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Abstract

We analyze the applicability of the Fermi-golden-rule description of quasiparticle relaxation in a closed
diffusive quantum dot with electron-electron interaction. Assuming that single-particle levels are already
resolved but the initial stage of quasiparticle disintegration can still be described by a simple exponen-
tial decay, we calculate the average inelastic energy relaxation rate of single-particle excitations and its
mesoscopic fluctuations. The smallness of mesoscopic fluctuations can then be used as a criterion for the
validity of the Fermi-golden-rule description. Technically, we implement the real-space Keldysh diagram
technique, handling correlations in the quasi-discrete spectrum non-perturbatively by means of the non-
linear supersymmetric sigma model. The unitary symmetry class is considered for simplicity. Our approach
is complementary to the lattice-model analysis of Fock space: thought we are not able to describe many-body
localization, we derive the exact lowest-order expression for mesoscopic fluctuations of the relaxation rate,
making no assumptions on the matrix elements of the interaction. It is shown that for the quasiparticle with
the energy ε on top of the thermal state with the temperature T , fluctuations of its energy width become
large and the Fermi-golden-rule description breaks down at max{ε, T} ∼ ∆

√
g, where ∆ is the mean level

spacing in the quantum dot, and g is its dimensionless conductance.
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1. Introduction

Understanding the structure of wave functions in Fock space is a hot topic in many-body physics,
intimately related to the concepts of ergodicity and thermalization in complex interacting systems. The
natural way to think of the interaction is as a cause of transitions between single-particle states, which are
no longer eigenstates of a quantum system in the presence of interaction. Singe-particle excitations decay
into three-particle states (two electrons and one hole), which then further decay into five-particle states,
etc. The simplest way to characterize the process of quantum-mechanical spreading of an excitation in Fock
space is to study its energy relaxation rate (inverse lifetime).

The study of the inelastic relaxation in a confined geometry has been pioneered by Sivan, Imry and
Aronov (SIA) [1], who calculated the quasiparticle lifetime in a diffusive quantum dot with chaotic electron
dynamics. Working within the conventional Fermi golden rule (FGR) picture, they calculated the relax-
ation rate of an excitation with the energy ε, induced by the screened Coulomb interaction with the small
momentum transfer:

γ0(ε) ∼ λ2∆(ε/ETh)2, (1)

where ∆ is the mean single-particle level spacing in the dot, and ETh = D/L2 is the Thouless energy
determined by the inverse time of electron diffusion across the system (D is the diffusion coefficient, and L is
the typical size of the quantum dot). For generality, in Eq. (1) we introduced the dimensionless interaction
strength λ, taking its maximal value, λ = 1, for the screened Coulomb potential. The result (1) was derived
in the hot-electron regime (negligible temperature, T � ε) under the assumption of the zero-dimensional
geometry, ε � ETh. It provides the diffusive contribution to the relaxation rate originating from the
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processes with momentum transfer of the order of the inverse system size, 1/L. The total relaxation rate is
then the sum of γ0(ε) given by Eq. (1) and the Fermi-liquid contribution due to the processes with large-
momentum transfer, γ∗(ε) ∼ ε2/EF (EF is the Fermi energy) [2]. The latter can be neglected for sufficiently
large quantum dots, L� kF l

2 (kF is the Fermi momentum, and l is the mean free path) [1, 3], that will be
assumed thereafter.

Remarkably, Eq. (1) derived in the zero-dimensional limit, ε � ETh, shows that in this regime the
single-particle spectrum is well resolved, γ0(ε) � ∆. Though this conclusion is in a good agreement with
the experimental results on tunneling spectroscopy of a disordered quantum dot [4], it raises the question
of consistency of the derivation. Indeed, the FGR can be safely applied only in the case of continuous
spectrum, while the result (1) implies that it is not. This subtle point was recognized already by SIA, who
argued that their approach might be correct as summation over many final states is performed. This idea
was elaborated in a seminal paper by Altshuler, Gefen, Kamenev, and Levitov (AGKL) [5], who emphasized
that it is the spectrum of final states that should be continuous for the FGR picture to be applicable. In
the problem of the hot-electron decay, final states are three-particle states with two electrons and one hole,
and the corresponding mean level spacing can be estimated as

∆3(ε) ∼ ∆3/ε2. (2)

Comparing γ0(ε) and ∆3(ε), AGKL came to the conclusion that the FGR description should be valid for
sufficiently large energies, ε > εFGR, where

εFGR = ∆
√
g, (3)

and g = ETh/λ∆ � 1 sets the scale, ∆/g, of the interaction matrix elements (for the screened Coulomb
interaction with λ = 1, g coincides with the dimensionless conductance of the dot).

In order to study the spreading of a single-particle excitation over the space of many-particle states
beyond the FGR approximation, AGKL proposed a remarkable mapping of the initial problem to a tight-
binding Anderson model on a hierarchical lattice, treating each site as a basis vector in the many-particle
Fock space. Motivated by the observation that the structure of this lattice for the quantum dot problem
locally looks like a tree, AGKL approximated it by the Bethe lattice with a large branching number. Then
using the known solution for the Anderson model on the Bethe lattice [6], AGKL predicted the localization
transition in Fock space of an interacting quantum dot at the energy εMBL ∼ ∆

√
g/ ln g, which appeared

to be parametrically smaller than the FGR breaking energy scale εFGR. Thus, in the AGKL picture of
many-body localization one should distinguish between three regimes [5, 7]. In the localized regime realized
at ε < εMBL, the Slater determinants of one-particle states are very close to the exact many-body states, and
the width of quasiparticle states is exactly zero. In the intermediate region, εMBL < ε < εFGR, quasiparticle
states are delocalized, but they are strongly fractal and non-ergodic, with the spectral weight given by a
number of slightly broadened lines. The spectral weight acquires a Lorentzian form with a well defined width
γ (corresponding to a simple exponential decay e−γt in the time domain) only in the regime ε � εFGR,
where the FGR description finally sets in.

The AGKL paper has triggered a boost of activity in the field of many-body localization. The suggested
mapping onto the lattice model has been proved to be extremely fruitful: instead of studying an interacting
problem one now can deal with a non-interacting quantum mechanics, but on a very complicated lattice with
an exponentially large number of sites. (Though all states in a finite system are localized by definition, even
an extremely weak coupling to the external reservoir providing a level width larger than the exponentially
small distance between the many-body states, which can be estimated as exp(−α

√
ε/∆) with α ∼ 1 [8, 9, 10],

renders the spectrum of delocalized states effectively continuous.) Since the complexity of the problem is
encoded in the lattice topology, the crucial point is to identify the relevant features responsible for many-body
localization.

Quite soon it was recognized that the Bethe lattice with a constant branching number is an oversimplified
model of Fock space. Firstly, the coordination number of the lattice decreases with the number of generations
[8, 11]. Secondly, the actual lattice is not a tree, and the presence of loops essentially modifies combinatorics
of the perturbative expansion in the localized region [8], increasing the AGKL estimate for εMBL. Numerical
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studies [12, 13] demonstrated gradual delocalization with the growth of the quasiparticle energy. Anyway,
despite the lack of a rigorous theory of many-body localization in a quantum dot, the general understanding
achieved in the beginning of 2000s was that in finite systems one should expect a localization/delocalization
crossover, though its position was not firmly established.

Later, the concept of many-body localization developed in the quantum dot problem was applied to
extended systems of interacting electrons with spatially localized single-particle states [14, 15], where the
transition between the localized and delocalized many-body phases occurs at a finite temperature. The
related issues of ergodicity and thermalization are currently being actively investigated (for a review, see
Ref. [16]).

Very recently, many-body localization in a quantum dot was reconsidered by Gornyi, Mirlin, and Polyakov
[17]. Working in the framework of the lattice model, they found an additional factorial contribution in the
perturbative series in the number of involved generations, which renders coupling to distant generations less
efficient, thus acting in favor of localization. For the hot-electron decay problem, this leads to the estimate for
the threshold energy εMBL ∼ g∆/ ln g, which is much larger than the original AGKL estimate. For a thermal
many-body state with the temperature T and the total energy E ∼ T 2/∆, the FGR temperature TFGR ∼
∆
√
g was shown to be logarithmically larger than the localization transition point, TMBL ∼ ∆

√
g/ ln g. This

result formally coincides with the AGKL energy threshold and is in full agreement with Ref. [14].
Since, contrary to AGKL, Refs. [8, 17] place the many-body localization threshold εMBL for the hot-

electron problem above the FGR-breaking scale εFGR, one can ask how to reconcile the FGR description
with many-body localization. This question was answered by Silvestrov [18] who studied the temporal decay
of a quasiparticle with ε� εFGR. He showed that the FGR relaxation rate γ0(ε) describes the initial stage of
exponential relaxation, that slows down at larger times due to smaller relaxation rate of descendant states,
and eventually due to many-body localization.

In this paper, we address the initial temporal stage of energy relaxation in a quantum dot, when quantum
many-body localization effects are not yet visible. Assuming the FGR approach is applicable, we calculate
mesoscopic fluctuations of the energy relaxation rate. The smallness of fluctuations compared to the average
relaxation rate provides an a posteriori condition for the FGR applicability. In our analysis, we do not use
the lattice model of Fock space and work in terms of Keldysh diagram technique in real space, where
non-perturbative disorder averaging is performed by means of the non-linear supersymmetric sigma model.
Such an approach allows us to derive the expression for the variance of the relaxation rate without any
simplifications concerning the nature of the electron-electron interaction.

The paper is organized as follows. In Sec. 2 we introduce the model and summarize the results. Section 3
describes the Keldysh kinetic approach along with its modification simplifying the study of weak nonequi-
librium. In Sec. 4 we rederive the SIA result and generalize it to the case of an arbitrary temperature
and interaction radius. Section 5 is devoted to the discussion of the general strategy for the calculation of
mesoscopic fluctuations of the energy relaxation rate in terms of the exact (disorder-dependent) electron
Green functions. The product of several Green functions is averaged non-perturbatively in Sec. 6. The final
step of the calculation of mesoscopic fluctuations is performed, for not very short-range interaction, in Sec. 7
and, in the general case, in Sec. 8. Our results are summarized in Sec. 9. Numerous technical details are
relegated to several Appendices.

We use the system of units with ~ = kB = 1.

2. Model description and results

2.1. Model

We consider an isolated chaotic quantum dot with the broken time-reversal symmetry (unitary symmetry
class). Impurity scattering in the dot is supposed to be strong enough to completely randomize the electron
trajectories establishing the diffusive regime with l� L, where l is the elastic mean free path, and L is the
characteristic size of the dot. For generality, we consider the case of an arbitrary spin degeneracy, Ns, which
plays the role of the number of independent fermionic flavors (the case Ns = 1 corresponds to completely
spin-polarized electrons).
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We will discuss two models of electron-electron interactions: (i) the long-range Coulomb interaction with
a small gas parameter rs ≡ e2/εvF � 1 (where ε is the dielectric constant of the medium, and vF is the
Fermi velocity), and (ii) an arbitrary weak interaction. In the case of the Coulomb interaction, its screening
should be taken into account, whereas for a weak interaction this procedure is unnecessary. In both cases,
the statically screened interaction in the real space can be written in the form

V (r) =
λ

Nsν
δκ(r), (4)

where λ is the dimensionless interaction strength, and δκ(r) is the delta function smeared on the scale of the
interaction radius 1/κ [the latter is assumed to be much smaller than the size of the quantum dot, justifying
the notion of the smeared delta function in Eq. (4)]. For the long-range Coulomb interaction, λ = 1 and
1/κ is the Thomas-Fermi screening length, see Eq. (31). Besides the dimensionless strength λ, the only
characteristic of the potential (4) that will be important in the following is the ratio, F , of the Hartree and
Fock diagrams, which is a measure of the interaction range [19, 20]. In the three- and two-dimensional cases
it is given by (see Appendix A for details)

F =

∫ 1

0

vκ(2pFx)ϕ(x) dx, ϕ(x) =

{
2x, in 3D,

(2/π)(1− x2)−1/2, in 2D,
(5)

where vκ(q) is the Fourier transform of δκ(r) in Eq. (4). The limiting cases of F = 0 and F = 1 correspond
to long-range (κ� kF ) and point-like screened interactions, respectively.

We will assume that interaction can be taken into account perturbatively, that can be justified in the
two partially overlapping limits:

λ� 1 or F � 1, (6)

i.e., in the limit of weak interaction or for sufficiently large interaction radius (κ � kF ). The two models
of electron-electron interaction discussed above conform to the condition (6): For the Coulomb interaction
with λ = 1, its applicability is provided by the smallness of the gas parameter rs since F ∼ rs ln 1/rs [see
Eq. (A.6)]; for weak interaction with an arbitrary radius 1/κ, it is justified as long as λ� 1.

2.2. Average energy relaxation rate

We start with generalizing the SIA result (1) to the case of a finite temperature T , arbitrary spin
degeneracy Ns and arbitrary interaction radius measured by the parameter F [assuming that the restriction
(6) holds]. The temperature and excitation energy are supposed to be smaller than the Thouless energy,
max{ε, T} � ETh. The average energy relaxation rate calculated in the second order in the statically
screened interaction (4) is given by

γ0(ε, T ) =
λ2c(Ns, F )

π

∆

E2
2

(ε2 + π2T 2), (7)

where ∆ = (νV )−1 is the mean level spacing in the dot (ν is the single-particle density of states at the Fermi
level per one spin projection, and V is volume of the dot), and the energy scale E2 is determined by the
diffusion inside the dot:

En ≡
[∑′

m

1

(Dq2m)n

]−1/n
∼ ETh. (8)

Here D is the diffusion coefficient, and q2m are non-zero eigenvalues of the Laplace operator in the dot,
−∇2ψm(r) = q2mψm(r), with the von Neumann boundary conditions. The magnitude of En defined by
Eq. (8) is set by the Thouless energy, ETh = D/L2, where L is the typical size of the quantum dot.

The factor c(Ns, F ) in Eq. (7) takes into account spin degeneracy and the spatial structure of the
interaction potential (4):

c(Ns, F ) =
1

N2
s

(
Ns − 2F +NsF

2
)
. (9)
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The function c(Ns, F ) has an important property c(1, 1) = 0, which ensures vanishing of interaction effects
for polarized (Ns = 1) fermions with a contact interaction, as a consequence of the Pauli exclusion principle.
It should be noted that the anticipated cancellation of c(1, 1) takes place only if the Hartree-type diagrams
yielding the terms with F in Eq. (9) are taken into account (see Sec. 4.3). This issue is often overlooked in
literature, leading to a variety of claimed prefactors in Eq. (1).

2.3. Mesoscopic fluctuations of the energy relaxation rate

In the FGR description, the relaxation rate γi of a given single-particle state |i〉 is a function of its energy
only, implying that the states close in energy should have nearly the same inelastic width. The validity of
this approximation can be verified a posteriori by studying mesoscopic, i. e., level-to-level fluctuations of γi.
We calculate them under the same assumptions of the zero-dimensional geometry, max{ε, T} � ETh, used
for the determination of the average γ0(ε, T ).

We describe the relaxation rate in the framework of the quantum kinetic equation for electrons in dirty
metals [21]. This approach differs significantly from the lattice model proposed by AGKL [5] and extensively
used in subsequent publications [7, 8, 11, 12, 17]. The method of kinetic equation is not suitable for studying
many-body localization, but is sufficiently simple to unveil the limits of applicability of the FGR description.
Nevertheless, the kinetic approach, working well for interacting systems with continuous spectrum, meets
significant difficulties in the considered region max{ε, T} � ETh, where individual energy levels are well-
resolved, γ0(ε, T )� ∆. Discreteness of energy spectrum requires non-perturbative averaging over disorder,
which is performed by means of the non-linear supersymmetric sigma model [22].

The main idea behind our calculations is the following. In the zeroth approximation (which is equivalent
to the FGR), energy levels acquire an inelastic width γ0(ε, T ). The inverse of this quantity yields the
temporal scale at which single-particle coherence is maintained. This corresponds to the appearance of the
‘mass’ of the order γ0(ε, T ) for the zero-dimensional diffusons (diffusons with zero momentum). At the
next stage, when loop corrections to the FGR result are considered, this ‘mass’ will regularize the otherwise
divergent contributions, producing γ0(ε, T ) in the denominator, precisely in the way it occurs in the case of
the non-interacting quantum dot in an external field [23, 24, 25] and in the high-temperature phase in the
problem of many-body localization [14]. Thus, with decreasing the energy of excitations and/or temperature,
the loop corrections to the quasiclassical rate increase, and at some energy scale they become comparable,
indicating the breakdown of the FGR description.

Fluctuations of the energy relaxation rate γ(ε, T ) around its FGR average value γ0(ε, T ) given by Eq. (7)
are characterized by the irreducible average:

〈γ2(ε, T )〉 = γ20(ε, T ) + 〈〈γ2(ε, T )〉〉. (10)

We calculate the leading contribution to 〈〈γ2(ε, T )〉〉 in the delocalized regime and obtain

〈〈γ2(ε, T )〉〉 =
λ4∆5

4π3

[
c2(Ns, F )

E4
2

+
c4(Ns, F )

E4
4

] ∫
dε1dω1

(Fε1 −Fε1−ω1
)2(Bω1

+ Fε−ω1
)2

γ0(ε− ω1, T ) + γ0(ε1, T ) + γ0(ε1 − ω1, T )
, (11)

where
Fε = tanh

ε

2T
, Bω = coth

ω

2T
(12)

are equilibrium fermionic and bosonic distribution functions, respectively, while the energies E2 and E4

(both of the order of ETh) are defined in Eq. (8). The functions c2(Ns, F ) and c4(Ns, F ) in Eq. (11) are
given by

c2(Ns, F ) =
1

N4
s

[
(3N2

s + 1)− 16NsF + 2(5N2
s + 7)F 2 − 16NsF

3 + (3N2
s + 1)F 4

]
, (13a)

c4(Ns, F ) =
1

N4
s

[
2N2

s − 8NsF + 4(N2
s + 2)F 2 − 8NsF

3 + 2N2
sF

4
]
. (13b)

They obey an important relation c2(1, 1) = c4(1, 1) = 0, which guarantees vanishing of mesoscopic fluctua-
tions [as well as the inelastic width itself, see Eq. (9)] for spin-polarized fermions with a contact interaction.
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Figure 1: The function Υ(x) [Eq. (15)], which determines the energy and temperature dependence of 〈〈γ2(ε, T )〉〉, see Eq. (14).

To single out the energy and temperature dependence of Eq. (11), we rewrite it in the form

〈〈γ2(ε, T )〉〉 =
λ2∆4

4π2

E2
2

c(Ns, F )

[
c2(Ns, F )

E4
2

+
c4(Ns, F )

E4
4

]
Υ
( ε

2T

)
, (14)

where the dimensionless function Υ(x) plotted in Fig. 1 is defined as

Υ(x) =

∫
dy dz

[tanh(y)− tanh(y − z)]2[coth(z)− tanh(z − x)]2

(x− z)2 + y2 + (y − z)2 + 3π2/4
=

{
0.248, x = 0;

16.95, x =∞. (15)

Hence, the magnitude of mesoscopic fluctuations of the relaxation rate can be roughly estimated as

〈〈γ2(ε, T )〉〉 ∼ λ2 ∆4

E2
Th

. (16)

Note however that, due to a huge variation of the function Υ(x), fluctuations at the Fermi energy (ε� T )
are nearly 100 times smaller than the naive estimate (16).

Expression (11) for mesoscopic fluctuations of the energy relaxation rate in the FGR regime is the main
result of our work. The relative strength of mesoscopic fluctuations can be estimated as

〈〈γ2(ε, T )〉〉
γ20(ε, T )

∼ ∆3(max{ε, T})
γ0(ε, T )

∼
(

εFGR

max{ε, T}

)4

, (17)

where ∆3(ε) is the mean three-particle level spacing defined in Eq. (2). The ratio (17) becomes of the order
of unity as max{ε, T} approaches the FGR-breaking scale εFGR = ∆

√
g. Hence for the validity of the FGR

description of the initial stage of quasiparticle disintegration, the temperature T of electrons in the dot and
the excitation energy ε at which the decay rate is studied play nearly the same role. They will act differently
at larger time scales, when many-body localization may have enough time to show up [17, 18]. Physically, at
max{ε, T} � εFGR the state has many available routes to decay into three-particle excitations. Fluctuations
of the number of such routes are small and are determined by Eq. (17).

3. General expression for the energy relaxation rate

3.1. Keldysh technique

In order to express the inelastic energy relaxation rate, we use the Keldysh technique [26] in the repre-
sentation of the functional integral [27, 28]. For an interacting system, the Keldysh action is a functional
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of the fermionic Grassmann fields ψσ(r, t) (σ = 1, . . . , Ns counts spin projections) and the bosonic plasmon
field φ(r, t):

S =

∫
dt

{
Ns∑
σ=1

∫
drψ+

σ (r, t)
(
Ĝ−10 + φa(r, t)γa

)
ψσ(r, t) +

∫
(dq)V −10 (q)φT (q, t)γ2φ(−q, t)

}
. (18)

The fields ψσ(r, t) and φ(r, t) are two-component vectors in the Keldysh space. In the Keldysh-rotated basis
[27, 28],

Ĝ−10 =

(
i
∂

∂t
+
∇2

2m
− Udis(r)

)
γ1 ≡ G−10 γ1, γ1 =

(
1 0
0 1

)
, γ2 =

(
0 1
1 0

)
, (19)

where Udis(r) is the disorder potential with the correlation function 〈Udis(r)Udis(r
′)〉 = δ(r − r′)/(2πντ)

(τ is the elastic mean free time, and ν is the density of states per one spin projection at the Fermi energy).
We assume no spin-dependent interactions so that all matrices act as a unit matrix in the spin space. The
second term in Eq. (18) is the action of the plasmon field, with V0(q) being the bare interaction potential,
and (dq) ≡ ddq/(2π)d is the momentum integration measure in d dimensions.

The Green functions are defined as (ξi denotes the pair ri, ti):

Ĝ(ξ1, ξ2) = −i〈ψ(ξ1)ψ+(ξ2)〉 = −i
∫
Dψ∗DψDφeiS ψ(ξ1)ψ+(ξ2), (20)

V̂ (ξ1, ξ2) = −2i〈φ(ξ1)φT (ξ2)〉 = −2i

∫
Dψ∗DψDφeiS φ(ξ1)φT (ξ2). (21)

The electron Green function has the triangular structure in the Keldysh space:

Ĝ =

(
GR GK

0 GA

)
, GK = GR ◦ F − F ◦GA, (22)

where F is the fermion distribution function, and the symbol “◦” denotes the convolution over intermediate
spatial and time indices. At the equilibrium with the temperature T , Fε = tanh(ε/2T ).

3.2. Interaction propagator

In the derivation below we will mainly assume that electrons in the dot interact via the Coulomb potential
V0(r) = e2/εr, where ε is the dielectric constant of the medium. Due to the long-range nature of the Coulomb
interaction, V −10 (q → 0) = 0, the propagator V̂ should be calculated taking screening into account (this
procedure is not required for an arbitrary weak and not long-range potential). As usual, we do this in the
random phase approximation (RPA) [29] justified in the case of a small gas parameter:

rs =
e2

εvF
� 1. (23)

Under this condition the ratio of the Hartree and Fock diagrams, F , introduced in Eq. (5) is small too, see
Eq. (A.6). Then one should sum only the bubble contributions to the effective propagator, with independent
averaging over disorder in each bubble.

The RPA-screened interaction propagator has the standard structure:

V̂ =

(
V K V R

V A 0

)
, V K = V R ◦ B − B ◦ V A, (24)

where B is the boson distribution function defined as [27]

Bω =
1

2ω

∫ ∞
−∞

(1−Fε′Fε′−ω)dε′. (25)
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R
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V (ω,q) V (q)

+ + . . .=

Figure 2: The dynamically screened interaction V (ω,q) (wavy line) expressed in terms of the statically screened interaction
(SSI) V (q) (zigzag line) and the dynamic polarization operator GRGA. For a quantum-dot at (ε, T ) � ETh, each dynamic
polarization bubble contains a small factor of ω/ETh.

At the thermal equilibrium, Bω = coth (ω/2T ).
The dynamically screened interaction can be written in the form (see Fig. 2)

V R(A)(ω,q) =
[
V −1(q) + Π

R(A)
dyn (ω,q)

]−1
, (26)

where the real function V (q) is the statically screened interaction (SSI):

V (q) =
[
V −10 (q) +Nsν

]−1
, (27)

and Πdyn is the dynamic part of the polarization operator originating from the bubble GRGA:

Π
R(A)
dyn (ω,q) = Nsν

±iω
Dq2 ∓ iω . (28)

The simple form of the polarization operator Π(q, ω) in Eqs. (27) and (28) corresponds to the limit q � pF
(and ω � EF ). In the case of the Coulomb interaction with a small rs, the spatial dispersion of Π(q, 0)
is irrelevant as the interaction in Eq. (5) is determined by q ∼ κ � pF . In the case of a weak short-scale
interaction, λ� 1, static screening can be neglected and the form of Π(q, 0) is not important.

The SSI defined in Eq. (27) can be conveniently rewritten in the form [Fourier transform of Eq. (4)]

V (q) =
λ

Nsν
vκ(q), (29)

where vκ(q) is the momentum representation of the δ function smeared over the interaction radius, δκ(r).
By definition, vκ(0) = 1. In the important case of the Coulomb interaction, λCoul = 1 and

vCoul
κ (q) =

{
κ23D/(q

2 + κ23D), in 3D,

κ2D/(q + κ2D), in 2D,
(30)

where 1/κ is the Thomas-Fermi screening length given by

κ23D = 4πNsν3e
2/ε, κ2D = 2πNsν2e

2/ε. (31)

3.3. Kinetic equation

In this Section we sketch the main steps in the derivation of the quantum kinetic equation in the Keldysh
formalism (for a detailed discussion see, e.g, Refs. [21, 30]). From the Dyson equation for the exact (disorder-
dependent) electron Green function Ĝ we obtain[

Ĝ−10 , Ĝ
]

=
[
Σ̂, Ĝ

]
, (32)

where [A,B] = A ◦ B − B ◦ A, and Σ̂ is the irreducible self-energy due to interaction, bearing the same
triangular structure as the electron Green function:

Σ̂ =

(
ΣR ΣK

0 ΣA

)
. (33)
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As we are interested in the slow dynamics of the system, it is convenient to switch to the mixed energy-
time (Wigner) representation,

fε(t) =

∫
dτ f

(
t+

τ

2
, t− τ

2

)
eiετ , (34)

which allows us to get rid of the convolution on the right-hand side of Eq. (32). The kinetic equation is
obtained from the Keldysh component of Eq. (32) by tracing over the space. We also assume that the
distribution function does not depend on the coordinates. Therefore the left-hand side of Eq. (32) produces
only the time derivatives of F , and we arrive at the standard form of the kinetic equation,

∂tFε = St[Fε]. (35)

The collision integral St[Fε] is given by

St[Fε]
∫
dr ∆Gε(r, r) = −i

∫
dr dr′

{
∆Σε(r, r

′)GK
ε (r′, r)− ΣK

ε (r, r′)∆Gε(r
′, r)

}
, (36)

where all functions have an implicit central-time argument t, and we denote

∆G = GR −GA, ∆Σ = ΣR − ΣA. (37)

3.4. Modification of the Keldysh technique
As our future analysis will involve diagrams with many interaction propagators, it is convenient to modify

the standard Keldysh diagrammatic technique discussed above to make it suitable for routine calculations.
We find it appropriate to ‘eliminate’ the Keldysh component of the electron Green function and to describe
the system in terms of the retarded and advanced Green functions only. To this end, we note that in the case
of weak nonequilibrium one has GK

ε (t) = Fε(t)∆Gε(t), which allows us to diagonalize the Green function as

Ĝ = U−1ε gεUε, gε =

(
GR
ε 0

0 GA
ε

)
, Uε =

(
1 Fε
0 −1

)
, (38)

where the time argument is suppressed for brevity. In order to construct the perturbation theory in terms
of the Green function g, it is convenient to include Uε into the definition of the interaction vertex:

Γk(ε1, ε2) = Uε1γ
kU−1ε2 . (39)

The resulting Γk(ε1, ε2) depend on two energy indices owing to the energy dependence of the distribution
function:

Γ1(ε1, ε2) =

(
1 Fε2 −Fε1
0 1

)
, Γ2(ε1, ε2) =

(
Fε1 −1 + Fε1Fε2
−1 −Fε2

)
. (40)

This modification of the Keldysh technique that will be used below allows us to simplify calculations
with many interaction lines significantly, since now the electron Green function g is diagonal in the Keldysh
space and does not contain the distribution function. The interaction line is defined now as

Yabcd(ε, ε
′, ω,q) =

ε

ε− ω ε′ − ω

ε′
a

b c

d
= Γkab(ε, ε− ω)Γlcd (ε′ − ω, ε′)V klω (q), (41)

where indices a, b, c, d take the values R and A, and we imply the correspondence R↔ 1 and A↔ 2. Explicit
expressions for Yabcd are listed in Appendix B. According to the general rules of the diagrammatic technique,
the element Yabcd(ε, ε

′, ω,q) enters with the coefficient i/2 [the factor 2 is inherited from Eq. (21)].
The irreducible self-energy in the new basis, Σij , is related to the self-energy (33) as

ΣR = ΣRR, ΣA = ΣAA, ΣK =
(
ΣRR − ΣAA

)
Fε − ΣRA, ΣAR = 0. (42)

Thus, in the modified Keldysh technique, Eq. (36) for the collision integral takes a compact form:

St[Fε]
∫
dr ∆Gε(r, r) = −i

∫
dr dr′ΣRA

ε (r, r′)∆Gε(r
′, r). (43)
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Figure 3: (a) The simplest (and the most important for small F ) contribution to the self-energy ΣRA
ε . (b) The graphic

representation of the product ΣRA
ε ∆Gε which determines the collision integral (46). The thick line standing for ∆Gε = GR

ε −GA
ε

corresponds to the electron state whose decay is studied. (c) The diagram (b) averaged over disorder, with the shaded block
representing the diffuson.

3.5. Collision integral and the energy relaxation rate

The inelastic energy relaxation rate, γ(ε, T ), can be obtained from the collision integral in the usual
way [30, 31, 32]:

γ(ε, T ) = −δ St[Fε]
δFε

. (44)

Using St[Fε] from Eq. (43), we arrive at the following expression for γ(ε, T ):

γ(ε, T )

∫
dr ∆Gε(r, r) = i

δ

δFε

∫
dr dr′ ΣRA

ε (r, r′)∆Gε(r
′, r). (45)

Equation (45) is the starting point for the calculation of the energy relaxation rate. This equation
contains exact disorder-dependent Green functions, and averaging its n’th power over the random potential
generates the n’th moment of γ(ε, T ). The simplest is the first moment, 〈γ(ε, T )〉, related to the average
collision integral 〈St[Fε]〉. In this case, the left-hand side of Eq. (43) gives the average density of states,
〈∆Gε(r, r)〉 = −2πiν, and one arrives at

〈St[Fε]〉 =
∆

2π

∫
dr dr′〈ΣRA

ε (r, r′)∆Gε(r
′, r)〉. (46)

In the next Section we show how this equation reproduces Sivan, Imry and Aronov result (7) for the average
inelastic rate in the limit F → 0, and generalize it to the case of an arbitatry parameter F . The second
moment of γ(ε, T ) will be considered in Secs. 5–8.

4. Average energy relaxation rate

In this Section we rederive the result of Sivan, Imry and Aronov [1] and generalize it to the case of an
arbitrary temperature T , spin degeneracy Ns and interaction radius characterized by the parameter F . Our
treatment closely follows the standard derivation of the kinetic equation in the RPA approximation [21], but
within the modified Keldysh technique introduced in Sec. 3.4. The purpose of this Section is to illustrate the
usage of this technique and to prepare the ingredients for the analysis of mesoscopic fluctuations of γ(ε, T )
in Sec. 5.

4.1. Derivation of the Sivan, Imry and Aronov result

The simplest diagram for the self-energy ΣRA
ε is shown in Fig. 3(a). In the limit F � 1 it gives the leading

contribution to the relaxation rate (a more general situation is discussed in Sec. 4.3). The corresponding
analytic expression can be easily written in terms of the elements Y introduced in Eq. (41):

ΣRA
1ε (r, r′) =

i

2

∫
(dω)

{
GR
ε−ω(r, r′)YRR,RA(ε, ε, ω, r− r′) +GA

ε−ω(r, r′)YRA,AA(ε, ε, ω, r− r′)
}
, (47)
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with (dω) ≡ dω/2π. The interaction propagators are assumed to be RPA screened and averaged over
disorder (see Sec. 3.1), while the electron Green functions are still exact in a given realization of disorder.
Using Eqs. (B.2) and (B.8), and employing the analyticity properties we obtain

ΣRA
1ε (r, r′) =

i

2

∫
(dω)Φ(ε, ω)∆Gε−ω(r, r′)∆V (ω, r− r′), (48)

where ∆V = V R − V A, and

Φ(ε, ω) = (Fε −Fε−ω)Bω − (1−FεFε−ω) (49)

is a combination of the fermionic and bosonic distribution functions which vanishes at the equilibrium
(detailed balance).

The collision integral (46) involves the product ΣRA
ε ∆Gε, which is to be averaged over disorder. To make

this calculation more intuitive, we represent it diagrammatically on a separate graph in Fig. 3(b), where the
thick line stands for the Green function ∆Gε of the initial state. To avoid confusion we emphasize that this
picture is just a simple graphical notation for ΣRA

ε ∆Gε, since the vertices with a thick line are not described
by the rule of Eq. (41). Substituting the self-energy (48) into Eq. (46) we obtain for the averaged collision
integral:

〈St[Fε]〉 =
i∆

4π

∫
dr dr′(dω)Φ(ε, ω)〈∆Gε(r′, r)∆Gε−ω(r, r′)〉∆V (ω, r− r′). (50)

The averaged product of two Green functions,

〈∆Gε(r′, r)∆Gε−ω(r, r′)〉 = −4πν ReDR
0 (ω, r− r′) (51)

is expressed in terms of the particle-hole ladder (diffuson), DR
0 (ω,q) = 1/(Dq2−iω), see Fig. 3(c). Then one

arrives at the well-known result for the collision integral in dirty metals (see, for example, Refs. [21, 33, 34]):

〈St[Fε]〉 = 2

∫
(dq)(dω)Φ(ε, ω) ReDR

0 (ω,q) ImV R(ω,q), (52)

where (dq) ≡ ddq/(2π)d, and d is the space dimensionality.
According to Eq. (26), the imaginary part of the fluctuation propagator is determined by the dynamic

polarization operator Πdyn. For a quantum dot in the zero-dimensional regime (ω � ETh), Πdyn is a small
correction to V −1(q), and ImV R(ω,q) can be written as

ImV R(ω,q) ≈ −V 2(q) Im ΠR
dyn(ω,q). (53)

Using Eq. (28) and assuming that the system size, L, is larger than the interaction radius, 1/κ, we obtain
in the zero-dimensional regime:

〈St[Fε]〉 = − 2λ2

Nsν

∫
(dω)(dq)

ωΦ(ε, ω)

(Dq2)2
= −2λ2∆

Ns

∑′

m

∫
(dω)

ωΦ(ε, ω)

(Dq2m)2
, (54)

where q2m are the eigenvalues of the operator −∇2 in the dot with von Neumann boundary conditions, with
the zero mode being excluded due to electroneutrality [1, 3, 5, 35, 36]. Performing summation over discrete
momenta, we get

〈St[Fε]〉 = − 2λ2∆

NsE2
2

∫
(dω)ωΦ(ε, ω), (55)

where the energy E2 ∼ ETh is defined in Eq. (8). The inelastic energy relaxation rate at the equilibrium
can be extracted with the help of Eq. (44):

γRPA
0 (ε, T ) =

2λ2∆

NsE2
2

∫
(dω)ω

{
coth

( ω
2T

)
+ tanh

(
ε− ω

2T

)}
. (56)

Integrating over ω, we arrive at Eq. (7) for the average energy relaxation rate γ0(ε, T ) in the limit F → 0.
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Figure 4: The diagrams for the collision integral with two SSI lines prior to disorder averaging. (a) The RPA diagram 3(b)
redrawn in terms of the SSI lines (29) and the dynamic polarization bubble GRGA. The corresponding contribution to the
relaxation rate is given by the X4 term in Eq. (59). (b) The other, non-RPA diagram discarded in Sec. 4.1, leading to the Y4
term in Eq. (59). Its contribution to the mean relaxation rate can be neglected at small F [see Eq. (63)].

4.2. Physical interpretation and the other diagram

It is instructive to rederive the result for γRPA
0 (ε, T ) in a slightly different manner to clarify the physics

of the decay process responsible for the width of an one-electron level. Real decay processes are described
by ImV R(ω,q) [see Eq. (52)], which is determined by the dynamic screening of the bare interaction. In the
zero-dimensional limit, (E, T, ω)� ETh, the dynamic part of the polarization bubble, Πdyn(ω,q), contains
a small factor ω/ETh [see Eq. (28)]. This means that with the accuracy of order ω/ETh we may consider
Πdyn(ω,q) as a small perturbation and retain only the first dynamic bubble in the expansion of V (ω,q)
near the statically screened interaction (SSI) V (q), see Eq. (53).

Therefore with the accuracy of order ω/ETh the diagram in Fig. 3(a) for the average collision integral
with one dynamically screened interaction can be redrawn as the diagram in Fig. 4(a) with two SSI lines. The
advantage of the diagrammatic representation of Fig. 4(a) is that it elucidates the physics of the inelastic
collision: The cross-section of this diagram corresponds to the decay of an electron with energy ε into
an electron with energy ε − ω and an electron-hole pair with energies ε1 and ε1 − ω. The corresponding
contribution to the self-energy (before disorder averaging) can be easily read off from Eq. (41):

ΣRA
a = −Ns

(
i

2

)2∑
abc

Gaε−ω(r1, r2)Gbε1−ω(r4, r3)Gcε1(r3, r4)YRabc(ε, ε1, ω, r1, r3)YcbaA(ε1, ε, ω, r2, r4), (57)

where here and in what follows the interaction line Yabcd corresponds to the SSI V (q). The factor −Ns
in Eq. (57) comes from the upper closed electron loop [the bottom bubble containing a highlighted Green
function at the external energy ∆Gε is not a closed loop in the diagrammatic sense (see Fig. 3) and does
not contribute an extra factor −Ns].

The diagram 4(a) is not the only one with two SSI lines that describes quasiparticle decay process. The
other diagram is shown in Fig. 4(b). Though it is not as intuitive as the diagram 4(a), it also makes a
contribution to the relaxation rate. That contribution is usually discarded since it vanishes in the limit
F → 0 (see below). However as we show in Sec. 7.4, the diagram 4(b) should be taken into account in
calculating mesoscopic fluctuations of the relaxation rate, since its contribution is comparable to that of the
diagram 4(a) even in the limit F → 0. The self-energy for the diagram 4(b) is given by

ΣRA
b =

(
i

2

)2∑
abc

Gaε1(r1, r2)Gbε1−ω(r2, r3)Gcε−ω(r3, r4)YRabc(ε, ε−ω, ε−ε1, r1, r3)YabcA(ε1, ε, ω, r2, r4). (58)

Due to the absence of the closed electron loop in the diagram 4(b), ΣRA
b does not contain an extra factor

−Ns compared to ΣRA
a .
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Figure 5: Possible ways to average the diagrams for the relaxation rate shown in Fig. 4 over disorder (other types of aver-
aging with two diffusons exist but are suppressed at least by the factor l/L � 1, where l is the mean free path). (a) RPA
averaging of the diagram 4(a) reproducing the SIA result for γRPA

0 (ε, T ) [Eq. (56)]. (b) Non-RPA averaging of the diagram
4(a) with the contribution F 2γRPA

0 (ε, T ). (c) and (d) Two ways to average the diagram 4(b), each producing the contribution
−(F/Ns)γRPA

0 (ε, T ) to the relaxation rate.

The energy relaxation rate γ(ε, T ) (in a given realization of disorder) due to processes with two SSI lines
can be obtained from Eq. (45) with ΣRA = ΣRA

a + ΣRA
b . After some algebra involving analyticity properties

we obtain

γ(ε, T )

∫
dr ∆Gε(r, r) = − iλ2

4N2
s ν

2

∫
dr1 . . . dr4

∫
(dε1)(dω)(Fε1 −Fε1−ω)(Fε−ω + Bω) [NsX4 − Y4] , (59)

where
X4 = δκ(r1 − r3)δκ(r2 − r4) ∆Gε(r2, r1)∆Gε−ω(r1, r2)∆Gε1−ω(r4, r3)∆Gε1(r3, r4) (60)

and
Y4 = δκ(r1 − r3)δκ(r2 − r4)∆Gε(r4, r1)∆Gε1(r1, r2)∆Gε1−ω(r2, r3)∆Gε−ω(r3, r4). (61)

In Eq. (59), the term NsX4 comes from ΣRA
a [diagram 4(a)], and the term −Y4 comes from ΣRA

b [diagram
4(b)]. An expression similar to Eq. (59) has been derived in Ref. [37], where only the contribution from the
diagram 4(a) has been considered. In the limit when the interaction radius 1/κ exceeds the Fermi wavelength,
i.e. at F � 1, disorder averaged 〈γ(ε, T )〉 reproduces the result (56) for γRPA

0 (ε, T ) [see Eq. (63)].

4.3. Disorder averaging and the role of the parameter F

Equation (59) is the starting point for evaluating moments of the relaxation rate. In order to find its
mean value one has to average the combinations of four Green functions in Eqs. (60) and (61).

The RPA result of Sec. 4.1 is reproduced if one takes only the diagram 4(a) (the term X4) into account
and average each bubble independently [see Fig. 5(a)]:

〈X4〉RPA = δκ(r1 − r3)δκ(r2 − r4)〈∆Gε(r2, r1)∆Gε−ω(r1, r2)〉〈∆Gε1−ω(r4, r3)∆Gε1(r3, r4)〉. (62)

Averaging with the help of Eq. (51) and integrating over ε1, one arrives at Eq. (56) for γRPA
0 (ε, T ).

Along with the RPA averaging (62), there exists another way to average X4 over disorder shown in
Fig. 5(b). It has the same structure of diffusons as the RPA diagram 5(a), but with the interaction lines
taken at fast momenta q ∼ min(κ, pF ). The corresponding contribution to the relaxation rate, F 2γRPA

0 (ε, T ),
differs from the RPA-contribution by a factor F 2, where F is the standard notation for the ratio of the Hartree
and Fock diagrams [19, 20, 38] discussed in Appendix A.

Finally, consider disorder averaging of the diagram 4(b) corresponding to the term Y4 in Eq. (59). For
this diagram, there are also two ways to draw two-diffuson configurations shown in Figs. 5(c) and (d). Their
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contributions are equal and can be calculated similar to that of the diagram 5(b), but now only one of the
two SSI lines are taken at fast momentum making the result proportional to the first power of F . The
overall correction of the diagram 4(b) to the average relaxation rate is given by −(2F/Ns)γ

RPA
0 (ε, T ).

Thus we see that among four possible contributions to the average relaxation rate shown in Fig. 5, all
non-RPA diagrams [(b), (c) and (d)] are proportional to some power of F and hence are suppressed if the
interaction radius is larger than the Fermi wavelength. The smallness of the non-RPA diagrams in this
limit should be attributed to the Friedel oscillations which suppress the contribution of the corresponding
process [29]. Such a situation was considered, e.g., in Refs. [21, 33, 34]. On the other hand, for the point-
like interaction (corresponding to F = 1), the diagrams 5(a) and 5(b) give the same contribution. This
short-range limit was considered in Refs. [3, 5, 35, 39].

Collecting the contributions of all diagrams with two SSI lines and two diffusons (Fig. 5), we obtain the
final result for the average energy relaxation rate γ0(ε, T ) = 〈γ(ε, T )〉:

γ0(ε, T ) =
(
1− 2F/Ns + F 2

)
γRPA
0 (ε, T ), (63)

leading to Eq. (7). Note that for spinless electrons with point-like interaction, the inelastic relaxation rate
vanishes, γ = 0, which is a consequence of the Pauli exclusion principle. It is essential that such a cancellation
takes place only if the diagram 4(b) is taken into account.

5. Mesoscopic fluctuations of the energy relaxation rate: general consideration

In this Section we discuss the general approach to the calculation of mesoscopic fluctuations of the energy
relaxation rate γ(ε, T ). The starting point is the diagrams for the collision integral shown in Figs. 4(a)
and 4(b). The corresponding expression for γ(ε, T ) is given by Eq. (59) which is written for a particular
realization of impurities. Mesoscopic fluctuations of the relaxation rate are determined by the square of
γ(ε, T ) averaged over disorder:

〈γ2(ε, T )〉
∫
dr dr′ 〈∆Gε(r, r)∆Gε(r

′, r′)〉 = − λ4

16N4
s ν

4

∫
dr1 . . . dr8

∫
(dε1)(dε2)(dω1)(dω2)

× (Fε1 −Fε1−ω1
)(Fε−ω1

+ Bω1
)(Fε2 −Fε2−ω2

)(Fε−ω2
+ Bω2

)〈(NsX4 − Y4)(NsX
′
4 − Y ′4)〉, (64)

where the objects X4 and Y4 containing different products of four Green functions and two SSI lines are
defined in Eqs. (60) and (61), while X ′4 and Y ′4 are obtained from them through the replacement

{ri} → {ri+4}, ε1 → ε2, ω1 → ω2. (65)

Equation (64) contains three different products of eight Green functions, X4X
′
4, X4Y

′
4 and Y4Y

′
4 , which

need to be separately averaged over disorder (the term Y4X
′
4 reduces to X4Y

′
4 after an obvious change of

variables). For example, the explicit form of X4X
′
4 is given by

X4X
′
4 = δκ(r1 − r3)δκ(r2 − r4)δκ(r5 − r7)δκ(r6 − r8) ∆Gε(r2, r1)∆Gε−ω1

(r1, r2)

×∆Gε1−ω1
(r4, r3)∆Gε1(r3, r4)∆Gε(r6, r5)∆Gε−ω2

(r5, r6)∆Gε2−ω2
(r8, r7)∆Gε2(r7, r8). (66)

Since ∆G = GR −GA, each of the products X4X
′
4, X4Y

′
4 and Y4Y

′
4 contains 28 = 256 different elementary

contributions in terms of GR and GA.
Our task is to calculate the irreducible part 〈〈γ2(ε, T )〉〉 defined in Eq. (10). In a usual situation,

mesoscopic fluctuations of a random quantity x are determined by irreducible averaging over disorder, when
two copies of x are connected by at least one impurity line. In the present case the situation is different
as the left-hand side of the basic Eq. (64) contains the pairwise correlator 〈∆Gε∆Gε〉, which deviates
significantly from its reducible part 〈∆Gε〉2 (see Sec. 6.1). Therefore, even extracting the square of the
average, 〈γ(ε, T )〉2, from Eq. (64) should be done with care as it involves irreducible disorder averaging of
〈(NsX4−Y4)(NsX

′
4−Y ′4)〉 needed for non-perturbative account for correlations between two Green functions
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with the energy ε. The details of this calculation are presented in Appendix C. Such a complication is the
price one has to pay for extracting the property of a single discrete level with the technique well suited for
describing continuous spectra. Keeping that in mind we proceed with evaluation of the irreducible part of
〈γ2(ε, T )〉.

In order to determine 〈γ2(ε, T )〉 one has to compute 〈X4X
′
4〉, 〈X4Y

′
4〉 and 〈Y4Y ′4〉, and evaluate four

remaining energy integrals in Eq. (64). This calculation is rather nontrivial and will be performed in Secs. 6,
7 and 8. Meanwhile we discuss the main idea and outline the principal technical steps of the derivation.

The most complicated task of this procedure is to perform disorder averaging which becomes rather
involved in the low-energy limit, (ε, T )� ETh, we are interested in. Indeed, the single-particle spectrum is
well resolved in this case, 〈γ(ε, T )〉 � ∆, indicating that the averaging is to be performed non-perturbatively.
That can be achieved with the help of the Efetov’s nonlinear supersymmetric sigma model technique [22],
properly generalized to the case of several Green functions with different energies.

The averaging of two Green functions on the left-hand side of Eq. (64) is straightforward and can be
done exactly in the zero-dimensional geometry, see Sec. 6.1.

The calculation of 〈X4X
′
4〉, 〈X4Y

′
4〉 and 〈Y4Y ′4〉, containing eight Green functions is much more compli-

cated and cannot be performed exactly in the general case. Fortunately, the exact expression is not required
for determination of the leading contribution to mesoscopic fluctuations of the relaxation rate. A significant
simplification is suggested by analysing the physics of the decay process. According to the FGR, γ(ε, T )
can be considered as a sum of the decay processes of a single-particle excitation into all possible final three-
particle states allowed by the energy conservation: ε→ (ε−ω, ε′,−ε′+ω). Consequently, γ2(ε, T ) given by
Eq. (64) contains, in principle, six different final states: (ε− ω1, ε1,−ε1 + ω1, ε− ω2, ε2,−ε2 + ω2).

However, as it was first demonstrated in Ref. [14], the leading contribution to mesoscopic fluctuations of
the relaxation rate comes from those configurations that describe the square of the same decay process, i.e.,
from the terms with the identical set of the final states. Such a situation can be realized with two choices:

(a) ε1 ≈ ε2 and ω1 ≈ ω2, (b) ε1 ≈ ε− ω2 and ε2 ≈ ε− ω1, (67)

where the energies should coincide with the accuracy of the single level width γ. Technically, the importance
of such configurations is related to the appearance of the formally divergent delta function of zero frequency,
δ(0), if conditions (67) are considered as strict equalities, corresponding to the use of non-interacting Green
functions in 〈X4X

′
4〉, 〈X4Y

′
4〉 and 〈Y4Y ′4〉. In order to take into account the single-particle level broadening

due to interaction one should add an imaginary part to the energy argument E of the Green function,
replacing it by E+ (for GR) and E− (for GA):

E± = E ± iγ(E)/2, (68)

where γ(E) ≡ γ0(E, T ) is the average value of the relaxation rate obtained in the FGR approximation
[Eq. (7)]. The substitution (68) is equivalent to including the elastic part of the electron-electron interaction
in the zero-dimensional diffuson (see Sec. 6.4 and Appendix D). A finite imaginary part cuts the singularity
in δ(0) which should be replaced roughly by 1/γ, making fluctuations finite but divergent as ε and T are
decreased. This enhancement of fluctuations at low energies and temperatures is precisely the effect we are
looking for.

Such a mechanism of enhancement of mesoscopic fluctuations of the inelastic width with decreasing
temperature was suggested in Ref. [14] for a model when the matrix elements of the interaction Vαβγδ in the
basis of exact single-particle states were assumed to be independently distributed Gaussian variables. Our
task is more complicated as we do not make any assumptions about the structure of the matrix elements in
Fock space and calculate them for the real Coulomb interaction. Though we do not use the language of the
matrix elements Vαβγδ, they are effectively generated after proper averaging over fast diffusive modes [3, 5].

Having discussed the main idea, we now outline the crucial steps in the calculation of 〈X4X
′
4〉, 〈X4Y

′
4〉

and 〈Y4Y ′4〉:

• Each of X4X
′
4, X4Y

′
4 and Y4Y

′
4 contains in general 28 = 256 elementary products of GR and GA. As we

discuss in Secs. 6.4 and 7.1, the principal contribution to 〈〈γ2(ε, T )〉〉 originates from the terms with
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four GR and four GA. Each of these C4
8 = 70 terms may be presented as a functional integral over the

16-component superfields which is then averaged over disorder following the standard technique [22].
The resulting supersymmetric nonlinear sigma model is formulated in terms of the functional integral
over the 16× 16 superfield Q(r), see Sec. 6.2.

• As the SSI lines carry nonzero momenta (otherwise the diagram is zero due to electroneutrality),
momentum conservation requires the presence of some number of fast (q 6= 0) diffusive modes. Since
each fast diffuson contributes a small factor of ∆/ETh, their number should be minimized. For 〈γ(ε, T )〉
the minimal number was two [see Fig. 5], and for 〈〈γ2(ε, T )〉〉 it is four, producing the factors 1/E4

2 and
1/E4

4 . Following the method developed in Ref. [40], we integrate over these fast modes perturbatively
and derive an effective action for the zero-mode (spatially-uniform supermatrix Q). This procedure is
described in details in Sec. 6.3, with the total number of emergent contributions 7!! = 105 for every
given elementary term from X4X

′
4, X4Y

′
4 and Y4Y

′
4 with four GR and four GA.

• The resulting zero-dimensional sigma model is still too complicated because of the large size of the
Q matrix. However, as described above, the leading contribution comes from configurations where
among energy arguments of eight Green functions, four are pairwise equal (with an uncertainty of γ).
Since the typical energy difference between pairs is (ε, T )� ∆, our extended sigma model splits into
four blocks, each corresponding to the standard Efetov sigma model for 〈GRGA〉. The integrals over
these sigma models are then evaluated non-perturbatively using the standard technique [22].

The detailed discussion of this step in connection with the choice of pairs is presented in Secs. 6.4 and
6.5.

• As a result of the described procedure, quite a few terms will be generated. Fortunately, most of
them will be either zero or less singular than expected. Only a small number of terms will effectively
contribute to fluctuations of the relaxation rate. This selection is discussed in Sec. 7 in the simplest
case of F → 0. The final evaluation of 〈〈γ2(ε, T )〉〉 in the general case of arbitrary parameter F is
performed in Sec. 8.

The announced program will be realized step by step in Secs. 6, 7 and 8.

6. Nonperturbative averaging of eight Green functions

6.1. Pairwise correlator 〈∆Gε∆Gε〉
We start with discussing the pair correlation function on the left-hand side of Eq. (64). It is instructive

to introduce a small energy mismatch ω between the energies of two Green functions and to consider a more
general correlation function ∫

dr dr′ 〈∆Gε(r, r)∆Gε−ω(r′, r′)〉 = −4π2ν2Rγ(ω). (69)

As usual, the terms GRGR and GAGA are averaged trivially, each contributing 1/4 to Rγ(ω). Averaging of
the cross term GRGA is performed with the help of Efetov’s zero-dimensional supersymmetric sigma model
[22], where in accordance with Eq. (68) one has to introduce a complex frequency

Ω = ε+ − (ε− ω)− = ω + i[γ(ε) + γ(ε− ω)]/2. (70)

Evaluating the standard integrals with the help of the machinery developed in Appendix E, we obtain

Rγ(ω) = 1− ReX(−iπΩ/∆), (71)

where the function X(a) is given by Eq. (E.4):

X(a) =
1− e−2a

2a2
. (72)
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In the limit of vanishing width (γ → 0), R0(ω) reproduces the pair correlation function for the Gaussian
unitary ensemble in the random matrix theory [41]: RRMT

0 (ω) = 1 − (sinx/x)2 + πδ(x), where x = πω/∆.
A finite but small width acts as a regularizer of the δ function, accounting for the contribution of the
same broadened level into the correlation function. In the relevant limit of a resolved discrete spectrum,
(ω, γ)� ∆, Rγ(ω) can be written as

Rγ(ω) ≈ ∆δγ(ω), (73)

where δγ(ω) is a Lorentzian approximation of the delta function:

δγ(ω) =
1

π

γ(ε)

γ2(ε) + ω2
. (74)

It is worth noting that Eq. (73) is non-perturbative. Though it looks just like a one-diffuson contribution,
Rγ(ω) ≈ − Im 1/(ω + iγ), it is an asymptotic expansion of the exact non-perturbative expression (71).

The left-hand side of Eq. (64) can be expressed with the help of Eq. (69), with Rγ(0) = ∆/πγ(ε).

6.2. Supersymmetric sigma model for eight Green functions (the case F = 0)

The objects X4X
′
4, X4Y

′
4 and Y4Y

′
4 contain the products of eight ∆G = GR − GA which should be

averaged over disorder. To introduce the method we start with the simplest case of F → 0. Generalization
to the case of an arbitrary F will be performed in Sec. 8. To be specific, we focus on calculating 〈X4X

′
4〉

(disorder averaging of other products is performed analogously and the result is presented in Sec. 7.4). As
we will see in Secs. 6.4 and 7.1, only terms with the equal number of retarded and advanced Green functions
make the leading contribution to mesoscopic fluctuations. Consider, e. g., a particular choice of GR and GA

from X4X
′
4 and calculate

K = 〈GR
ε (r2, r1)GA

ε (r6, r5)GR
ε−ω2

(r5, r6)GA
ε−ω1

(r1, r2)GR
ε1−ω1

(r4, r3)GA
ε2−ω2

(r8, r7)GR
ε2(r7, r8)GA

ε1(r3, r4)〉.
(75)

Disorder averaging of other relevant terms from X4X
′
4 [listed in Eq. (102)] can be performed analogously

(see Secs. 7.2 and 7.3).
In order to calculate K we follow the standard line of Efetov’s supersymmetric sigma model [22], gen-

eralizing it to the case of eight Green functions. We group the Green functions into four RA pairs in the
sequence they appear in Eq. (75):

1 2 3 4
R ε ε− ω2 ε1 − ω1 ε2
A ε ε− ω1 ε2 − ω2 ε1

(76)

thereby introducing a new space of pairs, that will be referred to as 1234. The way this space is introduced
is consistent with the pairing (a) in Eq. (67) shown in Fig. 6(a). The leading contribution to mesoscopic
fluctuations from this pairing will come from configurations when the energies in each pair nearly coincide,
corresponding to Q matrices which are block-diagonal in the space 1234 [see Eq. (88) below]. The other
relevant contribution originates from the pairing (b) in Eq. (67) shown in Fig. 6(b). In principle, it can
be also handled using the 1234 structure of Eq. (76), however the corresponding Q matrices will have a
cumbersome structure in this basis. Therefore in the study of the pairing (b) in Sec. 7.3 we will introduce
1234 space in a different way consistent with that pairing.

The resulting sigma model is formulated in terms of the 16 × 16 supermatrix field Q(r) acting in the
tensor product of the spaces FB ⊗ RA ⊗ 1234, where FB stands for the superspace. The matrix Q can be
written as Q = T−1ΛT , where T spans the supersymmetric coset U(8|4, 4)/U(4|4)× U(4|4), and Λ = σRA

3 .
The sigma-model action is given by (we adopt the fermion-dominated notation of Ref. [22])

S[Q] =
πν

4

∫
dr str

[
D (∇Q(r))

2
+ 4iÊQ(r)

]
, (77)
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where Ê is the diagonal matrix made of the energy arguments [with widths, according to Eq. (68)] of the
corresponding Green functions:

Ê = diag
{
ε+, (ε− ω2)+, (ε1 − ω1)+, (ε2)+, ε−, (ε− ω1)−, (ε2 − ω2)−, (ε1)−

}
⊗ 1FB. (78)

In the sigma-model language, the average product of eight Green functions in Eq. (75) transforms to

K = (πν)8
∫
QAR

21 (r1)QRA
12 (r2)QRA

21 (r5)QAR
12 (r6)QAR

43 (r3)QRA
34 (r4)QRA

43 (r7)QAR
34 (r8)e−S[Q]DQ, (79)

where all the elements of Q matrices in the preexponent are taken from the BB sector (omitted for brevity).
Equation (79) holds only in the limit F → 0, when the interaction range is much larger than the Fermi wave
length, and additional terms in the preexponent are suppressed by Friedel oscillations. In the general case
discussed in Sec. 8, Eq. (79) should be replaced by Eq. (119).

6.3. Integration over fast modes

Besides eight Green functions, the block X4X
′
4 given by Eq. (66) contains four SSI lines, each carrying a

non-zero momentum. Therefore in calculating K in Eq. (79) we should (i) allow fast (q 6= 0) diffuson modes
to make 〈X4X

′
4〉 nonzero, (ii) minimize their number as every fast mode brings a small factor of ∆/ETh, and

(iii) be able to handle the resulting zero-dimensional integral non-perturbatively in order to resolve discrete
levels. This task can be accomplished following the strategy of Ref. [40], where non-universal corrections to
the random-matrix level statistics were calculated beyond the zero-dimensional limit. For this purpose we
write

Q(r) = T−1Q′(r)T, (80)

where the matrix T is spatially uniform, and Q′(r) describes all fast modes with non-zero momenta. Since
the latter are to be accounted perturbatively, we expand Q′(r) near the origin:

Q′(r) = Λ
[
1 +W (r) +W 2(r)/2 + . . .

]
, {W (r),Λ} = 0. (81)

To get the leading contribution to 〈X4X
′
4〉 we extract one fast W from each of the eight Q matrices in

the preexponent of Eq. (79), and average it with the Gaussian action

S(2)[W ] = −πνD
4

∫
dr str[∇W (r)]2, (82)

coming from the gradient term of Eq. (77). Using Wick’s theorem, the correlator of eight W fields can be
expressed as the sum of all possible products of four pairwise correlators. The latter can be easily calculated
with the help of the following contraction rule valid for arbitrary matrices P and R:

〈strPW (r) strRW (r′)〉W = D(r, r′) str(PΛRΛ− PR), D(r, r′) =
〈r|(−∇2)−1|r′〉

πνD
. (83)

According to Wick’s theorem, averaging over fast modes generates 7!! = 105 different terms in the expression
for K. Not all of them are equally important. To pick up the relevant terms one should understand how to
perform further integration over the zero mode. This procedure will be discussed in Sec. 6.4, and in Sec. 6.5
we will proceed with the derivation based on Eq. (83).

6.4. Block structure of the zero-dimensional sigma model and energy pairs

Having integrated out fast diffusive modes, we end up with the effective zero-dimensional sigma model
for the 16× 16 supermatrix Q = T−1ΛT with the action

S0[Q] =
πi

∆
str ÊQ. (84)
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Figure 6: Two types of arranging eight Green functions in the product X4X′
4 [Eq. (66)] into four pairs that produce the most

singular contributions 〈X4X′
4〉

(a)
sing and 〈X4X′

4〉
(b)
sing in Eq. (85). Green functions from the same pair are marked by a dotted

line. The pairings (a) and (b) correspond to the two ways to match energies in Eq. (67). All energy and coordinate indices in
(b) are the same as in (a).

Owing to a large size of the matrix Q, this is still a complicated theory. Fortunately, we do not need
its exact solution since, as discussed in Sec. 5, the most singular contribution to 〈〈γ2(ε, T )〉〉 comes from
pairwise coinciding energies, see Eq. (67). Since we are interested in the limit (ε, T )� ∆, energy difference
between pairs is typically large, |εi−εj | � ∆, and hence correlations between different pairs can be neglected
(configurations with |εi− εj | . ∆ which require non-perturbative treatment exist but their weight is small).
On the other hand, energies from the same pair match with the accuracy of γ and should be treated non-
perturbatively like in Sec. 6.1. In the language of the zero-dimensional sigma model, large energy difference
between pairs suppresses degrees of freedom in the supermatrix Q which are off-diagonal in the space of
pairs. As a result, Q becomes block-diagonal in the space of pairs, and the full theory splits into a product
of four standard Efetov’s supermatrix sigma models for 〈GRGA〉, see Eq. (89) below.

The next step is to understand what are the possible ways to group eight Green functions into four pairs
to maximize their contribution to fluctuations of γ(ε, T ). First of all, it is clear that the Green functions with
the energies ε always need to be in a pair, as they immediately produce the smeared delta function of zero
argument, δγ(0) = 1/πγ [cf. Eq. (74)]. It is this large factor that compensates the analogous contribution
from 〈GR

ε G
A
ε 〉 on the left-hand side of Eq. (64). Our aim then is to identify those pairings that may introduce

an additional large factor of δγ(0) after integration over all intermediate energies. Such a situation can be
realized only if coincidence of the energies in two pairs automatically implies coincidence of the energies in
the third pair. That can be achieved only in two physically relevant cases, (a) and (b), listed in Eq. (67)
and shown diagrammatically in Fig. 6 (there exist three other unphysical pairings which should be discarded
as demonstrated in Appendix F). We emphasize that possible choices of pairing are dictated by the energy
arguments of electron Green functions and are not specific for the particular arrangement of GR and GA.
The only natural requirement is that each pair contains one retarded and one advanced Green function
(otherwise, there is no correlations within a pair at all).

According to this general logic, each diagram for 〈X4X
′
4〉, 〈X4Y

′
4〉 and 〈Y4Y ′4〉 can be written in the form

〈A〉 = 〈A〉(a)sing + 〈A〉(b)sing + 〈A〉reg, (85)

where 〈. . . 〉(a)sing and 〈. . . 〉(b)sing denote singular (in the limit γ → 0) contributions from the pairings (a) and (b).
We proceed with calculating these singular contributions for the term K [a particular element of 〈X4X

′
4〉

defined in Eq. (75)] from the zero-dimensional sigma model (84). The introduction of the 1234 space in
Eq. (76) is consistent with the pairing (a): in the 1234 basis the corresponding matrix Q becomes diagonal.
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On the contrary, the pairing (b) is described by non-diagonal matrices in the 1234 space. To calculate K
(b)
sing

we find it more convenient to change the basis and introduce a new 1234′ space consistent with the pairing

(b), in which the matrix Q is diagonal. Then the calculation of K
(b)
sing becomes completely analogous to the

calculation of K
(a)
sing. To illustrate the technique, we focus on the contribution of K due to the pairing (a)

[the contribution of the pairing (b) is discussed in Sec. 7.3].

6.5. Singular contribution of the pairing (a)

Now we are ready to proceed with the calculation started in Sec. 6.3. In order to apply the contraction
rules (83) for averaging the preexponent in Eq. (79) over fast modes, it is convenient to introduce projectors
onto different sectors of the Q manifold. By definition, we write Qabij (r) = strP abij Q(r), where a and b refer
to the RA space, whereas i and j refer to the 1234 space (BB sector is also implied). For example, the
projector PAR

21 is given by

PAR
21 =


0 PAR 0 0
0 0 0 0
0 0 0 0
0 0 0 0


1234

, PAR =

(
0 PBB

0 0

)
RA

, PBB =

(
0 0
0 1

)
FB

. (86)

As we discussed in Sec. 6.4, the singular contribution K
(a)
sing originates from the matrices Q which are

diagonal in 1234 space. Such a structure of the Q matrix guarantees that only four out of 7!! = 105 terms
appearing after averaging over fast modes [see Eq. (80)] turn out to be non-zero:

K
(a)
sing = (πν)8

〈{
D(r1, r2)D(r5, r6) str

(
PAR
21 QPRA

12 Q− PAR
21 PRA

12

)
str
(
PRA
21 QPAR

12 Q− PRA
21 PAR

12

)
+D(r1, r6)D(r2, r5) str

(
PAR
21 QPAR

12 Q− PAR
21 PAR

12

)
str
(
PRA
21 QPRA

12 Q− PRA
21 PRA

12

)}
×
{
D(r3, r4)D(r7, r8) str

(
PAR
43 QPRA

34 Q− PAR
43 PRA

34

)
str
(
PRA
43 QPAR

34 Q− PRA
43 PAR

34

)
+D(r3, r8)D(r4, r7) str

(
PAR
43 QPAR

34 Q− PAR
43 PAR

34

)
str
(
PRA
43 QPRA

34 Q− PRA
43 PRA

34

)}〉
, (87)

where 〈. . .〉 denotes averaging over the 16× 16 zero-dimensional sigma-model manifold with the action (84).
Since Q is diagonal in the 1234 space, it can be represented as

Q = diag{Q1, Q2, Q3, Q4}, (88)

where Qj are independent 4×4 supermatrices in the RA⊗FB space spanning the standard supermanifold of
the sigma model for 〈GRGA〉. The action (84) then splits into a sum of four separate Efetov’s sigma-model
actions:

S0[Q] =

4∑
j=1

S0j [Qj ] =
πi

∆

4∑
j=1

str ÊjQj , (89)

where the elements of the diagonal matrix Êj are taken from the corresponding sector of Ê defined in Eq. (78).
Now averaging over all four Qj is performed independently and can be done exactly in the standard way
[22]. To handle the supertrace structure in Eq. (87), it is convenient to use the zero-dimensional contraction
rules (E.3) derived in Appendix E. The result can be expressed in a compact form in terms of the quantities

Xj ≡ X (−iπΩj/∆) , Zj ≡ Z (−iπΩj/∆) , (90)

where the functions X(a) and Y (a) are given by Eqs. (E.4) and (E.5):

X(a) =
1− e−2a

2a2
, Z(a) =

1

a
, (91)

and Ωj is the energy difference between the arguments of GR and GA in the corresponding pair [cf. Eq. (76)]:

Ω1 = ε+ − ε−, Ω2 = (ε− ω2)+ − (ε− ω1)−, Ω3 = (ε1 − ω1)+ − (ε2 − ω2)−, Ω4 = (ε2)+ − (ε1)−.
(92)
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To demonstrate the technique, consider for example one of the four terms in Eq. (87):

K
(a)
sing = (πν)8D(r1, r2)D(r5, r6)D(r3, r4)D(r7, r8)L1 + . . . (93)

Substituting Q in the form (88) and tracing over the 1234 space we obtain

L1 =
〈

str(PARQ2P
RAQ1 − PAR

21 PRA
12 ) str(PRAQ2P

ARQ1 − PRA
21 PAR

12 )

× str(PARQ4P
RAQ3 − PAR

43 PRA
34 ) str(PRAQ4P

ARQ3 − PRA
43 PAR

34 )
〉
. (94)

Sequentially applying the contraction rules (E.3) for averaging over all Qj , we arrive at the exact non-
perturbative expression

L1 = (4 + 2X1 + 2X2 + 4X1X2)(4 + 2X3 + 2X4 + 4X3X4). (95)

Contributions of the three other terms in Eq. (93) are calculated analogously, and we obtain finally the
singular part of K due to pairing (a):

K
(a)
sing = (πν)8 {D(r1, r2)D(r5, r6)(4 + 2X1 + 2X2 + 4X1X2) + 4D(r1, r6)D(r2, r5)Z1Z2}

×{D(r3, r4)D(r7, r8)(4 + 2X3 + 2X4 + 4X3X4) + 4D(r3, r8)D(r4, r7)Z3Z4} . (96)

Though the singular contribution due to the energy pairing (a) may originate only from Eq. (96), not
all terms in this equation do actually produce the singular contribution. We analyze this expression and
perform the final step of calculation in the next Section.

7. Mesoscopic fluctuations at F = 0

7.1. General recipe

The most singular contribution from Eq. (96) originates from the terms which contain the maximal
number (four) of Xj and Zj . We have already explained that this choice is dictated by the necessity to
obtain two smeared delta-functions (74) with zero argument, contributing a large factor ∆/γ each. This is
also the reason why we have to choose each pair in the 1234 space to consist of one GR and one GA: large
factors Xj and Zj appear as a result of averaging 〈GRGA〉 over the zero-dimensional diffusive model.

In calculating the energy integrals in Eq. (64), the important contribution comes from the vicinity of the
poles of Xj and Zj . This observation allows us to work in the limit Ωj ∼ γ � ∆ [with Ωj introduced in
Eq. (92) being the energy mismatch within a pair] and use the leading-order asymptotics of Eqs. (91):

Xj ≈ Zj =
i∆

πΩj
. (97)

The chosen sequence of GR and GA in the correlator K [Eq. (75)] also ensures that the product 1/Ω2Ω3Ω4

has poles both in the upper and lower half-planes of the energy variables ε1, ε2, ω1 and ω2. Hence integration
over intermediate energies does not vanish and indeed produces the desired delta-function-like contribution.

Now the recipe for extracting the leading singular term from Eq. (96) and similar expressions for other
diagrams can be formulated as follows. One should substitute all Xj by Zj and take the term proportional
to Z = Z1Z2Z3Z4. Then the coefficient Z should be replaced by

Z −→ 4∆4

π2γ(ε)

δ(ε1 − ε2)δ(ω1 − ω2)

γ(ε− ω1) + γ(ε1) + γ(ε1 − ω1)
, (98)

where the factor ∆/πγ(ε) originates from Z1 and will be canceled by a similar factor from the left-hand
side of Eq. (64) (see Sec. 6.1), while the coefficient in front of the delta functions can be easily obtained by
calculating, e.g.,

∫
Z2Z3Z4 dε2dω2. The last step is to integrate four diffuson propagators in Eq. (96) over ri

[see Eq. (64)]. In doing that, δκ(r−r′) in the expressions for X4X
′
4, X4Y

′
4 and Y4Y

′
4 can be considered as the
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usual zero-range delta function. Then depending on the term under consideration, diffusons combine either
into (trD2)2 or trD4. These traces evaluated in the Fourier space produce either 1/E4

2 or 1/E4
4 , where

En ∼ ETh are defined in Eq. (8). As a result, the contribution to mesoscopic fluctuations of the inelastic
rate can be written in the form

〈〈γ2(ε, T )〉〉(i)A =
λ4∆5

4π3
c
(i)
A

∫
dε1dω1

(Fε1 −Fε1−ω1
)2(Bω1

+ Fε−ω1
)2

γ0(ε− ω1, T ) + γ0(ε1, T ) + γ0(ε1 − ω1, T )
, (99)

where A is a particular diagram or a set of diagrams considered, and i labels the type of the energy pairing
(a or b).

7.2. Contribution from X4X
′
4 due to the energy pairing (a)

Applying this general recipe to expression (96) for K
(a)
sing, we first reduce it to the form

K
(a)
sing = 16(πν)8Z {D(r1, r2)D(r5, r6) +D(r1, r6)D(r2, r5)} {D(r3, r4)D(r7, r8) +D(r3, r8)D(r4, r7)} ,

(100)

and then, tracing the diffuson propagators, obtain the coefficient c
(a)
K in Eq. (99):

c
(a)
K =

1

2N2
s

(
1

E4
2

+
1

E4
4

)
. (101)

To complete the analysis of the contribution from X4X
′
4 due type-(a) energy pairing, one has to consider

other arrangements of GR and GA. The requirement of having one GR and one GA in each pair limits the
number of various possibilities to 24 = 16. However, not all of them should be taken into account. Consider,
for example, the correlator

K ′ = 〈GR
ε (r2, r1)GA

ε (r6, r5)GR
ε−ω2

(r5, r6)GA
ε−ω1

(r1, r2)GR
ε1−ω1

(r4, r3)GA
ε2−ω2

(r8, r7)GA
ε2(r7, r8)GR

ε1(r3, r4)〉,

which differs from K [Eq. (75)] by changing R ↔ A in the last two Green functions. The expression
analogous to Eq. (96) will contain X∗4 instead of X4 and Z∗4 instead of Z4, which renders the poles of both
X3X

∗
4 and Z3Z

∗
4 lying in the upper half-plane of ε2. Therefore, the contribution of this term is non-singular

and should be disregarded. A simple analysis demonstrates that there are only four possibilities to arrange
GR and GA in X4X

′
4:

RARARARA, ARRARARA, RAARARAR, ARARARAR, (102)

where all energy and coordinate indices follow Eq. (75). Each choice gives the same contribution given by
Eq. (101). As a result, the total contribution of the term X4X

′
4 due to type-(a) energy pairing (shown in

Fig. 6a) is described by the coefficient

c
(a)
XX =

2

N2
s

(
1

E4
2

+
1

E4
4

)
. (103)

7.3. Contribution from X4X
′
4 due to the energy pairing (b)

Following the same line we can analyze the singular part of K due to pairing (b) shown in Fig. 6(b).
Instead of Eq. (100) we obtain:

K
(b)
sing = 16(πν)8ZD(r1, r2)D(r3, r4)D(r5, r6)D(r7, r8). (104)

Following the procedure described in Sec. 7.1 and utilizing the same four possibilities (102) to arrange GR

and GA, we arrive at

c
(b)
XX =

1

N2
sE

4
2

. (105)
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7.4. Contributions from X4Y
′
4 and Y4Y

′
4

It is left to discuss the other two terms, X4Y
′
4 and Y4Y

′
4 , in Eq. (64). Following the same steps we obtain

that the contributions of the cross term 〈X4Y
′
4〉 from both the pairings (a) and (b) vanish after integration

over fast diffusive modes due to the diagonal structure of the Q matrix in the 1234 space, while in calculating
〈Y4Y ′4〉 only the pairing (b) should be taken into account for the same reason.

Consider, e. g., a particular realization of GR and GA from 〈Y4Y ′4〉 [compare with K defined in Eq. (75)]:

K̃ = 〈GR
ε (r4, r1)GA

ε1(r1, r2)GR
ε1−ω1

(r2, r3)GA
ε−ω1

(r3, r4)GA
ε (r8, r5)GR

ε2(r5, r6)GA
ε2−ω2

(r6, r7)GR
ε−ω2

(r7, r8)〉.
(106)

Its singular contribution due to the pairing (b) is given by

〈K̃〉(b)sing = 16(πν)8ZD(r1, r2)D(r3, r4)D(r5, r6)D(r7, r8), (107)

Tracing the diffusons and taking into account four possibilities (102), we get

c
(b)
Y Y =

1

N4
sE

4
2

. (108)

Finally, adding the contributions (103), (105) and (108) we obtain the final expression for mesoscopic
fluctuations of the inelastic rate in the limit F → 0:

〈〈γ2(ε, T )〉〉 =
λ4∆5

4π3N4
s

(
3N2

s + 1

E4
2

+
2N2

s

E4
4

)∫
dε1dω1

(Fε1 −Fε1−ω1
)2(Bω1

+ Fε−ω1
)2

γ0(ε− ω1, T ) + γ0(ε1, T ) + γ0(ε1 − ω1, T )
. (109)

8. Mesoscopic fluctuations at arbitrary F

8.1. Account for a finite F in the sigma-model language

In this Section we generalize the result (109) to the case of an arbitrary interaction parameter F and
derive the general expression (11). First, we explain the main idea with an example of the type-(a) energy
pairing in the diagram for X4X

′
4, and then apply it to the other diagrams (X4Y

′
4 and Y4Y

′
4) and energy

pairing (b).
When the range of the SSI (4) characterized by the function δκ(r) becomes comparable to the Fermi

wave length (i. e., F becomes non-negligible), a simple sigma-model expression (79) for the correlator K
breaks down. To modify it one has to turn back to the intermediate step in the derivation of the sigma
model, prior to the final integration over the 16-component supervector ψ used to represent Green functions
in the functional form. At this stage, the correlator K [Eq. (75)] is written as

K =

∫
〈ψR1(r2)ψ∗R1(r1)ψA1(r6)ψ∗A1(r5)ψR2(r5)ψ∗R2(r6)ψA2(r1)ψ∗A2(r2)

× ψR3(r4)ψ∗R3(r3)ψA3(r8)ψ∗A4(r7)ψR4(r7)ψ∗R4(r8)ψA4(r3)ψ∗A4(r4)〉ψ e−S[Q]DQ, (110)

where the bosonic components of the superfield ψ are implied. Averaging over ψ should be performed with
the help of Wick’s theorem with the correlation function

〈ψ(r)ψ∗(r′)〉 = −ig(r, r′)Λ, (111)

where g is the supermatrix Green function defined as

g(r, r′) = 〈r|(Ê −H0 + iQ/2τ)−1|r′〉. (112)

The result of the ψ-averaging is sensitive to the distance between the points ri controlled by the spatial
range of the SSI propagators through the factors δκ(ri − rj) in Eq. (66). Since the interaction is assumed
to be short-range on the scale of the system size L, only correlations between ψ’s coupled to the same
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SSI propagator should be taken into account. Therefore the ψ-averaging in Eq. (110) factorizes into four
contributions corresponding to four SSI propagators in Eq. (66):

K =

∫
K(1,3)K(2,4)K(5,7)K(6,8)e−S[Q]DQ. (113)

Consider for example the group of four ψ’s coupled by the interaction with δκ(r1 − r3):

K(1,3) = 〈ψ∗R1(r1)ψA2(r1)ψ∗R3(r3)ψA4(r3)〉ψ. (114)

Application of Wick’s theorem generates two terms:

K(1,3) = −gA2,R1(r1, r1)gA4,R3(r3, r3)− gA2,R3(r1, r3)gA4,R1(r3, r1). (115)

The first (diagonal) term in Eq. (115) reduces to the Q matrix due to the self-consistency equation
g(r, r) = −iπνQ(r) [22], and then one immediately recovers Eq. (79) used previously in the analysis of the
F = 0 case. In contrast, the second (off-diagonal) term in Eq. (115) cannot be so easily expressed in terms
of the Q matrix. But here we can use the knowledge that at the later stage, in the process of averaging
over fast modes (see Sec. 6.3), each Q will be expanded to the first power of W [see Eqs. (80), (81)]. The
linear-in-W contribution to g is given by:

δg(r1, r3) = − i

2τ

∫
dr′〈r1|(−H0 + iQ/2τ)−1|r′〉T−1ΛW (r′)T 〈r′|(−H0 + iQ/2τ)−1|r3〉, (116)

where we write Q = T−1ΛT , and neglect the term Ê as we are working in the diffusive limit max{ε, T}τ � 1.
Since W anticommutes with Λ, we can rewrite Eq. (116) in the form

δg(r1, r3) = − i

2τ

∫
dr′ T−1〈r1|(−H0+iΛ/2τ)−1|r′〉〈r′|(−H0−iΛ/2τ)−1|r3〉ΛWT = − iδQ

2τ
(GRGA)(r1−r3),

(117)
where δQ = T−1ΛWT , and GRGA is a scalar function given by Eq. (A.3).

Multiplying the second term of Eq. (115) by δκ(r1 − r3) and integrating over the difference r1 − r3, we
immediately recover the factor F introduced in Eq. (A.2). Hence, Eq. (115) can be written as

K(1,3) = (πν)2
[
QAR

21 (r1)QAR
43 (r3) + F QAR

23 (r1)QAR
41 (r3)

]
, (118)

where with our accuracy we do not distinguish between r1 and r3. Generally speaking, Eq. (118) is incorrect.
We write it in such a form for brevity, assuming that it will be further subject to the procedure of fast mode
extraction described in Sec. 6.3.

Performing the same analysis for other K(i,j) from Eq. (113), one concludes that for the purpose of
calculation of mesoscopic fluctuations of the relaxation rate at F 6= 0, Eq. (79) should be modified as

K = (πν)8
∫ [

QAR
21 (r1)QAR

43 (r3) + F QAR
23 (r1)QAR

41 (r3)
] [
QRA

12 (r2)QRA
34 (r4) + F QRA

14 (r2)QRA
32 (r4)

]
×
[
QRA

21 (r5)QRA
43 (r7) + F QRA

23 (r5)QRA
41 (r7)

] [
QAR

12 (r6)QAR
34 (r8) + F QAR

14 (r6)QAR
32 (r8)

]
e−S[Q]DQ, (119)

where the difference between the coordinates within the same bracket can be neglected. Similar expressions
originate in the analysis of other contributions from X4X

′
4, X4Y

′
4 and Y4Y

′
4 .

8.2. Contributions of different diagrams and energy pairings

To find mesoscopic fluctuations at a finite F , one should use Eq. (119) as a starting point and perform
all the steps outlined in Secs. 6 and 7. This is a routine procedure leading to the following results. In the
case F 6= 0, there are finite contributions from all the terms X4X

′
4, X4Y

′
4 , and Y4Y

′
4 , and from both energy

25



pairings (a) and (b). These six contributions are characterized by six coefficients c
(i)
A in Eq. (99). After some

algebra, we obtain (the coefficients c
(i)
XY already contain the factor 2 accounting for the mirror term Y4X

′
4):

c
(a)
XX =

2(1 + F 2)2

N2
sE

4
2

+
2(1 + F 4)

N2
sE

4
4

, c
(b)
XX =

1 + 6F 2 + F 4

N2
sE

4
2

+
4F 2

N2
sE

4
4

, (120)

c
(a)
XY = c

(b)
XY = −8(F + F 3)

N3
sE

4
2

− 4(F + F 3)

N3
sE

4
4

, (121)

c
(a)
Y Y =

8F 2

N4
sE

4
2

+
4F 2

N4
sE

4
4

, c
(b)
Y Y =

1 + 6F 2 + F 4

N4
sE

4
2

+
4F 2

N4
sE

4
4

. (122)

Summing the contributions (120)–(122), we come to the final result (11) valid for an arbitrary F .

9. Discussion and conclusion

In this work we have analyzed the applicability of the Fermi-golden-rule description of the initial stage
of quasiparticle decay in diffusive quantum dots in the regime when the single-particle levels are already
resolved. Approaching the problem from the high energy/temperature side, where each energy level can
be characterized by a Lorentzian width γ0(ε, T ), we have calculated mesoscopic fluctuations of the energy
relaxation rate. The leading contribution to fluctuations comes from the diagrams which describe the square
of the same decay process, i.e. have the same set of final states. The resulting expression is non-perturbative
in γ0, which appears in the denominator of Eq. (11), ensuring the growth of fluctuations with the decrease
of the excitation energy and/or temperature.

Quantum relaxation of the initial state |i〉 can be described by the return probability

P (t) =
∣∣〈i|e−iHt|i〉∣∣2, (123)

where H is the Hamiltonian of the interacting quantum dot, and the bar stands for the thermal average. In
the semiclassical FGR picture this is just a pure exponential decay:

PFGR(t) = e−γ(ε,T )t, (124)

where the rate γ(ε, T ) depends on a particular disorder realization. Its average value is given by Eq. (7),
and we focused on its mesoscopic fluctuations. We found that the FGR description of the initial stage of
quasiparicle decay is applicable as long as max{ε, T} � εFGR. In this limit, each level is characterized by a
well-defined energy width γ(ε, T ), which weakly fluctuates near the FGR mean:

〈〈γ2(ε, T )〉〉
γ20(ε, T )

∼
(

εFGR

max{ε, T}

)4

. (125)

The temperature and the excitation energy enter the result in a similar way [note, however, the presence of
the factor Υ(ε/2T ) in Eq. (14), that can change by two orders of magnitude]. This fact is a consequence of
the lowest-order approximation. In higher orders their role is expected to be different, in accordance with
the difference between the relaxation dynamics in the hot-electron and thermal problems [17].

It is important that in the range of applicability of the FGR description, max{ε, T} � εFGR, the
hybridiation with distant generations and eventually many-body localization effects (if any) become relevant
at sufficiently large time scales. The characteristic time t∗ when PFGR(t) crosses over to a weaker dependence
is determined by the initial state. In the limit max{ε, T} � εFGR, the scale t∗ satisfies γ0(ε, T )t∗ � 1,
indicating that almost all the quasiparticle weight is lost during the FGR exponential relaxation (for the
hot-electron problem, γ0(ε, 0)t∗ ∼ ln(ε/εFGR) [18]).

Our approach is conceptually similar to the one used by Basko, Aleiner and Altshuler (BAA) [14], and
hence it is instructive to compare the two results. BAA considered inelastic relaxation in a chaotic quantum
dot (in Ref. [14], referred to as the localization cell), working in the basis of exact one-particle states |α〉
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and treating electron-electron interaction phenomenologically. Interaction matrix elements, 〈αβ|V |γδ〉, were
assumed to be independent normally distributed random variables with the standard deviation λBAA∆ for
energy difference smaller than the ultraviolet cutoff M∆, and zero otherwise. The FGR relaxation rate is
then given by γBAA(T ) ∼ λ2BAAMT , and BAA obtained the following expression for mesoscopic fluctuations:

〈〈γ2(T )〉〉BAA

γ2BAA(T )
∼ λ4BAAM∆2T

γ3BAA(T )
∼ ∆2

λ2BAAM
2T 2

. (126)

In order to apply these results to the case of a diffusive quantum dot, one should put λBAA ∼ λ∆/ETh [5]
and M ∼ T/∆. Then γBAA(T ) coincides with the Sivan-Imry-Aronov relaxation rate (7), while the estimate
(126) reproduces our result (125) for mesoscopic fluctuations.

Finally, we emphasize that our result (11) for the leading contribution to mesoscopic fluctuations provides
an exact account for the (screened) electron-electron interaction in a diffusive quantum dot. It has an
important implementation for the statistics of the interaction matrix elements 〈αβ|V |γδ〉 in the lattice-
model language. Since Ref. [5], it is usually assumed for simplicity that this statistics is Gaussian. However,
our result (11) demonstrates that for a real diffusive quantum dot such an assumption is generally incorrect.
Indeed, for the Gaussian statistics all correlators of the four matrix elements in 〈〈γ2(ε, T )〉〉 can be expressed
through pairwise correlators (the Wick theorem), which are known to be determined by E2 only [3, 5].
Therefore the presence of the quantity E4 in Eq. (11) indicates that the statistics of the interaction matrix
elements in a quantum dot is essentially non-Gaussian. This fact should be taken into account in constructing
the theory of many-body localization in quantum dots.

We thank I. Aleiner, Ya. M. Blanter, M. V. Feigel’man, I. V. Gornyi, V. E. Kravtsov, A. D. Mirlin, and
A. Silva for useful discussions. This work was supported by the Russian Science Foundation under Grant
No. 14-42-00044 (M.A.S.).

Appendix A. Non-RPA averaging of the relaxation rate

In this Appendix we consider the non-RPA diagrams 5(b), 5(c) and 5(d) for the average energy relaxation
rate. The main difference from the RPA diagram 5(a) is that now one [5(c) and 5(d)] or both [5(b)] SSI
lines are coupled to diffusons via the square box

I =

A

R A

R

=

∫
dr [(GRGA)(r)]2V (r), (A.1)

where solid lines denote electron Green functions and the zigzag line stands for SSI. Contrary to the RPA
diagram 5(a), where the momentum of the SSI line coincides with the slow (q ∼ 1/L) diffuson momentum,
in the box configuration the interaction momentum can be comparable to pF typically carried by the Green
functions. The ratio of the diagram with the square box (A.1) to a similar diagram with the RPA averaging
is characterized by the parameter

F =
I

(2πντ)2V (q = 0)
=

1

(2πντ)2

∫
dr [(GRGA)(r)]2δκ(r). (A.2)

where the smeared delta function δκ(r) is defined in Eq. (4).
The real-space representation of (GRGA)(r) in the limit of a good metal, pF l� 1, is given by

(GRGA)(r) =

∫
eipr

ξ2 + 1/4τ2
dp

(2π)d
= 2πντ jd(pF r)e

−r/2l, (A.3)

where τ and l are the mean free time and mean free path correspondingly, ξ = (p2 − p2F )/2m, and the
function jd(x) = 〈eixn1〉n describes Friedel oscillations in d dimensions: j2(x) = J0(x) and j3(x) = sinx/x
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[J0(x) is the Bessel function]. Substituting Eq. (A.3) into Eq. (A.2) we obtain for F :

F =

∫
j2d(pF r)e

−r/lδκ(r) dr =

∫
vκ(q)

dq

(2π)d

∫
j2d(pF r)e

iqre−r/l dr. (A.4)

Then we average over angles and take the leading term in pF l� 1:

F =

∫
vκ(q)

dq

(2π)d

∫
j2d(pF r)jd(qr) dr. (A.5)

Evaluating the integral over r we arrive at Eq. (5).
In the case of the Coulomb interaction, vκ(q) is given by Eq. (30) and we obtain [38, 42]

FCoul
3D =

(
κ

2pF

)2

ln

[
1 +

(
2pF
κ

)2
]
, FCoul

2D =
2

π

arccosh(2pF /κ)√
(2pF /κ)2 − 1

. (A.6)

Appendix B. Expressions for Yabcd(ε, ε′, ω, q)

Here we present explicit expressions for the effective interaction propagators Yabcd(ε, ε
′, ω,q) defined in

Eq. (41). All components of V = V (ω,q) are taken at frequency ω and momentum q.

YRR,RR = V K + Fε′−ωV R + FεV A, (B.1)

YRR,RA = (Fε′ −Fε′−ω)(V K + FεV A)− (1−Fε′Fε′−ω)V R, (B.2)

YRR,AR = −V R, (B.3)

YRR,AA = V K −Fε′V R + FεV A, (B.4)

YRA,RR = −(Fε −Fε−ω)(V K + Fε′−ωV R)− (1−FεFε−ω)V A, (B.5)

YRA,RA = −(Fε −Fε−ω)(Fε′ −Fε′−ω)V K + (Fε −Fε−ω)(1−Fε′Fε′−ω)V R

− (1−FεFε−ω)(Fε′ −Fε′−ω)V A, (B.6)

YRA,AR = (Fε −Fε−ω)V R, (B.7)

YRA,AA = −(Fε −Fε−ω)(V K −Fε′V R)− (1−FεFε−ω)V A, (B.8)

YAR,RA = −(Fε′ −Fε′−ω)V A, (B.9)

YAR,AR = 0, (B.10)

YAR,AA = −V A, (B.11)

YAR,RR = −V A, (B.12)

YAA,RA = (Fε′ −Fε′−ω)(V K −Fε−ωV A)− (1−Fε′Fε′−ω)V R, (B.13)

YAA,AA = V K −Fε′V R −Fε−ωV A, (B.14)

YAA,RR = V K −Fε−ωV A + Fε′−ωV R, (B.15)

YAA,AR = −V R. (B.16)

Appendix C. Reducible part of the correlator 〈γ2(ε, T )〉

In this methodological Appendix we show how to extract the reducible part of the correlator 〈γ2(ε, T )〉
from the general expression (64) and demonstrate that it coincides with the square γ20(ε, T ) of the average
relaxation rate given by Eq. (7). For simplicity, we consider the case of a sufficiently long-range interaction
with F = 0, when only the term X4X

′
4 contributes to Eq. (64).

In the formalism of kinetic equation used in our analysis, extraction of the reducible part should be done
with care, and a naive independent averaging of X4 and X ′4 would give a wrong answer. The reason is that
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r1 r2

r3r4 ε

ε

ε− ω2

ε− ω1

Figure 7: The reducible part of mesoscopic fluctuations of the relaxation rate, 〈γ2(ε, T )〉red, in terms of the dynamically
screened interaction [cf. Fig. 3(b)]. The dotted line denotes non-perturbative averaging of GεGε over disorder.

the product ∆Gε∆Gε contained both on the left- and right-hand sides of Eq. (64) requires non-perturbative
treatment. Disorder averaging on the left-hand side of Eq. (64) is discussed in Sec. 6.1, while on the right-
hand side one has to take into account non-perturbative averaging between Green functions with the energies
ε only. In the language of the sigma model developed in Sec. 6.2, this means that after averaging over fast
modes non-perturbative integration over the sigma-model manifold should be performed only in the sector
1 of the 1234 space, whereas in all other sectors one can simply take the saddle-point value Qj = Λ.

This observation significantly simplifies further calculation, as now we can use the representation of
Eqs. (45) and (48) in terms of the dynamically screened RPA interaction ∆V = V R−V A = 2i ImV R instead
of that of Eq. (64) with the statically screened interaction. The corresponding reducible contribution to
〈γ2(ε, T )〉 then should be extracted from

〈γ2(ε, T )〉red
∫
dr dr′ 〈∆Gε(r, r)∆Gε(r

′, r′)〉

=
1

4

∫
dr1 . . . dr4(dω1)(dω2) (Bω1 + Fε−ω1) (Bω2 + Fε−ω2) ∆V (ω1, r1 − r2)∆V (ω2, r3 − r4)〈X̃4〉, (C.1)

where
X̃4 = ∆Gε(r2, r1)∆Gε−ω1

(r1, r2)∆Gε(r4, r3)∆Gε−ω2
(r3, r4), (C.2)

and 〈. . .〉 implies now averaging over minimal number (two) of fast modes and exact non-perturbative
averaging of Gε(r2, r1)Gε(r4, r3), see the diagram in Fig. 7.

Before we proceed, we highlight the important subtlety regarding R–A counting. Consider first inde-
pendent averaging over disorder in each bubble, when correlations between Gε(r2, r1) and Gε(r4, r3) are
neglected. This is precisely the situation encountered in Sec. 4.1, see Eq. (51) and Fig. 3(c). To organize a
diffuson in each bubble, one needs one GR and one GA. Therefore only four out of sixteen terms would con-
tribute to 〈∆Gε(r2, r1)∆Gε−ω1

(r1, r2)〉〈∆Gε(r4, r3)∆Gε−ω2
(r3, r4)〉: RARA, RAAR, ARRA, ARAR. The

situation changes if we consider non-perturbative correlations between Gε(r2, r1) and Gε(r4, r3). In this
case, only RAAR and ARRA from the previous four contributions survive. At the same time, now we have
to take into account six additional terms: RRAR, RAAA, RRAA, ARRR, AARA, AARR. It turns out
that each of this terms admits configuration with two fast diffusons, and, as a result, contributes equally to
〈γ2(ε, T )〉red.

To perform averaging over disorder, we generalize the technique developed in Secs. 6 and 7. The pair
coupling introducing the 12 space is obvious: {Gε(r2, r1), Gε(r4, r3)} and {Gε−ω1(r1, r2), Gε−ω2(r3, r4)}.
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R, ε1 − ωR, ε1 R, ε1

A, ε2

A, ε1 − ωR, ε1 R, ε1

A, ε2

Figure 8: Diagrams for the diffuson self-energy Π(ε1, ε2), with the interaction line inserted into GR (there are mirror
counterparts with the interaction inserted into GA). The bare diffuson D0(ω,q) is depicted by the shaded block. The dashed
lines denote the beginning of external diffusons which are not included into the self-energy part. The diagram (b) admits
insertion of an impurity line in two ways (not shown), producing the standard Hikami box as an interaction vertex of four
diffusons [47].

After perturbative averaging over fast modes and non-perturbative averaging over zero modes we obtain

〈GRGRGAGR〉 = −2(πν)2X1D(r1, r2)D(r3, r4), (C.3)

〈GRGAGAGR〉 = (πν)2
[
(4 + 2X1 + 2X2 + 4X1X2)D(r1, r2)D(r3, r4) + 4Z1Z2D(r1, r4)D(r2, r3)

]
, (C.4)

〈GRGRGAGA〉 = (πν)2
[
(4 + 2X1 + 2X∗2 + 4X1X

∗
2 )D(r1, r2)D(r3, r4) + 4Z1Z

∗
2D(r1, r4)D(r2, r3)

]
, (C.5)

〈GRGAGAGA〉 = −2(πν)2X1D(r1, r2)D(r3, r4). (C.6)

Here the order of Green functions is the same as in Eq. (C.2), and the factors Xj , Zj are defined in Eqs. (90)–
(92). There are also four equations which are complex conjugate to Eqs. (C.3)–(C.6) (obtained by replacing
GR ↔ GA).

As the energies in the second pair, {ε − ω1, ε − ω2}, are not supposed to coincide, the terms with
X2 and Z2 describing correlations between Gε−ω1

(r1, r2) and Gε−ω2
(r3, r4) contain additional smallness of

∆/max{ε, T} and thus can be safely neglected. Retaining only the terms with X1 = ∆/πγ(ε) � 1, we
obtain that each average (C.3)–(C.6) as well as its complex conjugate, in the leading order, contributes
γ20(ε, T )/8 to 〈γ2(ε, T )〉red. Hence their sum equals 〈γ2(ε, T )〉red = γ20(ε, T ), reproducing the square of the
average relaxation rate, as expected.

Appendix D. Diffuson with the electron-electron interaction

In Sec. 5, we introduced the inelastic single-particle level broadening in Eq. (68). This energy level
width plays an important role as a regularizer of the otherwise divergent delta functions in the process
of non-perturbative averaging over disorder [see, e. g., Eq. (98)]. As has been pointed out in Ref. [43],
the same quantity γ0(ε, T ) determines the width of the single-particle electron Green function (that was
calculated in Sec. 4) and the mass of two-electron particle-particle (cooperon) [44, 45] and particle-hole
(diffuson) [3, 43, 46] propagators in the presence of interaction. To make this paper comprehensive, we
rederive this result in the framework of the modified Keldysh technique introduced in Sec. 3.1. We consider
the zero-momentum diffuson and assume Coulomb interaction in the limit F → 0.

The important contribution comes from the elastic processes only (processes that do not lead to the
energy exchange between GR

ε1 and GA
ε2). As a result, the diffuson Del(ε1, ε2) can be found from the algebraic

(not integral) Dyson equation:

DR
el(ε1, ε2) = DR

0 (ε1 − ε2, 0) +DR
0 (ε1 − ε2, 0)Π(ε1, ε2)DR

el(ε1, ε2). (D.1)

Here DR
0 (ω,q) is the bare diffuson, defined in Eq. (51), and Π(ε1, ε2) is the elastic part of the self-energy

(also at zero momentum). In the lowest order, Π(ε1, ε2) is given by the diagrams shown in Fig. 8 and their
counterparts where the interaction line is coupled to GA.
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The contribution of the diagrams in Fig. 8 equals

Π1(ε1, ε2) =− i

2

∫
(dω)(dq)DR

0 (ε1 − ε2 − ω,q)
(
V K + Fε1−ωV R + Fε1V A

)
+
i

2

∫
(dω)(dq)

[
Dq2 − i(ε1 − ε2 + ω)

] (
DR

0 (ω,q)
)2

(Fε1 −Fε1−ω)V R. (D.2)

The contribution of the analogous diagrams with the interaction line inserted to GA can be written as

Π2(ε1, ε2) =− i

2

∫
(dω)(dq)DR

0 (ε1 − ε2 − ω,q)
(
V K −Fε2V A −Fε2+ωV R

)
+
i

2

∫
(dω)(dq)

[
Dq2 − i(ε1 − ε2 + ω)

] (
DR

0 (ω,q)
)2

(Fε2+ω −Fε2)V R. (D.3)

In Eqs. (D.2) and (D.3) all interaction propagators are taken at frequency ω and momentum q. Employing
analyticity properties, we obtain for the diffuson self-energy Π = Π1 + Π2:

Π(ε1, ε2) = − i
2

∫
(dω)(dq)DR

0 (ω,q)
{

2V K(ε1 − ε2 − ω,q)

+ (Fω−ε1 + Fω+ε2)
[
V R(ε1 − ε2 − ω,q)− V R(ω,q) + i(ε1 − ε2)DR

0 (ω,q)V R(ω,q)
]}
. (D.4)

In the universal limit of Coulomb interaction, V R(A)(ω,q) = (Dq2 ∓ iω)/NsνDq
2, we obtain

Π(ε1, ε2) = − 1

Nsν

∫
(dω)(dq)ω(2Bω − (Fω−ε2 + Fω+ε1))

Dq2(Dq2 − iω − i(ε1 − ε2))
+
ε1 − ε2
Nsν

∫
(dω)(dq)(Fω−ε2 + Fω+ε1)

Dq2(Dq2 − iω − i(ε1 − ε2))
. (D.5)

Two terms in this expression have a different nature. In the first term, the integration over ω converges
at the scale max{T, ε1, ε2}, and the summation over momenta converges at Dq2 ∼ ETh. In the second
term, the main contribution comes from ETh � Dq2 � ω � τ−1 (τ is the mean free time). Assuming the
equilibrium distribution function, we obtain

Π(ε1, ε2) = − ∆

2πNsE2
2

(
2π2T 2 + ε21 + ε22

)
+

2(ε1 − ε2)

Nsν

∫
(dω)(dq) signω

Dq2(Dq2 − iω)
. (D.6)

Using the result (7) for γ0(ε, T ) (with λ = 1 and F = 0), we can write

Π(ε1, ε2) = −γ0(ε1, T ) + γ0(ε2, T )

2
+ i(ε1 − ε2)(Z − 1), (D.7)

where Z is the wave-function renormalization factor [48]:

Z − 1 =
2

πNsν

∫ 1/l

1/L

(dq)

Dq2
ln

1

Dq2τ
, (D.8)

L is the linear size of the sample, l is the mean free path.
Finally, the zero-dimensional diffuson acquires the form

DR
el(ε1, ε2) =

1

−i(ε1 − ε2)Z + [γ0(ε1, T ) + γ0(ε2, T )]/2
. (D.9)

Precisely the same form of the diffuson follows from the sigma model (77), provided the wave function
renormalization can be neglected, Z − 1� 1.

31



(c) (d) (e)

Figure 9: Spurious ways to match the energies of eight Green functions listed in Eq. (F.1). All energy and coordinate indices
are the same as in Fig. 6(a). Two pairs are shown by the dotted lines, while the rest four Green functions have the energy ε
of the decaying particle. Such configurations automatically nullify the collision integral and do not contribute to mesoscopic
fluctuations of γ(ε, T ).

Appendix E. Contraction rules for the zero-dimensional sigma model

In Efetov’s parametrization [22], the sigma-model action for 〈GR
ε1G

A
ε2〉 [where the Green functions may

contain a finite width γ(E), see Eq. (68)] depends only on the ‘radial’ variables λF and λB :

S0 = a (λB − λF) , (E.1)

where

a = −πi
∆
{(ε1)+ − (ε2)−} , (E.2)

and ε± are defined in Eq. (68). In order to calculate correlation functions, the full form of the parametrization
should be employed. After some superalgebra, one can verify that the following non-perturbative contraction
rules hold for averaging over the zero-dimensional sigma model with the action (E.1):

〈strPQ strRQ〉 = strPΛ strRΛ + Z str (PR− PΛRΛ)−X (strP strR− strPΛ strRΛ) , (E.3a)

〈strPQRQ〉 = strPΛRΛ + Z (strP strR− strPΛ strRΛ)−X str (PR− PΛRΛ) , (E.3b)

where P and Q are arbitrary supermatrices, and the functions X(a) and Z(a) are defined as

X(a) =
1

2

∫ 1

0

dλF

∫ ∞
1

dλBe
−a(λB−λF) =

1− e−2a
2a2

, (E.4)

Z(a) =
1

2

∫ 1

0

dλF

∫ ∞
1

dλB
λB + λF
λB − λF

e−a(λB−λF) =
1

a
. (E.5)

Appendix F. Spurious pairings of eight Green functions

As we explained in Sec. 6.4, the maximal number of the zero-argument delta-functions δγ(0) in the ex-
pression for 〈γ2(ε, T )〉 originates if two Green functions with energy ε are paired together, and the remaining
six Green functions are grouped such that energy coincidence in two pairs automatically guarantees the en-
ergy coincidence in the third pair. Direct analysis shows, however, that apart from two physical possibilities
(a) and (b), given by Eq. (67) and shown in Fig. 6, there are three others that can formally satisfy this
condition:

(c) ε1 ≈ ε and ω2 ≈ 0, (d) ε1 ≈ ε2 ≈ ε, (e) ε2 ≈ ε and ω1 ≈ 0. (F.1)
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However, these new possibilities shown in Fig. 9 appear to be too restrictive: In each of these diagrams, the
energies of four Green functions are pinned to the external energy ε, while the rest four are grouped in two
pairs (shown by the dotted line). The possibilities listed in Eq. (F.1) are unphysical as they do not describe
any real decay process (the final state consists of a single electron instead of an electron and an electron-hole
pair) and one can expect that they do not contribute to the relaxation rate. Indeed, using expressions from
Appendix B one can immediately check that spurious contributions with either ε1 = ε or ε2 = ε nullify the
collision integral. Consequently, the only possibility to acquire an additional large factor δγ(0) is to analyze
two pairings (a) and (b), which is performed in the main text.
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