
UC Irvine
ICS Technical Reports

Title
Extending component interoperability standards to support architecture-based 
development

Permalink
https://escholarship.org/uc/item/4jn9n7cs

Authors
Natarajan, Rema
Rosenblum, David S.

Publication Date
1998-12-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4jn9n7cs
https://escholarship.org
http://www.cdlib.org/


ICS
TECHNICAL REPORT

Extending Component Interoperability Standards to
Support Architecture-Based Development

Rema Natarajan
David S. Rosenblum

UCI-ICS Technical Report No. 98-43
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

December 1, 1998

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Information and Computer Science
University of California, Irvine

LIBRARY
Univtrsity ol CalHornla

IRVINE



Extending Component Interoperability Standards
to Support Architecture-Based Development

Rema Natarajan David S. Rosenblum
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

1-949-824-6534

{rema,dsr} @ics.uci.edu

ABSTRACT

Components have increasingly become the unit of
development of software. In industry, there has been
considerable work in the development of standard
component interoperability models, such as ActiveX,
CORBA and JavaBeans. In academia, there has been
intensive research in developing a notion of software
architecture. Both of these efforts use software
components as the basic building blocks, and both address
concerns of structure and reuse. With component
interoperability models, the focus is on specifying
interfaces, binding mechanisms, packaging, inter-
component communication protocols, and expectations
regarding the runtime environment. With software
architecture, the focus is on specifying systems of
communicating components, analyzing system properties,
and generating "glue" code that binds system components.
Our research involves studying how standard component
models can be extended to accommodate important issues
of architecture, including a notion of architectural style and
support for explicit connectors. For our initial effort in this
work, we have enhanced the JavaBeans component model
to support component composition according to the C2
architectural style. Our approach enables the design and
development of applications in the C2 style using off-the-
shelf Java components or "beans" that are available to the
designer. In this paper, we describe the techniques
underlying our approach, and we identify the important
issues that surface when attempting this type of extension.

Keywords
Architectural style, C2, component standards, connectors,
JavaBeans, software architecture

1 INTRODUCTION

Components have increasingly become the unit of
development of software. In industry, there has been

Notice: This Material

may be protectecl
by Copyright Law
(Title 17 U.S.C.)

considerable work in the development of component
interoperability models, such as ActiveX [1],CORBA [12],
and JavaBeans [14]. These models help developers deal
with the complexity of software and facilitate reuse of off-
the-shelf components. Component interoperability models
also make a positive move toward standardization of
components, and the creation of a software component
marketplace.

Software architecture research deals with the same issues of
software complexity and promoting reuse. Software
architecture has been the focus of intense research in
academia. Architectures help designers focus on system
level requirements and the interconnection of components
in a large-scale software system.

Both these approaches use software components as the
fundamental building blocks. With component
interoperability models, the focus is on specifying
interfaces, packaging, binding mechanisms, inter-
component communication protocols, and expectations
regarding the runtime environment. With software
architectures and architectural styles, the focus is on
specifying systems of communicating components,
analyzing system properties, and generating "glue" code
that binds system components [9].

We have begun studying how standard component models
can be 'cveraged to accommodate issues of architectural
modeling, including a notion of architectural style and
support for explicit connectors. As described in this paper,
our approach merges component interoperability models
with suitablearchitectural styles to leverage the full benefit
from both technologies, and to develop a comprehensive
approach to software development.

We have chosen the JavaBeans component interoperability
model as our initial platform for investigation. We made
this choice for a variety of reasons:

• The Java language and the JavaBeans component
model are becoming increasingly popular and have
been widely adopted as de facto standards.

• JavaBeans tools and resources are free or have
negligible cost.



ISepl«*BeeQ
! Wp*:'

8u«>inMn

{^ bplidiBuBoa

^JtUyBMn

Ct»«DtiRaportar

St«cli£«plcdoo

y
TramliiocMlSMa

^ Aicplaa*

Uil Vlaw

4 K173UA S
» *

i^ms9

tat{iNl73lIA

I fcnirauui

•|]i{flBUOB jo

BtlttMmiic IP

htrtrymd d
I feuAMt.

i
kMdiBglP

•Unde

Figure 1. The Sun BDK JavaBeans design environment, with theTooIBox of available beans shown on the left, the BeanBox design
palette shown in the center with an Airplane bean, and the Property Sheet of the Airplane bean shown on the right

• The model of composition in JavaBeans is natural and
straightforward.

• JavaBeans is a lightweight and flexible framework that
lends itself to modification and extension.

In addition, we have chosen the C2 architectural style as
our initial architectural technology because it is a novel
style that is highly flexible and lends itself naturally to
dynamic architectural change. It also supports the property
of substrate independence that facilitates reuse and
substitutability across architectures with ease of effort.

In this paper, we describe our work in enhancing the
JavaBeans component model to support component
composition according to the C2 architectural style. Our
approach enables the design and development of
applications in the C2 architectural style using off-the-shelf
Javacomponents or beans that areavailable to thedesigner.
The creation of individual components with their specific
interfaces, functionalities and behaviors is a different task
from the composition of an architecture of a system that
satisfies requirements. The merging of the component
interoperability model with the architectural style provides
a seamless integration of both activities.

2 THE JavaBeans COMPONENT MODEL
The JavaBeans component model is a component

interoperability model tailored to th-" Java language.
Interoperability is achieved primarily by designing
component or bean interfaces according to a component
design pattern} The JavaBeans design pattern defines a
naming scheme and interaction protocol to which
compliant beans must adhere. The interface constituents
governed by this design pattern include properties,
methods, and events that together define a bean interface.
Properties encapsulate key attributes of a bean and can be
simple, bound (meaning they generate events whenever
they change values) or constrainei (meaning their changes
can be vetoed by other beans). Methods are public
operations that form part of the bean interface. Beans
communicate with each other through bean events-, the
event handling is based on the Java 1.1 event model.

Figure 1 depicts the JavaBeans design environment that is
provided by Sun Microsystems in their Beans Development
Kit (BDK) [2]. The environment allows designers to
develop beans using the JavaBeans design pattern and to
instantiate and testbeancompositions. Thisenvironment is

' The term design pattern has been used by many authors to
characterize the JavaBeans interface design convention,
even though it does not correspond to the usual notion of a
design pattern asa frequently-recurring design solution [3].



import j ava.awt.•;
import java.beans.*;

public class Airplane extends Label (
protected int altitude = 0;
protected PropertyChangeSupport changes =

new PropertyChangeSupport(this);

public int getAltitude () { retvim altitude; )

public void setAltitude(int a) {
int oldAltitude = altitude;
altitude = a;

changes.firePropertyChange{"Altitude", new Integer(oldAltitude),
new Integer(a));

repaint();

pxiblic void addPropertyChangeListener(PropertyChangeListener 1) {
changes.addPropertyChcUigeListener (1);

public void removePropertyChangeListener(PropertyChangeListener 1) (
changes.removePropertyChangeListener(1);

Figure 2. Partial Javacode for theexample Airplane bean. The code demonstrates how a bean property
is declared plusthe methods interested beans can useto listento beanpropertychange events.

representative of the kinds of visual design environments
that can be used to support construction of applications
with the JavaBeans component model. As shown in the
figure, a JavaBeans design environment includes a palette
of available beans (called the ToolBox in the BDK
environment), a design tablet on which beans are
instantiated and interconnected (called the BeanBox in the
BDK environment), and a Property Sheet showing the
properties of the bean that is currently selected in the
BeanBox.'

For instance, consider an Airplane bean that represents the
control of an airplane. A partial design for an Airplane bean
class is presented in Figure 2. As shown in the figure, the
class declares properties that will show up in the property
sheet of the BeanBox. In particular, the Airplane declares a
property called Altitude, which the BeanBox will find
because the class exports the pair of methods getAltitudeO
and setAltitudeO (following the naming scheme of the
JavaBeans design pattern). As shown in Figure !, this
property appears in the Property Sheet for the Airplane
bean (as do other properties, whose implementation is not
shown in Figure 2). While it is possible for changes to the
property to be effected by manually coding calls to these
exported methods, the BeanBox is designed to allow the

^In this paper we use the term BeanBox as a synonym for a
complete JavaBeans design environment.

designer to customize bean properties via the Property
Sheet.

The Altitude property is a bound property because it fires a
PropertyChange event whenever its value changes during a
call to the method setAltitude(). Other beans register and
unregister themselves as listeners for this event by calling
the methods addPropertyChangeListenerO and
removePropertyChangeListenerO, respectively; these
methods are required by the JavaBeansdesign pattern when
bound properties are to be supported. While it is possible
for such event-based interactions between the Airplane
bean and other beans to be coded by hand, the BeanBox has
been designed to support"wiring up" interacting beans in a
graphical manner. In particular, the designer would select
the Airplane bean with the pointing device, select a menu
item corresponding to the PropertyChange event, and then
select a target bean to receive the event; the BeanBox
would then take care of generating the necessary method
calls to effect the interaction. Note that each bean
maintains its own set of listeners and manages event
notification by itself.

As can be seen in Figure 2, the JavaBeans design pattern
paves the way for building tools that can dynamically
"introspect" beans and publish their interfaces, in a manner
similar to what the BDK BeanBox does. The tools can
provide designers with thecapability for customizing bean
behavior. Additionally, the JavaBeans design pattern



defines a notion of bean customizers, which can be built to
allow complex customization of a bean's appearance and
behavior, and property editors, which define custom editors
for a specific property. These two mechanisms aid the
design and implementation of generic beans that can be
easily customized for different applications. Apart from
their individual customizability, beans can be composed in
the BeanBox to create running applications, and their
runtime behavior can be tested during the design phase
itself. This novel capability blurs the distinction between
"design-time" and "runtime", since manipulating beans in
this manner actually has the effect of creating running
instances of bean classes that cooperate according to the
designer's intent.

In this manner, the JavaBeans component model
concentrates on the interface a Java software building block
can or should present. It does not specify how the building
blocks can or should be combined to create any kind of
application. It specifies how two or more beans can
communicate information, without imposing any semantic
rules on the information exchanged or on the topology of
any bean communication network [14]. The JavaBeans
design pattern is designed to make development tools better
aware of component capabilities; in particular, the interface
pattern has been defined for a modem software developer
who will manipulate beans via visual interactions.

3 THE C2 ARCHITECTURAL STYLE
The C2 architectural style is primarily concemedwith high-
level system cor-posiiion issues, rather than particular
component packaging approaches [9,13]. The building
blocks of C2 architectures are components {computational
elements) and connectors (interconnection and
communication elements). This separation of computation
from communication enables the construction of flexible,
extensible, and scalable systems that can evolve both at
design-time and runtime. The style places no restrictions on
the implementation language or granularity of components
and connectors, potentially allowing the use of multiple
interoperability technologies for its connectors. This
flexibility has enabled us to use the event-based
interoperability of JavaBeans for our piuposes.

Central to the C2 style is the principle of limited visibility
or substrate independence: components are arranged in a
layered fashion in a C2 architecture, and a component is
completely unaware of components that reside beneath it in
the stack of component layers. Substrate independence has
a clearpotential for fostering substitutability andreusability
of components across architectures. Components
communicate only by exchanging messages through
connectors, which greatly simplifies the problem of control
integration issues; this property also facilitates low-cost
interchangeability of components to construct different
members of the same system family. Two components
cannot assume that they will execute in the same address

space; this eliminates complex dependencies, such as
components sharing global variables and simplifies
modification of architectures. Conceptually, components
run in their own thread(s) of control, allowing components
with different threading models to be integrated into a
single application. Finally, a conceptual C2 architecture can
be instantiated in a number of different ways. Many
potential performance issues or variations in functionality
can be addressed by separating the architecture from actual
implementation techniques.

C2 components and connectors have a notion of a "top"
and a "bottom" interface through which they receive and
send messages and communicate with othercomponents in
the architecture. This notion of a "top" and a "bottom" is
important to ensure substrate independence. Messages that
travel up the architecture are called requests, and messages
that travel down the architecture are called notifications.
Components execute application logic and communicate
with other components in the architecture via requests and
notifications. Components do not communicate directly
with one another, but instead must communicate through
connectors that take care of most of the management of
message traffic in the system. Connectors, on the other
hand, can be directly connected to each other.

The advantage of explicit connectors is that they
encapsulate the logic for message broadcasting, message
filtering, and other interaction logic, and they reduce the
complexity involved in composing components. This is
different from the JavaBeans model where every bean
manages its event listeners and event propagation on its
own. Additionally, the notion of connectors supports a
more generic structure whereby it becomes easier to
substitute one component or connector with another, and
enables reuse of individual components or connectors
across different architectures. It also becomes easier to
support dynamic alteration of the architecture. The C2 style
constraints (which we have only briefly summarized here)
help preserve these C2 properties.

4 A C2-AWARE COMPOSITION ENVIRONMENT
We have begun our investigation of the problem of
merging component models with architectural styles by
enhancing the BDK BeanBox described in Section 2. In
our approach, we create beans using the same JavaBeans
design pattern, thus retaining all the advantages of the
beans component model. However, we extend the
JavaBeans model to incorporate the notion of
"components" and "connectors" as defined in the 02
architectural style, and we extend the BeanBox
composition functionality to enforce the rules of the 02
style. Thus, we have enhanced the BeanBox and made it
"C2-aware".

02 Style Beans
Our 02-Aware BeanBox provides two mechanisms to



Dialog
&

Constraints

Internal

Object

Domain

Translator

Dialog
&

Constraints

C2 Wrapper

Java Bean

Figure 3. Wrapping of C2 components; the general C2 modelof wrapping is shown in the picture on
the left, whilethe picture on the right shows how the general model has been applied for JavaBeans.

instantiate 02 components and 02 connectors as beans. In
our first approach, we have provided 02 component and
connector "framework beans" that can be subclassed by
developers interested in creating beans for specific
applications. When these beans are instantiated in the
BeanBox, they automatically publish their 02 interface and
can thus be hooked up "as is" to compose applications.
Beans created in this fashion are fully 02 compatible, and
this approach is convenient for developers to create new
beans in a way that incorporates the characteristics of a 02
architecture described in Section 3.

In our second approach, we have provided a 02 uxapping
mechanism to create 02 components from off-the-shelf
beans. Figure 3 presents the model component wrapping
we use, which follows the general model of wrapping that
has been developed for the 02 style [7,13]. Off-the-shelf
beans that have already been developed by other vendors
can be instantiated into the BeanBox. Upon this
instantiation, a wrapper object is created for the bean to
make it 02 compliant. This 02 wrapper is created with the
help of interactive dialogs that publish the interface of the
bean and guide the designer in mapping the bean's events
into 02 requests and notifications. The wrapper then uses
this information to build the internal dialog component that
is responsible for converting incoming requests and
notifications into bean events. The domain translator

component of the 02 wrapper is used to resolve
incompatibilities between communicating components such
as mismatches between message names, parameter types
and ordering of parameters. The constraints component
specifies constraints that cannot be violated by the
component, provides recovery mechanisms when
constraints are violated and exceptions are raised, and
provides mechanisms to customize the bean so that
constraints are satisfied without raising exception
conditions.

Most of the translation required for converting beans into
C2 components involves mapping bean events to requests
and notifications in the C2 style. The properties that a bean
publishes in its property sheet are used "as is" after the
bean has been wrapped as a C2 component. Other tools
provided for manipulation of beans such as property editors
and bean customizers can also be used "as is" in the C2
aware BeanBox.

This second approach has several advantages. Existing
beans can be used off-the-shelf simply by plugging them
into the BeanBox with the help of the C2 wrapper. The
wrapper handles the translation of bean events into C2
messages. Additionally, the dialog and constraints can be
used to build in constraints for the component as specified
in an architecture specification to ensure that the bean is
properly customized for the specific architecture. It is also
the facility that lends itself most naturally to providing
dynamic testing, analysis and instrumentation mechanisms.
We plan to focus on these issues much more in the near
future.

The C2-Aware BeanBox
C2 compliant beans, which can be created using any of the
two approaches described above, can be instantiated Into
the C2-Aware BeanBox, as shown in Figure 4. The C2-
Aware BeanBox has all the C2 style rules and constraints
built into it. It provides a C2 Style Dialog that notifies
designers whenever stylistic constraints are violated and
thus guides the designer through the composition process.
Components and connectors are hooked up using the bean
event wiring mechanism, where request events and
notification events become the two kinds of events that
beans use to interoperate. As required by the C2 style,
components cannot be connected to other components, and
connectors handle the propagation of events. Thus, unlike
in the traditional beans model, beans composed in the C2-
Aware BeanBox do not maintain lists of other bean



Figure 4. The C2-Aware BeanBox. The figure depicts the composition ofa telephone network
application as a groupof beans interacting in the C2style.

listeners or handle notification of events to those listeners.
Instead, event notification is handled by C2 connector
beans. Hence, component bean behavior is better confined
to the execution of application logic.

The C2-Aware BeanBox thus allows one to build complex
compositions of beans in the C2 style as different
instantiations of a given C2 architecture. Introspection
mechanisms employed in the C2-Aware BeanBox are used
to extract the properties, methods and events that form the
public interface of the bean. Conceptually, beans
communicate using bean events; these events then become
the requests and notifications in the C2 architecture. The
designer informs the C2-Aware BeanBox through an
appropriate dialog about how events are to be classified as
requests and notifications and then manages the
communication of beans through these requests and
notifications.

5 AN EXAMPLE JavaBeans-BASED C2
ARCHITECTURE

We have chosen a telephone network system asan example
to illustrate our approach; the instantiation of the
application in the C2-Aware BeanBox isdepicted in Figure
4. Our hypothetical system consists of telephones, local
switches and long distance switches. Each of these
components is represented as standard beans that publish
events (such as ring, hangup, busy) and properties (such as
phone numbers and area codes). The properties are bound

propierties, and thus they fire PropertyChange events. In
our 02 architecture for the telephone system, the
telephones f'̂ rm the lowest layer of the architecture (i.e..
the "interface elements", as is typical of C2-style
architectures), with local switches in a layer above the
telephones, and the long distance switches at the highest
layer in the design.

Upon instantiation of the beans into the C2-Aware
BeanBox, each bean gets wrapped in a C2 wrapper. As
described in Section 4, the dialog component of the C2
wrapper dynamically introspects the bean and then displays
the bean's events in a list and lets the user select the events
that should get published as requests and those that should
get published as notifications for that bean component. For
example, for the telephone component, we would select the
"dial" event as a request that needs to travel "up" in the
architecture, and the "ring" event as a notification event
that needs to travel "down" the architecture. We use
standard connectors that are provided as part of the C2
framework to link the components of the telephone network
together. The connector propagates request events fired by
a component connected to its bottom interface to all
compionents attached to its top interface. Thus a request
event for dialing a number by a telephone is propagated
through the connector above it to the local switch that
handles requests for that area in the architecture. The local
switch in turn forwards the request to the long distance
switch above it. The long distance switch forwards the



iBeanBox

File Edit View Help

LongPistanceSwitch

An attempt to connect 5^
two components results ]
in aC2 Style viola,™. A.,.s„nch \

Connector

Telephone

jProperties - LocalSwitch HE=IE3I

areaCode

TranslUonalBean

u BridgeTester
StadcD• p iotio n

Sort«rB«an

JDBC SELECT

QuetaMonitor

[C2 Constraint] ~ ^ j
framewoik.C2Exceptton: style ruleviolated: cant oonenct two components together

ChangeReporter

TickTocft

Voter

Juggler

a JellyBean
EventMonitor

Connector

•C

C2StyieDi«log

OrangeButton

OurButton

BiueButton

ExplloitButton

AnotherStad<Df plotlori

Telephone

LooelSiMiteh

Lon g DIsta n oeSwitohClear 1 Close

Figure 5. Wiring up the Long Distance Switch and the Local Switch in the C2-Aware BeanBox. This throws aC2 Style
Violation exception, which appears in aC2 Style Dialog. The Property Sheet of the Local Switch shows its Area Code property.

message "down" the architecture as notifications to the
local switches below it. The local switch with the area code
for the dialed number processes the notification by
generating a "ring" event as a notification for the
telephones below it. The telephones receive the
notification, and the telephone with the correct number
responds to the notification by processing it. The beans
themselves retain their interfaces as before, but thewrapper
ensures that beans effectively communicate with the rest of
the C2 architecture.

As shown in Figure 5. beans are instantiated and removed
from the architecture easily using C2-Aware BeanBox. As
the telephone network is buiit by plugging beans into the
architecture, the C2-Aware BeanBox makes automatic

checks to ensure that C2 stylistic rules are honored. For
example, an attempt to link two telephones directly will
raise an exception message in a popup window, helping the
designer through the process of composing the system.
Figure 5 shows how an attempt to link two components—
the Long Distance Switch and the Local Switch—throws an
exception thatbrings up theC2 StyleDialog.

6 DISCUSSION AND RELATED WORK
A lot of interesting issues came up in our effon to create
plug-and-play functionality with off-the-shelf beans in our
C2-Aware BeanBox. Here we discuss these issues with
respect to some of the Component Integration Heuristics
forC2 [7].



• If the OTS (off-the-shelO component does not contain
all of the needed functionality, its source code must be
altered. While it is interesting to think of situations
where other components might be used in conjunction
with the OTS component (without altering its source
code) to provide the needed functionality, this would
be a complex task to attempt, and would depend on the
type of functionality that is required.

• If the OTS component does not communicate via
messages, a C2 wrapper must be built for it. This
facility has already been provided in our C2-Aware
BeanBox for all OTS beans that are used as C2
components in a C2 architecture. The wrapper does all
the translation necessary to make the OTS bean C2
compliant.

• If the OTS component is implemented in a
programming language different from that of other
components in the architecture, an IPG (interprocess
communication) connector must be employed to
enable their communication. As we have solely dealt
with the Java language and the BeanBox environment,
this issue does not arise in our work.

• If the OTS component must execute in its own thread
of control, an inter-thread connector must be
employed.

• If the OTS component communicates via messages,
but its interface does not match interfaces of
components with which it is to communicate, a domain
translator must be built for it. We have done some
preliminary work in providing domain translation, and
we are currentlyworkingon improving this support.

Apart from these heuristics described in [7], there are other
interesting issues that have arisen:

• If an OTS component provides the functionality
required in the C2 architecture, there is still the
necessity, in a development and testing environment
such as the C2-Aware BeanBox to provide
mechanisms to lest and validate the architecture
instantiation against an architecture specification.
Right now the Dialog and Constraints component of
the C2 Wrapper provides no support for this. As we
discuss in Section 7, we tend to explore this problem in
the future.

• The C2-Aware BeanBox facilitates design and
composition of systems using any OTS beans that are
available. There are exciting possibilities to be
explored in strengthening support for design at the
architectural level, apart from the work we have
already done for the C2 style. For example, we could
use the same design environment to create
"architecture template beans" for a required C2

architecture, specifying the interfaces of the C2
components and connectors. The template beans could
then be used directly, and the same visual environment
could be used to populate the templates with OTS
beans. This then reduces the work needed for creating
the wrapper for OTS beans, and we can use the same
architecture templates to create different instantiations
of an architecture family. As we discuss in Section 7,
this could be done by leveraging the ADL and
environment described in [8].

There has been little work to date on supporting
architectural modeling in conjunction with standard design
technologies. C2, Darwin and UniCon are examples of
ADLs that provide a proprietary implementation
infrastructure to support an associated ADL. 02 has its
class framework as its infrastructure, and this class
framework is implemented in multiple programming
languages [13]. Darwin is supported by an infrastructure
called Regis for distributed programs that are configured
using Darwin [4,5]. And UniCon supports implementation
generation for a predefined collection of connectors [11],
There has also been recent work in the Darwin project on
supporting architectural modeling of CORBA-based
systems [6].

In addition to providing ADL-specific infrastructure
support, there has been recent work on incorporating
substantial support for architectural modeling into the
Unified Modeling Language (UML), an emerging standard
design notation [10].

7 CONCLUSIONS

Having considered and explored the possibility of
combining a popular component interoperability model
with a useful software architectural style, we areconvinced
of the advantages of this approach in the development of
component-based software. The philosophy of substrate
independence in 02 makes substitution of components and
reconfiguration of architectures fairly easy. These
modifications to the architecture are done with the least
amount of effort because we leverage the strengths of the
JavaBeans component model and the ability of the 02-
Aware BeanBox to dynamically publish the interface of a
beans component and map it to 02-style interactions. The
use of a wrapper separates the application logic in the bean
component from the translation and dialog with other
architectural components. Our 02-Aware BeanBox is a
powerful design environment that lets us develop different
architectural instantiations with the ease of using a visual
environment. It is an example of a tool where the
distinction betweenthe design environment and the runtime
environment of systems has become blurred.

A key advantage of our approach is that our architectural
infrastructure is now complete, to the extent that the full
range of developmental activities is supported from the



design, implementation and adaptation of individual
components, to the design, implementation and integration
of architectures that are compositions of these individual
elements. Another advantage is that all these activities are
now integrated into a single environment, and this leads the
way to a seamless, comprehensive development philosophy
that facilitates easy shifting of focus from one activity to
another. Sophisticated architectural development tools built
along these lines will lie in neatly with component-based
software development.

In the future, we plan to further investigate the issues raised
and opportunities opened up by this approach. The ability
to test the runtime behavior of bean components in a design
environment is extremely useful for test different
architectural configurations. As we discussed in Section 4,
a natural place to provide instrumentation support for
testing is in the dialog and constraints portion of the C2
wrapper shown in Figure 3. As also discussed in that
section, we would like to begin supporting checking of
component semantic constraints in a manner that respects
emerging approaches to architectural modeling and
emerging standards for component interoperability. An
excellent starting p>oint for this work would be to leverage
two recent additions to the C2 arsenal, the ADL C2 SADEL
and its associated environment DRADEL^ which support
modeling and evolution of architectures according to a rich
model of heterogeneous subtyping of component
interfaces [8]. Finally, we need to find ways of adapting
our visual approach for architectural construction to
distributed architectu.es. A current limitation of the
JavaBeans model is that it does not support composition of
distributed beans that must communicate via remote
procedure call (e.g., using Java Remote Method
Invocation). With the C2-Aware BeanBox, we can
naturally incorporate such mechanisms for distributed
interaction within C2 connectors, yet we must provide
additional support for specifying deployment of beans
across distributed hardware.

Our experience with JavaBeans and C2, we believe, are
helping to us expand and develop our understanding of the
synergy between component models and software
architectures.

ACKNOWLEDGEMENTS
Discussions with Dick Taylor, Peyman Oreizy, Elisabetta
Di Nitto and Alfonso Fuggetta helped us improve many of
the ideas presented in this paper. This effort was sponsored
by the Defense Advanced Research Projects Agency, and
Air Force Research Laboratory, Air Force Materiel
Command. USAF, under agreement number F30602- 97-2-
0021; by the Air Force Office of Scientific Research, Air
Force Material Command, USAF, under grant number
F49620-98-1-0061; and by the National Science
Foundation under Grant Number CCR-9701973. The U.S.
Government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any
copyright annotation thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Air Force Research Laboratory. AirForce
Office of Scientific Research or the U.S. Government.

REFERENCES

[1] D. Chappell, Understanding ActiveX and OLE.
Redmond. WA: Microsoft Press, 1996.

[2] A. DeSoto, "Using the Beans Development Kit
1.0: A Tutorial". JavaSoft. Sun Microsystems.
Inc., Mountain View, CA November 1997.

[3] E. Gamma. R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Reading. MA: Addison-
Wesley, 1995.

[4] J. Magee. N. Dulay, and J. Kramer. "Regis: A
Constructive Development Environment for
Distributed Programs", lEE/IOP/BCS Distributed
Systems Engineering, vol. 1, no. 5, pp. 304-312,
1994.

[5] J. Magee and J. Kramer, "Dynamic Structure in
Software Architectures", Proc. ACM SIGSOFT '96
Fourth Symposium on the Foundations of
Software Engineering, San Francisco. CA, pp. 3-
14. 1996.

[6] J. Magee. A. Tseng, and J. Kramer. "Composing
Distributed Objects in CORBA". Proc. Third
International Symposium on Autonomous
Decentralized Systems, Berlin, Germany, pp. 257-
263,1997.

[7] N. Medvidovic, P. Oreizy. and R.N. Taylor.
"Reuse of Off-the-Shelf Components in C2-Style
Architectures". Proc. 19th International
Conference on Software Engineering, Boston,
MA. pp. 692-700, 1997.

[8] N. Medvidovic, D.S. Rosenblum, and R.N. Taylor,
"A Language and Environment for Architecture-
Based Software Development and Evolution", in
submission August 1998.

[9] P. Oreizy. N. Medvidovic, R.N. Taylor, and D.S.
Rosenblum, "Software Architecture and
Component Technologies: Bridging the Gap",
Digest of the OMG-DARPA-MCC Workshop on
Compositional Software Architectures, Monterey.
CA January 1998.



J.E. Robbins, N. Medvidovic, D.F. Redmiles. and
D.S. Rosenblum, "Integrating Architecture
Description Languages with a Standard Design
Method", Department of Information and
Computer Science, University of California,
Irvine, Irvine, CA, Technical Report 97-35,
November 1997.

M. Shaw, R. DeLine, D. Klein, T. Ross, D.
Young, and G. Zelesnik, "Abstractions for
Software Architecture and Tools to Support
Them", IEEE Transactions on Software
Engineering, vol. 21, no. 4, pp. 314-335, 1995.

J. Siegel, CORBA Fundamentals and
Programming. New York, NY: Wiley, 1996.

R.N. Taylor, N. Medvidovic, K.M. Anderson, J. E.
James Whitehead, J.E. Robbins. K.A. Nies, P.
Oreizy, and D.L. Dubrow, "A Component- and
Message-Based Architectural Style for GUI
Software", IEEE Transactions on Software
Engineering, vol. 22, no. 6. pp. 390-406, 1996.

L. Vanhelsuwe, Mastering JavaBeans: SYBEX
Inc, 1997.




