy the diversity requirement.

A forest (collection of trees) F is l-diverse if all of the trees inside it belong to

some l-diverse group. There can be several l-diverse groups within F .

In Fig. 4.1 we see l-diversity in action. The pairwise matching of CS111 with

CS111, CS131 with CS132, and CS143 with CS144 is perfectly legitimate from

the point of view of k-anonymity (and is also the least costly). However, the 2-

anonymous trees in Fig. 4.1b leak that both students received a B+ from CS144.

We can use l-diversity to fix this issue, and there can be a couple of approaches to

achieve that: (1) We take the 2-anonymous trees in Fig. 4.1b and we prune/delete

every node and subtree that violates diversity. Fig. 4.1c would be the result. But

this is often a rather drastic solution - what if all paired nodes, by consequence,

have the same sensitive values? Should we have to prune all of them? (2) A more

reasonable approach is depicted in Fig. 4.1d. In this case, we take into account the

sensitive values of nodes while matching them, so that each pair that is matched

will satisfy the diversity requirement. For example, CS111 is matched with CS111,

CS131 is matched with CS144 and CS143 is matched with CS132. (We changed

the order of nodes in Fig. 4.1d to demonstrate the matching.) This applies a

relatively more costly matching compared to k-anonymity, but helps more nodes
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“survive”, therefore leading to lower information loss in the long run.

4.2 Incorporating Diversity into Our Solution

We extend the solution we have for k-anonymity to support l-diversity. Let us

once again start by diversifying a pair of trees, and then develop a clustering

algorithm on top of that.

To implement our observation concerning Fig. 4.1, we create a function called

isDiverse. Given two tree nodes a and b, isDiverse(a,b) returns true if the

sensitive values of a and b satisfy the diversity requirement, and false otherwise.

This is straightforward when we think of a and b as tree nodes, but not that much

when they are cluster representatives. Recall that we use cluster representatives to

summarize the trees within a cluster, and the sensitive values of nodes are collected

together as a set. So, how do we decide whether two cluster representatives are

“sensitive value”wise diverse or not? For the purposes of the clustering procedure

we discussed earlier, we demand that a cluster of size p is always p-diverse. If a

legitimate cluster of size p1 and another legitimate cluster of size p2 are merged

(where p = p1 + p2) we’d like the resulting cluster to be p-diverse. This dictates

the behavior of isDiverse. In other words, if we call the sensitive value set of the

first node S1 and the second node S2, S1 ∩ S2 = ∅ should hold.

Similar to anonymize that achieves top-down anonymization, we present di-

versify in Algorithm 3 for top-down diversification. diversify is technically just

an extended version of anonymize that considers sensitive values during the

pairwise matching phase. The remaining intuition stays the same.

We can directly employ diversify in the clustering procedure we explained in

the previous chapter (simply replace anonymize by diversify in Algorithm 2). We

call this approach the naive clustering technique. However, we design a second

clustering algorithm which relaxes the previous requirement regarding a cluster
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Algorithm 3 Top-down diversification

Input: Two trees rooted at a and b respectively
Require: |a| ≤ |b|. Otherwise a and b can be interchanged as the first step within

the procedure.
1: procedure Diversify(tree(a),tree(b))
2: if ¬ compatible(a,b) or ¬ isDiverse(a,b) then . Step 1
3: delete tree(a), tree(b)
4: return
5: generalize(a,b)
6: if |a| > 0 and |b| = 0 then . Step 2
7: delete tree(a1), tree(a2), .., tree(an)
8: return
9: else if |a| = 0 and |b| > 0 then

10: delete tree(b1), tree(b2), .., tree(bn)
11: return
12: else if |a| = 0 and |b| = 0 then
13: return
14: pairs ← [] . Step 3
15: for i = 1 to |a| do
16: minCost ← +∞
17: pairedIndex ← φ . some special character
18: for j = 1 to |b| do
19: if j ∈ pairs or ¬ compatible(ai,bj) or ¬ isDiverse(ai,bj) then
20: continue . skip current iteration of inner loop

21: a′i ← copyTree(ai)
22: b′j ← copyTree(bj)
23: diversify(tree(a′i),tree(b′j))
24: cost ← calculateCost(tree(ai),tree(a′i))
25: cost ← cost + calculateCost(tree(bj),tree(b′j))
26: if cost < minCost then
27: minCost ← cost
28: pairedIndex ← j

29: pairs.append(pairedIndex)

30: for i = 1 to |a| do . Step 4
31: if pairs[i] 6= φ then
32: diversify(ai,bpairs[i])

33: for i = 1 to |a| do
34: if pairs[i] = φ then
35: delete tree(ai)

36: for j = 1 to |b| do
37: if j /∈ pairs then
38: delete tree(bj)

39: return
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of size p always being p-diverse. Our main concern with the naive procedure was

that stricter privacy requirements (i.e., higher values of l) might be harder to

satisfy, simply because of the distribution of sensitive values (i.e., if there is a lack

of diversity in sensitive values observed in the dataset).

Algorithm 4 Extended clustering procedure

Input: A forest of n trees (t1, t2, .., tn), privacy parameter l, maximum cluster
size parameter α

1: procedure ClusteringExtended
2: Initialize n clusters, such that the cluster representative of each ci is ti
3: Set ci as not anonymizeable
4: Build initial n× n distance matrix dist
5: for i = 1 to n do
6: for j = 1 to n do
7: if i ≤ j then
8: dist[i][j] = +∞
9: else

10: Copy cluster representatives
11: Use diversify on these copies
12: Calculate cost of anonymization, i.e., distance between ci and cj
13: Insert cost to dist[i][j]

14: while multiple active clusters exist do
15: Find ci and cj that have minimum distance
16: if ci is anonymizeable or cj is anonymizeable then
17: Merge ci and cj using anonymize
18: else
19: Merge ci and cj using diversify

20: Update cluster representatives
21: if resulting cluster has ≥ l + α trees then
22: Remove cluster from distance matrix
23: else if resulting cluster has ≥ l trees then
24: Set resulting cluster to be anonymizeable
25: Update distance matrix with distances from this cluster to others,

calculated using anonymize
26: else
27: Update distance matrix

28: if there is a left-over (residual) cluster then
29: Delete trees within that cluster

We present the new clustering procedure in Algorithm 4. The main idea here is

that a cluster of size ≥ l already satisfies the diversity requirement, but it does not
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have to be removed from the search space. Instead, it can “recruit” other clusters

using anonymize. We control this behavior using the keyword anonymizeable -

a cluster that already satisfies l-diversity is set to be anonymizeable, and from

that point onwards it can recruit using anonymize rather than diversify. This

allows generation of k-anonymous l-diverse clusters (where k ≥ l), i.e., clusters of

size (potentially) much larger than l, but still l-diverse. The advantageous part

of this is that anonymity is always a less demanding notion of privacy compared

to diversity. There might exist two nodes that would have to be pruned if they

are diversified (due to lack of diversity in sensitive values) but might in fact be

suitable to be anonymized.

The α parameter in the algorithm is used as a stop condition: Clusters must be

removed from the search space at some point, otherwise they will keep merging

until a single cluster is left. Notice that with α = 0, this procedure becomes

essentially the same as the naive clustering. We should also clarify how to update

distances (line 27) in extended clustering: Whenever the algorithm reaches line

27, it means that the resulting cluster (from the latest merge operation) has < l

trees, and therefore does not satisfy l-diversity yet. Determining distance from

it to another active cluster, say cj, depends on whether cj is anonymizeable or

not. If so, the distance should be calculated using anonymize, otherwise using

diversify.

4.3 Experiments

4.3.1 Experimental Setup and Datasets

We use the the same experimental setup and datasets that are generated using

the same principles as the previous section. For the sensitive attribute GPA, we

divide its range [0.00-4.00] into 8 distinct buckets of size 0.50 (hence resulting in

8 possible sensitive values). 11 distinct values are used for letter grades, ranging
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Figure 4.2: Sample run for Algorithm 4, with l = 2 and α > 0. Although the first

and the third trees are QI-wise better fit for one another, their sensitive values

lack diversity. The algorithm therefore chooses to cluster the first two trees first,

using diversify (marked with blue arrows). The extended clustering procedure

allows the third tree to join (marked with red arrows) after l = 2 is satisfied.
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from A, A-, B+, .., F. Prices of books range between $0 and $80, and this range

is also divided into 8 buckets of size $10.

We would like to note that the first and third levels in our schema contain

8 distinct buckets, and hence we only experiment with l ranging from 2 to 6.

In fact, when l = 6, we will see that the LM costs become significantly large.

This can be amended by increasing the number of buckets (e.g., for GPA val-

ues, have 16 buckets of size 0.25). We left it as is, in order to experiment with

cases where there is significant utility loss and also emphasize the impact of the

extended clustering algorithm in such cases. Another point worth considering is

that we simulated GPA values using a normal distribution. If we used a uniform

distribution instead, for instance, it would have been much easier to obtain a flat

distribution of sensitive values (which would consequently mean higher number of

candidates that can satisfy larger l). The choices we made, while generating the

rules for our experiment data, aimed to achieve more realistic data that captures

the characteristics of the sample we had.

4.3.2 Effect of l and α

In Fig. 4.3, we graph the LM costs of anonymizing the dataset for different values

of privacy parameter l. As expected, cost increases as l is incremented from 2 to

6. The naive clustering procedure produces good results for small values of l, but

as the privacy requirement gets more demanding (e.g., l = 5 or 6) there is higher

incentive to use the extended version. We see that the choice of α is important

to achieve better results. Utility costs make a U-shaped curve, where the drop is

often much steeper than the rising portion. For high values of α, the cost of using

the extended version may surpass the naive version.

Different values of α seem to be better for different values of l, and optimal

values of α are higher for increased values of l. These graphs were obtained using
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(a) l = 2 (b) l = 3

(c) l = 4 (d) l = 5

(e) l = 6

Figure 4.3: Change in utility cost for different values of l and α
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(a) Small dataset (b) Medium dataset

(c) Large dataset

Figure 4.4: Comparison between anonymity, naive and extended diversification

the small dataset. We would expect similar curves of utility loss for different

datasets (although optimal values etc. might be somewhat different). We validated

this claim using the medium and large datasets, but for brevity we do not include

detailed results for them. In any case, when used with suitable α, the extended

algorithm is shown to be able to decrease the utility loss reported by the naive

algorithm by half.

4.3.3 Comparison with Anonymity

An interesting question is how l-diversity compares to k-anonymity in the case

of hierarchical data. We hope that this study offers some insight regarding the

question: “What is the additional cost of applying a stricter notion of privacy?”.

Obviously, there is a trade-off between privacy requirements and data utility,
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since demanding higher privacy would most likely cause more data records to be

generalized or masked. We already investigated this issue from the point of view

of increasing the privacy parameter (k for anonymity and l for diversity), but

now we would like to offer a comparison between the different notions of privacy.

Consequently, data owners may decide whether it is reasonable to employ one over

the other, i.e., if it is worth using l-diversity instead of k-anonymity for the sake

of better privacy protection.

We perform our tests on the three different sizes of datasets explained in

the previous chapter. Our results are summarized in Fig. 4.4. For the extended

diversify case, we experiment with different α and pick the value that offers the

highest utility anonymization and report that value in our graphs. Again, in all

cases, an increase in k or l yields higher utility loss. We can observe that for small

k/l, it might actually be reasonable to use diversification, as there is not a big

gap between the utility loss of k-anonymity and extended diversify. However, for

higher k/l, even the extended clustering procedure (for l-diversity) yields utility

losses 4-5 times higher than k-anonymity.

One can also observe that the benefit of using the extended procedure can be

different for various datasets. For instance, the difference between the naive and

extended diversification algorithms is very significant for the small dataset, but

their discrepancy is somewhat less for the other two datasets. We think that this

is because larger datasets had more courses available per student; and therefore

when two trees are being diversified, for each course in the first tree there are more

courses available to match it with in the second tree. This increases the chance

of finding a sensitive value-wise diverse match for each course.
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Figure 4.5: Execution times for the medium dataset

4.3.4 Efficiency

Similar to the results we obtained in the previous chapter, we see that both

anonymize and naive diversify have higher execution time for increased values

of k and l, respectively. Also, Fig. 4.5 shows that naive diversify is faster than

anonymize. This is because for some trees/subtrees, their sensitive values are not

diverse when matched (also applies to root nodes, i.e., GPA). In that case, the

algorithm does not need to proceed any further, which leads to less computation.

For example, two students with GPA 3.72 and 3.73 cannot satisfy diversity, and

hence the algorithm can terminate without having to match their classes etc..

Whereas in anonymize, there is no such early termination.

An interesting finding is that higher α leads to higher execution time for small

l. Also, extended diversify often seems to be slower than naive diversify for small l.

However, anonymize and naive diversify take longer to execute as k/l gets larger.

In contrast, the opposite is true for extended diversify : Its execution time is less for

higher l. These cause cross-overs not only between naive diversify and extended

diversify, but also between the extended diversify curves themselves (drawn for

various α).
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CHAPTER 5

Towards Partial Publication

Let us take a step back and consider the assumptions we made so far. We model

individuals’ presence in a hierarchical database using a tree structure, and then our

models offer anonymity (and diversity) among “individuals’ trees”. An important

but somewhat implicit assumption we make here is that records in the output

have to be explicitly linked to their owners (i.e., the outputs have to appear in tree

structures as well), which allows no ambiguity regarding whom a particular tuple

belongs to. In XML/JSON, this is achieved by object representations, e.g., we

know that student X has taken classes Y1, Y2, .. and gave evalations Z1, Z2, ...

simply because records Yi and Zj appear under X. In multi-relational databases,

this is achieved by the use of join keys across multiple relations, e.g.,in Fig. 2.5

we are certain that it is the first student who evaluated Prof. Eggert and gave a

score of 7/10 because there is a join key that ties this evaluation record to the

record that says this student took CS111, and another join key that ties the CS111

record to the central relation (i.e., root node). In order to preserve the structure

of records, we allowed no generalizations of join keys, and suppressions only when

the record had to be completely deleted.

In this chapter we relax this setting: What if the recipient of the data does not

need to know about the “ownership” and links between records in multiple levels,

and therefore the structure of the data can, in fact, be neglected? That is, what

if join keys are irrelevant for the data recipient? E.g., the recipient would like to

analyze the likelihood of students from different majors taking a certain class X,
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but does not really care if class X and class Y were taken together by the same

student. The requirements of this scenario are different than what has previously

been discussed in the thesis.

We would like to demonstrate the feasibility of this new setting using relevant

examples from the literature. The following single-relation schema is studied in

[46]: (patientID, occupation, zipcode, place of birth, test), where test is a sensitive

attribute that contains health-related tests that patients took at a hospital. It

is acknowledged that a patient may have several tests, and in that case multiple

tuples in the relation may refer to the same individual. A credit card transaction

database is presented in [53], with schema: (age, occupation, postcode, vendor,

amount), where {age, occupation, postcode} is the set of quasi-identifiers. In both

of these cases, authors focus on anonymizing tuples rather than individuals,

i.e., it is assumed that the data recipient will not be interested in knowing if

(and which) tuples belong to the same patient/customer, how many transactions

or hospital visits were made by an individual etc.. This is the opposite of what

this thesis has discussed in the previous chapters. In particular, one may refer to

Fig. 2.1 to see how a transaction schema would be modeled using our approach.

But depending on the needs of the data recipient, the scenarios in [46] and [53]

might as well be sufficient. This is the point of this chapter: How can we generalize

their solutions and apply them to structurally rich, hierarchical data?

We should point out that k-anonymity and l-diversity of trees are still valid

notions to achieve this (i.e., they would solve the problem we are posing) but they

would be an overkill. Recall the process of matching nodes: While T1 and T2 are

being anonymized, all nodes in T1 are being matched with appropriate nodes in T2

(ones that have no appropriate match are pruned). However, if there is no “sense

of ownership”, it should be viable to match a node in T1 with a schematically

compatible node in T2, and another node in T1 with a node in T3.
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5.1 Motivation

A particular case where all of this becomes interesting is what we call partial

publication. In partial publication, we assume that the data owner has semi-

structured data, i.e., multiple connected relations. There are potentially many

data recipients that are interested in different portions of the data, e.g., data from

only 2 of the relations out of a possible 4.

Let us first remind the reader of the relations we had in our education example

(Fig. 2.2). Join keys (i.e., primary and foreign keys) are in bold, sensitive values

are in italics and QIs are in regular font:

• I1(studentID, major, YoB, GPA), which is the central relation.

• I2(studentID, geID, class, grade)

• I3(geID, instructor, evaluation)

• I4(geID, book, price)

Consider the following motivating example: UCLA has collected data on its

students in the form of the relations above, and would like to publish it to recipi-

ents R1, R2 and R3. R1 would like to mine the data to answer questions such as:

“Do students from the engineering school give better evaluations for their instruc-

tors?” and “Do students with higher GPA give better evaluations?”. It is sufficient

for R1 to receive data from I1 and I3. R1 does not need any information regarding

classes taken by students. R2 would like to investigate if there are certain classes

that people with high GPA prefer to take over other classes. Therefore R2 only

needs I1 and I2. R3 would like to see how well students in the engineering field are

doing compared to other majors, and hence only the central relation would suffice

in his case. Not a single one of R1, R2 and R3 needs to know about ownership or

links between tuples, e.g., R1 does not care if it was the same student who gave
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all of the 10 worst evaluations in the dataset, or if it was 10 students with 1 bad

evaluation each. (Whether R1 should care about this is another issue of debate.

If he does, we would ship him the k-anonymized trees.)

5.2 Definitions and Examples

Most of the material presented here presumes familiarity with the multi-relational

snowflake schema setting discussed earlier. Therefore one should assume the va-

lidity of statements and definitions presented in Chapter 2, unless explicitly stated

otherwise in this chapter.

Definition 7 (Ancestor relation) We say that Ij is an ancestor relation of Ik,

if and only if Ik has a foreign key that is a primary key in Ij. We denote this

relationship as Anc(Ik) = Ij.

Definition 8 (Ancestral path) In a snowflake schema with central relation

CR, the ancestral path of a relation J , denoted AncPath(J), is an ordered set

{I1, I2, ..., In} where I1 = J , In = CR and ∀Ii ∈ AncPath, Anc(Ii) = Ii+1.

Intuitively, an ancestral path is the (only) path from a relation to the central

relation of the schema that follows primary and foreign keys. In our example,

AncPath(I3) = {I3, I2, I1} and AncPath(I1) = {I1}.

We denote a data recipient using the following transcript:

Recipient(attrN1
1 , attrN2

2 , ..., attrNm
m ), where each attrNi

i is a quasi-identifier or sen-

sitive attribute in relation Ni written as its superscript. Consider R1, R2 and R3

described in the previous section:

• R1(major
I1 , Y oBI1 , GPAI1 , instructorI3 , evaluationI3)

• R2(major
I1 , Y oBI1 , GPAI1 , classI2 , gradeI2)
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• R3(major
I1 , Y oBI1 , GPAI1)

Definition 9 (Relevant join) We compute a relevant equi-join RJ concerning

a recipient’s transcript as follows. Let an intermediate product L be computed

as: ∀attrNi ∈ transcript, L =
⋃
Ni

AncPath(Ni). Let L
′

contain the same ele-

ments as L, but with duplicates removed. The resulting L
′

will have the format

{M1,M2, ...,Mk}, where each Mj is a data relation from the input schema. Then,

the relevant join is an equi-join of these relations using primary and foreign keys,

i.e., RJ = M1 ./ M2 ./ ... ./ Mk.

The relevant join for R1 is I1 ./ I2 ./ I3, for R2 it is I1 ./ I2 and for R3

it is I1 only. In words, a relevant join tries to calculate a minimal join opera-

tion (i.e., consisting of minimum amount of input relations) that will generate

an output relation that can be anonymized and shipped to the data recipient.

A relevant join will: (1) always contain the central relation even in cases where

no attributes in a recipient’s transcript originate from the central relation, (2)

contain all attributes in a recipient’s list of desired attributes, i.e., transcript, (3)

may contain several QI and sensitive attributes that are not required by the recip-

ient (E.g., Consider a recipient R
′
2 that requires the following attributes: major,

GPA, class, grade. A relevant join computed for this recipient will also have the

attribute “YoB”, which is not necessary for R
′
2.), and (4) all join keys used during

the computation.

Definition 10 (End relation) An end relation ER is computed from a relevant

join RJ by projecting out unnecessary columns: Let CR be the central relation

of the schema with primary key PK. The set of attributes ATT is defined as

the union of PK and all attributes in the recipient’s transcript. Then, the end

relation ER = πATT (RJ).

Consistent with previous chapters, we model an adversary that has background

knowledge regarding not only quasi-identifier values of individuals, but also links
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Figure 5.1: An end relation for recipient R2

between their tuples, e.g., how many classes each student took, how many eval-

uations they gave for each class etc.. We make the following observation that is

critical to this adversarial model:

Observation 5 An adversary that knows how many tuples an individual has in

a hierarchical database can use repeated sensitive values in the published dataset

as identifying information, if sensitive attributes are not subject to generalizations

and suppressions.

This observation is overlooked by most of the previous work that acknowledges

multiple tuples per individual may exist in a database, e.g., [8], [53], [46]. The

primary reason that this is significant in our case is because our end relations

will contain sensitive attributes that have to be repeated in multiple tuples (See

Fig. 5.1 for a sample end relation calculated for the data in Fig. 2.3), whereas

existing literature often disregards such cases. This does not make the situation

any less applicable to a real-life scenario: Consider the credit card transaction

relation (YoB, zipcode, occupation, salary, vendor, amount), where salary and

amount are sensitive. Bob may have numerous credit card transactions from

different vendors during a time period in which his salary stays the same. If this

exact salary value is observed in n tuples, all other salary values are observed in

less than n tuples and the adversary knows that Bob has made n transactions, he

successfully locates all of Bob’s transactions.
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Figure 5.2: 5-anonymized table for the data in Fig. 5.1

Observation 6 Reoccurring sensitive values in a QI-wise properly k-anonymized

end relation may cause privacy leaks.

Observation 6 is a direct consequence of Observation 5. We present an example

to demonstrate this point: Fig. 5.2 is 5-anonymized according to quasi-identifiers

major, YoB and class. Its sensitive values are left intact. Join keys are not part of

the output (recall our discussion regarding a recipient not needing “ownership”)

and are therefore removed. An adversary that knows Alice has taken three classes

immediately learns that Alice’s GPA is 3.26.

As shown here, anonymity with regard to quasi-identifiers is not sufficient,

sensitive values also have to be anonymized. There are a number of ways in

which this can be done: (1) assume that a generalization hierarchy is available for

sensitive attributes, (2) use the “buckets” of distinct values in l-diversity as domain

generalization hierarchies, or (3) a rather costly solution would be to suppress

(replace with *) any set of sensitive values that violate indistinguishability. The

third option might be useful in cases where generalizations are unacceptable, but

it should be noted that a suppression would receive the highest penalty possible

for the suppressed data cell.

We should point out that generalizations of sensitive attributes never convey

more information to an adversary than leaving them intact. In other words,

there are no “side effects” of generalizing GPA values, e.g., the GPA values in

Fig. 5.2 can be generalized to “(3.00-4.00]”. If they are left as is, though, anyone
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analyzing the database would still be able to trivially deduce that all observed

values are between 3.00 and 4.00. If anything, generalizing sensitive values can

hide information. How much information it can hide depends on the procedure

used to anonymize them; as always, there is a trade-off between data utility and

individuals’ privacy here.

It is argued earlier in Chapter 2 and also in [37] that single table k-anonymity

fails in cases where multiple tuples regarding the same person end up in the

same equivalence class (An equivalence class is a group of tuples that are indis-

tinguishable from one another). We therefore propose to apply a special case of

(X,Y)-anonymity [46] to our problem.

Definition 11 ((X,Y)-anonymity) Let X and Y be two disjoint sets of at-

tributes (i.e., columns) in a relation R. Let t be a tuple observed in R, and s be

πX(t), i.e., projection of t on attributes in X. The “anonymity” of s with respect to

Y, denoted αY (s), is calculated as: αY (s) = |πY (σs(R))|. Let the function AY (X)

be defined as AY (X) = min{αY (s),∀s ∈ X}. Then, we say that R satisfies

(X,Y)-anonymity for an integer parameter k, if AY (X) ≥ k.

Let ATT be the set of all attributes in our end relation ER. To anonymize

ER, we use (X,Y)-anonymity with Y = PK and X = ATT −PK. k is a variable

privacy parameter (as in k-anonymity).

Consider the end relation built for recipient R2 (e.g., Fig. 5.1), with transcript:

(studentID, major, YoB, GPA, class, grade). According to our definitions, we set

Y={studentID} and X={major, YoB, GPA, class, grade}. Say that s has the

following value on X: s=(Computer Science, 1990s, ≥3.50, CS131, A-), i.e., it is

just a tuple of values on all attributes in X. αY (s) computes the distinct number

of persons in the equivalence class of s. AY (X) calculates the number of distinct

persons in all equivalence classes in the relation, and picks the smallest value. The

end relation is successfully (X,Y)-anonymized with parameter k, if AY (X) ≥ k.
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Figure 5.3: An input end relation and its (X,Y)-anonymization with k = 2

Similar to the privacy parameters k in k-anonymity and l in l-diversity, we can

experiment with varying k in (X,Y)-anonymity.

In Fig. 5.3 we present an example for (X,Y)-anonymity. We have Alice who

took 3 classes, and Bob and Tom who took 2 classes. Alice, Bob and Tom each

have unique primary keys in the database. (We use their names as primary keys

in our example.) We build three equivalence classes using (X,Y)-anonymity, the

first two containing two tuples and the last one containing three tuples. Notice

that the last equivalence class contains 2 tuples from Tom, which implies that this

equivalence class itself is also not 3-anonymous but 2-anonymous according to the

(X,Y)-anonymity definition.

An interesting observation is that DGHs and bucketization are acceptable to

generalize sensitive attributes, but natural generalization hierarchies and general-

ization lattices [36] are not appropriate. DGHs and buckets yield non-overlapping

generalizations, which is a crucial point. For example, Tom (whose GPA is 3.26)

has two tuples, and each could have been placed in different equivalence classes. If

we allow overlapping generalizations, one equivalence class might generalize Tom’s

GPA to [3.00-4.00], and the other one [2.50-3.50]. An adversary, linking Tom to

these two equivalence classes, would be able to compute the intersection of these

two generalizations, which is [3.00-3.50]. This inference can be avoided by the use

of non-overlapping generalizations, e.g., Fig. 5.4.

It can be claimed that it is possible to learn Alice and Bob’s grade by looking

at the second equivalence class, and this is a privacy leak. However, this attack
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Figure 5.4: Domain generalization hierarchy for GPA

is possible simply because of the lack of diversity in sensitive values. The notion

of anonymity, as discussed earlier, disregards the distribution of sensitive values.

One needs to extend our work to support diversity to thwart such threats.

5.3 Overview

Before proceeding further, let us briefly summarize the discussion so far. We are

attacking the problem of privacy-preserving publishing of certain columns and

relations in a hierarchically organized (i.e., snowflake schema) multi-relational

database. We assume that recipients of our data have no desire to learn about

the hierchical relationship between tuples (otherwise our k-anonymity solution in

Chapter 3 would suffice).

Our methodology to solve this problem can be studied in several steps: (1)

Flatten the hierarchical dataset by computing a relevant join. (2) Find the end

relation of the relevant join. The end relation will contain all attributes that

are sent to the data recipient, plus the primary key attribute of the dataset. (3)

(X,Y)-anonymize the end relation using Y = primary key of the central relation,

and X = all attributes in the end relation minus the primary key. (4) Remove the

primary key column (i.e., project it out) from the (X,Y)-anonymized end relation

and publish the result to the data recipient.

The rest of this chapter will focus on how (X,Y)-anonymity can be achieved.

We assume that an end relation ready to be (X,Y)-anonymized has been com-

puted, and provide an algorithm that (X,Y)-anonymizes its input.
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5.4 Achieving Anonymity

A tuple is a data tuple from the end relation, of the format: (PKid, QI1, QI2, ..,

QIn, S1, S2, .. Sn). PKid is an individual’s primary key identifier, e.g., Alice has

id=1, Bob has id=2 etc.. Both QIis (quasi-identifier values) and Sjs (sensitive

values) are subject to generalizations. Let tuple[i] denote the value of a tuple’s

i’th column/attribute, and tuple.ID denote the PKid value of the tuple.

We define the function anonymize as follows:

anonymize(t1,t2): Takes tuples t1 and t2 as inputs. Modifies them in a way such

that resulting t1 and t2 will be indistinguishable in terms of QI and S attributes,

with lowest information loss possible. Additionally, assume that it has a return

value which is a single tuple containing the end result (i.e., generalized version of

t1 and t2).

Since every QI and S has its own generalization hierarchy/lattice that is in-

dependent of other attributes, anonymize generalizes each t[i] (for all i that is

not PKid) one by one. Achieving minimum cost in each column (according to a

pre-defined cost metric, e.g., LM) ensures minimum cost between a pair of tuples.

Similar to our previous solutions in Chapters 2 and 3, let copy(ti) perform a

deep copy of tuple ti and return this copy. Also, assume that cost(ti) calculates

the information loss in ti .

We designed a clustering algorithm to solve the problem, but before moving

on to the algorithm itself, we should define some notation. Let ci denote the i’th

cluster. A cluster ci has:

• A cluster representative, denoted ci.rep. This is a single tuple that sum-

marizes the whole cluster: What would the outcome be if all tuples within

ci were anonymized? In other words, it holds the current “state” of the

tuples within ci.
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• Set of tuples within the cluster, denoted ci.tuples. These tuples can be

kept with or without updates (i.e., the same as they were in the input or

anonymized as new tuples are added to cluster). Updates are not necessary

on-the-fly since the cluster representative already keeps the current state of

the cluster. (We choose not to update them while the clustering procedure

is running in order to obtain better performance.)

• Set of unique PKids, denoted ci.pk. This set contains the primary key IDs

of individuals whose tuples are in ci.

Our clustering algorithm is presented formally in Algorithm 5. We perform a

single pass over all tuples in the input. For each tuple, we find the most suitable

cluster in the list of “active” clusters, i.e., clusters that were previously initialized

and are not yet full. Suitability is determined by measuring the potential infor-

mation loss (i.e., data utility cost) of placing that tuple in a certain cluster. At

this stage, we try to have as many distinct individuals in a cluster as possible to

satisfy (X,Y)-anonymity, hence the primary key enforcement on line 6. A sensi-

tivity parameter γ is employed by the algorithm: If there are no active clusters to

place this tuple in, or if the cluster that is “nearest” to this tuple is further than

γ away, then a new cluster is initialized using the tuple. The newly initialized

cluster is immediately added to the list of active clusters. On the other hand, if

a suitable cluster could be found (i.e., distance between the closest cluster and

the tuple was less than γ) the tuple is added to this suitable cluster. After this

operation, we check whether the updated cluster satisfies (X,Y)-anonymity for

privacy parameter k, and if so, we mark this cluster as full and retire it.

After all tuples are processed, we are left with clusters that have less than k

elements and therefore do not satisfy (X,Y)-anonymity. We pick a cluster ci from

the list of remaining clusters and find the most suitable cj to match it with, again

by calculating the potential information loss that this matching would incur. The
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Algorithm 5 Clustering for (X,Y)-anonymity

Input: A set of tuples t1, .., tn, privacy parameter k and sensitivity parameter γ
1: procedure XYclustering
2: Initialize C ← {}, list of active clusters
3: Initialize R← {}, list of clusters that are full
4: for tuple ti in input do
5: Find ci ∈ C such that dist = cost(anonymize(copy(ti), copy(ci.rep)))
6: is minimum and ti.ID 6∈ ci.pk
7: if |C| = 0 or dist ≥ γ then
8: Create new cluster ck, where ck.rep = ti and ck.tuples← {ti}
9: Add ti.ID to ck.pk

10: C ← C + ck
11: else
12: anonymize(ti, ci.rep)
13: ci.pk ← ci.pk ∪ ti.ID
14: ci.tuples← ci.tuples ∪ ti
15: if |ci.pk| ≥ k then
16: C ← C − ci
17: R← R + ci
18: while |C| ≥ 2 do
19: Pick ci ∈ C and find cj ∈ C such that cost(anonymize(copy(ci.rep),
20: copy(cj.rep))) is minimum
21: anonymize(ci.rep, cj.rep)
22: ci.tuples← ci.tuples ∪ cj.tuples
23: ci.pk ← ci.pk ∪ cj.pk
24: C ← C − cj
25: if |ci.pk| ≥ k then
26: C ← C − ci
27: R← R + ci
28: if |C| = 1 then
29: Let ci be the only cluster left in C
30: Suppress tuples in ci
31: R← R + ci
32: return R
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(a) Consuming unclustered tuples from the input (lines 4-17). At this point, t30 arrives

and potential next steps are labeled (1)-(3). Step (1) is executed if dist(t30, c5.rep) <

dist(t30, c8.rep) and dist(t30, c5.rep) < γ. Step (2) is executed if dist(t30, c8.rep) <

dist(t30, c5.rep) and dist(t30, c8.rep) < γ. Step (3) is executed, i.e., a new cluster is

initialized, if γ > dist(t30, c5.rep) and γ > dist(t30, c8.rep). If (1) or (2) is executed

and the resulting cluster becomes full (i.e., size ≥ k), it is removed from C and added

to R.

(b) Merging left-over clusters in C after the input is exhausted (lines 18-31). A cluster

is chosen (in this case, c10) and its distance to other clusters in C are computed. The

cluster with minimum distance is then merged with c10.

Figure 5.5: Sample execution for Algorithm 5.
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best candidate cj is matched with ci, and they are merged. If the resulting cluster

satisfies (X,Y)-anonymity, then it can be deemed full and removed from the list

of active clusters. This process continues until there are less than 2 clusters left.

At that point, there might be one cluster remaining (or there might be zero). All

tuples in this left-over cluster are suppressed.

We use γ as a parameter to control the behavior of the algorithm. Depending

on the utility cost metric used, γ can take values between 0 and the maximum

penalty a tuple can receive. (E.g., in LM, tuples’ costs are anonymized to a value

between 0 and 1.) γ determines how likely tuples are to be clustered together

during the initial pass. With γ = 0, all tuples will cause a new cluster to be

initialized, and therefore the cluster merging process will start only when the

algorithm reaches line 18. This requires higher memory (since all tuples have to

be kept in memory and no cluster will be able to “retire” until line 18) and is

likely to cause longer execution time. On the other hand, higher values of γ will

cause very distant tuples to merge together, leading to higher utility loss. In the

most extreme case, when γ = 1 (or whatever the highest penalty is), there will

be at most 1 active cluster during the algorithm at all times. Every tuple that

is read from the input will have to be clustered with whatever the current active

cluster is, no matter how inconvenient the result may be. This would yield good

performance, but is probably way too insensitive to obtain reasonable utility cost.

5.5 Experiments

We re-use our datasets from the previous chapters. We model two recipients based

on our data: R1(age, GPA, course, grade) which needs data from the first two

relations and R2(age, GPA, course, grade, book, price) which needs data from all

three relations.
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(a) Utility cost vs γ (b) Execution time vs γ

Figure 5.6: Results for R1 with γ ranging from 0 to 1

5.5.1 Effect of γ

We run our experiments with various values for the γ parameter on the large

dataset in order to obtain robust results regarding accuracy and speed.

In Fig. 5.6, utility costs and execution times are graphed against different

values of γ. These values are for recipient R1. We graph seperate curves for each

k: k = 2, k = 10, k = 20 and k = 30. We observe that all curves have similar

behavior. The x-axis is drawn in logarithmic scale to better focus on small values

of γ. As expected, smaller γ have higher execution time, but less utility cost.

Utility cost increases steadily between γ = 0.01 to γ = 0.1, and then relatively

more rapidly from γ = 0.1 to γ = 0.5. Afterwards, there is a steep increase,

probably because of the fact that the algorithm becomes way too insensitive to

utility loss of tuples and tries to add almost every tuple in its input to an existing

cluster during the initial pass (i.e., lines 4-17). Seeing that all experiments could

finish in under less than a minute, it is reasonable to use smaller values of γ for

recipient R1.

The algorithm is not as fast for R2, but it can still complete in just a few

minutes. Since R2 has an extra relation that R1 does not (the relation that

contains books and prices), both the number of tuples and the number of QIs

61



(a) Utility cost vs γ (b) Execution time vs γ

Figure 5.7: Results for R2 with γ ranging from 0 to 1

to be generalized are larger in R2’s case. As a result, it takes several minutes to

anonymize the dataset for R2. We noticed that one of the main reasons causing

worse performance (i.e., bottleneck) was the average number of active clusters

during the initial pass. In order to find a suitable cluster for an incoming tuple,

the algorithm (on line 5) checks all of the active clusters at that point in time.

Clearly, a large number of clusters implies more computation for every tuple in the

input. While running our experiments, we saw that over 3000 clusters were active

(on average) when γ = 0.01, whereas with γ = 0.1 the number of active clusters

was reduced to 500 (on average). Still, we believe that the algorithms are efficient,

given that they can handle several thousand tuples in under 4 minutes for all γ.

All results regarding efficiency and accuracy for R2 are provided in Fig. 5.7.

We see that the utility costs in R2’s case are similar to the trends observed in

R1’s graphs. In both cases, there is a clear trade-off between execution time and

utility cost, which can be controlled by the γ parameter. Costs are usually below

or around 0.1 for γ ≤ 0.1.

5.5.2 Comparison with Anonymity of Trees

In this section, we compare our k-anonymity algorithm for trees (that was pre-

sented in Chapter 2 and we will refer to it in this section as tree-anonymity) and
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(a) Recipient R1 (b) Recipient R2

Figure 5.8: Utility costs of anonymization algorithms using the large dataset

our (X,Y)-anonymity algorithm for partial publication. Let us re-iterate that the

two problems are essentially different, and the problem in this chapter can be

seen as a “relaxed” version of the problem we considered in Chapter 2. But, we

have also argued that tree-anonymity is an applicable solution to the problem in

this chapter, yet it is a solution that is unnecessarily demanding. We now try to

evaluate this claim using our algorithms.

For a fair comparison, we calculate the LM costs for R1 and R2 seperately,

taking into account only the attributes and fields that are published to the re-

cipient in question. For example, in the case of R1, we compute the cost of the

tree-anonymized dataset using only the first two levels and disregard the costs of

the third level. Therefore the LM cost of the tree-anonymized dataset is different

for R1 and R2. As observed in Fig. 5.8, Fig. 5.9 and Fig. 5.10, the costs for R1

are usually slightly lower than the costs for R2.

Our comparison shows that with smaller values of γ, we can often obtain much

better anonymizations using (X,Y)-anonymity than tree-anonymity. The discrep-

ancy between tree-anonymity and (X,Y)-anonymity becomes significant especially

when k is large. Even with γ = 0.1, which was previously shown to be very efficient

considering the size of the datasets, (X,Y)-anonymity outperforms tree-anonymity

by factors of 3-4. Utility costs decrease further for γ < 0.1, although runtimes
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(a) Recipient R1 (b) Recipient R2

Figure 5.9: Utility costs of anonymization algorithms using the medium dataset

(a) Recipient R1 (b) Recipient R2

Figure 5.10: Utility costs of anonymization algorithms using the small dataset
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increase (almost exponentially). On the other hand, a relatively large γ is unde-

sirable, e.g., γ = 0.5 causes utility costs to be higher than tree-anonymity for R2.

These experiments also strengthen the idea that not only the value of privacy pa-

rameter k is important when anonymizing a dataset (i.e., as we move from left to

right on each curve, utility costs tend to increase), but also parameter γ dictates

the accuracy and effectiveness of our algorithm.

Given the circumstances, a user might wonder what the most appropriate γ

value for a dataset is. We believe that this is highly dependent on the compu-

tation power and time available to the user. In short, our experiments suggest

that lower values of γ almost always cause better anonymizations, but higher

execution time. We should remind the reader that these experiments were run

on commodity hardware. In any case, we obtain much better execution times

with (X,Y)-anonymity compared to tree-anonymity. On the large dataset, tree-

anonymity took around 15 minutes to run, whereas here, even with small γ, it

takes no more than 4 minutes to anonymize the whole data.

We have validated that we can come up with algorithms that are both faster

and more accurate for the more relaxed problem of (X,Y)-anonymity, compared

to tree-anonymity. Although this does not formally prove our point about partial

publication being an “easier” problem than tree-anonymity (one can very well

come up with an algorithm for tree-anonymity that performs better than ours),

we believe that the obvious discrepancy between the results we obtain for the two

cases is a strong indication that supports our claim.

65



CHAPTER 6

Conclusion and Future Work

This thesis investigated the problem of privacy-preserving publishing of hierar-

chically structured data. We formalized and applied well-known definitions of

privacy on hierarchical data in two distinct cases: (1) where the structure of the

data must be explicitly preserved, and (2) where the structure is irrelevant and the

data recipient is interested only in certain relations in the database. In both cases

we assumed adversaries had full knowledge regarding individuals’ quasi identifiers

and potential links between their data records in different relations (e.g., how

many books a student bought for a certain class). We designed and implemented

generic algorithms that are independent of the underlying database and utility

cost metric. We experimented on practical synthetic databases that were gener-

ated using an actual real-life sample obtained from a university.

A particular highlight is that even though we used the LM metric to evaluate

utility costs, our approach is suitable for arbitrary monotonic cost metrics. One

can use, for example, a cost metric that penalizes certain levels or relations more

than others. (E.g., generalizations in the root node may have higher cost than

the leaves.) It is also possible to create reasonable heuristics and extensions,

in addition to what is presented in this thesis. In particular, domain-specific

heuristics (e.g., applicable to education data or health data only) might be useful

in real world anonymizations.

We believe that there are many exciting possibilities for future work. Some of

these issues would be: (1) Speeding up execution of our algorithms using more ef-
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ficient data structures. Our solutions are slower for large datasets (e.g., ones that

contain > 15000 tuples) which is an issue we plan to address. Potential remedies

might include parallel execution and/or application of heuristics. (2) Utilizing

other applicable definitions of privacy, such as t-closeness or probabilistic defini-

tions of l-diversity. Especially, differential privacy [15][9] has recently gained quite

some attention from the research community. (3) We allowed no data perturba-

tion, i.e., no noise could be added to the database. Data perturbation can be a

useful tool in certain situations, and may (or may not) provide end results with

higher data utility.

Finally, we also wish to consider continuous and incremental data publish-

ing in future work. XML streams and XML processing engines [4] are popular

sources of growing and accumulating data, which may need to be anonymized

before being shared with a third party. [8] and [53] already examine the issue of

privacy in streaming data, where data arrives in a continuous stream. In [39] and

[7], databases grow incrementally, and each incremental update needs to be pub-

lished taking into account what has been previously published. These solutions

assume single-relational data, but it would be interesting to apply their ideas to

hierarchical data.
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