
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Energy-Efficient Neuromorphic Computing with CMOS-Integrated Memristive Crossbars

Permalink
https://escholarship.org/uc/item/4jp0w0jc

Author
Fahimi, Zahra

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4jp0w0jc
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Santa Barbara 

 

 

Energy-Efficient Neuromorphic Computing with CMOS-Integrated Memristive Crossbars 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Electrical and Computer Engineering 

 

by 

 

Zahra Fahimi 

 

Committee in charge: 

Professor Dmitri Strukov, Chair 

Professor Tim Sherwood 

Professor James Buckwalter  

Professor Li-C Wang 

 

 

 

December 2021



 

The dissertation of Zahra Fahimi is approved. 

 

 

  ____________________________________________  

 Tim Sherwood 

 

 

  ____________________________________________  

 James Buckwalter 

 

 

  ____________________________________________   

 Li-C Wang 

 

 

  ____________________________________________  

 Dmitri Strukov, Committee Chair 

 

 

December 2021 

  



 iii 

Energy-Efficient Neuromorphic Computing with CMOS-Integrated Memristive Crossbars 

Copyright © 2021 

By 

Zahra Fahimi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iv 

Dedicated to you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 

 v 

ACKNOWLEDGEMENTS 

 

I would like to express my deepest gratitude to my advisor, Prof. Dmitri Strukov, for your 

patience, guidance, and support. I have benefited greatly from your wealth of knowledge. I 

am grateful that you took me on as a student and continued to have faith in me over the years. 

Very special thanks to my colleagues especially my soulmate Dr. Mohammad Reza 

Mahmoodi who has supported me throughout this process and has constantly encouraged me 

when the tasks seemed difficult and back-breaking. 

I also owe much gratitude to my parents and my brothers for their unwavering support and 

love. 

 

 

 

 

 

 



 

 vi 

VITA OF ZAHRA FAHIMI 

Dec 2021 

 

Education 

 

Bachelor of Science in Electrical Engineering, Shahrekord University, 2011. 

Master of Science in Electronics, Isfahan University of Technology, 2015.  

Master of Science in Computer Engineering, University of California, Santa Barbara, June 

2021. 

Doctor of Philosophy in Electronics, University of California, Santa Barbara, Dec 2021 

(expected). 

 

Selected Publications 

 

Z. Fahimi, et al. Mitigating Imperfections in Mixed-Signal Neuromorphic Circuits, 

https://arxiv.org/abs/2107.04236, (2021). 

Z. Fahimi, et al. The Impact of Device Uniformity on Functionality of Analog Passively-

Integrated Memristive Circuits, IEEE Transactions on Circuits and Systems I, (2021). 

Z. Fahimi, et al. Combinatorial Optimization by Weight Annealing in Memristive Hopfield 

Networks, Scientific Reports, (2021). 

Z. Fahimi, et al. Mixed-signal computing with non-volatile memories, SRC Technical 

Conference (SRCTechCon'18), (2018). 

M. R. Mahmoodi, Z. Fahimi, et al. A Strong Physically Unclonable Function with >280 CRPs 

and <1.4% BER Using Passive ReRAM Technology, IEEE Solid-State Circuits Letters, 

(2020). 

M. R. Mahmoodi, H. Nili, Z. Fahimi, et al. Ultra-Low Power Physical Unclonable Function 

with Nonlinear Fixed-Resistance Crossbar Circuits, Electron Devices Meeting (IEDM'19), 

(2019). 

M. R. Mahmoodi, H. Kim, Z. Fahimi, et al. An Analog Neuro-Optimizer with Adaptable 

Annealing Based on 64×64 0T1R Crossbar Circuit, Electron Devices Meeting (IEDM'19), 

(2019). 

 

 



 

 vii 

ABSTRACT 

 

Energy-Efficient Neuromorphic Computing with CMOS-Integrated Memristive Crossbars 

by 

 

Zahra Fahimi 

The von Neumann architecture has been broadly adopted in modern computing systems 

in which the central processor unit (CPU) is separated from the memory unit. During data 

processing, it is necessary to transfer data between the memory and CPU. For data-intensive 

applications such as deep neural networks, as the size of data increases, data movement 

between memory and CPU becomes a significant bottleneck for high throughput and energy-

efficient implementation. In-memory computing is a paradigm that tackles this challenge by 

allowing computation within the memory, i.e., where data are stored. Hence, in-memory 

computing is a promising solution for implementing energy-efficient neuromorphic systems 

since it minimizes data transportation between memory and the processing units. The major 

component in developing neuromorphic circuits is a nanoscale memory device, which is 

responsible for weight storage and analog computation. Resistive Random-Access Memory 

(RRAM) is one of the most promising memory candidates due to its long-term retention, 

analog storage, low-power operation, and compact nanoscale footprint. 

The first part of this thesis explores the nonidealities of RRAM technology, such as 

temperature dependency, stuck-at-fault, and tunning error, and their impact on the accuracy 

of neuromorphic hardware implementation. We show that these imperfections may 

significantly degrade the inference accuracy of neuromorphic circuits. To mitigate them, we 
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have proposed a holistic approach based on hardware-aware training in which modifications 

are done in tunning, circuit, and training phase (ex-situ) of hardware development. The 

proposed method significantly decreases the accuracy drop across the 25–100 °C temperature 

range, allows 2.5× to 9× improvement in energy consumption of the memory arrays during 

inference, and improves the defect tolerance by >100×.  

In the second part of this thesis, we also study the impact of device uniformity in passive 

memristive circuits and the tradeoffs between computing accuracy, crossbar size, switching 

threshold variations, and target precision. Nonidealities are investigated in two representative 

deep neural networks, and several solutions, including hardware-aware training, improved 

tuning algorithm, and switching threshold modification,  are proposed to enhance the 

performance. These techniques allow us to implement advanced deep neural networks 

(DNNs) with almost no accuracy drop, using state-of-the-art analog 0T1R technology. 

In the last part, we focus on integrating passive and active RRAM with CMOS circuits for 

implementing efficient demos for various applications such as neural networks. First, focusing 

on passive technology, we show the building block circuit that facilitates the forming, 

programing, reading, inference, and monitoring of RRAM circuits. We discuss several 

neuromorphic networks and prototype demos with integrated analog passive RRAM and 

CMOS. The designs are fabricated in two wafer-scale tapeout runs in 180 nm CMOS 

technology, and preliminary encouraging experimental results are obtained. Second, we 

demonstrate a massive DNN accelerator fabricated in a standard 65 nm CMOS process with 

integrated active analog RRAM devices. The main focus is on novelties in the design of the 

VMM and tuning circuits, which reduced the impact of IR drop, improved the area efficiency, 

and allowed massive parallel programming features in this chip. 
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1. Introduction 

1.1. Motivation 

Deep neural networks (DNNs) are currently the foundation for modern artificial 

intelligence (AI) applications [1] and have been very successful in large-scale recognition and 

classification tasks [1-5]. This momentum stems from two main reasons: First, the exponential 

increase in the computational power exhibited by graphics processing units (GPU), which 

harnesses extreme parallelism by using many cores, each with a dedicated or shared high-

throughput connection with memory. Second, the availability of a vast amount of labeled data 

has abled DNNs to extract high-level features from unprocessed data. Hence, the rise of 

powerful GPUs and massive labeled datasets paved the way toward training DNNs in a 

reasonable time with high accuracies. However, pure software DNNs executed in 

supercomputers with thousands of CPU/GPUs suffer from high energy consumption [6] 

because during the execution of various computational tasks, large amounts of data need to 

be traveled back and forth between the processing and memory unit, and this causes high costs 

in latency and energy. 

To overcome the need for transferring data frequently between the memory and the 

processing unit, and improve the energy efficiency significantly [7], novel non-von Neumann 

computing models are developed that, e.g., rely on the idea of in-memory, in which 

calculations are carried out where the data are stored [8]. Therefore, it yields to suppress the 

energy- and time-consuming of memory-processor communications extremely.  

Among different in-memory computing schemes, designs based on computational 

memory devices [9-12] are one of the most effective implementations as efficient in-memory 
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computing generally requires fast, low-power, high-density, scalable memory devices. 

Analog-grade non-volatile memories (NVMs), such as those based on floating-gate transistor 

[13- 15], phase-change [16-18], ferroelectric [19, 20], magnetic [21], solid-state electrolyte 

[22-24], organic [25, 26], and metal-oxide [27-30] materials are enabling components for 

mixed-signal circuits implementing Vector-by Matrix Multiplication (VMM), which is the 

most common operation in any artificial neural network. Such circuits allow for physical level 

in-memory computations in the analog domain using the fundamental Ohm and Kirchhoff 

laws, thus enabling dramatically higher energy and area efficiency in comparison with digital 

solutions.  

The general architecture of mixed-signal VMMs based on NVMs depicted in Fig. 1. Here, 

vector-by-matrix multiplication is defined as y = Wx, where 𝑥 ϵ ℝ𝑁 is the input vector, 𝑦 ϵ ℝ𝑀 

is the output vector, and W is the weight matrix. N and M are the number of inputs and outputs, 

respectively. The input vector is presented to the digital-to-analog converters (DACs), which 

convert the digital input to analog signals. The predetermined weight vector is encoded to the 

conductance of the NVM cells. NVM cell at each crosspoint generates current proportional to 

the amplitude of the input signal times its conductance. As a result, the multiplication and 

summation operations within a memory array are performed in parallel using Ohm’s law. The 

current in all columns is summed up based on Kirchhoff’s law and sensed by the peripheral 

circuits (PC), which is then followed by analog-to-digital converters (ADCs). 
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Fig. 1: The general architecture of a mixed-signal VMM with nonvolatile memory at each crosspoint. 

 

The most important memory device characteristics in the context of analog VMM circuits 

are cell size and scalability. The main advantages of using passively integrated metal-oxide 

memristors [28], which are also referred to as RRAMs, are their superior density and lower 

fabrication cost [31]. The high scalability of RRAMs makes it possible to implement very 

dense resistive memory arrays. Such architectures using memristive devices are of high 

interest for their possible applications in in-memory computing based on nonvolatile memory 

design [32-34], digital and analog programmable systems [35, 36], and neuromorphic 

computing structures [37,38]. 

Developing circuits based on RRAM devices faces some challenges. The first concern is 

related to non-idealities of the devices such as temperature dependency, tuning error, device-

to-device variations, and defects, which lead to considerably degrading the performance of 

neural network-based RRAMs. The second challenge is the integration of memristive 

crossbars with CMOS circuits, which implement nonfrequent peripheral functions. The main 

goal of this thesis is to address these two challenges. In particular, Chapter 2 explore different 

types of device imperfections and their impacts on the performance of neural networks based 
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on RRAM crossbars. Then, we analyze each non-ideality very precisely and then introduce a 

holistic approach to mitigate these imperfections during training of the networks without any 

extra hardware. In Chapter 3, we study the impact of device uniformity on the functionality 

of memristor circuits, where they are used to implement either a neural network or an 

optimization platform.  

Finally, in Chapter 4, we discuss our progress toward developing CMOS-integrated 

memristive crossbars and neuromorphic circuits and systems based on passive and active 

ReRAM circuits. 

1.2. Background and Significance 

1.2.1. CMOS Integrated RRAM Crossbars 

Memristive devices are categorized into two different types: 1) zero-transistor-one-

memristor (0T1R), which is mainly called passive memristors, and 2) one-transistor-one-

memristor (1T1R) memristors, which are commonly referred to as active memristors. In 

comparison with passive crossbar arrays, the 1T1R structure improves the network 

performance in two aspects: First, proper current compliance determined by the transistor 

allows a more controllable conductance update compared with that in 0T1R arrays. Second, 

the gate transistor can prevent disturbance to the states of unselected devices during 

programming. The 1T1R structure can also eliminate the sneak path problem of the passive 

crossbar, although the sneak path is not relevant in the context of neuromorphic computing 

inference. On the other side, arrays based on passive memristors are more compact and 

scalable. Fig. 2b and 2c indicate the structure of a passive and active memristor device used 

in a memristive array (Fig. 2a).  
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Fig. 2: (a) A memory array based on memristive devices. A structure of (b) 0T1R and (c) 1T1R 

memristor device   

 

The specific focus of this section is on the state-of-the-art nonvolatile (filamentary) 

analog-grade 0T1R metal-oxide devices, while only a few representative works are listed for 

metal-oxide 1T1R and solid-state-electrolyte 0T1R circuits.  

In 2015, for the first time, a 12×12 transistor-free memristive crossbar consisting of bilayer 

metal-oxide memristors was used to experimentally demonstrate an artificial neural network 

based on memristive devices [39, 40]. A 10×6- and 10×8- neuromorphic pattern classifiers 

were implemented and trained in-situ using the Manhattan-Rule algorithm. The retention and 

endurance of the devices were measured > 140 hrs and > 200 K, respectively.  

One year later, in 2016, the first 3-D monolithic stack of two passive 10 × 10 crossbars 

for analog computing applications was reported in Ref. [41]. Furthermore, the crosspoint 

memristors are optimized for analog computing applications allowing successful forming and 

switching off all devices in the demonstrated crossbar circuit and, most importantly, precise 

tuning of the devices’ conductance values within the dynamic range of operation. Using a low, 

less than 175 °C, temperature budget during the fabrication process and performing a 
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planarization step before the deposition of the second crossbar layer improved yield (~100%) 

and uniformity of the crosspoint devices significantly. 

In 2017, several milestone papers were published. The first one was on experimental 

implementation of sparse coding algorithms based on a 32 × 32 crossbar array of analog 0T1R 

devices [42]. In this experiment, a 25 × 20 sub-array of the memristor array was utilized to 

validate the algorithm. The retention of the devices is reported in the order of minutes. The 

second work [43] was based on the demonstration of using memristor arrays to perform 

principal component analysis (PCA), which is a feature extraction technique commonly used 

in unsupervised learning. Ref. [44] introduced an implementation of a grey-scale face 

classification based on a 1024-cell array of 1T1R memristive devices with parallel online 

training. 

Some breakthrough works using both 0T1R and 1T1R memristive arrays were introduced 

in 2018. An 11 × 3 array of passive memristors was fabricated and used to implement the 

simulated annealing technique for solving a spin glass problem [45]. In Ref. [46], a 16 × 3 

fabricated passive memristor crossbar was used to demonstrate neural networks for K-means 

clustering analysis. The first demonstration of a multilayer perceptron (MLP) using 

memristive crossbar arrays was proposed in Ref. [47]. In this work, two passive 20 × 20 metal-

oxide memristive crossbar arrays are used to implement an MLP network, which includes 16 

inputs, 10 hidden-layer neurons, and 4 outputs. More than 20 hrs of high-temperature retention 

and 100 k endurance are reported for the devices used in the array. Ref. [48, 49] partitioned a 

single 128 × 64 1T1R array built from high retention devices (> 10 years) to construct a 3-

layer perceptron with 64 input neurons, 54 hidden neurons, and 10 output neurons trained on 

the MNIST dataset of handwritten digits.  
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In 2019, a reservoir computing hardware system based on a 32 × 32 WOx memristor was 

reported [50] that can efficiently process temporal data. A passive memristor crossbar array 

was directly integrated with all the necessary CMOS circuitries on Ref. [51]. The size of the 

array is reported as 108 × 54, but a 26 × 10 sub-array of it was used to demonstrate three 

models—a perceptron network, a sparse coding algorithm, and a bilayer PCA system. 

Retention of the devices is measured in the order of minutes. A five-layer mCNN for MNIST 

digit image recognition was also designed using 2,048 1T1R devices [52] in 2020. 

In 2021, the largest fully functional passive crossbar was introduced [32]. A 64×64 passive 

crossbar circuit with ~ 99% functional nonvolatile metal-oxide memristors was demonstrated 

to implement a vector-by-matrix multiplier used for the MNIST image classification.  

Table. I  show a summary of previous works implemented by memristor devices. The 

common feature between all discussed works is that the main operations can be performed 

efficiently with memristor crossbar arrays. These implementations have mostly relied on 

external printed-circuit boards (PCB) to provide the required parameter analyzers and control 

circuitries such as ADCs, DACs, peripheral/sensing circuits, tunning switching, etc., to 

generate and collect signals. So, the functionality of the systems can be limited to accessing 

these discrete circuits. To overcome this issue, implementing a system such that memristive 

crossbars are fully integrated with all necessary CMOS circuities is required. Therefore, 

integrating all the necessary circuits and memristor crossbar on one wafer allows us to scale 

the large computing systems and increase the computation speed. In Chapter 4, we introduce 

several fully integrated CMOS-RRAM chips designed for different neuromorphic 

applications.  
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Table I: A summary of previous work on implementing memristive crossbar arrays with 0T1R and 

1T1R devices (some data are from [32]) 

 

1.2.2. Addressing non-idealities in neuromorphic circuits 

The advancement of emerging technologies like RRAMs, which enable storing analog 

information and implement neural computation efficiently, has caused huge progress in the 

neuromorphic computing area. However, various device- and system-level non-idealities such 

as temperature dependency, defects, tuning error, etc., inherently rise in such analog circuits. 

These concerning factors may considerably degrade the performance/inference-accuracy of 

neural networks implemented based on nonvolatile memory devices.  

The dependency of the devices on temperature has a very significant impact on 

neuromorphic circuits and systems. The weights of the network change noticeably with 

temperature variation followed by modifying the pre-activation signals of the neurons that 

results in reducing the inference accuracy [53]. 

Another non-ideality in memristive devices is device-to-device variations. The switching 

variation between devices implies that various amounts of applied voltages will be required 

to tune different devices, which would lead to the half-select disturbance problem, i.e., 

programming a memristor device disturbs the state of other devices located in the same 

column or rows if they have a switching threshold less than the threshold of the programmed 

device.  
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Several promising studies investigate the effect of device imperfections on network 

performance and propose reliable techniques to improve the accuracy. The solutions could 

involve hardware modifications or software training approaches. Existing hardware-based 

solutions cause enormous overhead and power consumption while software-based methods 

are more efficient.  

A memristor crossbar array modeled in Ref. [55], incorporating the line resistance and 

device nonlinearities. Simulation results show the line resistance causes voltage and current 

degradation, and it may affect array operation when arrays and devices are highly scaled. 

Therefore, line resistance should not be ignored for relatively large crossbars. In Ref. [56], the 

influences of some hardware limitations such as IR-drop, device variation, and programing 

error are analyzed. A variation-aware off-device training scheme called “Vortex” is developed 

to tolerate device imperfections and design constraints. The algorithm is tested on a two-layer 

neural network implemented by memristor crossbars for MNIST classification. A general 

conversion algorithm was developed and experimentally tested in Ref. [57] to map arbitrary 

matrix values to memristor conductances to compensate the accuracy drop due to IR drop and 

nonlinearity characteristics of the devices. 

In 2017, a method to eliminate the parasitic resistance across memristor arrays was 

presented in Ref. [58]. This technique is based on adding extra resistors to ensure that every 

single device sees the same parasitic resistance. Due to the limitation of the immature 

fabrication technology, many types of defects may exist in RRAM-based computing systems, 

such as hard faults and soft faults. Soft faults can be easily calibrated because the resistance 

of the devices is adjustable. Hard faults like Stuck at-Faults (SAFs) which faulty devices get 

stuck at high-resistance state (HRS) or low-resistance state (LRS) are popular in memristive 
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arrays. In order to mitigate this issue, a mapping algorithm with inner fault-tolerance is 

proposed to make multiple faulty RRAM columns eliminate the impact of SAFs on each other 

[59]. Another method to eradicate the effect of fault-tolerant and programing errors was 

proposed in Ref. [60]. The method is based on an on-chip training scheme that selects a small 

portion of the model parameters randomly and then, maps them to on-chip memory. After the 

model is mapped to the hardware, it adapts the parameters. The algorithm was demonstrated 

by improving the accuracy of CNNs networks for MNIST and CIFAR-10.  

A defect releasing methodology to improve inference accuracy was demonstrated on an 

MLP network implemented by memristor arrays [61]. In this method, the weights are 

classified into significant and insignificant ones based on their impact on the performance. 

Then, a retraining algorithm is applied to compensate the device failure by re-tuning the 

trainable weights. A remapping algorithm that utilizes a redundancy scheme can further 

improve the computation accuracy, especially when a large number of defects occur in the 

weights. 

RTN and thermal noise are critical issues in nanoscale semiconductor devices. The impact 

of RTN amplitude and its occurrence rate in both filamentary and non-filamentary RRAM 

devices are analyzed in Ref. [62]. The effect of RTN is evaluated on the pattern recognition 

accuracy of an MLP implemented by memristive crossbars. The investigations show that the 

non-filamentary RRAM has a tighter RTN amplitude distribution and a much lower 

occurrence rate than the filamentary devices. So, non-filamentary devices lead to less RTN 

impact on inference accuracy. Ref [63] proposed a method called Committee Machine (CM) 

employing ensemble averaging (EA) [64] to increase inference accuracy in the presence of 

RTN, and faulty devices, without increasing the number of memristors devices used in the 
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network. The network is a fully connected network, including 25 hidden layers which was 

tested using experimental data to extract the effect of device non-idealities. Ref. [34] used 

bootstrapping and tuning optimization techniques to improve the computation precision of 

analog VMM circuits affected by device nonlinearity, variations, and line resistance. 

So far, all the studied techniques are focused on increasing the accuracy of networks based 

on RRAM devices by eliminating their imperfections. However, Ref. [36] developed a noise 

model for a mixed-signal neural network hardware accelerator based on embedded NOR flash 

memory technology. Using a hardware-aware training method and combining the model 

distortions during off-chip training make the network more robust to noise.  

For the first time, we report a comprehensive characterization of critical imperfections in 

two analog-grade memories, passive memristors and redesigned eFlash memories [35]. 

Imperfections are major hurdles in the path of further progress of these technologies. Hence, 

a practically viable approach is developed to deal with these non-idealities and release the full 

potential of nonvolatile memories in neuromorphic systems. An extensive characterization of 

imperfections in mainstream analog-grade synaptic devices is performed, and a holistic 

hardware-aware ex-situ approach is developed to reduce their negative impact on the 

performance of DNNs. Table Ⅱ summarizes the current and previous works focused on the 

impact of RRAM and eFlash imperfections in mixed-signal neuromorphic circuits and vector-

by-matrix multipliers. 

Table. II: A Summary of previous works focused on the effect of device imperfections in mixed-

signal neuromorphic circuits 
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* T: Temperature, N: Noise, PE: programming error, in 0T1R, FT: Fault-tolerance, NL: Nonlinearity, R: Retention, IR: IR drop, 

PNL: programming nonlinearity.  
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2. Mitigating Imperfections in Mixed-Signal Neuromorphic 

Circuits 

The progress in neuromorphic computing is fueled by the development of novel 

nonvolatile memories capable of storing analog information and implementing neural 

computation efficiently. The most notable candidates that excel in primary features such as 

long-term retention, high endurance, analog storage, low-power operation, and compact 

footprint are metal-oxide passive memristors [47] (Fig. 3b) and redesigned eFlash memories 

(Fig. 3c) [70]. Network weights are encoded into two the conductance of memristors 

(synapses) or the ratio of the state currents of two eFlash devices to a peripheral eFlash 

memory (Fig. 3b-c). The input/outputs are encoded as voltages (𝑉𝑖) in memristive circuits and 

currents (𝐼𝑖) in eFlash VMMs. Nevertheless, all synaptic devices are generally more or less 

prone to imperfection such as temperature dependency, yield, drift, tuning error, and static 

nonlinearity. While imperfections are not necessarily meant to be detrimental (see, e.g., [37]), 

they severely degrade the accuracy of currently popular DNNs. Indeed, imperfections are 

major obstacles in the path of further progress and the ultimate commercialization of these 

technologies. Hence, a practically viable approach should be developed to deal with these 

nonidealities and unleash the full potential of nonvolatile memories in neuromorphic systems.  

The endeavors to improve device reliability are ongoing and actively pursued. A massive 

number of works focus on improving synapse reliability by harnessing novel materials and 

stacks, e.g., reducing noise [62], enhancing uniformity [41,71], linearity [72], which is vividly 

the most promising approach in the long run. In the meantime, a large body of research 

explores circuit, system, and algorithmic techniques to mitigate these nonidealities. Such 

efforts are categorized into 5 approaches, as shown in Fig. 4.  
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Fig. 3: Mixed-signal neuromorphic circuits. (a) Major computations involved in every layer of a 

mixed-signal neuromorphic classifier. Highlighted in gray (white) are those typically implemented in 

the digital (analog) domain (BN: batch normalization, Act: activation function, Pool: an optional 

pooling layer, FC: fully-connected classifier). VMM implementation using (b) memristive crossbars 

and (c) gate-couple eFlash memory arrays. 

 

The most predominant approach in implementing neuromorphic systems is through ex-

situ training, in which synaptic weights are calculated on a precursor server [36]. The synaptic 

weights are then transferred to numerous mixed-signal chips, which only support the inference 

task. A trivial approach to cope with imperfections is by adding redundancy [73]: the model 

and algorithm hyperparameters are selected such that the deployed model in the analog 

domain would tolerate a certain amount of unreliability. For example, an enormous network 

such as AlexNet can endure a large amount of noise that allows weight binarization [74]. In 

more compact models, it might be possible to lower computing precision without any impact 

on accuracy at the cost of redundancy. For example, the accuracy loss by changing weight 

precision from 4-bit to 2-bit in ResNet-18 can be compensated by doubling the model size 

[75]. Ref. [63] proposes to enlarge the capacity of a fully connected network through 
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committee machines and validate the results on the MNIST dataset. However, the major 

concern with this approach is the lack of evidence that this approach is scalable to complicated 

tasks.  

 
Fig. 4:Various approaches to mitigate imperfections in mixed-signal neuromorphic networks. 

 

The second approach in dealing with imperfections is through in-situ training [76,77], in 

which the training and inference are both performed on the mixed-signal hardware. The first 

drawback is the substantial areal overhead needed for the infrequent training operations, e.g., 

to compute and store gradients. Besides, while the chip could become resilient to some 

imperfections, other nonidealities associated with the dynamic behavior of devices may arise. 

Some works propose a hybrid approach that imposes less resource overhead, e.g., the model 

is initially trained ex-situ, and then an online calibration scheme modifies the weights in the 

run time. For example, Ref. [66] proposes an adaptive batch normalization technique that 

effectively compensates for the retention loss in memory cells. The drift in phase-change 
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memories is high (~50% conductance drift after 100 ms [78]) that an always-on compensation 

circuit is required.  

Another solution is through chip-in-the-loop ex-situ training [57,61,79], in which specific 

features are measured for an individual chip (e.g., faulty synapse locations [67] or drift 

statistics [52]) and then applied in the training phase in the server. The adapted weights are 

then transferred to the chip in the deployment phase. Chip-in-the-loop ex-situ training could 

also be implemented by running all forward pass operations in the target device and all 

backward pass operations in the GPU cluster. But strategies that include device 

avoidance/reconfiguration/remapping or are chip-specific might present scalability 

challenges, despite the ability to boost the performance of an individual chip.  

On the other hand, hardware-aware ex-situ training is a more scalable method in which 

hardware nonidealities are modeled and included in the training phase to generate a robust 

model. Ref. [36] uses device noise models during the training to improve the robustness of a 

moderate-size mixed-signal convolutional network. In Ref. [68], DropConnect regularization 

is introduced to enhance the accuracy drop originating from low yield without using 

nonideality models—at 98% yield, 17% accuracy drop on CIFAR-10 based on ResNet-18 

model is reduced to 10%. Most previous works either study a particular nonideality [56,67,69] 

or consider redundant networks on smaller datasets [80,81]. Besides, some focus solely on 

simulations with no experimental data or employ practically nonviable devices for modeling 

purposes. 

In this study, major imperfections on two prospective analog-grade synaptic devices, 

passively-integrated memristors, and eFlash memories, are characterized in order to determine 

nonidealities that severely impact mixed-signal DNNs. The choice of these promising 
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technologies stems from the fact that, unlike most emerging technologies, they transcend all 

rudimentary features, including high endurance, analog storage, long-term retention, low-

power operation, and nano-scale footprint (see supplementary Table 1 in [32] for a 

comparison). Besides, low conductance and switching voltage range and very dense cell size 

(4F2 and ~110 F2 for memristors and eFlash) allow practical implementation of large-scale 

mixed-signal DNNs with decently large VMMs (e.g., 64×64) [82].  

In the case of eFlash memories, high precision tuning and superb analog-grade retention 

are reported, and excellent yield is deemed due to the maturity of the technology, making 

temperature variations the major issues. Passive TiO2 memristive technology also offers high 

analog retention in an excellent areal density despite susceptibility to temperature variations, 

limited yield, and half select disturbance. Each factor is studied separately, and a holistic 

approach is proposed that includes modifications in the training, tuning, state optimization, 

and circuits and targets each issue individually. More importantly, the proposed method is 

practical in terms of implementation cost with negligible overhead and is validated on a hybrid 

experiment/simulation framework using two benchmarks: a moderate-size convolutional 

neural network (ConvNet) and ResNet-18 trained on CIFAR-10, and ImageNet datasets, 

respectively.  

The accuracy drop is almost fully recovered in the 20 °C to 100 °C temperature range by 

employing three incrementally applied approaches: temperature-sweep batch training, k-

reference batch normalization, and state optimization. The models are also resilient against 

the minor static nonlinearity (dot-product nonlinearity, i.e., IV nonlinearity in memristors and 

subthreshold slope nonlinearity in eFlash). Two techniques are proposed to overcome the 

limited yield in emerging technologies, pair modification that minimizes the weight mapping 



 

 18 

error in the tuning phase and average error compensation that prevents the propagation of 

error through cascaded layers. High precision individual-device tuning accuracy (<1%) is 

experimentally showed for both devices, but passive memristors suffer from half-select 

disturbance due to the lack of selector. This issue is studied comprehensively in chapter 3.  

2.1. Neuromorphic Benchmarks 

Fig. 5 shows the architecture of the neuromorphic benchmarks. The ConvNet model is 

based on Lenet-5 [83] architecture that includes 6 layers: Conv1, a convolutional layer with 

5×5 filters and 65 feature maps; Pool1, a max-pooling layer of 2×2 regions; Conv2, a 

convolutional layer with 5×5 filters and 120 feature maps; Pool2, a max-pooling layer of 2×2 

regions); FC1, a  fully connected layer with 390 neurons; and finally FC2, a  fully connected 

layer with 10 output neurons. Batch normalization is applied after each non-pooling layer, and 

rectified linear is used as the activation function in all the layers. The CIFAR-10 dataset 

consists of 60k 32×32 color images in 10 classes, with 6k images per class. The model is 

trained with 50k images and tested on the remaining 10k images of the dataset.  

Standard data augmentation techniques such as zero-padding with two pixels, cropping a 

random 32×32 region, and performing random horizontal flipping of images are employed. 

No mean subtraction is performed (all input values are positive). We use ADAM optimizer, 

cross-entropy cost function, a batch size of 64, a learning rate of 0.001, and 220 epochs.  

Model initialization is performed following suggestions in [84].  

The ResNet-18 implementation is based on the pre-trained model available at the official 

model zoo of the Pytorch. It includes 21+2 layers: a convolutional layer with 7×7 kernels and 

stride of 2, a max-pooling layer with 3×3 kernels and stride of  2, 4 convolutional blocks with 

residual connections, each including 4 convolutional layers based on 3×3 kernels and strides 
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of 2 and 1, a  7×7 average-pooling layer with the stride of 7, and finally a 512×1000 fully-

connected layer that provides the output prediction corresponding to 1000 classes. The 

network is tested on 50k images and trained on ~1.3M images for 150 epochs with a batch 

size of 256, the learning rate of 0.1 that is divided by 0.1 every 30 epochs (step scheduling), 

cross-entropy cost function, weight decay of 0.0001, and stochastic gradient descent 

optimization with a momentum of 0.9. The two models are trained using 32-bit floating-point 

precision on Nvidia Titan X GPUs, and the learned parameters achieving the highest test 

accuracy are used as the baseline model. During the mixed-signal simulation, we convert 

weights into device conductance/current, incorporate the developed models and techniques in 

the simulation platform and baseline architecture, and execute training and inference tasks. 

Note that we have not mapped the network into any mixed-signal architecture (e.g., see [82]) 

since simulating the targeted massive benchmarks within these (mixed-signal) architectures 

is incompatible and practically impossible with current GPU platforms and will make our 

results architecture-specific. 
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Fig. 5: (a) A 6-layer convolutional neural network trained on the CIFAR-10 dataset. (b) The ResNet-

18 model trained on the ImageNet dataset. 

 

2.2. Device Characterization 

Two mainstream driving force technologies in neuromorphic circuits are emerging 

memristive crosspoint devices and industrial-grade redesigned eFlash memories [85]. The 

excellent density and scaling prospects of the former enable the efficient implementation of 

large DNNs. However, the slow advancing pace of this technology signifies immense 

fabrication challenges, e.g., high uniformity requirements in the IV characteristics of 

memristors. In [32], a successful development 64×64 passive crossbar circuit with record-

breaking ~ 99% yield and < 26% normalized uniformity based on a foundry-compatible 

fabrication process is reported. As evidenced by the promising results from the recent 

demonstrations of large-scale neural networks [86], the situation is much better for floating-

gate devices due to the availability of industrial-grade eFlash embedded in most CMOS 

processes.  
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A comprehensive characterization of imperfections in both memory technologies is 

initially performed. The experimental measurements are then used to model the average 

behavior of the devices and circuits. A unified parameter to describe major nonidealities in 

both synapses is used: the relative error of the state current, ∆𝐼/𝐼0, where 𝐼0 is the reference 

tuning current measured at the nominal biasing condition, and ∆𝐼 is the current deviation from 

the ideal behavior. The models are then incorporated into simulation platforms (PyTorch-

based libraries) to predict the fidelity loss in the benchmarks.  

Fig. 6 shows the scanning electron microscope image of the fabricated crossbar that 

includes 4096 TiO2 memristors–see Ref. [35] for more details on the fabrication process and 

relevant details on electroforming, tuning, and operation procedures. 

 
 

Fig. 6: SEM image of the full 64×64 memristor crossbar array [35]. The bottom left, and bottom right 

insets show material layers at the device cross-section with corresponding thicknesses in nanometers 

and zoomed-in to a portion of the crossbar, respectively. 

 

 Fig. 7a shows the measured IV characteristics of 350 randomly selected devices in the non-

disturbing low-voltage regime. Upon the application of a voltage in this regime (<0.5 V), the 

conductance (state) of crosspoint devices remains unchanged at a fixed voltage. However, due 

to the tunneling or thermionic emission charge transport mechanism, the devices become more 
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conductive in higher voltages and hence nonlinear. Fig. 7b shows the average relative static 

nonlinearity error versus applied voltage for various conductance states. It is computed with 

respect to the measured state current at the tuning voltage (Vtune) of 60 mV and 0.1 V 

maximum voltage.  

 
Fig. 7: (a) Low-voltage IV characteristics of 350 devices programmed to various states. The inset 

figure shows the cross-section of a device. (b) The average relative static nonlinearity error in 

memristor synapses ∆I⁄I0 ×100 for the same 350 devices, tuned in various states. 

 

Fig. 8 shows the measurement results for the relative changes of conductance in 350 

devices concerning variations in the die temperature (25–100 °C). The device conductance 

has proportional to absolute temperature and complementary to absolute temperature 

dependency in low conductive and high conductive states, respectively, due to the insulator-

metal phase transition. In the case of our memristive devices, such transition occurs at ~70 

µS, on average. A large error, particularly in low conductive states, is observed, which could 

severely degrade the computational accuracy of mixed-signal models at elevated 

temperatures.  
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Fig. 8: The average relative change in state current versus temperature for 350 memristive devices 

tuned to various states. 

 

The switching characteristics of memristors determine how precisely their conductances 

can be adjusted. Individually, a device can be tunned with high accuracy, e.g., <1% relative 

error regardless of its initial conductance. The experimental results in Fig. 9a corroborate this 

observation on 50 randomly selected devices tuned to 1.7 µs, 50 µs, and 10 µs conductances 

consecutively. For each device, the desired accuracy is achieved in less than 100 pulses using 

a naive write-verify algorithm. However, tuning dynamics are more complicated at the 

crossbar level since the half-select problem imposes disturbance on already tuned 0T1R 

memristors. Using additional gate lines in active crossbars (1T1R) solves this problem at the 

cost of at least a two orders of magnitude increase in the cell size. Fig. 9b shows an example 

of the ultimate relative tuning error distribution after the entire 64×64 crossbar is programmed 

to the states that correspond to the grayscale quantized Einstein image [87]. The final tuning 

error distribution depends on the switching threshold distributions and the tuning algorithm.  

We return to this issue in the next chapter.  
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Fig. 9: (a) shows how relative error changes when devices are tuned using a write-verify algorithm 

with <1% target relative error. (b) The final tuning error distribution in 64×64 crossbar after all devices 

are tuned. 

 

To investigate the impact of long-term retention loss, we perform accelerated retention 

tests and use the Arrhenius equation for the room temperature projection of the results. Fig. 

10a shows the extremely stable analog-grade operation of 30 devices tuned in various states, 

subjected to 100 °C baking for >25 hours —translating into >14 years of room temperature 

operation assuming 1.1 eV activation energy [87]. Fig. 10b shows the distribution of relative 

retention loss error (∆I⁄I0) for 400 memristors after 14 years of projected room temperature 

operation where I0 is the initial sensed current for 400 memristors, each tuned to seven random 

states after projected 14 years of room temperature operation. Finally, Fig. 10c shows the 

corresponding standard deviation of the relative conductance change versus time binned to 

different states for these devices. The measured data show that the relative shift in conductance 

for most devices is expected to be <2% after several years of operation, which is adequately 

high for the practical implementation of ex-situ trained DNNs.   
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Fig. 10: (a) Stable analog operation after >14 years of room temperature operation. (b) The distribution 

of relative retention loss error (∆I⁄I0 ×100). (c) the corresponding standard deviation of the relative 

conductance change versus time binned to different conductances. The conductance is measured at 0.1 

V in these experiments. 

 

 More details of the statistical analysis of data for different states are provided in Fig. 11. 

Accelerated retention tests are performed at 100°C at 0.1 V for more than >25 hours. The 

results are then projected to room temperature using the Arrhenius equation and 1.1 eV 

activation energy. The insets show the histogram of the error for the case of 14 years. The 

results indicate that the retention loss is a bidirectional process for most devices and analog 

intermediate states, particularly midrange conductances. Unlike binary memristors [88], the 

distribution of retention loss error is relatively symmetrical in midrange analog states, i.e., the 

devices could move toward higher or lower conductive states. Note that we also observe 

unidirectional retention loss in very high (shifting toward low conductive states) or low 

(shifting toward high conductive states) conductance states, but we generally avoid switching 

the devices to extreme values. Nevertheless, the bilateral trend of retention loss of analog 

states is a positive feature since the tiny retention-induced errors become even smaller when 

they average out in large matrix multiplier kernels. 
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Fig. 11: Extended measurement results of accelerated retention test in memristive devices. Panels (a-

f) show the cumulative normalized frequency of relative retention loss error among 400 devices tuned 

to various states. 

 

 
Fig. 12: Micrograph of the fabricated 12×10 eFlash array in Global Foundries’ 55 nm CMOS process. 

 

Fig. 12 shows the scanning electron microscope image of the fabricated redesigned eFlash 

memory array–see Ref. [35] for more details on tuning and operation procedure. First, we 

measure the average static input/output characteristics of 200 synapses in the gate-coupled 

structure (peripheral devices are tuned to the maximum state current, 𝐼𝑚𝑎𝑥=30 nA) and find 

the relative static nonlinearity error, which originates from the voltage-dependent capacitive 
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coupling. Fig. 13a-b show the static nonlinearity measurement results for multiple synaptic 

weights. In Fig. 13b, the devices are tuned to the desired state at 𝐼𝑡𝑢𝑛𝑒=𝐼𝑖𝑛=21 nA. 

 

Fig. 13: (a) the average static input/output characteristics of 200 gate-coupled synapses given a 

peripheral cell tuned at 30 nA for various weight values. (b) the corresponding average nonlinearity 

error.  

The temperature dependency of state current is also measured and demonstrated in Fig. 

14a for 100 eFlash cells tuned to various states. The corresponding relative weight error in the 

gate-couple structure is also provided in Fig. 14b, indicating significant errors in high 

temperatures, which could significantly impact the accuracy of neural circuits.  

 

Fig. 14:(a) the average relative change in current measured using 100 devices, (b) the average relative 

change in the synaptic weight (assuming I_max=30 nA) of the gate-coupled structure versus 

temperature. 

The retention characteristics of 100 eFlash memories are measured at 100°C. The 

measurements are performed by tuning the devices to different states within the relevant 

dynamic range. Fig. 15a shows the stable operation of 25 devices at 100°C for >6 hours. 

Regardless of the initial state, we confirm that the relative state change for most devices is 

comparable with the noise floor of the measurement setup (Fig. 15b). This superior 
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performance partially stems from much effort spent on optimizing the technology for 

industrial-grade applications.  

 

Fig. 15: (a) Accelerated retention test for 100 eFlash devices tuned in 5 different states measured at 

100°C and nominal tuning conditions. (b) the trend in the cumulative distribution function of the 

relative change in the current (@100 °C) for these devices. The relative change is within 1% for most 

of the devices. 

 

Finally, in Fig. 16, the high precision tuning capability of eFlash memories is shown for 

50 devices by tuning them with 1% targeted accuracy to 100 nA, 50 nA, 30 nA, and 15 nA, 

consecutively, each using up to 50 pulses. 

 

Fig. 16: High precision tunability (<1% target relative error) in 50 analog-grade redesigned eFlash 

memories, tuned to various target states. 

 

The initial assessment of the experimental data indicates that the analog retention is 

promising in both devices; however, they are prone to variations in temperature that result in 

significant shifts in synaptic weights. Static nonlinearity is a fundamental bottleneck in most 

analog systems, and neural circuits are no exception. In both eFlash- and memristor-based 

neuromorphic systems, we need to optimize the circuit with respect to static nonlinearity. For 
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redesigned eFlash cells, high precision tuning is obtained due to the redesigned memory cell 

[70], and excellent yield [86] is deemed due to the maturity of the technology. However, for 

passive memristors, the half-select disturbance bounds the weight tuning accuracy in 

neuromorphic circuits built with practically viable kernel sizes, and limited percent-scale yield 

is a major hindrance. These identified imperfections are then modeled to study their 

deleterious effect in massive neuromorphic networks simulated in the PyTorch environment. 

2.3. Simulation Framework and Device Modeling 

Fig. 17 elaborates on the phenomenological modeling procedure for the temperature 

dependency of eFlash and memristors. Instead of using complex physics-based models that 

would significantly slow down the simulation time in the massive neuromorphic benchmarks, 

multi-order polynomial functions that decently and efficiently predict devices' average 

behavior were used. In both cases, the most optimum polynomial function is found manually 

by an exhaustive brute force search, and nonlinear least squares optimization with a trust-

region algorithm is applied to find the optimum fitting parameters.  

2.3.1. Temperature 

To study temperature variations, the relative change in the weight (∆𝑤/𝑤0)  × 100) of 

every device in a synaptic pair is modeled using (𝑇 − 𝑇0)(𝑝00 + 𝑝10𝑤0
−1 + 𝑝20𝑤0

2 +

𝑝30𝑤0
3) for metal-oxide memristors and (𝑇 − 𝑇0)(𝑝00 + 𝑝10𝑤0 + 𝑝10𝑇 + 𝑝20𝑤0

2 + 𝑝11𝑇 ×

𝑤0 + 𝑝21𝑤0
2𝑇) for eFlash memories in which 𝑤0 is the measured weight at nominal biasing 

conditions and 𝑇0 = 25, T is the die's temperature in Celsius, and 𝑝𝑖𝑗𝑠 are the fitted 

parameters. The fitting results show excellent goodness of fit across the temperature range for 

both synaptic device candidates. In Fig. 17a, a weight exactly corresponds to a device 

conductance (in a synaptic pair and μS), i.e., 𝑤0 = 0.1 and 𝑤0 = 1 correspond to 𝐺𝑚𝑖𝑛  and 



 

 30 

𝐺𝑚𝑎𝑥 , respectively. In Fig. 17b, a weight corresponds to a device state (in a synaptic pair) 

over the peripheral device state, i.e., 𝑤0 = 0 and 𝑤0 = 1 correspond to 𝐼𝑠𝑡𝑎𝑡𝑒 = 0 and 𝐼𝑠𝑡𝑎𝑡𝑒 =

𝐼𝑚𝑎𝑥, respectively. Since the peripheral state is often tuned at 𝐼𝑚𝑎𝑥 (that is 30 nA in this 

figure), 𝑤0 equalizes the normalized weight. Note that in the case of eFlash memories, the 

model parameters change when a different 𝐼𝑚𝑎𝑥 is used.  

Note that most synaptic devices exhibit similar trends, and the similar modeling formats 

would apply to other devices as well. Only model parameters would be different. High-order 

nonidealities such as temperature dependency of nonlinearity, etc., are neglected in the 

simulations because they are far less impactful, and they typically devitalize each other, e.g., 

they become more linear and less noisy at elevated temperatures. Hence, they are neglected 

in our modeling here. 

 

Fig. 17: Temperature modeling in analog-grade (a) memristors and (b) eFlash memories. 

 

2.3.2. Nonlinearity 

Fig. 18 shows high goodness-of-fit in modeling the static nonlinearity of both analog 

memory candidates and discusses how static nonlinearity varies with the tuning condition. 

Like temperature modeling, a multi-order polynomial function that perfectly describes 

devices' average behavior without slowing down massive neuromorphic networks' simulation 

time is used. In both Fig. 18a and 18b, the polynomial functions' shape is manually optimized 
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and nonlinear least-squares optimization with a trust-region algorithm to obtain the model 

parameters is used.  

Note that to ease the network simulation, in this part, the nonlinearity error (not the relative 

nonlinearity error) is modeled. The amount of nonlinearity error is a function of both 

conductances of the device in the tuning biasing condition, the maximum applied input signal, 

and the applied input signals. Hence, to avoid complicating the nonlinearity model and 

enhance the fitting results, we decouple it from the tuning conditions and maximum applied 

input signals, i.e., we perform the modeling and find the parameters for each design case once 

(separately). Here, the results are provided for one case in memristive circuits and one case of 

eFlash designs. In the former, the error in the synaptic current of a device tuned to w (the 

conductance of a single device in the differential pair in μS) at the normalized input 𝑥𝑡𝑢𝑛𝑒 , 

when stimulated by x is modeled by ∆𝑦 = 𝑥(𝑥 − 𝑥𝑡𝑢𝑛𝑒)(𝑝01𝑥 + 𝑝03𝑥3 + 𝑝10𝑤 + 𝑝20𝑤0
2 +

𝑝30𝑤0
3). For the latter, since the gate-coupled structure is studied, using both normalized 

weights and inputs makes the modeling easier. Here, when a normalized input x is applied to 

a synaptic device, tuned to the normalized weight of w at the normalized input 𝑥𝑡𝑢𝑛𝑒, it creates 

a nonlinearity error that can be obtained by ∆𝑦 = 𝑥(𝑥 − 𝑥𝑡𝑢𝑛𝑒)(𝑝01𝑥 + 𝑝03𝑥3 + 𝑝10𝑤 +

𝑝20𝑤0
2 + 𝑝30𝑤0

3 + 𝑝11𝑥𝑤 + 𝑝22𝑥2𝑤2). In both models, 𝑝𝑖𝑗𝑠 are the fitted parameters that 

are provided in the inset tables. For memristors, the parameters correspond to the case with 

𝑉𝑚𝑎𝑥=0.1 and 𝑉𝑡𝑢𝑛𝑒=0.06, while for eFlash, 𝐼𝑚𝑎𝑥=30 nA and 𝐼𝑡𝑢𝑛𝑒=21 nA, i.e., the devices 

are tuned at the condition in which the input signals are 0.06 V (for memristors) and 21 nA 

(for eFlash). The fitting results show excellent goodness of fit across for both synaptic device 

candidates. 
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Fig. 18: Modeling nonlinearity for (a) passively integrated memristive devices and (b) redesigned 

eFlash memories.  

2.4. Simulation Results 

 

2.4.1. Temperature Variations 

Temperature variations have the most drastic impact on mixed-signal neuromorphic 

circuits. The synaptic weights change dramatically with temperature, modulating the 

preactivation signals of the neurons. Fig. 19a shows how the preactivations received by the 

first neuron in the fully-connected layer of ResNet-18 change with the temperature. The 

modulation of the preactivation distributions occurs in all layers and neurons but with different 

rates. Fig. 19b shows the temperature dependency of multiple percentiles of the preactivation 

distributions in 2 different layers. Interestingly, such shifts are almost monotonic in most 
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neurons, partly because the conductance of synaptic devices (eFlash or memristors) changes 

monotonically with respect to the temperature. 

 

Fig. 19: (a) The distribution of the first neuron’s output activations in the fully-connected layer of 

ResNet-18 for 10 inference batches in several temperatures (FM2). (b) The temperature dependency 

of 10, 50, and 90 percentiles of the preactivation distributions (100 batches) of 100 random neurons in 

2 different layers (RM1). FM2: eFlash, mapping 2. RM1: RRAM, mapping 1. 

 

Fig. 20 also shows an almost monotonic shift in 10, 50, and 90 percentiles of preactivation 

statistics in 100 randomly selected neurons in various ResNet-18 layers and modulation rates. 

The statistics are obtained by processing 100 batches, and the temperature model of the 

RRAM devices using mapping 1. The proposed temperature compensation method consists 

of three incrementally applied approaches and aims to reduce the worst-case accuracy across 

the studied temperature range by modifying the circuit and training algorithm.  

The first method is temperature-sweep batch training, in which we include the temperature 

model of synapses in the training process by considering a new hyperparameter called training 

temperature (𝑇𝜃). Before running each forward pass of the training, we assume the model is 

ready for deployment in a chip that operates at an ambient temperature 𝑇𝜃 and convert all 

weights to their corresponding synaptic current values. Using the device model, we adjust the 
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resultant synaptic current values in every step based on the training temperature value. The 

altered synaptic currents are converted back to the equivalent software weights before the 

forward pass is executed. Triangular scheduling of the training temperature is adapted, i.e., 

𝑇𝜃 is swept from 25 °C to 95 °C and vice versa by 10 °C steps in every batch. Fig. 21a shows 

the reduction of the worst-case accuracy drop for different stacks and mappings in ResNet-

18. Baseline corresponds to the evaluation case without any mitigation technique, while 

approaches 1, 2, and 3 refer to temperature-sweep batch training, k-reference batch 

normalization, and state optimization methods. These techniques are applied incrementally on 

the network. In approaches 2 and 3, we use 4 reference points. 

 

Fig. 20:Preactivation statistics versus temperature. 
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For example, for RM1 (RRAM stack, mapping 1), the worst-case drop (occurs at 100 °C) 

is reduced from ~66% to 23% after applying approach 1. The most optimum performance is 

also achieved in midrange temperatures (60 °C), as expected. The improvements in ConvNet 

are also encouraging since the worst-case drop is decreased from ~25% to 3.3% (for RM1), 

as shown in Fig. 21b.  

 

Fig. 21: The accuracy drop versus temperature in (a) ImageNet benchmark when using various synapse 

options to implement ResNet-18 model, (b) ConvNet to implement CIFAR-10. RM1: RRAM, 

mapping 1; RM2: RRAM, mapping 2; FM1: eFlash, mapping 1; FM2: eFlash, mapping 2. 

 

Inspired by our work on increasing the reliability of hardware security primitives [89], k-

reference batch normalization is adopted that further enhances the performance by using k 

temperature-optimized batch normalization parameters per neuron. Owing to the monotonic 

change in the statistics of preactivations (i.e., the shift and stretch of the preactivations) with 

respect to the temperature (Fig. 19a-b), a temperature-dependent correction signal allows us 
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to minimize the induced error. Since generating such neuron-specific signals with adjustable 

temperature-dependency are costly, we use a quantized version of it through multiple batch 

normalization weights that effectively shift and scale preactivations. After the model is trained 

with the first approach, we find k reference batch normalization parameters by retraining it in 

a single epoch with a learning rate of 0.001 in k reference temperatures. During the inference, 

the temperature of the chip is sensed by a low-cost on-chip sensor and used to determine the 

proper batch normalization parameters that correct the distributions Fig. 21a shows a 

considerable reduction of the worst-case drop in the ImageNet benchmarks after applying the 

second approach (k=4), e.g., from ~23% to 1.25% for RM1. In the CIFAR-10 benchmark, the 

worst-case drop for RM1 cases decreases from ~3.3% to 1.22%, with only 3 reference points.  

As depicted in Fig. 22a (for ResNet-18) and Fig. 22b (for ConvNet), the results can be 

further improved by increasing the number of reference points; a sub-percent accuracy drop 

is achieved with a few references (depending on the stack and mapping). Note that the model 

is still trained ex-situ entirely with a negligible overhead (2k parameters per neuron). Though 

the second approach significantly reduces the worst-case accuracy drop, if needed, the results 

can be improved even further by optimizing the weight mapping parameters (𝐼𝑚𝑖𝑛, 𝐼𝑏) for each 

weight. 

 

Fig. 22: The worst-case accuracy drop in the 20-100 °C temperature range versus the number of 

reference points for approaches 2 and 3 for (a) the ResNet-18 and (b) the ConvNet model.  
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The state optimization approach is the third technique that mitigates the accuracy drop in 

a wide temperature range. Here, the mapping parameters are optimized individually for every 

weight targeting the lowest weight error across the full temperature range. Such design 

parameters are often selected to minimize the power consumption in eFlash memories or 

maximize the dynamic range in memristors. However, these design parameters are not 

necessarily the most optimum in terms of temperature variations and reliability. Since this 

approach comes with power consumption addition or dynamic range reduction, a 

methodology that finds quasi-optimal design points in either weight-conductance mapping 

functions is developed.  

A numerical analysis of the experimental data is provided in Fig. 23. It shows a procedure 

for finding the quasi-optimum design parameters of each device stack and weight mapping 

functionality. The panels in the first column of Fig. 23 show the normalized energy 

consumption in synaptic arrays for a network of 10M normally distributed weights versus the 

dynamic range (∆𝐼𝑚𝑎𝑥). The choice of the initial design point (∆𝐼𝑚𝑎𝑥, 𝐼𝑚𝑖𝑛, and 𝐼𝑏) is often in 

the direction of minimizing the energy consumption in eFlash circuits and maximizing the 

dynamic range in 0T1R memristive systems, regardless of the mapping type (the red star in 

the first column panels shows the initial design point).  

However, the optimum sensitivity concerning temperature variations is not necessarily 

this design point. Since we intend to apply a secondary cost-free technique to further 

compensate for temperature variations, the goal in this step is to trade energy or dynamic range 

to improve the accuracy and find a quasi-optimum operating point that is less sensitive to 

temperature variations. To find a quasi-optimum design point, the cost function 𝐶 =

max
𝑇0≤𝑇≤𝑇max

∫ |𝐸𝑟(𝑊, 𝑇)|𝑑𝑊
1

∈+  is defined, which represents the worst sum of relative errors 
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among all (normalized) weights across all temperatures. To numerically compute the cost 

function, we use 𝑇0 = 25, 𝑇max = 100, and ∈+ = 0.01. The minima of the cost function give 

the optimum design point averaged over the weights.  

 

Fig. 23: State optimization for temperature sensitivity. Panels (a-c), (d-f), (g-i), and (j-l) show the state 

optimization simulation results corresponding to mapping 1 of eFlash, mapping 2 of eFlash, mapping 

1 of memristors, and mapping 2 of memristors, respectively. The shaded areas denote out-of-range 

regimes. 
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The panels in the second column show how C changes across the design space. Based on 

the heatmap of C, ∆𝐼𝑚𝑎𝑥 can be selected close to the minima without overspending on energy 

(in eFlash) or dynamic range (in memristors). By definition, ∆𝐼𝑚𝑎𝑥 is weight independent; 

however, the other design parameter (𝐼𝑚𝑖𝑛or 𝐼𝑏) may be optimized at the cost of slight power 

increase or dynamic range reduction. 

 Unlike previous works that choose a fixed minimum current or bias current for all 

weights, a more optimum weight-dependent choice of minimum synaptic current (mapping 1) 

and bias current (mapping 2) are found by using third column panels that show the heatmap 

of the worst-case relative error across all temperatures versus normalized weight. Panel (b) 

shows the cost function for eFlash mapping 1. A white dashed line (∆𝐼𝑚𝑎𝑥=30 nA) indicates 

a quasi-optimal regime that features low energy and is close to the minima of C. The error is 

further optimized by finding an optimum weight-dependent 𝐼𝑚𝑖𝑛. Panel (c) shows that the 

worst-case error is minimum when 𝐼𝑚𝑖𝑛 (nA) = max (0, 3 − 3.75(|𝑤|/𝑤𝑚𝑎𝑥)). For mapping 

2 (second row panels), it is observed that the cost function and energy are both minimized 

when the minimum bias current is used, i.e., 𝐼𝑏 = ∆𝐼𝑚𝑎𝑥/2. 

 To minimize power, ∆𝐼𝑚𝑎𝑥 = 30 nA (the same as mapping 1) is used, and the optimum 

bias current for a given weight is obtained by 𝐼𝑏 (nA) = 2.35 (|𝑤|/𝑤𝑚𝑎𝑥) + 12.65. The same 

procedure is used for the memristors, and similar results are obtained. Operating eFlash in 

deep weak inversion enables low power operation and high dynamic range. Hence, trading a 

slight increase in energy consumption for improved reliability makes a lot of sense. Unlike 

eFlash devices (at least in the present technology), metal-oxide memristors are more power-

hungry and have a limited dynamic range, limiting the options for finding the quasi-optimized 

state. In mapping 1 of memristors (panel h), it is observed that the minimum cost is obtained 
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in a region that has a very low dynamic range (which is impractical to tune the weights and 

realistically map the weights to it). Instead of using a low dynamic range, a practically viable 

dynamic range (6.5 µA) is chosen and 3.5 µA for finding an optimum weight-dependent 𝐼𝑚𝑖𝑛 

is reserved. Panel (i) shows that 𝐼𝑚𝑖𝑛 (µA) = max (0, 3.1 − 3.23(|𝑤|/𝑤𝑚𝑎𝑥)) is the weight-

dependent quasi-optimal equation for our devices for the 6.5 µA dynamic range. Similarly, 

6.5 µA dynamic range is selected for mapping 2, and the optimum bias current per weight is 

obtained by 𝐼𝑏 (nA) = max (3.1, 1.48 + 2.76 (|𝑤|/𝑤𝑚𝑎𝑥)).  

The state optimization approach, combined with temperature-sweep batch training and k-

reference batch normalization, recovers the accuracy drop significantly across the entire 

temperature range regardless of selected device or mapping. The worst-case accuracy drop in 

the full temperature range diminishes to ~0.4% in ResNet-18 (k=4) and ~0.49% in ConvNet 

(k=3) in the RM1 case. Fig. 22a-b highlights that a sub-percent accuracy drop is easily feasible 

across the full temperature range in both benchmarks after applying the temperature 

compensation techniques. 

 

2.4.2. Defect Tolerance 

Two techniques have also been adopted that increase the resiliency of the mixed-signal 

hardware against defective devices. Note that the information that a specific device is 

defective is only available during the tuning phase. Fig. 24 shows how the accuracy drop 

increases with the surge of faulty devices. Specifically, when using mapping 1, the network 

becomes more sensitive to devices stuck at high conductance and less susceptible to stuck at 

low conductance. This stems from the fact that the weight distribution in these benchmarks is 

such that most devices are tuned near the reset state for mapping 1 and near the midrange state 

for mapping 2. In Fig. 24a and 24d, the defective devices are stuck at high conductance (𝐺max). 
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In Fig. 24b, the defective devices are stuck at low conductance (𝐺min), and in Fig. 24c and 

31f the conductance of faulty devices are uniformly distributed in the considered conductance 

range (𝐺min<𝐺x<𝐺max). For every point, the statistics are obtained over 20 runs. 

Fig. 25 compares the results when considering all three fault cases happening with equal 

probabilities and shows that mapping 2 outperforms mapping 1 (since the error distribution is 

statistically smaller). In the first approach, it is exploited that each weight is mapped to a pair 

of memory devices, and regardless of the mapping function, either of the devices can be 

returned to minimize the mapping error. When 𝐺± is stuck to 𝐺max, we use 𝐺∓ = 𝐺max ∓

∆𝐺max((𝑊 ± |𝑊|)/2|𝑊|max) for pair-device retuning. When 𝐺± is stuck to 𝐺min, 𝐺∓ =

𝐺min + ∆𝐺max((|𝑊| ∓ 𝑊)/2|𝑊|max) is used to retune the paired device. When 𝐺∓ is stuck 

to 𝐺min < 𝐺x < 𝐺max, 𝐺∓ = 𝐺x ∓ ∆𝐺max(𝑊/|𝑊|max) is (clipped to 𝐺max or 𝐺min, if needed) 

used to retune the paired device. Fig. 24 shows the improvement achieved by this technique 

in every fault case individually, and Fig. 25 shows the result of the general case. In a 

fabrication process with 2×104 ppm defective devices, both ResNet-18 and ConvNet generate 

almost entirely random classes without applying this technique. The proposed method 

diminishes the accuracy drop to only 14.3% for ConvNet and 23.4% for ResNet-18.  
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Fig. 24: Yield Analysis simulation results. Fault-tolerance analysis in (a-c) ResNet-18 and (d-f) 

ConvNet. 

 

Fig. 25: Defect-tolerance improvements in (a) ResNet-18 and (b) ConvNet using the two incrementally 

applied approaches. 
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Clearly, if two defective devices constitute a synapse, it is not feasible to compensate for 

its weight mapping error. Besides, the limited dynamic range of preactivation makes them 

susceptible to a small constant shift in a synapse output. The second method alleviates this 

issue by compensating for such shifts through an extra pair of analog memories (single 

column) per neuron per processing kernel. Such devices are always driven by a fixed 

maximum range signal, and their states are adjusted during the tuning phase to minimize the 

average shifts. To automate the procedure, after the pair-wise tuning is performed on a 

defective model, we use a tiny part of the training set ~7k and 1.5k images in ResNet-18 and 

ConvNet, respectively, to recompute the biases in batch normalization layers (that simply shift 

the preactivation signals) and find the conductance of extra devices. 

Note that the area overhead of this method is negligible (unlike previous attempts to 

overcome this issue by adding redundancy), as there is no need for an additional or general-

purpose routing at the input or output of the kernels. For the same case, this method reduces 

the accuracy drop to 0.3% for ConvNet and 3.2% for ResNet-18. Simulation results in Fig. 

25a and 25b indicate that, for a sub-percent average accuracy drop, these two (low overhead) 

techniques enable tolerance of ~1.5×104 ppm defective devices in ResNet-18 and ~3×104 ppm 

faulty devices in ConvNet, both numbers >100× better than the initial resiliency. 

2.5. Discussion 

The results presented in this study establish robust predictions on the performance of 

analog neuromorphic networks in the presence of detrimental imperfections. So far, research 

in this area has focused on commercially unscalable techniques such as in-situ or chip-in-the-

loop methods. Other than that, most previous works study the impact of a single nonideality 

on redundant networks using small datasets solely based on the simulations or data from 
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practically nonviable devices. This work performs a comprehensive characterization of major 

imperfections in the most prospective analog-grade memory devices. Characterization results 

are then harnessed to develop accurate device models, which are then incorporated to train 

and test two massive DNNs. The experimental work confirms that the synapse imperfections 

are major obstacles in the path of further progress of mixed-signal neuromorphic systems. We 

show that eFlash and TiO2 memristors have excellent retention characteristics and tolerable 

static nonlinearity. Using the balancing technique methodology [34], which optimizes the 

tuning voltage for minimum error, we report only < 0.4% and < 0.1% accuracy drop for RM1 

and RM2, respectively, after including the static nonlinearity model in the forward pass of the 

ResNet-18.  

Temperature variations intrinsically change the state of any analog synapse and 

dramatically impact the performance. A naively designed mixed-signal DNN could randomly 

behave when operating at 100 °C. We propose three modifications in the training 

(temperature-sweep batch training), circuit (k-reference batch normalization), and tuning 

(state optimization) for designing reliable neuromorphic hardware that can operate in a wide 

temperature range. The incremental incorporation of these techniques enables a sub-percent 

accuracy drop even in a complex classification task such as ImageNet.  

Further, this study shows that the intrinsic defect tolerance of deep neural networks falls 

short in larger and more complex tasks: with >500 ppm defective devices, the accuracy drop 

increases drastically beyond 1%. For a mature technology like eFlash, the fault probability is 

well below this intrinsic range, while for the emerging passive RRAM, we introduce two 

approaches, both applied during the tuning phase, to enhance the margin by a factor of >100×. 
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The passive RRAM technology offers the highest device density and monotonic 3D 

integration.  

Although the proposed approach is examined using two specific memory technologies, it 

is not tied down to particular features of these devices. Hence, this holistic approach could be 

applied in any mixed-signal neuromorphic implementation. For any memory technology, 

whether it is a FET-style synapse like eFlash or a resistive switching device like our 

memristive stack, imperfections may be modeled and included in the process of developing, 

training, and tuning the neuromorphic network. This study is also decoupled from the choice 

of a mixed-signal architecture in part because changing the structure of these massive 

networks in the simulation environment has a significantly destructive impact on the inference 

and training runtime of the model. Besides, the impact of the studied imperfections is expected 

to be the same in different architectures, and our holistic approach does not depend on a 

specific feature of the mixed-signal accelerators.  

High-order nonidealities such as temperature dependency of static nonlinearity, noise, etc., 

are neglected in our simulations because they are far less impactful. Besides, although the 

proposed techniques are analyzed and simulated individually, they are entirely independent 

and could be applied together. Nevertheless, in many cases, imperfections devitalize each 

other, e.g., memristive devices become more linear and less noisy at elevated temperatures. 

The IR drop [55] is neglected in our study because it is nearly impossible to simulate its 

effect in large-scale neuromorphic systems. Ref. [34] proposes a bootstrapping method that 

effectively tackles it at the expense of monopolizing two CMOS metal layers. Ref. [57] uses 

an efficient conversion algorithm to mitigate the impact of IR drop, and Ref. [58] resistance 

in peripheries to equalize the parasitic resistance seen by all the devices. The impact of 
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endurance failure is not covered in this study since endurance requirements for ex-situ training 

of mixed-signal neuromorphic circuits are relaxed (e.g., <105) compared to in-situ approaches 

that rely on frequent write operations and most nonvolatile memories, including the 

demonstrated devices in this study, can offer such specifications.  

In these studies, we found that when no particular technique is used to mitigate 

imperfections, mapping 2 outperforms mapping 1 in terms of reliability at the cost of extra 

energy consumption. However, the proposed holistic approach allows us even to employ 

mapping 1 for weight to conductance conversion and saves extra energy that was previously 

inevitable. The most appealing feature of this approach is its scalability and the fact that it can 

be easily integrated into the design flow of these massive systems. The modifications 

performed in the training phase do not require any specific knowledge of imperfections (e.g., 

location of faulty devices) or individual chips and could be integrated with the typical ex-situ 

training procedure. The circuit modifications include additions of a simple temperature sensor 

circuit, low-cost hardware to support multiple batch normalization parameters per neuron, and 

an extra column in each kernel, with the total overhead that barely reaches 1% of an entire 

DNN chip.  

The state optimization and advanced tuning algorithms also do not require any extra 

hardware and are applied simply for every chip during the ex-situ tuning. Although the 

proposed approach might slightly increase the training time, for most of the networks, the 

extra imposed training time is comparable with the training time of the baseline model, which 

is also negligible since training is performed only once in ex-situ trained systems and the 

developed model is used for a generation of deployed mixed-signal inference accelerators. 
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In conclusion, we have performed extensive characterization of imperfections in 

mainstream analog-grade synaptic devices and developed a holistic hardware-aware ex-situ 

approach to combat their detrimental impact on the performance of DNNs.  

The proposed approach includes modifications in training, circuit, state optimization, and 

tuning algorithm and has minimal areal or power overhead. The proposed methods are 

successfully tested on two large-scale deep neuromorphic networks. We believe that the 

results significantly improve the accuracy and efficiency of mixed-signal DNNs. Future 

research should focus on developing generalized device models to evaluate the effectiveness 

of our approach as a general solution and implementing the proposed methodology in fully-

integrated neuromorphic circuits. 
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3. The Impact of Device Uniformity on Functionality of 

Memristive Circuits                  

Despite all the rich properties, experimental demonstrations of passive memristive 

crossbars have been limited to circuits with a few thousand devices until now, which stems 

from the strict uniformity requirements on the IV characteristics of memristors [90]. The 

stochastic nature of oxide rupture in such small scales complicates the reproducibility of 

device parameters, e.g., the voltage required for electroforming and switching. Indeed, such 

variabilities are the very reason for the limited demonstrations of memristive neuromorphic 

networks so far. One solution to alleviate this issue is the usage of selector transistors (1T1R 

memories), which is inconsistent with the main driving force of this technology (i.e., 

scalability and three-dimensional integration compatibility [41,91]).  

The recent work [32] overcomes this challenge and demonstrates the successful 

integration of a 64×64 passive metal-oxide memristor crossbar circuit. This technology 

features analog-grade memories with ~99% device yield based on a foundry-compatible 

fabrication process with etch-down patterning and a low-temperature budget, conducive to 

vertical integration. The crossbar also features excellent analog properties such as long 

retention and high endurance characteristics. The cell size is 104× denser at a similar yield, 

and the average conductance is 10× less than state-of-the-art 1T1R technology [57,92]. 

Besides, the reported uniformity is sufficient for <5% average tuning precision that is slightly 

worse than ~3% reported in analog 1T1R memories [92]. 

Despite the vital importance of uniformity in 0T1R memristor crossbars, it has not been 

thoroughly investigated in the context of neuromorphic computing to the best of our 

knowledge. The key open questions include: How does the crossbar uniformity impact the 
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computing accuracy of memristive crossbars? From this perspective, what are the critical 

factors that affect computing accuracy? How can we improve the performance? How much 

crossbar uniformity is needed to achieve software-equivalent accuracy and build a large-scale 

deep neural network? This study aims to expand upon these important questions and the 

critical role of switching threshold variations in the computing precision of neuromorphic 

networks.  

In this chapter, first, we discuss the preliminaries, motivation, and previously fabricated 

analog-grade memristor crossbars. Then, we use a dynamic model based on fabricated 

crossbars in UCSB and develop a simulation framework to study the aforementioned 

problems. Further, extensive simulations of VMMs and representative neuromorphic 

networks that are performed to assess the tradeoffs and trends are introduced. All simulations 

of matrix multipliers and deep neural networks on CIFAR-10 and ImageNet datasets have 

been carried out to evaluate the role of uniformity on the accuracy of computing systems. 

Finally, we study three post-fabrication methods that increase the accuracy of nonuniform 

0T1R neuromorphic circuits: hardware-aware training, improved tuning algorithm, and 

switching threshold modification. Applying these techniques allows us to implement 

advanced deep neural networks with almost no accuracy drop, using current state-of-the-art 

analog 0T1R technology. 

 

3.1. Passive Memristive Crossbars  

3.1.1 Preliminaries and Motivation 

Fig. 26 shows the scanning electron microscope image of the latest fabricated 64×64 

memristive crossbar in UCSB [32]. The inset shows the zoomed-in view to a portion of the 

crossbar, showing top electrodes passing on top of the bottom electrodes. A memristive device 
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is located at every intersection of each top/bottom electrode. Such an array of conductance-

adjustable devices could be used to implement vector-by-matrix operation in the analog 

domain by utilizing Ohm and Kirchhoff laws [85].  

 

Fig. 26: The SEM image of the fabricated 64×64 crossbar [32] 

 

In this study, we are interested in investigating how the parameters of a 0T1R memristor 

technology, i.e., the variations in the switching thresholds, impact the target accuracy (∈) and, 

in turn, the computational accuracy of memristive neuromorphic networks. When a high-

precision readout circuit is available and memristive devices have excellent retention 

characteristics, ∈ is almost entirely bounded by the dynamic switching characteristics of the 

devices.  

To clarify this, consider the practical V/2 approach [32,90] of tuning memristive crossbars 

(Fig. 27a). The voltage applied on the selected device (by peripheral decoders and switch 

matrix) is 𝑉set. Unselected electrodes are pinned to 𝑉set/2 to minimize the disturbance on 

other devices. The applied voltage on the unselected devices is zero; however, 𝑉set/2 is 

dropped on the devices which share an electrode with the selected device (i.e., half selected 

devices). If the switching threshold of these devices is ~𝑉set/2 or less, their state shifts 
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undesirably, resulting in an imprecise tuning. A similar idea also holds for the reset operation. 

Fig. 27b shows the measured IV characteristics of a device (R0) in the 64×64 crossbar. Two 

hypothetical switching threshold distributions, as well as presumptive IV characteristics of 

two corresponding devices, are included to clarify the point. When we set R0, 𝑉set,R0/2 drops 

on both R1 and R2. The state of R1 is expected to alter negligibly since the set threshold of R1 

is much larger than 𝑉set,R0/2, unlike R2 that switches considerably. Hence, when tuning the 

entire crossbar, the total disturbance is correlated to the variations in the distribution of 

switching thresholds, and the smaller variations (or higher uniformity) result in a higher tuning 

precision. 

 
Fig. 27: (a) The schematic of the 3×3 portion of the crossbar and the V/2 tuning scheme with 

highlighted selected, unselected, and half-selected devices. (b) A typical IV characteristic of a device 

that reveals why the tight distribution of switching voltage is critical. 

3.1.2. Analog-grade Passive Crossbars Circuits 

Retention, endurance, yield, 𝐺on/𝐺off, and variations are critical factors for analog-grade 

passive crossbars, particularly in the context of neuromorphic computing, in which the weight 

precision is paramount and utterly important. A 32×32 WOx memristor crossbar is reported in 

[42] with 𝐺on/𝐺off  = (3 /1) µS and >35% tuning error, though it is not clear if this reported 
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precision is obtained after programming the entire crossbar or otherwise. A 108×54 crossbar 

made of 126 subarrays of 6×8 ~600 μm2 WOx devices are integrated on CMOS in [51] despite 

low yield and minute-scale room-temperature retention. Ref. [23] demonstrates low 

normalized variations (~3.75%), excellent retention and endurance on a 16×1 crossbar of 100 

μm2 SiGe devices. Ref. [71] also demonstrates passive crossbars using two-dimensional 

materials with 98% yield and 12.3% (5.7%) normalized variations in the set (reset) switching 

distributions. 

TiO2 memristors have been used in designing 10×2 [1], 12×12 [40], and 20×20 [47], and 

64×64 [32] crossbar circuits, with excellent retention (>20 hrs in 100°C), endurance (> 106 

analog switching cycles), and close to 100% yield. The normalized variations in these works 

are 10%, 11%, 18%, and 26%, respectively. The same stack is also used in the only analog-

grade 3D integrated demonstration [41] using two layers of 10×10 memristor array and 

reporting ~13.6% normalized variations. The consistent trends in the TiO2 crossbars indicate 

that the larger the crossbar size, the higher the normalized variations.  

This trend partially stems from the fact that (the largest) forming current required for 

electroforming increases with the crossbar size owing to the increase in leakage currents. 

Hence, a larger compliance voltage/current is required as more and more devices are 

electroformed, which increases electrical stress and, ultimately, leads to a higher device 

variability. When forming our 64×64 crossbars, the maximum electroforming current is set to 

~50 μA at the beginning, but it is raised to ~ 1 ÷ 5 mA at the end. In addition to this 

observation, the more devices in the crossbar, the more disturbance created during tuning. As 

it will be shown in this study, these factors amplify each other and exponentially entangle the 

design and operation of larger analog crossbar circuits. Fortunately, preliminary architectural 
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studies show that for many computing applications, e.g., deep learning accelerators, the 

optimum crossbar dimension is in the range of 64×64 as choosing enormous crossbar modules 

underutilizes the hardware resources and reduces the overall performance [82].  

On the other hand, the relationship between the variations in the switching threshold 

voltages and the crossbar size with circuit fidelity was not studied earlier. To clarify it, we 

used a developed dynamic model [32] for the memristor that relates the conductance change 

to the switching thresholds and the applied voltage to emulate the tuning process of ex-situ 

weight transfer and find the relationship between the accuracy, block size, and normalized 

variations in general VMM blocks and representative neuromorphic circuits. 

 

3.2. Simulation Framework 

In ex-situ training of a neuromorphic network, synaptic weights are calculated on a 

precursor software-based network and then imported sequentially into the crossbar circuits. 

Networks are typically composed of many crossbar blocks which are programmed in parallel 

or sequentially.  However, within a crossbar, the devices are tuned into their corresponding 

predetermined desired states individually (one-by-one). Due to the stochastic nature of the 

switching mechanism in memristors, particularly analog-grade devices, often require multiple 

pulses to reach an absolute accuracy. This is executed using the well-known write-verify 

algorithm [90]. 

In every simulation case, the conductances of devices are initially randomized using a 

Gaussian distribution with an average of 36.25 μS (midrange conductance) and a standard 

deviation of 9 μS. Then, conductances are adjusted one by one using the write-verify 

algorithm and the dynamic model. We reconstruct the exact procedure that we employ in the 
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experiments when tuning the devices [32,90]. The devices within any crossbar block are tuned 

in raster order. More importantly, to increase the tuning speed, we progressively increase the 

pulse amplitude (set/reset) starting from 0.5 V with 10 mV steps to the switching voltage of 

the device. This idea also prevents overstressing the device. The tuning direction (setting or 

resetting) is alternated whenever we pass the target conductance. To avoid overstressing the 

memristors, creating too much disturbance, and reducing the tuning time, we limit the tuning 

process for every device to 5 rounds. The algorithm is aborted (and restarted with the next 

device) whenever it reaches the desired tuning accuracy or the maximum permitted pulse per 

device. In the simulation, the half-select disturbance is applied for every applied pulse and 

every device by updating the state of devices sharing either top or bottom electrodes with the 

V/2 rule. The entire crossbar is tuned for 10 rounds to diminish the disturbances.    

3.3. Computing Precision in Nonuniform Crossbars 

VMM is the most critical operation in inference accelerators and most neuromorphic tasks. 

The fidelity of most neural network models closely follows the computing precision in their 

VMMs. Here, we consider N×N two-quadrant VMM circuits, which are implemented in the 

analog domain by two separate N×N memristive crossbars. VMM size, variations in switching 

thresholds, and target precision are variables of this research.  For every case study, 20 

crossbars with random log-normally distributed switching thresholds and 20 different 

normally distributed weight matrices with zero mean are generated. The mapping function 

𝐺𝑖𝑗
± = 𝐺min + (1 ± 𝑊𝑖𝑗)(𝐺max − 𝐺min)/2 in which 𝑊𝑖𝑗 is the normalized weight and 𝐺max 

and 𝐺min are upper and lower conductance bounds are used to convert dimensionless weights 

into device conductances [36]. For each VMM, we randomly generate 1k input voltage 

vectors, with elements uniformly distributed in the range 0 to 0.1 V. VMM computing errors 
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are then calculated over the output current (I) and defined by |𝐼actual − 𝐼ideal|/𝐼max. Ideal 

currents (𝐼ideal) are obtained directly from the mathematical vector-by-matrix multiplication 

of the input voltage vector and conductance matrix, actual currents (𝐼actual) are obtained from 

the circuit simulation after all devices are tuned, and  𝐼max is the maximum absolute pre-

activation current over all input combinations. 

First, the half-disturbance issue is investigated for  64×64 VMMs with considering 5% and 

25% variations in switching threshold voltages. Fig. 28a shows the tuning error for 50 devices 

(in the crossbar that implements 𝐺+) during 10 rounds of the programming phase in the case 

with 5% variations. Specifically, each curve shows how the tuning error for each device 

evolves, starting from the first attempt to the last one. One curve is highlighted for better 

clarity. The steep drops in each curve denote the moments the device is tuned. For the 

highlighted curve, the device is initially tuned with <1% accuracy, but the disturbance moves 

its state leading to ~5% error by the end of the 1st round. The device is returned in the 2nd 

round, and the disturbance alters it to ~3% of the target. Less disturbance generated in the 2nd 

round stems from the fact that some devices are within the target accuracy by the end of the 

1st round. So, the total number of pulses (and hence overall disturbance) decreases in each 

round. The state of most devices stabilizes by the end of the 4th round. The conductance error 

distributions and related statistics, shown in Fig. 28b, confirm these findings as well.  
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Fig. 28: Evolution of tuning error for tuning the crossbar with (a) 5% and (c) 25% of normalized 

variations in switching thresholds. The error distribution for all devices at the end of each round for 

(b) 5% and (d) 25% of normalized variations in switching thresholds. 

 

Note that the assumption of 5% variations in a 64×64 crossbar is too ideal with the current 

technology. Figs. 28c and 28d show the result from the simulations of crossbars with 25% 

variations in the switching thresholds. Though the result slightly improves in the first 4 rounds, 

many devices remain in imprecisely tuned states after that. The periodic state evolution of 

many devices (e.g., the highlighted curve) in Fig. 28c is because of the large disturbance and 

strong dependencies, making the tuning effectively unstable for many devices. Fig. 29a 

compares the ultimate distribution of conductance error for both cases. The 99 percentiles of 

the tuning error are ~14.4 % and ~1.0 % for 25% and 5% variations, respectively. The huge 

gap between the realistic and ideal case signifies the importance of variations in passive 

crossbars. Imprecise tuning results in a large error in the output signal, as expected. Fig. 29b 
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shows the VMM error distribution for both cases. The 99 percentiles of the distributions are 

~7.0 % and ~3.7 % for 𝜎n=25% and 𝜎n=5% variations, respectively. 

 

Fig. 29: The distribution of (e) weight and (f) VMM errors (at the end of the 10th round) for the two 

cases (5% and 25% of normalized variations in switching thresholds). 

 

Fig. 30 summarizes our VMM-level simulation results in which the role of VMM size, 

switching threshold variations, and target tuning error are studied. In every data point, we 

consider 400 VMM instances (20 different sets of weights and 20 crossbars) to characterize 

the worst-case error statistics (99 percentiles of the output error among 103 patterns), the de 

facto parameter to evaluate the computational accuracy. Note that the VMM size and 

normalized variations are increased exponentially and linearly, respectively.  

In every panel of Fig. 30, the dashed red line serves as the intrinsic bound and shows the 

expected intrinsic error resulting from the imprecise tuning of individual devices (without the 

half-select problem). Such intrinsic error is often linearly proportional to the target tuning 

error. The first observation is that the median worst-case error increases exponentially with 

variations, more evidently for N>30 (here, the median refers to the statistics over 400 VMM 

instances). It also increases exponentially with respect to VMM size for low variations and 

super-exponentially in large variations. This stems from the fact that when variations become 

more extensive in large circuits, the tuning condition becomes unstable (Fig. 28c), and the 
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disturbance of half-select devices overwhelms the tuning of individual devices (Fig. 28c). The 

spread of the worst-case VMM error distribution among different instances also extends with 

increasing size or variations in high precision tuning cases since the chance of hitting worse 

corner cases raises when disturbance escalates. This issue becomes particularly important in 

high-precision computing tasks with tight error margins. 

For small VMMs (e.g., N<16), the error follows the intrinsic trend even in the presence of 

large variations because the total disturbance is low enough to be fully recovered after running 

the algorithm for several iterations. In moderate VMM sizes (e.g., N=32), the error tends to 

increase for high precision tuning cases (e.g., <4%), particularly when the variations are high. 

This error escalation originates from an increase in the number of applied pulses for achieving 

a better tuning precision, which in turn leads to a larger disturbance. For large VMMs, 

variations become more prominent such that the computational accuracy is adversely 

impacted. For N=64, the drastic change for σ>0.25 also stems from the exponential growth of 

the overall severe half-select disturbance cases. To clarify this, let us look at 𝑛HS, the fraction 

of the devices in the crossbar circuit, which are disturbed during write operation with half 

write voltages exceeding their switching threshold. The value of 𝑛HS for each case study is 

provided in each panel of Fig. 30. When the standard deviation of the set threshold distribution 

increases from 0.25 to 0.3, 𝑛HS soars by a factor of ~10, indicating a surge in the cases of 

severe disturbances.  
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Fig. 30: The distribution of the worst-case VMM error among 400 instances of (a) 4×4, (b) 8×8, (c) 

16×16, (d) 32×32, (e) 64×64 and (f) 128×128 VMMs. No HS: no half-select, nHS: the average number 

of devices affected with V/2 disturbance normalized by N2. Note the log-scale of the y-axis in all 

panels. 

 

Another subtle point is related to the reduced computational accuracy in cases with even 

no variations. For instance, comparing the case of no half-select (no HS) with 𝜎𝑛=0, we 

observe a ~4.3% increase of the average error in the case of N=64 and 1% target. Even with 

no variations, the voltage drops on other devices could have a slightly disturbing effect (non-

zero changes in the conductive state at half of the write voltages), which could become 

potentially noticeable when the total number of pulses grows very large. The slight 

improvements beyond the intrinsic error (e.g., see the case of N = 4 and target error = 5%) 

originate from the regularization impact of half-select disturbance, which slightly improves 

the accuracy. 
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Finally, the computational accuracy of state-of-the-art 1T1R and 0T1R crossbars can be 

compared in Fig. 30. For practical VMM sizes (e.g., N=64), considering state-of-the-art 

reported 1T1R tuning accuracy (~3% in [10]), the computational accuracy of 0T1R VMMs 

(σ<30) is the same as 1T1R, when tuned with 1% target precision or worse by ~1% when 

tuned similarly with 3%. The results of this comparison give hope for using 0T1R design in 

large-scale neuromorphic computing networks.  

The final takeaway is that the computational accuracy in passive crossbars is a function of 

the total number of applied pulses or total disturbance from the tuning precision perspective. 

Note that the larger the VMM, the larger the number of pulses; the larger the variations, the 

more pulses needed to tune the devices in multiple rounds; the smaller the tuning target, the 

higher the number of pulses. Consequently, assuming system-level and architecture 

considerations determine an optimum kernel size (N) to optimize the functional performance, 

we end up with two options for mitigating the half-select disturbance and improving the 

computational accuracy in passively-integrated-based neuromorphic systems namely 

fabricating more uniform crossbars that lead to tighter variations and developing more 

optimum tuning algorithms that directly reduce the total disturbance and the number of 

applied pulses. Further, the most efficient and accurate circuit is not necessarily obtained when 

the device is pushed to its high precision limit. Hence, extensive simulations are required to 

find the optimum tuning margin for a given technology, kernel size, and the computing model. 

In this study, we consider CIFAR-10 and ImageNet classification tasks and use two 

relatively compact benchmark networks. Specifically, we use a 4-layer network with a decent 

size for the CIFAR-10 task that 1) allows the simulations to be conducted in a reasonable time 

window and 2) more importantly, by using a relatively compact network, we make sure that 
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the half-select disturbance problem shows its true impact on the output (note that the purpose 

of this work is not to find a network with the highest accuracy on this task, but to show the 

uniformity problem and how it can be mitigated). The latter point is due to the fact that a 

highly overparameterized fat network is more sustainable to the half-select problem (but very 

inefficient in terms of implementing the problem). These two reasons are why we chose this 

moderate-size DNN. Note that all simulations are also equally performed on the much more 

extensive ResNet-18 network based on the much more complicated ImageNet task as well. 

3.4. Neuromorphic Network Simulation Results  

In every model, the VMM operations are partitioned to nonoverlapping N×N kernels (see 

partitioning in general-purpose mixed-signal deep neural networks [82]). In other words, to 

conduct this study using GPUs, we are obligated to employ a one-to-one mapping of weights 

and two memristive devices (each weight is implemented with two adjustable devices), i.e., 

there is no weight sharing or duplication in simulations. Let us emphasize that since this study 

aims to explore the role of device uniformity (rather than any other nonideality), it is 

indispensable to employ ideal peripheral transfer functions and pooling layers (which are 

implemented in the digital domain or using winner-take-all circuits). The peripheral circuits 

and pooling layers are also simulated in software as we intend to study only the impact of 

uniformity in the accuracy drop. The choice of the peripheral circuits (e.g., time domain or 

current domain) or data converter is not related to the conducted study. Such considerations 

are important in architecture works, e.g., Ref. [82]. 

Similar to the VMM study, the obtained weights are mapped into target device 

conductances. The conductance tuning process for the constructed VMM kernels is then 

emulated using the dynamic model and previously discussed tuning algorithm. The imprecise 
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tuned weights are then imported back to the simulation setup. Subsequently, the inference 

tasks are performed on the generated models, and the classification drop is recorded for each 

data point.  For every case study, 12 model instances are generated (by using 12 sets of 

randomly generated switching threshold distributions).  

Fig. 31 shows the accuracy drop of running the inference test on both benchmarks versus 

the crossbar uniformity for various VMM sizes. Fig. 31a and 31b correspond to ConvNet and 

ResNet-18, respectively. The box plot is obtained by simulating 12 random hardware 

instances (note that tuning simulations are extremely slow even when performed on a 

powerful server). The destructive impact of crossbar half-select disturbance is evident in both 

benchmarks, especially in ResNet-18 that performs the more complex ImageNet 

classification. The trends are consistent with VMM simulations: The accuracy drops 

exponentially when the VMM size and normalized variations are increased. Notably, with 

25% normalized variations and 64×64 crossbars, we achieve ~9% accuracy drop in the 

ConvNet and 18.5% on ResNet-18. In the next section, we introduce several methods, which 

restore this accuracy drop and improve the performance. 

 
Fig. 31: The accuracy drop in deep neuromorphic networks versus crossbar uniformity for (a) 

ConvNet, (b) ResNet-18. The dashed lines connect the median of the boxes. 
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3.5. Improving the Accuracy 

The most straightforward solution to cope with the destructive impact of variations in the 

switching thresholds is to improve the fabrication process and device properties. The 

switching threshold variations in metal-oxide memristors depend on multiple factors. Forming 

voltage and current overshoot during the forming significantly contribute to device variability 

and can be tuned by a combination of oxide layer thickness and stoichiometry adjustment and 

optimized annealing conditions [40]. In this section, we focus on some post-fabrication 

techniques for mitigating the disturbance. 

3.5.1. Hardware-Aware Training 

In Chapter 2, we discussed imperfections of synaptic devices such as noise, temperature 

dependency, stuck-at fault, and defects that are compensated by the method of hardware-

aware training: The training is performed fully ex-situ (no extra hardware cost), with the only 

subtle difference of including the device models and imperfections in the training phase for 

the purpose of generating more robust models.  

The simulation results of the previous section indicate that variations in switching 

thresholds lead to random tuning errors in the devices. Note that the tuning errors remain fixed 

during the inference, assuming devices have adequate retention. Nevertheless, tuning errors 

are chip-dependent, device-dependent, and unpredictable because of the intrinsic chip-specific 

distribution of switching thresholds. Despite that it is not feasible to predict and include the 

exact number of errors in the training phase, the error distribution is predictable due to the 

uniform shape of weight distribution in a neural network model, especially when using the 

same crossbar sizes and tuning algorithm (see modular accelerator architectures, e.g., aCortex 

[82]). 
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Modeling the tuning error during the training may increase the robustness of the trained 

model against half-select disturbance during the inference of the neural hardware. Note that 

this technique does not transform the shape of the tuning error distribution. Before computing 

the activation values in each update, the weights are converted to memristor conductances. 

Built-in uniform random number generator with the parameter ζ is then used to perturb 

conductances (both 𝐺+ and 𝐺− in the differential implementation). After computing imprecise 

preactivations, the ideal weights are then restored before proceeding with the rest of the 

training operations. Note that ζ is optimized for a given network model and overall 

disturbance, which is a function of VMM size, switching threshold variations, and target 

accuracy. Also, using a more complicated distribution for perturbation might be beneficial. 

Fig. 32a shows the performance improvement achieved by this technique on the ConvNet 

benchmark implemented with 64×64 VMM blocks. The figure shows the accuracy drop 

versus the normalized variations for various values of ζ. The robustness of the deployed model 

is obviously increased with this method. For 15%, 25%, and 30% normalized variations, the 

optimum performance is achieved when ζ is set to 5%, 20%, and 30%, respectively. Notably, 

in the case of 25% normalized variations and 64×64 crossbars, the ~9% average accuracy drop 

is now reduced to ~1.87% using ζ=20%. The same trends of improvements are also observed 

in the case of ResNet-18 implemented with 64×64 crossbars (Fig. 32b). For example, using 

ζ=3% diminishes the average accuracy drop from 18.5% to 3.5% (6.1%) for σ=25%. 
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Fig. 32: Reducing the accuracy drop in (a) ConvNet and (b) ResNet-18 (both with 64×64 VMMs) 

using the hardware-aware training technique. The inset shows the zoomed-in to the lower portion of 

the figure. 

 

3.5.2. Improved Tuning Algorithm 

In Ref. [32], we propose a novel crossbar tuning procedure consisting of two 

methodologies for reducing the tail of tuning error distribution. First, the maximum write 

voltage amplitudes are limited to a specific voltage, which is decreased gradually within each 

tuning round. The consequences of restricting the maximum applied write voltage within each 

round are gradual reduction of net disturbance in each round and large (final) tuning error in 

high threshold devices. The former stems from the fact that low-to-moderate threshold devices 

become disturbed less and less as the tuning algorithm advances. The latter merely originates 

from the fact that the write voltage is not enough for high threshold devices to switch. 

In the second method, we initially identify devices with a large set (reset) switching 

thresholds and switch them to the highest (lowest) conductive state prior to executing the first 

tuning round. Then, we take advantage of the possibility to encode the same weight with 

different target conductances in the differential pair implementation. In every round, when 

tuning a disturbed device with a threshold higher than the maximum voltage limit imposed by 

the first methodology, the state of the paired device is adjusted rather than the high voltage 
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device. The application of these two novel techniques significantly reduces the tail of 

disturbed devices.  

Fig. 33a demonstrates the effectiveness of using these novel tuning algorithms with and 

without applying the hardware-aware training technique. When no hardware-aware training 

is applied, the novel tuning algorithm reduces the accuracy drop, especially when variations 

are higher than 20%.  When the two techniques are both applied, the results are even better. 

A sub-percent accuracy drop is now feasible even with 30% normalized variations. For the 

notable case of 25%, the average drop now becomes insignificant when ζ=2% is used in the 

hardware-aware training. 

The simulation results of the ResNet-18 benchmark are also promising (Fig. 33b). For 

example, in the case of N=64 and σ=25%, the improved tuning algorithm solely reduces the 

accuracy drop to 1.88%. Combined with the hardware-aware training (ζ=3%), we can decrease 

the average accuracy drop to just ~0.4%. In the initial simulation, we observe that the model 

generates almost random outputs (~70% accuracy drop) when the variations are σ=35% and 

larger. While the two proposed techniques enable 6.9% and 17.2% average accuracy drops, 

utilizing ζ=20% and ζ=3%, respectively. 

 
Fig. 33: Reducing the accuracy drop in (a) ConvNet and (b) ResNet-18 (64×64 VMMs) using the novel 

tuning algorithm with and without the hardware-aware training. The inset shows the zoomed-in to the 

lower portion of the figure. 
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3.5.3. Modifying Switching Thresholds 

Modifying the switching thresholds of outlier devices is another method for reducing the 

impact of variations in the switching thresholds. This correction process includes an 

unconventional continuous hard reset operation, which pushes the outlier device close to its 

virgin state, followed by a voltage-controlled reforming procedure, which revives the device 

with slightly shifted switching characteristics. Our experiments show that the correction 

process results in a stochastic shift in the switching threshold of devices, which means the 

refreshed device could have improved switching properties. Applying this technique to outlier 

devices (that feature low voltage thresholds) reduces the spread of variations, which in turn 

improves the accuracy of the implemented model.  

Fig. 34 shows the results of the experiments developed to validate this idea. First, a virgin 

device in the crossbar is formed and tuned to 50 kΩ. Then, its switching thresholds are 

measured by tuning it repeatedly to 100 kΩ and 10 kΩ. After 10 rounds, the device is hard 

reset to >1MΩ and then revived and tuned to 50 kΩ. Switching thresholds are measured again 

in a similar fashion. The process is performed one more time just to make the results more 

illustrative. Fig. 34a shows the experimental results, and the inset of Fig. 34a shows how the 

switching thresholds are changed after the initial forming (i.e., the original thresholds) and 

each reviving round. The stochastic shift of the switching thresholds is quite obvious from 

these data.  
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Fig. 34: (a) The experimental results of the modification process applied on a virgin device in the 

crossbar. (b) The histogram of the stochastic relative change (100×∆V⁄V) in the average set/reset 

switching thresholds (V) for 60 devices after performing the hard reset and revival processes on them.    

 

In addition, a one-time switching threshold modification is applied on 60 devices with 

various initial switching thresholds, and Fig. 34b corroborates the stochastic nature of this 

shift in the symmetric histogram of relative change in the switching threshold after the 

modification process is applied. Specifically, as an example of modifying an outlier device, 

we apply the modification process to a device with an average set and reset switching 

thresholds of +0.8 V and -0.8 V, respectively (among ten switching rounds). Then, it is 

observed that the refreshed device has an average set voltage of 0.95 V and an average reset 

voltage of -1.2 V, which are significantly better and closer to the typical average switching 

thresholds of the crossbar. Due to the limitations of our experimental setup, we can not 

validate the impact of this method with direct system-level experimental results. The study of 

the impact of this technique on large-scale neuromorphic architectures is important for future 

work. 

3.6. Discussion  

Previous works [93, 94] have focused on other nonidealities, e.g., IR drop, static 

nonlinearities, retention loss, focusing on devices with selectors with inferior density with 
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respect to 0T1R crossbars. Such nonidealities are also essential and have been adequately 

addressed in [93, 94]. However, this study is the first work exploring the indispensable role 

of uniformity and presents several novel methods and guidelines to improve the circuit 

performance regarding that. 

The findings in this study confirm the encouraging prospects for using 0T1R crossbars in 

neuromorphic computing. In the general VMM study (section 3.4), we uncover exciting 

opportunities and interesting tradeoffs about these circuits for the first time: 1) the relationship 

between the computational error and the crossbar size, uniformity, and target tuning error is 

thoroughly investigated, 2) we present the periodic and instability of tuning error in large 

nonuniform crossbars in addition to the linear and exponential dependency of computing 

accuracy to uniformity at small, moderate, and large VMM sizes, 3) it is shown that in large 

VMMs, very precise tuning of devices requires many pulses, which in turn may lead to more 

disturbance and reduction of the ultimate computing accuracy, 4) slight increase in the 

computational error is inevitable in very large 0T1R crossbars even with zero variations since 

even a small half-select voltage drop could become potentially noticeable when the total 

number of pulses grows very large, 5) we compare the computational accuracy of state-of-

the-art 1T1R (~3% target error reported in [92]) and 0T1R crossbars (1% target tuning and 

σ~25% reported in [32]) and report similar computing accuracy when the 0T1R crossbars are 

tuned with 1% target precision or worse by only ~1% when using the same (as 1T1R) tuning 

precision of 3%.  

Three techniques are explored for mitigating the impact of nonuniform IV characteristics 

of 0T1R memristors in neuromorphic circuits. The simulation results indicate that these 

techniques enable software-equivalent accuracy on both ResNet-18 and ConvNet 
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benchmarks, in the case of N=64 and 25% normalized variations, which corresponds to the 

features of the recently fabricated crossbar [32]. In addition, the presented data in Fig. 33 

suggest that a sub-percent accuracy drop is achievable in advanced neuromorphic circuits with 

even ~30% normalized variations using 64×64 crossbars, which leads to a balanced resource 

utilization at system levels, as promised by theoretical architectural studies [82].  

Also, several limitations of these mitigation techniques can be pointed. First, hardware-

aware training is not a viable option in some neuromorphic tasks, e.g., neurooptimization [95], 

in which the weights are fixed and predetermined by some constraints of the applications. In 

such cases, the practical solutions are improved tuning algorithm, fabrication process, outlier 

correction, and, if needed, reducing the crossbar dimensions. Second, the switching threshold 

modification method should only be used for outlier devices once or a few times to prevent 

damaging the devices or reducing their endurance life.  
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 4. CMOS Integrated Memristive Circuits 

In order to implement bio-inspired neural network models, the analog and mixed-signal 

(AMS) approach is very promising. The energy efficiency of the AMS approach highly 

depends on improvement in the physical level implementation of the VMM blocks. RRAM 

technology, as it is mentioned in the previous chapters, is one of the favorable candidates to 

achieve these goals due to its long-term retention, high endurance, low power consumption, 

scalability, and analog-storage ability [96].  

There are also some infrequent operations in neuromorphic networks that synaptic devices 

(RRAM) cannot implement, or they could be inefficient to do so. Fortunately, CMOS 

technology is exceptionally flexible and can efficiently implement such functionalities. 

Therefore, integrating CMOS and RRAM technologies are extremely important, and 

designing efficient peripheral circuits in CMOS technology that perform the less frequent and 

sparser functionalities of these systems is very crucial. This chapter presents our large wafer-

scale designs to alleviate the challenges, such as implementing a system integration of CMOS 

and RRAM technologies and designing efficient peripheral circuits in neuromorphic circuits.  

Fig. 35 shows two scenarios for integrating the emerging RRAM technology with a 

standard CMOS process: the Back-end of the line (BEOL) process in which memristors are 

integrated on the top of the CMOS stack, e.g., on top of M5 in a process with 5 metal layers, 

and the Middle-end of the line (MEOL) process in which the RRAM crossbar is inserted 

somewhere in the middle of CMOS metallization layers, e.g., between M4 to M5 in a process 

with 9 metal layers. In this chapter, we first discuss the details of two tapeouts with the purpose 

of conducting BEOL integration of UCSB’s passive memristors on 180 nm CMOS. Then, we 
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discuss a fabricated DNN accelerator chip in 65 nm technology using 1T1R industrial 

memories integrated with CMOS in a MEOL process. 

 
Fig. 35: CMOS/RRAM integration using (a) BEOL (b) MEOL processes. 

 

4.1. Wafer-Scale 0T1R Integration 

One favorable approach to implement VMM blocks is based on passively resistive RAM 

technology, which has demonstrated excellent scalability and area efficiency. This section 

discusses the design and fabrication of two large tapeouts, including integrated hybrid 

monolithic CMOS/memristor circuits for AMS computing applications in Silterra’s 0.18 μm 

6-metal CMOS technology and 250 × 250 nm2 Pt/Al2O3/TiO2-x/Ti/Pt passive memristive 

devices. CMOS and memristor circuitries are fabricated in Silterra fab and UCSB’s nanofab, 

respectively. The fabricated wafers include several circuits and full-scale proof of concept 

demos, such as different complexity and styles of mixed-signal VMM circuits, medium-scale 

neuromorphic network, e.g., multi-layer perceptron (MLP), physical unclonable function 

(PUF), neuro-optimizer, and random number generator. 

4.1.1 Building Block (X-block) Design   

Although the main purpose of a memristive crossbar is to implement specific 

functionality, e.g., VMM operation, it needs some other peripheral circuitries which allow us 
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to form, program, and operate the circuit in different modes. A building block, which we call 

X-block, is used in all of our memristive computing demos and consists of the memristive 

crossbar, tuning and inference switches, decoders, level shifters, and programming shift 

registers. X-block supports five modes of operations: forming, programing (i.e., set and reset), 

read, monitoring, and inference.  

To support forming, programming, read, and monitoring (each mode is discussed in the 

next section), the address of a specific device (selected device) will be stored in the designated 

shift register. The shift register drives a custom-designed decoder that controls the modes 

using two auxiliary inputs, converts a binary m-bit input to one-hot 2m outputs, and drives the 

level shifters connected to tuning switches. Note that since the tuning/forming voltages often 

require voltage more than the core voltage (here 1.8 V in 180 nm), we need to use thick oxide 

MOSFETs as switches and hence use level shifters (1.8 → 3.3) to drive the tuning switches. 

The inference switches protect the core-voltage input generator and readout circuits during 

the (relatively) high voltage forming and programming modes. These sets of circuits (shift 

register, decoder, tuning switches, and inference switches) are used for both bottom electrodes 

and top electrodes. Fig. 36 shows the overall topology of the X-block circuit. In the following, 

we will discuss the five operation modes. 
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Fig. 36: X-block used in all our analog computing demos.  

 

1) Forming: Upon fabrication, memristor devices are initially in the pristine state and require 

a one-time forming process before becoming adjustable memristors. A device can be formed 

by applying a relatively high voltage (e.g., 2.5 V - 5 V) to it and continuously monitoring its 

conductance. When the device reaches a certain threshold, a conductive filament forms inside 

it, and its conductance jumps significantly, enabling subsequent analog-state tuning and 

storage (Fig. 37). 

2) Programming: In this phase, the conductance of the device is adjusted to a desirable value 

(G) through the modulation of the impurity profile. We may increase (set) or decrease (reset) 

the conductivity of the device by applying a moderately large voltage to the device. The 

programming voltage is about (or slightly larger than) the switching threshold—a device-

unique voltage that alters its conductance by, e.g., 20%. Harnessing the write-verify algorithm 

[90], we keep programming and checking the state of the device (G ̂) until reaching a certain 
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relative tuning accuracy (𝐺̂ − 𝐺)/𝐺 <∈. In chapter 3, we discussed how the V/2 scheme is 

used to set/reset a device with the amplitude of V.  

3) Read: During the programming (set/reset) of a device, we need to read the state of the 

device (after each set or reset pulse) to verify if it has reached the desired value or not. The 

read mode allows us to read the low voltage conductance of a single (selected) device that is 

being programmed. In this mode, a low voltage 𝑉read is applied on top of the device, and its 

generated current 𝐼read is sensed. The conductance of the device is given by 𝐼read=G 𝑉read.  

 
Fig. 37: Forming, programming, and read phases of a memristor device. 

 

4) Inference: Unlike the read mode in which the current from a single selected device is 

sensed, in the inference mode, typically, most devices are used with the goal of implementing 

or performing the main intended task. Hence, the inference mode is task-specific, e.g., in a 

neural network design, the inference mode is when the crossbar is used for the VMM 

operation. Note that in order to implement multiplication, summation, or useful computational 

tasks, all devices are operated in the non-disturbing (inference) phase: e.g., a relatively low 
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voltage (V) is applied to the devices and the generated current, 𝐼𝑗 = ∑ 𝐺𝑖𝑗𝑉𝑖 is sensed with a 

sensing CMOS circuity (to implement the dot-product operation) from every electrode.  

5) Monitoring: This mode is necessary for checking the characteristics of the peripheral core 

voltage circuits, for example, measuring the offset or nonlinearity of the input generator or 

readout circuits. Such a feature becomes even more critical when we are interested in 

performing offset compensation using memristive devices.  

      In the following, we will discuss how the X-block components are designed in order to 

implement these five modes of operation.  

      4.1.1.1 Tuning and inference switches: 

The switch circuitry, including tuning and inference switches, connected to every 

electrode is shown in Fig. 38. The tuning switches are mainly used to select and unselect the 

devices and are controlled by the custom decoder. They are used in forming, programming, 

read, and monitoring modes. In inference mode, they are turned off. In all modes except the 

inference mode, in which all select and unselect electrodes are turned off, only one top and 

one bottom electrode are selected. When a certain electrode is selected, its corresponding 

select switch is turned on, and its unselect switch pair is turned off. For all other electrodes, 

the select switches are turned off, and unselect switches are turned on. The inference switch 

protects the core voltage peripheries from the IO level voltages applied to the electrodes 

during forming and programming of the devices. Hence, it is only turned on during inference 

and monitoring modes. SDp, SDn, UDP, UDn signals are IO level signals driven by level 

shifters which are connected to a custom decoder. The required voltage/current to 

form/set/reset/read/monitor the devices are provided by VSD and VUD signals, which are 

typically generated in off-chip circuits. VR is also routed to the core voltage peripheral circuits.  
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Fig. 38:Tuning and inference switches. 

 

      4.1.1.2 The shift register, custom decoder, and level shifter: 

In forming, programming, tuning, and monitoring modes, we are targetting a single 

electrode in the crossbar. Prior to executing any of these operation modes, the binary address 

of the selected electrode is serially shifted into a shift register, which drives a custom decoder. 

The decoder shown in Fig. 39a generates auxiliary signals used to control the tunning switches 

in different operation modes. Table. Ⅲ shows the logic of the decoder signals in each 

operation mode. Shift registers and decoders are designed in the standard digital flow 

(synthesis and automatic GDS generation) with the goal of minimizing the area. Note that 

since these circuits are not used in the inference mode, their energy consumption and speed 

are not crucial. Fig. 39b also shows the circuit schematic of the level shifter, which translates 

the digital Q and Q̅ at 1.8 V to OUT and OUT̅̅ ̅̅ ̅̅  at 3.3 V.  
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Fig. 39: (a) The custom decoder (with 1.8 V supply) and (b) the level shifter circuit using thick-oxide 

transistors with 3.3 V supply. 

 

Table. Ⅲ: Logic of the custom decoder.

 
 

Let us now discuss how each mode of operation is implemented and executed in the circuit.  

a) Forming and Set operations 

Fig. 40 indicates the process of forming/set of devices using tunning circuits. Let us clarify 

that VSD and VUD signals that are connected to bit-lines (or top electrodes) are denoted by 

VSD_BL and VUD_BL, respectively. These signals are directly routed to analog multiplexers 

placed on the PCB adapter (i.e., off-chip). Depending on the operation mode, VSD_BL and 

VUD_BL are either driven by a fixed voltage, a pulse generator, current sensing, voltage sensing, 

etc. A similar idea also holds for word lines (bottom electrodes) signals as well.  
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For forming and set operations, a word-line (WL) and a bit-line (BL) are selected by the 

decoding circuit. The off-chip switch matrix circuit is configured such that a voltage pulse 

Vpulse is applied to VSD_WL, VSD_BL is grounded, and VUD_BL and VUD_WL are driven by Vpulse/2.  

Such topology essentially implements the V/2 scheme to prevent half-select problems [96] 

discussed in chapter 3. The applied voltage to form a device is relatively high (2.5 – 5 V), 

while the set voltage is typically smaller than 2 V. In the case of forming in large crossbars, 

we may leave the unselected electrodes from both top and bottom electrodes floating to 

minimize the current required for forming.   

 
Fig. 40: Set and Forming Modes. The selected device and “on” pass gates are highlighted for clarity.  

 

b) Reset operation 

The process of resetting a device is very similar to set, only with the oppositive polarity. 

Here, a voltage pulse Vpulse usually smaller than 2 V is applied to VSD_BL, and VSD_WL is 

grounded. Fig. 41 indicates the reset scheme in the X-block. Note that Vpulse/2 is also applied 

to VUD_BL and VUD_WL to prevent half-select problems. 
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Fig. 41: Reset mode in X-block. 

 

c) Read operation 

The process of reading the state of a device (during the programming mode) is performed 

by providing a fixed small voltage on the selected WL port (VSD_WL) and measuring the output 

current generated in the selected BL port. An off-chip current sensing circuit imposes virtual 

ground on the selected BL port (VSD_BL) and senses its current. VUD_BL and VUD_WL are also 

grounded to zero out the current from other devices. Fig. 42 shows the reading process. 

 
 

Fig. 42: Read mode in X-block. 
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d) Inference operation 

Fig. 43 indicates the inference process (the normal operation of the crossbar). Typically, 

all devices in the crossbar are involved in this mode of operation. So, the inference switches 

of all BLs and WLs are turned on (via RE signals). A voltage from an on-chip input voltage 

generator is applied to all devices from the WLs, and the output currents (the summation of 

computation results) are sensed in parallel from all BLs using sensing circuits.  

 
Fig. 43: Inference mode in X-block. 

 

e) Monitoring operation 

The circuit operation for studying the functionality of input generators and sensing circuits 

are shown in Fig. 44a and Fig. 44b, respectively. For example, to check the input generator's 

characteristics, the inference switches for WLs are turned on. The selected input generator 

drives the selected WL port. Using the VSD_WL and tuning switches, the output voltage of the 

input generator can be measured using an off-chip voltage measurement (Fig. 44b). In this 

mode, the devices are not involved. The sensing circuit (Fig. 44a) characteristics are measured 

similarly.  
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Fig. 44: The monitoring mode for measuring (a) the sensing circuits’ characteristics and (b) input 

voltage generator’s characteristics. 

 

4.1.2 Fabricated Circuit Demos  

We ran two wafer-scale tapeouts to integrate 180 nm CMOS circuits and 250 nm RRAM 

technologies. Fig. 45 shows the cartoon of how a crossbar is connected to underlying CMOS 

circuits. The top and bottom electrodes are specified in orange and green colors, respectively. 

RRAM devices are built at the intersection of the top and bottom electrodes (red circles). The 

via PADs are used for connecting memristor crossbars to CMOS circuitries.  

Two scenarios are considered for BEOL integration. In the first scenario, both electrodes 

(top and bottom) are implemented in the BEOL process (using additional metal layers grown 

in UCSB’s fab as a part of the integration). In contrast, in the second scenario, the M5 layer 

(from the CMOS stack) is used as the bottom electrode, and the top electrode is implemented 

at the BEOL process. In both scenarios, CMOS M4 and M2 layers are employed to bootstrap 

the crossbar electrodes to reduce the effective resistance (of top and bottom lines). The 

bootstrapping technique is suggested in [34] as a solution to improve the accuracy of the 

memristive VMM concerning IR drop across crossbar lines.    
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Fig. 45: The layout of a portion of the crossbar. F is the minimum feature size (250 nm in our 

design). 

 

The designs are fabricated on 15 ×12 mm2 reticles. The layout and snapshot of the wafer 

for the first demo are shown in Fig. 46a and 46c, respectively. This design consists of different 

flavors (sizes and types) of VMM circuits, an MLP network, a PUF circuit [97, 98], and 

RRAM macros (X-blocks). The second tapeout contains Sirius PUF [99, 100], a random 

number generator, and an optimization circuit (Fig. 46b and 46d) [101-103]. In the following 

section, we will provide more details about each demo. 
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Fig. 46: (a) The first and (b) second runs of the passive RRAM and CMOS integration tapeouts. The 

blurred regions are designs from collaborators. Wafer pictures of (c) the first and (d) the second demo. 

 

a)  Fully analog VMM chip 

The main block in scientific computing circuits and the most frequent operation in neural 

networks is the VMM operation (Fig. 47a). The design of fast, energy-efficient, and compact 

medium-precision VMM circuits is essential. RRAM devices can be used to implement a very 

efficient VMM block since they can store the neural network weights as the conductance of 

the devices and perform the computation simultaneously using Ohm’s and Kirchhoff's law. In 
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Fig. 47a, the VMM operation is defined by X = WY in which Y is the input vector, X is the 

output vector, and W is the weight matrix. Fig. 47b shows the analog implementation of the 

VMM operation with memristive arrays. At the intersection of each column and row, a 

memristive device with the conductance of Gi is implemented. The predetermined weight 

vector (W) is encoded to the conductance of the devices (in order to implement the differential 

weights [35], in practice, each synapse of the network is mapped to two RRAM devices). Each 

device generates current proportional to the amplitude of the input signal (V) times its 

conductance (G). As a result, the multiplication operations are performed in parallel using 

Ohm’s law (I = GV). The currents in all columns (bit lines) are summed up according to 

Kirchhoff’s law. Hence, the sensed current vector (I) is the current-encoded version of the 

response vector (i.e., X).  

 
Fig. 47: (a) VMM operation as the basic neuromorphic operation and (b) analog implementation of 

VMM with memristive arrays. 

 

 In a fully analog VMM, direct analog inputs are applied using off-chip high-resolution 

DACs, and on-chip sensing circuits (transimpedance amplifiers) are designed to read the 

generated currents. The outputs (voltages in this case) are then measured using off-chip ADCs. 

In other words, a fully analog VMM includes an X-block coupled with sensing circuits.  Fig. 
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46a1 and 46a7 show two chips that prototype 64 × 64, and 32×32, 16×16, 8×8, and 4×4 fully 

analog VMMs. The goal of these designs is to test the impact of VMM size on its accuracy 

and performance. The layout of a 64 × 64 fully analog VMM is provided in Fig. 48a. 

transimpedance amplifiers (TIAs) are employed as peripheral (sensing) circuits to sense the 

output current in analog VMMs and are the most energy and area-consuming components.  

Fig.48 shows the schematic of a TIA connected to the BL electrode of a memristor 

crossbar (note that tuning and inference switches are not shown). The maximum input current 

sensed by a TIA depends on the number of devices (N), maximum input voltage presented on 

WLs (𝑉𝑚𝑎𝑥), and the average conductance of the devices (𝐺𝑎𝑣𝑔). We used 𝐼max =(𝑁/2)𝐺𝑎𝑣𝑔 𝑉𝑚𝑎𝑥 

to obtain the maximum required current and assumed 𝑉𝑚𝑎𝑥=0.1 V and 𝐺𝑎𝑣𝑔=50 µS.  Note that 

the factor of 0.5 is also added to account for the fact that, in most normal VMM cases, not all 

inputs are always at 𝑉𝑚𝑎𝑥. Regardless, the exact value for 𝐼max is typically determined by the 

targeted network and is obtained after the training via simulations. The feedback resistor is 

designed by dividing the dynamic range of output voltage by maximum input current, Rf = 

𝑉𝑜𝑢𝑡_𝑑/𝐼𝑚𝑎𝑥. In addition, the gain of the amplifier is designed such that the input resistance of 

the TIA (~RF/(1+A)) is less than 1% of the total average resistance seen from the crossbar 

(RBL), leading to 𝐴 ~ 100Rf 𝑁𝐺𝑎𝑣𝑔. This will ensure the error due to the voltage drift on the 

inverting terminal of the amplifier is minimized.  
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Fig. 48: (a) The layout of a 64×64 fully analog VMM (b) the TIA used for current sensing in fully 

analog VMMs.  

 

A two-stage amplifier shown in Fig. 49 is considered to implement the amplifier in the 

TIA. The recycling folded cascode [104] is used as the first stage and a class-AB buffer as the 

second stage. The key point in recycling topology is that it can provide up to 4× better slew 

rate and gain-bandwidth product for the same power and area in comparison with the regular 

folded cascode (see [104] for more details). The design of the amplifiers started with a 60 μA 

power budget and gain requirements which were discussed above.  We allow ~100 mV input-

referred offset (this will be compensated using the memory array as shown in the experimental 

section) and stabilize the amplifier across all corners with ~60 closed-loop phase margin. Fig. 

50a shows the distributions of phase margin obtained from running 500 Monte Carlo 

simulations across all corners. Fig. 50b also illustrates stable transient responses in different 

corners. In all simulations, the TIA is loaded with a 20 fF capacitance load.  
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Fig. 49: The two-stage amplifier used in the TIA. 

 

Fig. 50: (a) distributions of phase margin and (b) stable transient responses of the amplifier in different 

corners. 

 

Fig. 51 shows the simulation results of an analog VMM. In the simulation, the total power 

consumption includes the power consumed in TIAs and the average power consumed in 

memory arrays, Parray = (N/2)× (Vmax.. Gavg) × Vdd in which Vmax and Gavg are considered 0.1 V 

and 50 μS respectively, and N is the VMM size. The speed of the VMM is essentially 1% 

response settling time which is dominated by the TIA slewing and linear settling. The area 

consumption is the VMM active area (excluding unused silicon and IO pads). In all VMMs, 



 

 89 

we used a fixed power budget for the TIAs to make a fair comparison. The settling time 

slightly gets better for larger VMMs (because of smaller feedback resistors in TIAs). Fig. 51a 

indicates the energy efficiency of a VMM, which changes linearly with VMM size because 

the number of operations grows quadratically, but energy increases almost linearly. As shown 

in Fig. 51b, throughput varies quadratically with VMM size as expected. As shown in Fig. 

51c, area efficiency grows almost linearly with VMM size because the dominant factors 

(TIAs, switches, etc.) are linearly proportional to the VMM size.  

 
Fig. 51: (a) Energy efficiency, (b) throughput, and (c) area efficiency of analog VMMs versus size. 

 

b) Mixed-signal VMM chip 

Chip #4 in Fig. 46a includes different sizes (4×4, 8×8, 16×16, 32×32, 64×64) of mixed-

signal VMM circuits, designed to aid the study of the impact of VMM size on the accuracy 

and performance of mixed-signal VMMs. In mixed-signal VMMs, the inputs and outputs of 

the VMM circuit are digitally applied/sensed. Hence, DACs are used to drive input WLs and 

the output currents sensed by TIAs ADCs, as shown in Fig. 52a.  For this purpose, we used 

common data converter architectures such as 5-bit buffered current switching DACs [105] 

and 5-bit Flash ADCs [106]. The layout of a 64×64 mixed-signal VMM, including DACs, an 

X-block, TIAs, and ADCs, is provided in Fig. 52b. DACs feature 5-bit resolution, 280 mV 

full-scale voltage, 361 μW average power consumption, 62.5 MSps conversion rate. The 
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ADCs also feature 5-bit resolution, 1.6 mW average power consumption, and a 500 MSps 

conversion rate. Due to the high power consumption of our memory arrays, we focused on 

maximizing the speed of our peripheral circuits and throughput. Such methodology is 

especially desirable for small-scale single-shot chips, which typically implement fixed 

network structures. 

 
Fig. 52: (a) The schematic of a mixed-signal VMM and (b) the layout of a 64×64 mixed-signal 

VMM.  

 

Fig. 53 shows the simulation results of the performance of mixed-signal VMMs. Note that 

the power consumption, area, and settling time include the contributions from TIAs, DACs, 

ADCs, and the X-block. The trends are similar to the fully analog VMMs. Energy efficiency, 

throughput, and area efficiency are reduced in comparison with the fully analog approach 

because of the overhead of the data converters.   
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Fig. 53: Simulated (a) energy efficiency, (b) throughput, and (c) area efficiency of mixed-signal 

VMMs versus VMM size. 

c) MLP chip 

The third design includes a 3-layer neuromorphic circuit for MNIST handwritten 

recognition dataset. The design MLP network is implemented with 784 inputs, 64 hidden layer 

neurons with Relu activation functions, and 10 output neurons (Fig. 46a8). Fig. 54a shows the 

general structure of the MLP network. The implemented network includes 50,890 synapses 

(i.e., we need 101,780 synaptic devices) and 74 neurons. 

We need a (784+1)×64 crossbar to implement the first layer and a (64+1)×10 RRAM 

crossbar to realize the second layer. The giant size of the VMM needed in the first layer creates 

some design problems. The first issue is that increasing the crossbar size (particularly > 

64×64) results in the degradation of device uniformity, as discussed in chapter 3. Such an 

issue increases the spread of switching threshold distributions. Increasing the variation of the 

switching thresholds and increasing the crossbar size make the half-select problem (see 

chapter 3) more significant, resulting in a dramatic impact on the tunning accuracy (and hence, 

larger computation error). Using large crossbars also creates a large parasitic at the input of 

neurons and increases the IR drop on BLs. To address these issues, we broke the first layer 

into (2×13) 64×64 mixed-signal VMMs. The factor of 2 is because of differential 

implementation. Fig. 54b shows the overall designed architecture of the MLP network.  
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During inference mode of the network, the image is down-sampled to 28×28 5-bit 

grayscale pixel. The input pattern bits are buffered and shifted serially into 785 DACs, which 

are responsible for converting digital pixels to analog voltages ready to apply to the first layer. 

The result of each VMM in the first layer should be summed up before entering the next layer. 

In order to prevent the IR drop in the path of adding 13 VMM blocks and decreasing the 

computation error created by the voltage variation on the BLs, the output of each VMM is 

buffered using a TIA-based local sensing circuit (Fig. 55a). The outputs of the local sensing 

circuits are then summed up and subtracted (for the differential operation) at the neuron side 

before applying the activation function and generating the output voltage. The effective 

current sensed at the jth neuron is given by  𝐼𝑗 =  𝐼𝑗
+ −  𝐼𝑗

− =  
𝑅f,LS

𝑅x,LS
 ∑ 𝑣𝑖 . (𝐺𝑖𝑗

+,1 − 𝐺𝑖𝑗
−,1 )785

𝑖=1  

where 𝑅f,LS and 𝑅x,LS are shown in Fig. 55. 𝐺𝑖𝑗
+,1 

and 𝐺𝑖𝑗
−,1 

are differential conductances in the 

first layer. The output voltage of the first layer is then given by 𝑉𝑜𝑗
𝑙1 = 𝑓(𝑅f,GS𝐼𝑗), where f(.) 

is the activation function and 𝑅f,GS is its gain. Fig. 55b shows the schematic of the global 

neuron consisting of a current inverter and a subtractor (to subtract the differential currents) 

that performs the activation function as well. The second layer is implemented using two (64 

+ 1) ×10 mixed-signal VMMs. An output neuron (shown in Fig. 55c) senses 𝐼2𝑗
+ and 𝐼2𝑗

−and 

subtracts them to generate the final differential value. It can be easily shown that  𝐼2𝑗 =  𝐼2𝑗
+ −

 𝐼2𝑗
− =  ∑ 𝑉𝑜𝑗

𝑙1. (𝐺𝑖𝑗
+,2 − 𝐺𝑖𝑗

−,2 )65
𝑖=1  and 𝑉𝑜𝑗

𝑙2 = 𝑅f,2𝐼2𝑗 (which 𝑅f,2 is the gain of output neuron) 

are the output current and voltage of the second layer. Note that for simplicity, we merged the 

network bias weights with neurons. 
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Fig. 54: (a) The general structure of the MLP network and (b) the implemented architecture based on 

RRAM crossbars. 

 

Fig. 55: The schematic of (a) local, (b) global, and (c) output neuron circuits. 

 

Our simulation results indicate that the chip should achieve an energy efficiency of ~1582 

TOp/J. Fig. 56b shows the power distribution among the chip blocks. As we observe, a 

tremendous amount of power is consumed by memory arrays in the first layer of the MLP 

network. One solution for making the network more energy efficient is to scale the size of 

RRAM devices, which results in a smaller device conductance and hence lower power. Fig. 

56c demonstrates the distribution of the footprint area of various blocks. Regardless of 

routings and IOs, a considerable portion of the chip belongs to X-Blocks and DACs. Such an 

area can be reduced by using a more advanced process that provides more metal layers and 

denser circuits. The area efficiency for this network is ~15075 Op/mm2. We also calculated 

the worst-case speed of the network by adding the 1% settling time of DACs, local sensing, 
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global neuron, and output neuron circuits, which roughly translates into ~ 66 ns. Hence, the 

network is expected to achieve a throughput of 1541 GOp/J. 

 

Fig. 56: (a) The layout of the MLP chip, (b) the simulated power distribution, and (c) the area 

consumption of the MLP network. 

d) Other Chips 

We have also fabricated multiple other demos, which are briefly described here. In the 

first run, Chip #9 (Fig. 46a) is a 64×64 fully integrated RRAM-based PUF that was previously 

prototyped using stand-alone memristors in Ref. [107]. In previous work, the CMOS circuitry 

was emulated with Agilent tools. The main difference is that the peripheral CMOS circuitries, 

i.e., row selectors, column selectors, and dynamic comparators, are now fully integrated with 

the X-block. The comparator block is based on the strongARM topology with a pre-amplifier 

[108]. Chip #2 and #6 (in Fig. 46a) include many multiplexed 64×64 and 4×4 X-blocks, 

respectively, designed to study the statistics of memristive devices and crossbars, including 

their switching threshold distributions, IR drop, IV nonlinearity, temperature dependency.  

We designed a more advanced PUF topology in the second run: 16 32×32 integrated 

double-sided fully integrated RRAM-based PUF (see Ref. 125]). The chip has a capacity of 

generating 1.5×1014 CRPs per block at ~1.6 Gbps which is limited by IO speed and 

serialization of the input challenge. Chip #2 in Fig. 46b includes true random number 
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generator circuits based on 32×32 X-blocks using a novel idea of harnessing the intrinsic noise 

of RRAM devices for generating dynamic entropy. The other die in Fig. 46d includes a 

neurooptimization circuit that supports versatile annealing techniques [109] with simulated 

<680 pS/update across all corners and solves problems up to 64 nodes. The fully dynamic 

design of the peripheral circuits leads to negligible static power and high energy efficiency.  

 

4.1.3 Preliminary Experimental Results 

In the process of CMOS integration, we fabricate the CMOS circuits and then build the 

RRAM devices at the top of CMOS circuitries on the same wafer in UCSB’s nanofab. The 

integration process is not finished by the time we write this thesis. The second step, fabricating 

memristor devices, is a very challenging process and requires an enormous effort to adjust the 

passive memristor process and make reliable devices that can be formed easily. In this section, 

we discuss the details of some experimental results obtained from testing peripheral circuits. 

The CMOS parts designed in the integration demos are fabricated in Silterra’s foundry. 

Besides the previously discussed chips, we also designed a test chip (Fig. 46a5) that includes 

only the CMOS peripheral circuits used in other chips. To test the functionality of the CMOS 

circuits (TIAs, decoders, shift registers, level shifters, etc.), we diced a wafer (with only the 

CMOS stack), packaged the test chips, and successfully tested the functionality of these 

circuits. We use a general measurement setup designed in our lab for chip characterization. 

The setup includes a personal computer connected to an FPGA that controls the analog circuits 

and systems, e.g., high-resolution DACs, ADCs, voltage/current measurement circuitry, pulse 

generators, voltage regulators, etc. The testing process and setup are controlled via a 

MATLAB program running on the personal computer. We design an adapter that connects the 
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chip to the measurement setup and wrote the MATLAB program for performing the intended 

measurements to test every chip. 

More importantly, we packaged the analog VMM chip (Fig. 46a1) to test the TIAs and 

demonstrate an RRAM-based offset cancelation technique. The monitoring mode (discussed 

in section 4.2.1e.) is used to test the functionality of the sensing circuit and input voltage 

generator. Here, we experimentally demonstrate the monitoring mode in the X-block and, for 

the first time, show offset compensation in TIAs performed with stand-alone memristor 

devices. Fig. 57 shows the adaptor designed to connect the analog VMM chip to the 

measurement setup.  

 

Fig. 57: The adaptor for testing analog VMM dies (chip #1). 

 

First, let us discuss the dc and transient characteristics of on-chip TIAs. In this experiment, 

we enable the monitoring mode by activating the decoder and tuning switches according to 

Table. Ⅲ. We measured the characteristics of each amplifier used in these VMMs by applying 

current to the TIA, effectively by changing the output voltage of a designated off-chip DAC. 

Fig. 58a shows the IV characteristic of a TIA in an 8×8 VMM design. The simplified 

schematic of the circuit used to generate the input current is shown in the inset of Fig. 58a. 

Here, the Vcm voltage is set to 1.2 V and Rf =18.4 kΩ. The DC response in Fig. 58a underlines 
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the impact of the amplifier offset at the output. When the input applied current of the amplifier 

is zero, the output voltage should be the same as Vcm (1.2 V), but as we see, the output is set 

>1.2 V due to the amplifier input offset. When Iin < 70 µA, the amplifier is operating in the 

linear regime. When Iin > 70 µA, the output stage enters the triode region, the Opamp gain 

drops, and the output voltage saturates at ~0.1 V. Note that the TIA is designed for the output 

range of 0.1-1.2 V, which is also observed here. Fig. 58b shows the result of the transient 

response experiment. The green and yellow waveforms are input and output voltages (see the 

inset of Fig. 58a), respectively. When the input is low (at 1.2 V), the output voltage is close 

to 1.2 V (note the impact of offset), and when the input is high (at 1.8 V), maximum designed 

current enters the TIA, and the output voltage drops close to the saturation voltage of the 

amplifier.  

 

Fig. 58: (a) Measured IV characteristics of a TIA and (b) transient analysis of a TIA in the VMM chip. 

 

The offset voltage is a critical parameter of the amplifier performance since it can limit 

the system's accuracy. This non-ideality originates from the mismatch between the 

components inside the amplifier. The key parameter to minimize the offset of an amplifier is 

the length of the driver transistors. By increasing the length of the transistor, we reduce the 

impact of mismatch between the driver and load transistors. However, this will reduce the 



 

 98 

overall speed of the amplifier. To avoid this issue, we deliberately allowed up to ~100 mV 

offset in the design of the TIAs. Meanwhile, we show that we can apply a simple trick to 

remove the offset from the amplifier. Here, for the first time, we experimentally demonstrate 

a low-cost offset compensation method that was initially suggested as an idea in Ref. [110] in 

the context of Flash-based VMMs.  

The key idea is to use analog tunable RRAM devices in the array to sink or source a 

programmable current that cancels out the amplifier's offset. The idea is shown in Fig. 59. The 

offset is compensated by adding two additional columns, effectively two devices per TIA  (Gc1 

and Gc2 in Fig. 59). For simplicity, we assume that depending on the offset voltage sign, one 

of the devices (Gc1 or Gc2) is programmed to the lowest conductance state, and the other is 

programmed to compensate for the offset.  

 

Fig. 59: Offset compensation using two extra RRAM devices.  

 

First, the input current (I in Fig. 59) is set to zero to measure the offset voltage. Then, we 

assumed that the circuit works in inference mode. So the current that is sensed by the TIA (the 

VMM output current) is given by 

𝐼 =   ∑ 𝐺𝑖 (𝑉𝑖 − 𝑉𝑐𝑚 − 𝑉𝑜𝑠)

𝑁

𝑖=1

(1) 

The currents that flow into the compensation devices (Gc1 and Gc2) are: 

𝐼+ =  𝐺𝑐2 (𝑉𝑜𝑓 
+ − 𝑉𝑐𝑚 − 𝑉𝑜𝑠), 𝐼− =  𝐺𝑐1 (𝑉𝑐𝑚 + 𝑉𝑜𝑠 − 𝑉𝑜𝑓 

− ). (2) 
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Now, the output voltage of the TIA can be obtained by 

𝑉𝑜𝑢𝑡 = (𝑉𝑐𝑚 + 𝑉𝑜𝑠) − 𝑅𝑓 ( 𝐼 +  ∆𝐼), (3) 

assuming ∆𝐼 =  𝐼+ − 𝐼−. For simplicity, we consider 𝑉𝑜𝑓
− =  𝑉𝑐𝑚 − ∆𝑉 and 𝑉𝑜𝑓

+ =  𝑉𝑐𝑚 + ∆𝑉 

in which ∆𝑉 is a constant voltage. In our experiments, we consider  ∆𝑉=400 mV. To cancel 

the impact of the input offset, we equalize the output voltage from Eq. 3 to the ideal output of 

the VMM  𝑉out_ideal = ∑ 𝐺𝑖 (𝑉𝑖 − 𝑉𝑐𝑚 ) to find the proper values of the compensation 

conductances. Then, we may obtain the compensation conductances (Gc1 or Gc2) using 

(𝑉𝑐𝑚 + 𝑉𝑜𝑠) + 𝑅𝑓  ∑ 𝐺𝑖 𝑉𝑜𝑠 = 𝑅𝑓 𝐺𝑐2 (∆𝑉 − 𝑉𝑜𝑠) − 𝑅𝑓 𝐺𝑐1 (∆𝑉 + 𝑉𝑜𝑠). (4) 

Depending on the offset sign, we set one of the compensation conductances to the minimum 

possible value (~6 μS) and adjust the other. For example, if 𝑉𝑜𝑠 > 0, 𝐺𝑐2  is programmed to 6 

μS and Gc1 is obtained from the following: 

𝐺𝑐1 = (𝑅𝑓(∆𝑉 + 𝑉𝑜𝑠))
−1

[𝑅𝑓 𝐺𝑐2 (∆𝑉 − 𝑉𝑜𝑠) − (𝑉𝑐𝑚 + 𝑉𝑜𝑠) − 𝑅𝑓 ∑ 𝐺𝑖 𝑉𝑜𝑠 ] . (5) 

The same process is done for the cases with 𝑉𝑜𝑠 < 0 in which we set 𝐺𝑐1 to 6 μS and find 𝐺𝑐2. 

In order to demonstrate this technique experimentally, we measured the offset of 40 TIAs 

in 32 × 32 and 8 × 8 fully analog VMMs. Fig. 60a indicates the distribution of the measured 

offsets prior to performing the compensation. Then, we used stand-alone memristive crossbars 

[32] and connected them to the input of the TIA (using the adaptor in Fig. 57). This can be 

accomplished by operating the X-blocks in the monitoring mode in which we can access the 

input of any TIA by connecting it to VBL_SD. The shared electrode of two memristors is 

connected to VBL_SD. Note that we considered the general case, and for simplicity, we solved 

Eq. 4 for the case of 𝐺𝑖 = 0. We compute the values of compensation conductances for each 

TIA, program the devices to the desired value, and then measure the offset again at the output. 
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The devices are programmed (set or reset) with 1% tuning accuracy. Fig. 61 shows how the 

resistance value of RRAM devices changes during the programming of one pair. Here, the 

target resistance values for offset compensation are ~41 kΩ and ~170 kΩ. 

The distribution of offset voltages for 40 TIAs after applying the compensation method is 

shown in Fig. 60b. Obviously, the spread of offset has significantly reduced (<1 mV is 

achieved for all TIAs). The histogram of the effective offset current generated by the 

memristor devices is plotted in Fig. 60c.  

 

Fig. 60: The distribution of offset voltages for 40 TIAs (a) before and (b) after offset compensation. 

(c) The distribution of effective offset current generated by memristors. 

 

The experimental results in this section are based on stand-alone memristors and 

fabricated CMOS. Our results show that we can effectively remove the input-referred offset 

of amplifiers by using memristors arrays. In future works, we will demonstrate this 

functionality using integrated RRAM devices.  
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Fig. 61: Programing memristors to states which cancel out the offset of a TIA. 

 

4.2. DNN Accelerator with 1T1R Memories 

This section reviews the design and fabrication of a general-purpose DNN accelerator, 

Cerebro, in 65 nm 7-metal layer CMOS based on industrial 1T1R memories. The chip may 

be used to accelerate a wide range of neural network inference models. The training of the 

models is performed ex-situ, i.e., weights are precomputed on a server. In the tuning phase, 

we transfer the weights into the conductance of memristive devices and store them in 1T1R 

arrays. Then, the chip is ready to perform the inference task: input data are loaded to the main 

memory, the controller executes necessary operations to perform the inference task, and the 

inference results will be computed and stored on the chip.  

The architecture of this chip is based on the aCortex design [32]. The inference is 

performed layer by layer by sequentially reading the input from the main memory, loading 

them into digital buffers using a router, activating proper VMM and neuron blocks to perform 

the target dot-product operation, and then the computed results are transferred back to the 

main memory via a router. The Cerebro chip includes two arrays of VMM blocks, a 32kb 

SRAM-based main memory, a chain of digital input buffers, data buses, a router, and output 

neuron blocks which all are designed on-chip. The controller and memory for storing 



 

 102 

instructions are implemented off-chip. The architecture of Cerebro is shown in Fig. 62. In this 

design, the number of rows and columns are 44 and 36(×2), respectively. In order to run the 

inference operation for an image, we first load the image into the SRAM memory bank. Then, 

we use the routers to buffer different portions of the image into digital shift registers, which 

drive VMM blocks. Different network layers are mapped to different groups of VMM blocks 

(see highlighted portions in Fig. 62a), and the inference operation is performed layer by layer. 

This means that the output of each layer is computed by the VMM, converted to digital by 

ADCs, and stored in the main memory. The controller that performs these operations is 

implemented off-chip in this design. In this thesis, we focus on the design of the mixed-signal 

VMM block shown in Fig. 62b. VMM block consists of a 130×64 crossbar, tuning circuits, 

DAC arrays, sensing circuits, and logic that enable and disable the operation of the circuit in 

different modes.  

 

Fig. 62: (a) The top-level architecture of Cerbero and (b) The central computational core.  
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The entire layout of the VMM and the micrograph of the entire chip are provided in Fig. 63a 

and 70b, respectively. In future works, we plan to test this chip, and we will provide more 

details on different blocks and novelties of the design.  

 

Fig. 63: (a) The layout of a 130×64 1T1R VMM block and (b) the micrograph of the fabricated chip. 
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5. Summary and Conclusion 

Analog-grade memristive technology is a promising candidate for implementing analog 

in-memory computing systems for several reasons: first, the ability to adjust the conductance 

in analog fashion; second, the long-term retention of conductance; and third, their incredible 

scalability. These capabilities of memristor devices allow us to implement VMM operation, 

which is the main computing block in neural networks, using simple Ohm’s and Kirchhoff’s 

law, very efficient, dense, and fast.  

In this thesis, we first investigated the nonidealities of RRAM technology and how these 

imperfections impact the performance of network implementations. We have studied several 

nonidealities such as temperature dependency, tuning error, and stuck-at fault. In chapter 2, 

we showed that device imperfections might lead to a dramatic reduction of network 

performance. We proposed a holistic approach by modifying the tuning procedure, circuit, 

and training phases of hardware development. Note that, in this approach, the training is still 

performed ex-situ with negligible hardware cost. The results show that the proposed method 

has improved the inference accuracy/performance of the network significantly, in particular, 

by allowing 2.5× to 9× improvements in the energy consumption of memory arrays during 

inference, sub-percent accuracy drop across 25–100 °C temperature range and increasing the 

defect tolerance by >100×.  

In addition, the impact of device uniformity in passive memristive circuits was also fully 

studied in chapter 3. We conducted an in-depth analysis of this problem and studied the 

tradeoffs between computing accuracy, crossbar size, switching threshold variations, and 

target precision. The impact of crossbar uniformity was studied in two representative deep 

neural networks, and three solutions, including hardware-aware training, improved tuning 
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algorithm, and switching threshold modification, were proposed to improve the performance. 

It is shown that these techniques allow us to implement advanced deep neural networks with 

almost no accuracy drop, using current state-of-the-art analog 0T1R technology. 

In the road toward implementing neural networks with synaptic RRAM devices, many 

operations are inefficient to be implemented with RRAM devices, yet flexible CMOS circuits 

are promising. To address this issue, we designed and taped out several neuromorphic 

networks and prototype demos based on CMOS/memristor integration with memristive 

devices fabricated at the top of CMOS circuitry in BEOL or MEOL processes. Two large-

scale wafers, including different sizes of VMMs, an MLP network, etc., are designed in 180 

nm CMOS technology. We also tapped out a gigantic DNN accelerator in 65 nm integrated 

with industrial 1T1R memristor devices.  

For future works, we would like to test the DNN accelerator and neuromorphic chips 

designed based on CMOS/memristor integration after fabricating RRAM crossbars on the top 

of the CMOS circuitry in UCSB’s nanofabrication facility. Designing very compact chips is 

another interesting future goal that can be achieved by scaling either memristor or CMOS 

technology process. By scaling the design, we can also improve the energy efficiency of the 

neuromorphic circuits. Peripheral circuits are more power-hungry parts in the design. So, 

designing very efficient peripheral circuits using other topologies is also another method for 

improving efficiency. More advanced DNN benchmarks such as MobileNet, ResNet, etc., can 

be implemented with passive technology. Improving the RRAM yield is another important 

future work on the road toward commercializing these technologies.  
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