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Abstract 

Groundwater model predictions are often uncertain due to inherent uncertainties in model 

input data. Monitored field-data are commonly used to assess the performance of a model and 

reduce its prediction uncertainty. Given the high cost of data collection, it is imperative to 

identify the minimum number of required observation wells and to define the optimal 

locations of sampling points in space and depth. This study proposes a design methodology to 

optimize the number and location of additional observation wells that will effectively 

measure multiple hydrogeological parameters at different depths. For this purpose, we 
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incorporated Bayesian model averaging (BMA) and genetic algorithms (GA) into a linear 

data-worth (DW) analysis in order to conduct a three-dimensional location search for new 

sampling locations. We evaluated the methodology by applying it along a heterogeneous 

coastal aquifer with limited hydrogeological data that is experiencing saltwater intrusion. The 

aim of the model was to identify the best locations for sampling head and salinity data, while 

reducing uncertainty when predicting multiple variables of saltwater intrusion. The resulting 

optimal locations for new observation wells varied with the defined design constraints. The 

optimal design depended on the ratio of the start-up cost of the monitoring program and the 

installation cost of the first observation well. The proposed methodology can contribute 

towards reducing the uncertainties associated with predicting multiple variables in a 

groundwater system. 

Introduction 

Groundwater models are commonly used in conjunction with field monitoring to assess the 

physical processes representing subsurface flow and solute transport. Such models simulate 

the groundwater dynamics in an aquifer by translating its physical, chemical, and biological 

characteristics into mathematical equations by simplifying assumptions (Holzbecher and 

Sorek 2006). These equations require data about aquifer characteristics- such as hydraulic 

properties, geological borders, boundary conditions, sources and sinks- that will sufficiently 

aid in understanding groundwater dynamics (Bakalowicz 2005). However, the complexity of 

subsurface conditions may lead to a paucity in data describing the control parameters; this in 

turn will result in increased uncertainties with model simulations (El-Fiky 2010). The lack of 

data coupled with model prediction uncertainty makes it difficult for water resources 

managers and decision makers to plan a management strategy to secure the quantity and 

quality of groundwater (Tribbia and Moser 2008; Comte et al. 2006). Therefore, it is 

imperative to design a monitoring network that would reduce prediction uncertainties in order 
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to improve the protection and management of aquifer systems (Storck 1997). In this context, 

models can be used as test beds to identify new (optimal) monitoring locations that would 

increase the reliability of model simulations. This technique is generally referred to as an 

optimal design (OD) with several reported methods to guide the design of monitoring 

networks towards reducing uncertainties in model predictions (Tiedeman et al. 2003; Herrera 

et al. 2000; Reed et al. 2000; Cieniawski et al. 1995; Wagner 1995; Andricevic and Foufoula-

Georgiou 1991; Loaiciga 1989; Rouhani and Hall 1988). 

A recently developed method by Moore and Doherty (2005), and later extended within the 

Bayesian context by Christensen and Doherty (2008), evaluated the variance of prediction 

uncertainty using a linear propagation of uncertainties associated with parameters that are 

formulated for distributed models. Using this method, an existing calibration dataset is 

augmented by adding new observations. The worth of such an addition (subsequently referred 

to as data worth (DW)) on reducing model prediction uncertainty is then evaluated. Dausman 

et al. (2010) applied the DW-based OD on the Henry problem to define the optimal locations 

of salinity concentration and temperature that would reduce the uncertainty of predicting the 

displacement of a salt/fresh water interface caused by a change in the inflow rate to the 

system. Wallis et al. (2014) extended the DW-based OD for selecting multiple observations 

and Wöhling et al. (2016) extended it further by using a genetic algorithm (GA) to 

incorporate multiple new observations of head and/or hydraulic conductivity to decrease the 

predictive uncertainty. Vilhemson and Ferre (2017) carried out yet another extension to 

simultaneously select multiple new measurements targeting multiple forecasts of interest. 

Note that the applications of the DW-based OD are largely restricted to a single or multiple 

observation location(s) in two dimensions. The simultaneous DW-based optimization of 

monitoring design with measurements in three dimensions has not been reported. Expanding 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
the DW approach into three-dimensional space is particularly important for monitoring 

contaminant concentrations and to design a solute transport system.  

In practice, groundwater contamination distribution varies spatially and vertically over a 

geologic domain. Three dimensions (3D) optimal design aids in identifying optimal locations 

for monitoring contaminant concentration such as saltwater intrusion (SWI). 3D models are 

especially useful when attempting to understand SWI, where the spread of intrusion typically 

occurs in three dimensions through lateral and vertical displacement (or upconing) of the 

interface. Neglecting three-dimensionality in geologic input data (i.e. hydraulic conductivity) 

can result in large uncertainties with regards to model predictions (Werner et al. 2013), 

influencing both the magnitude and the trend of the intrusion (Kerrou and Renard 2010). It 

can also lead to the overestimation of the toe penetration length (Lu et al. 2009), and 

subsequently to the misevaluating the DW of a proposed design when the OD target is to 

increase the reliability of a model in predicting the future position of the interface. To avoid 

such situations, ideally hydraulic conductivity values should be collected in all spatial 

directions in order to reduce prediction uncertainty. However, financial constraints and/or 

spatial limitations (e.g. in urbanized aquifers) reduce to the ability to directly measure the 

hydraulic conductivity from deeper parts of an aquifer (Hartmann, et. al. 2014). Using inverse 

modeling, hydraulic conductivity values can be estimated through the inverse solution of 

groundwater flow and/or solute transport equations for the value of an observed dependent 

variable (or an indirect observation) such as hydraulic head and/or contaminant concentration 

(Hoeksema and Kitanidis, 1984). Dausman et al. (2010) recognized that salinity 

concentration defines the interface, and that measuring salinity is crucial to understanding 

how the interface moves.  
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Total cost and utility of measuring head and/or salinity depends on the operation, 

implementation and start-up costs of the monitoring plan, types of monitoring equipment, 

resolution of monitoring data, and data processing costs (Hericks et al. 2017). In practice, 

nearby existing supply wells are usually used as observation wells to monitor head and/or 

contaminant concentration data (Sen 2015). Using existing wells will result in avoiding extra 

costs for drilling new observation wells.  

The DW methodology assumes that an initial baseline can be established using historical data 

and available information about the main hydrogeological characteristics of the aquifer under 

study (e.g. boundary conditions, and source/sinks). The initial baseline is expected to provide 

insight into the overall water flow system and serve as a testbed to estimate hydraulic heads, 

conduct model simulations, and calculate the sensitivity of head and predictions to model 

parameters. However, uncertainties in model predictions are common when attempting to 

predict beyond the range of available input data, for example in highly parameterized models 

with more unknown parameters than observations. In such nonlinear models, the entire range 

of possible values of observational data should be considered during the OD in order to 

calculate a wide range for the sensitivities of observations to the model parameters because 

the actual values of the observation data are unknown prior to collection (Leube et al. 2012). 

If the model non-linearity is high, it may result in multiple plausible observation locations.  

Several Monte Carlo (MC) based techniques have been developed to account for model 

uncertainty. MC techniques can be used to generate a range of measurement values obtained 

by using different parameter sets (multiple realizations) that are conditioned by the 

calibration dataset (Keating et al. 2010). Compared with other techniques such as the Markov 

Chain Monte Carlo (MCMC) method (Harvey and Gorelick, 1995), the generalized 

likelihood uncertainty estimation (GLUE) (Beven and Binley, 1992), and calibration‐
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constrained Monte Carlo methods (Tavakoli et al., 2013), the subspace technique for 

calibration‐constrained Monte Carlo analysis referred to as the null‐space Monte Carlo 

(NSMC) method (Tonkin and Doherty 2005) requires less computational time for generating 

a large number of calibration-constrained parameter fields. The NSMC method is best suited 

for groundwater modeling in highly parameterized systems due to the long model runtime 

and the large number of required model runs for such systems (Herckenrath et al. 2011). In 

this method, a set of random parameter realizations is first generated from a probability 

distribution defined from available prior information, for example about the hydraulic 

conductivity. The generated random realizations are then projected onto the null-space, and 

adjusted through model re-calibration. This results in a set of calibration-constrained 

realizations (for details see Tonkin and Doherty 2009). For the OD, calibration-constrained 

realizations can be ranked and assigned weights according to their goodness of fit with 

observed data. Using Bayesian model averaging (BMA), model weights are determined via 

Bayes’ theorem from the likelihood that the calibration dataset are generated from 

realizations (Hoeting et al. 1999). When applying the OD, the optimal location of a new 

observation can be determined by averaging all possible locations obtained using calibration-

constrained realizations (Freeze et al. 1992). In this manner, parameter and prediction 

uncertainties are both considered when attempting to find the optimal locations for new 

observations. 

An ideal DW-based OD should provide flexibility concerning model dimensionality, allow 

for any desired task-oriented formulation, target any measurement type (direct and indirect), 

account for various sources of uncertainty (e.g. geologic structure, heterogeneity, boundary 

condition, and source/sink) while also ensuring that it is cost-effective.  Existing DW-based 

OD methodologies fall short of simultaneously providing these criteria for the design of a 

monitoring network in a groundwater system.  

This article is protected by copyright. All rights reserved.
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In this study, we expand the DW-based OD method to optimize simultaneous measurements 

of various data types collected at different depths at a single and multiple spatial locations, 

while considering model non-linearity through a Bayesian model averaging (BMA) 

framework and minimizing costs. The cost-effective solution involves obtaining adequate 

hydrogeological information with a minimum number of observation wells. In what follows, 

we describe the theory underpinning the design methodology followed by the design method 

that is applied to a case study that reduces the uncertainty in the predictions of SWI by 

determining the optimal location(s) that would allow for efficiently obtaining data within the 

model domain.  

Methods and Materials 

The proposed methodology involves a Bayesian model averaging (BMA) framework with a 

three-dimensional data worth (DW)-based optimal design (OD) analysis that is implemented 

to select an optimal observation dataset that would reduce model uncertainty (Figure 1).  

Figure 1: Optimal Design framework 
Xold: Sensitivity matrix of existing observations to parameters; Y: Sensitivity matrix of predictions to parameters; C(e): 

Covariance matrix of measurement noise (e); C(P): Covariance matrix of parameters (P) innate variability; X: Jacobian 

matrix;      
  is the base predictive uncertainty variance; Xnew: Sensitivity matrix of new observation wells to parameters; L: 

Sensitivity matrix of an observation well with measurements at multiple depths to parameters; Dk is a proposed design using 

model Mk; and Po, N is operation cost of a monitoring project for N new observations 

Bayesian model averaging (BMA) framework 

We denote a set of distributed groundwater models Mk: k=1, …, K for predicting flow and/or 

solute transport over a geologic domain. Each model is a probability distribution model 

comprising the likelihood function  (  |     ) of the observed data h0 and the model 

parameters Pk (e.g. hydraulic conductivity). The posterior predictive distribution of the 

forecast of interest Δ is determined as a weighted averaged individual prediction as expressed 

in Equation 1, where weights can be determined using Bayes’ theorem on the basis of the 

likelihood that the observed data h0 are generated using equation 2 (Hoeting et al. 1999): 
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where  (  ) is a probability mass function over the model   . The use of a defuse prior 

 (  )   
 ⁄  ensures that there is no subjective preference for any of the model    

(Wöhling et al. 2015). One can normalize the weights of the models by applying Bayes 

theorem as expressed below: 

  (  |  )  
 (  |  ) (  )

∑  (  |  ) (  )
 
   

 (3) 

where  (  |  ) is the likelihood of observing the calibration dataset h0 under model Mk. It 

can be determined based on its prior parameter distribution using equation 4: 

  (  |  )  ∫ (  |     )  (  |  )    (4) 

where  (  |  ) is created by generating random parameter fields that meet calibration 

constraints. We use the NSMC method to create random parameter fields (  ). Prior to 

incorporating the NSMC method, the hydraulic conductivity field is parameterized by 

defining a large number of pilot points (  ) that cover the geologic domain. The model is 

then calibrated to estimate the values of the pilot points. The extent to which a pilot point 

parameter can be informed (identified) by the existing observations can be measured by a 

singular value decomposition of the Jacobian matrix that represents the sensitivity of 

observations to the pilot point parameters (for details see e.g. Doherty and Hunt 2010). The 

pilot points corresponding to the singular values that are larger than a given user-defined 

―truncated‖ value (5.010
-6

 in this work) span the calibration solution space. These pilot 

points are deemed to be estimable on the basis of existing observations. In contrast, pilot 

points that contain low or zero singular values (that span the calibration null space) are 

considered inestimable. Using the NSMC method, a set of random values is first generated 
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from a prior probability distribution of hydraulic conductivity fields. The random values are 

placed on the pilot points (which is called a random realization). The generated random 

realization is then projected onto the null-space through differencing the random values and 

the calibrated pilot points’ values, and then re-adding the projected difference onto the 

calibrated values. The projected parameter set is then adjusted through a model re-calibration 

in order to respect calibration constraints made by existing observations. The result is a 

calibrated-constrained realization that respects both the stochastic variability of the hydraulic 

conductivity field as well as the calibration constraints (for details see Tonkin and Doherty 

2005). The posterior probability distribution of a model prediction is then computed on the 

basis of the generated calibrate-constrained realizations.  

Linear model calibration 

We assume that each Bayesian model Mk is a linear model that defines a relationship between 

its parameters and its predictions using equation (5) (Doherty 2015):  

 Mk:        (5) 

where   denotes a     vector of head observations comprising the calibration dataset that 

are contaminated with noise   (i.e. error in field measurement),   represents a     vector of 

model (pilot points) parameters in the conceptual model, and   is the action of model or 

model sensitivity (or Jacobian matrix). The unknown model parameters can be estimated by 

minimizing an objective function that is defined based on the sum of the squared weighted 

residuals between the model results and (potential) observed data (or model-to-measurement 

misfit) as shown in equation 6:   

   (    ̅)    (    ̅) (6) 

where h is a     vector of potential head observations,  ̅ is the vector comprised of 

unknown parameters (or parameter estimates), T stands for the matrix transpose operation, 
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and   is a diagonal matrix with squared observations weights (  ) that is defined to be 

proportional to the inverse of the covariance matrix of the observations noise. The parameter 

vector minimizing the objective function (in equation 6) can be determined using equation 7: 

  ̅  (    )      ̅ (7) 

where   is the matrix with the squared (calculated) weights of observations. The potential 

wrongness (or error) of the estimated parameters   ̅ compared with the true parameter fields 

  can be evaluated by equation 8: 

    ̅     (    )       (8) 

where I is the identity matrix. Let us further assume that   denotes a true model prediction. 

Then, the relationship between   and   is estimable using equation 9: 

       (9) 

where   is a     vector representing the sensitivity of the predictions to model parameters. 

If  ̅ is a model prediction that is computed from  ̅ using equation 6, then the potential error in 

the computed prediction can be expressed by equation 10: 

    ̅    (   ̅) (10) 

However, the true parameter fields ( ) and prediction ( ) are unknown. Therefore, none of 

the potential wrongness of (or error in) the estimated parameter (in equation 8) and the 

computed prediction (in equation 10) can be calculable. If we assume that   and   are 

independent and their covariance matrices are known, then the covariance of the parameter 

error can be expressed by equation 11: 

  (   ̅)  (   ) ( )(   )    ( )   (11) 

where  ( ) is a     parameter covariance matrix representing innate parameter variability, 

which can be created using a Kriging variogram that is defined to represent the spatial 

distribution of the hydraulic conductivity fields,  ( ) is a     matrix of measurement 
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noise  ,   (   )     ̅  is a so-called resolution matrix that describes the relationship 

between the estimated and true parameters, and   (   ̅ )     ̅. 

Prediction uncertainty variance 

Combing equations 10 and 11 leads to the expression of the variance of model prediction 

uncertainty as shown in equation 12 (Christensen and Doherty 2008):  

   
     ( )     ( )     ( )    ( )     ( )  (12) 

The first term on the right-hand side of the equation is the precalibration uncertainty for the 

predictions. The second term shows the amount that the prediction uncertainty is reduced by 

calibrating the model using measurements comprising the calibration dataset. 

Data Worth (DW) analysis (prediction of single variable) 

The variance of the model prediction uncertainty does not account for the values of 

parameters, measurements or prediction. Instead, it comprises only of the sensitivity of the 

model’s observations and predictions to the parameters, which are included in the   and   

matrices respectively. For the purpose of an optimal design, the change in the prediction 

uncertainty can be evaluated when a new observation (set) is added to the existing calibration 

dataset. In general, when adding an observation, it reduces the model prediction uncertainty, 

while increasing the DW that this observation has on the calibration dataset. The DW is 

measured using equation 13 (More details can be found in Vilhelmsen and Ferre 2017): 

    
  

   

  
    

 (13) 

where the   
    is the decrease in the prediction uncertainty when adding a new observation 

point, and   
     is the predictive uncertainty pertaining to the existing calibration dataset. 

The DW is represented by a value ranging between 0 and 1; it reflects the impact of 

additional observations on the base predictive uncertainty (reduction). For example, the DW 
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of 1 denotes that the prediction uncertainty is completely diminished by adding a new 

observation whereas a DW of 0 indicates that a new observation does not reduce the 

prediction uncertainty. 

Value Index (VI) analysis (prediction of multiple variables) 

In practice, multiple variables are often of interest to simulate using a groundwater model, 

e.g. predictions of stream flow, flow velocity, or contaminant migration. The DW for an 

observational well can be further evaluated if the target of an OD is to minimize the 

uncertainty associated with predicting multiple variables in a given groundwater system. For 

this purpose, the DW is first calculated for each prediction variable. A weight is then defined 

for each variable, and subsequently applied to each DW. The weighted DWs are then 

combined into a single value index (VI) that indicates the value of monitoring each 

observational well according to the priority of the prediction variables (equation 14) (See 

Vilhelmsen and Ferre (2017) for more details): 

     ∑  

 

   

      (14) 

where j corresponds to an observation set, n stands for the number of prediction variables,    

is the weight of the ith prediction variable, and       is the DW of jth observation set to ith 

variable. Weighting prediction variables is a subjective choice of the modeler/manager, and 

can be based on various factors such as economic worth of making predictions, or prioritizing 

a prediction when making management plans. 

Data Worth (DW)-based 3D Optimal Design (OD)  

As outlined in Figure 1, the methodology consists of five interrelated steps outlined below. 
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(A) For each model Mk, a series of matrices are formed to represent the following: 1) the 

sensitivity of the existing calibration dataset to model parameters (Xold); 2) the sensitivity of 

predictions to model parameters (Y); 3) the innate parameter variability C(p); 4) the 

measurement noise C(e); and 5) the Jacobian matrix X that consists of Y and Xold. These 

matrices are used to calculate the base predictive uncertainty. In this work, the PREDUNC 

program in the PEST suites of utilities was used to calculate the base predictive uncertainty 

(Doherty 2015). 

(B) A set of arbitrary 3D locations for potential (yet to be collected) observations is specified 

and used as input to the DW analysis. In order to perform a 3D design, we create an Xnew 

matrix containing the spatial locations of observation wells, where each row of the matrix 

represents a single observation location. Each observation location (i.e., an element of the 

Xnew matrix) contains a corresponding sensitivity matrix L with m rows and l columns, where 

m is the maximum number of sampling (or measurement) depths and l is the number of 

model parameters. The L matrix comprises the sensitivity of a single observation location to 

all model parameters with respect to the depth at which the measurements were taken. Each 

row of the L matrix contains the sensitivity of a measurement depth to all model parameters. 

Each column includes the sensitivity of a certain parameter to all measurement depths. All 

new measurements pertaining to the L matrices are added to the Xold, and then the 

sensitivities to the parameters are estimated by calculating the Jacobian matrix X using PEST 

(Doherty 2015). The new measurements are then detached from the Xold.  

Note that for temporal monitoring design, the Xnew matrix can be simply expanded by 

additional L matrices corresponding to different model stress periods. For this purpose, an Li 

matrix is generated for each model stress period. 

This article is protected by copyright. All rights reserved.
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(C) The third step is to find an optimal set of n potential observation wells. Combinations of n 

rows are selected from the Xnew matrix. The Genetic Algorithm (GA) is then used to select 

multiple rows corresponding to the combinations in the Xnew matrix (for details about GA see 

Wohling et al., 2016). A p × 1 vector of randomly sampled N rows is then generated, where p 

is a user defined population size (p=50 in this work). This vector forms the initial population 

of designs (i = 1). Each element of this vector contains a random combination of n rows in 

the Xnew. The L matrices pertaining to these n rows are added to the Xold, and subsequently 

the value of information (VI) of combinations are evaluated using PREDUNC5 (Doherty 

2015). Note that each combination comprises n number of new observation locations, and 

each new observation contains measurements at multiple depths. Therefore, the Xold matrix is 

expanded by adding the maximum     measurements. In the next step, a new population 

of design (size N) is generated by applying the standard GA selection schemes, i.e. selection, 

mutation, and crossover (Wohling et al., 2016). In the present study, we retained 40% of the 

population for the next generation (i = i + 1), muted 5% of population (which was allowed to 

increase if the population was too uniform), and allowed a 15% chance of selecting outside of 

the admissible location (similar to Vilhelmsen and Ferre 2017 and Wohling et al., 2016). The 

new proposal design is then compared with the previously generated designs. We ended the 

loop when the highest VI and the proposed designs were similar in the last ten subsequent 

trials. We allowed a maximum of 1,000 trials to re-populate the designs in order to achieve 

convergence. The converged design is recorded as the proposed design of size N (i.e. Dk) for 

model Mk.  

(D) The Xold matrix is amplified by the proposed design (Dk) of size N obtained using one of 

the models Mk. The reduction in prediction uncertainty is then evaluated in all models Mk 

using the amplified Xold matrix, and then the VI is calculated for each model. The estimated 

VIs are multiplied by the models weights (estimated through the BMA), and then they are 
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averaged. The averaged VI is the impact of the proposed design (Dk) on the prediction 

uncertainty reduction with respect to model non-linearity.  

The proposed design of size N is re-created for all models Mk (k<K). Afterwards, the 

averaged VI is calculated. Among all proposed designs for models Mk (k=1,2…K), the 

design that has the highest averaged VI is selected as the optimal (or best) design for placing 

N observations with respect to the uncertainty of the model input. 

(E) After completing the previous steps, one can conduct a cost-effective analysis to 

determine the optimal number of new observation wells (i.e. optimal size of design). A 

design is considered cost-effective when the reduction of prediction uncertainty (i.e. increase 

in DW) outweighs its cost. The cost is herein defined by the number of required observation 

wells. The cost-effective analysis is accomplished by calculating the cost (Po) of each design 

of size N, and the design that provides the most information at the smallest operation cost is 

considered the optimal design. This is estimated by the ratio: DW/Po. The design that has the 

highest DW/Po ratio is deemed the most cost-effective design. 

Application 

Description of study area 

The performance of the proposed method was evaluated by simulating flow and solute 

transport in an actual aquifer system. Located along the Eastern Mediterranean (Figure 2), the 

pilot aquifer (covering an area of approximately 42 Km
2
)

 
underlies Beirut city (Lebanon) and 

its suburbs. The study area has a 16.5 km of shorelines encompassing rocky beaches, sandy 

shores, and cliffs. It is bounded by several faults to the east and south, and partly by an 

intermittent river to the south.  

Figure 2. Location of the pilot aquifer, and its faults and geologic cross-sections 
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Hydrogeology 

The hydrogeology of the pilot aquifer consists of Cretaceous karst limestone overlaid by 

Upper Tertiary and Quaternary unconsolidated deposits (Peltekian 1980). The ~700m thick, 

fractured Cenomanian-Quaternary system is dominated by hard and compact limestone and 

dolomite interbedded with chert, and intercalations of marl (Kahair 1992). According to the 

available geologic cross-sections (Figure 3), the rock sequence of Cenomanian‐Turonian age 

(Walley 1997) can be divided into three subunits, as follows: 1) the Afqa Dolomite member 

that consists of crystalline, dolomitic, marly dolomitic and reefal limestone; 2) the Aaqoura 

member comprises a sequence of thinly bedded limestone, marly limestone, dolomite and 

marly dolomite strata; and 3) the Mnaitra member that is composed of thick and compact 

limestone and fossiliferous strata with several chert bands and nodules across different 

horizons. These are also known as the C4a, C4b, and C4c formations, respectively (Saint 

Marc 1974). The aquifer can be divided into seven zones to describe its geologic surface and 

subsurface (Figure 4 and Table 1). The upper geologic layer consists of a mix of C4c and 

Quaternary formations in the north (zone 1), and a mix of the C4a and Quaternary formations 

in the middle and to the south (zone 2).  The middle layer contains the C4a formation 

(aquifer) to the east (zone 3), the C4c formation (aquifer) in the north (zone 4), and the C4b 

formation (aquitard) along the western coastline (zone 5). The lowest geologic layer with a 

thickness of ~250 meters comprises of the C4c formation (aquifer) in the north (zone 4), the 

deep C4c formation (aquifer) along the western coastline (zone 6), and the deep C4b 

formation (aquitard) to the east (zone 7) (Table 1).  

The Cenomanian formation and Cenomanian-Quaternary systems are permeable with a 

specific yield of 0.03 and 0.15, respectively (UNDP 1970). The infiltration rates are high in 

the quaternary deposits (Khair 1992). The freshwater influx to the aquifer in the year 1969 

was primarily through a reportedly high recharge, equivalent to 20-30% of the precipitation 
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(21% reported by UNDP 1970; 27% reported by Khair et al. 1994; and 30% reported by 

Ukayli 1971). The increase in urbanization since 1969 has nevertheless decreased the 

recharge potential to near nil by 2018 (Safi et al. 2018). 

Figure 3. Geologic cross-sections CC′ and EE′ 

Figure 4: Location of historic head observations in the pilot aquifer with geologic zones 
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Table 1: Geologic formations in the pilot aquifer with corresponding hydraulic conductivity ranges  

(Ukayli 1969; and Petekian 1980). 

Model 

domain 

Thickness (m) Geologic 

formation 

Type Log hydraulic conductivity 

(m/day) 

Zone 

Layer 1 ~100 to 150  C4c-Quaternary  Aquifer -1.69 to 2.69 1 

  C4a-Quaternary Aquifer -1.26 to 2.69 2 

Layer 2 ~150 C4a Aquifer -1.3 to 2.69 3 

  C4c Aquifer -1.69 to 2.69 4 

  C4b Aquitard -5 to -3 5 

Layer 3 ~250 C4c Aquifer -1.69 to 2.69 4* 

  C4c Aquifer -1.69 to 2.69 6 

  C4b Aquitard -5 to -3 7 

* The same zone used to characterize the C4c in the second and third layers.  

Statement of problem and needs for a monitoring plan 

The upper part of the pilot aquifer is highly vulnerable to saltwater intrusion (SWI) with 

many locations already experiencing high salinity because of groundwater overexploitation 

(Safi et al. 2018; Rachid et al. 2017).  This limits the freshwater resources available in the 

aquifer and is pushing authorities to consider alternatives such as tapping the deeper parts of 

the aquifer. In this context, groundwater modeling can guide decision makers towards 

sustainable abstraction without accelerating SWI.  Moreover, it can help protect the deeper 

parts, where the lack of subsurface characterization will inevitably increase uncertainties 

associated model predictions. Therefore, it is imperative to design a monitoring network with 

optimal locations to constrain/ reduce model uncertainties.  

To design a monitoring network for the pilot aquifer requires simulating and understanding 

the dynamics of saltwater intrusion in response to future groundwater abstractions from the 

deep parts of aquifer. Hence, emulating realistic future conditions of the pilot aquifer is an 

important step in the OD analysis. In the current application, a scenario was defined whereby 

it was assumes the authorities will start extracting groundwater from the freshwater resources 

in the deep aquifer (zone 6) starting in March 2018. Extraction was assumed to occur through 
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pumping from 50 wells at 200m

3
/d (Figure 5). In this scenario, the bottom elevation of the 

pumping wells reaches to depths of 360 meters below mean sea level (BSL) (in the middle of 

layer 3 in zone 6). A groundwater model was then used to simulate the future SWI in 

response to the groundwater exploitation from the upper and deeper parts of aquifer. The 

objective of the model was to find the best locations that will provide the needed information 

for model prediction of: (a) the displacement of the salt/fresh water interface in zone 6 caused 

by groundwater abstraction in the entire aquifer (prediction variable 1), and (b) the increase 

in the salinity concentration in the newly installed pumping wells in zone 6, which will be 

caused by the landward displacement of the interface. With regards to the latter, salinity 

concentrations were predicted at two points (A and B) specified in front of the pumping 

wells. Points A and B were located at depths of 360 meters (BSL) (similar to the bottom 

elevation of the pumping wells in the scenario) (Figure 4).  Salinity prediction at point A was 

denoted as prediction variable 2, and salinity prediction at point B was referred to as 

prediction variable 3.  

Figure 5: Potential new observations locations for monitoring head and salinity in zone 6, along with the 

locations of new pumping wells and model prediction points A and B at the depth of 360 meters below sea level 

– colored contours are the average of log hydraulic conductivity between all stochastic models – X and Y axes 

are in units of meters 

Model set-up 

SEAWAT code (Guo and Langevin 2002) was used to simulate the salinity migration in the 

pilot aquifer and to perform the OD in zone 6. SEAWAT is a variable density groundwater 

flow modeling code, representing flow and solute transport processes that are solved jointly 

by MODFLOW and MT3D. The criteria considered in the code selection process centered on 

its ability to: 1) simulate the 3D nature of the vertical and lateral encroachment of salinity in 

confined and unconfined aquifers, 2) characterize various types of time-dependent boundary 

conditions, 3) simulate steady-state and long-term transient flow and solute transport with the 
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least numerical instability, 4) link to an inversion code (such as PEST) to quantify 

uncertainties, and 5) contain reasonable computational resources.  

Our model comprised a transient stress period of 50 years subdivided into 50 sub-periods of 

one-year duration, extending from March 1969 up to March 2019 (the future state). The first 

stress period (March 1969) was used as the calibration-time period because that period had 

the most information with regards to head observations within the aquifer, with a total of 35 

head observations tapping into the upper geologic layer (Figure 3).  

In the set-up of the SEAWAT model, the sea boundary to the north and west was specified as 

a constant head and concentration boundary condition with an average salinity level of 35 

gram per liter (gr/l). The eastern boundary was assumed to be a no-flow boundary due to 

aquitards and Faults 1 & 3 in the vicinity. The horizontal discretization contained 4,251 

active cells designed in 115 rows and 75 columns, where each grid cell represents a square of 

100 by 100 meters (Figure 6). Groundwater abstraction for the upper aquifer was estimated 

for the years 1969 to 2019 assuming a 1.75% population growth and 180 liters per capita per 

day (l/c/d) domestic consumption rate (MoEW 2010). The population were considered to 

increase from approximately 0.35 million (M) in 1969 to 1M in 2019, respectively. The 

freshwater influx to the aquifer in the year 1969 was assumed to be primarily through the 

recharge equivalent of 30% of precipitation (Ukayli 1971). This rate linearly decreased to 

zero for 2019 due to increase in impervious pavements over time (Safi et al. 2018). The 

lateral flow was assumed to be zero due to faults and aquitards in the vicinity of the aquifer.   

Figure 6: Model grids, boundary conditions, and locations of abstraction wells  

in the upper part of the Beirut coastal aquifer 
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Pilot points parameterization 

The geology of the aquifer is poorly characterized due to limited information about its 

characteristics, but its hydraulic conductivity can vary considerably over small distances (Safi 

et al., 2018).  Therefore, the use of only a few zones to represent the hydraulic conductivity 

field may not accurately represent the flow conditions. To remedy this problem, a set of pilot 

points was assigned to each geologic zone to represent the spatial variability in the hydraulic 

conductivity. Altogether, a total of 564 pilot points was defined for the entire model domain 

(i.e. the vector Pk in the BMA). We used an exponential Kriging variogram to spatially 

interpolate the pilot points values over the geologic domain. The value of 500 meters (i.e., the 

separation distance between two pilot points) was defined for the range of the variogram 

(Doherty and Hunt 2010). Using PEST, the pilot points parameterization approach was used 

in conjunction with SVD and Tikhonov regularization to estimate the values of the pilot 

points using the existing head observations (Doherty 2015).  

The calibrated pilot point model was then used to calculate the sensitivities of the 

observations and model prediction variables (1, 2 and 3) to the pilot point values. According 

to the sensitivity results, the pilot points parameters were categorized into three subsets: 

subset (i) contained the pilot points that spanned the solution space or were correlated with 

the pilot points that lied in the solution space (zones 1 to 4); subset (ii) comprised the null-

space located pilot points that inform the predictions (zone 6); and subset (iii) included the 

pilot points that lied in the null-space and did not inform the predictions (zones 5 and 7).    

Bayesian model averaging (BMA) 

A random realization of the hydraulic conductivity field was generated for each subset on the 

basis of the prior probability distribution of the subset’s hydraulic conductivity. The 

generated random realizations of all subsets were then combined into one realization that 
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contained the full set of the pilot points parameters. The NSMC method was then used to 

calculate a calibrated-constrained realization on the basis of the combined generated random 

realization. This process was repeated several times to create multiple calibrated-constrained 

realizations. 

The prior probability distributions were defined according to the available geologic 

knowledge for each subset, as follows: subset (i) used a probability distribution that was 

estimated based on the results of the calibrated pilot points model. Subset (ii) used a fuzzy 

theory set (Zadeh 1969) to create a fuzzy probability distribution for the mean log hydraulic 

conductivity value. For this subset, a trapezoidal distribution was used to define the 

membership functions of the log mean hydraulic conductivity values for the pilot points (for 

details about fuzzy set theory see e.g. Bardossy et al. 1990). Accordingly, the membership 

function was set to 1 for the range of log hydraulic conductivities between 1.5 and 2m/day, 

(lower and upper support limits). The membership value was set to zero for the lower and 

upper limits of the log mean hydraulic conductivity values, which were defined as 0.31 and 

2.69 m/day, respectively. Subset (iii) did not use any probability distribution and the 

hydraulic conductivity value was defined as constant for all pilot points. 

Our BMA application encompassed the generation of only 10 calibration-constrained 

realizations due to the large run-time of the model. The Bayesian models (Mk) constructed on 

the basis of the realizations were then used to simulate SWI for the near future. For the 

purpose of model averaging, similar weights were assigned to the models (Mk) because all 

had almost the same sensitivity to the existing observed data after the model calibration. 

Optimal Design of new observation wells 

The OD analysis involved defining the best locations for a set of new observation wells in 

zone 6. The design assumed that the observation wells were available every 150 meters in 
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zone 6 (i.e. spatial location), and a total of 192 potential locations were specified in that zone 

(Figure 4). Each observation well was assumed to contain two measurements of field-data, 

namely: (1) the head and salinity concentration at a depth of 300 meters BSL, and (2) the 

head and salinity concentration at a depth of 360 meters BSL. Hence, the measurements vary 

spatially and vertically over zone 6 (i.e. three dimensions). The values of these measurements 

were extracted from the last stress period (i.e. the year 2019) of the Bayesian models and 

assigned to the observation wells. 

The OD framework was then applied to define: (1) the optimal design to make all predictions 

under different prediction weights when having one observation well where head and salinity 

are measured; and (2) the optimal design for multiple locations (i.e. N=1, 2…,5 observation 

wells) whereby measurements of head and salinity are taken at both single and multiple 

depths to reduce the uncertainty with the prediction of the salt/fresh water interface. Several 

scenarios were considered to define a variation in the predictions’ weights, listed as follows: 

scenario a: w1=w2=w3=0.33; scenario b: w1=0.6, w2=0.3, w3=0.1; scenario c: w1=0.6, 

w2=0.1, w3=0.3; scenario d: w1=0.8, w2=w3=0.1; and scenario e: w1= 1, w2=w3=0; where 

wi is the weight assigned to the previously defined prediction variables (i=1, 2, and 3).   

Finally, a cost-effective analysis was made to find the optimal size of the design, involving 

new observations, N=1, 2…,5. It was assumed that the scaled start-up cost (Ps) of a 

monitoring project varies between 0 and 1, regardless of the number of planned observation 

wells. The cost of implementing the first observation well (P1) was assumed to vary between 

0 and 100% of the start-up cost. Variations between start-up costs and implementation costs 

is captured by the P1/Ps ratio. The implementation cost decreases by 0%, 10%, 20%, and 

30% with any additional observation well (P1
+
). This variation is captured by P1

+
/P1. A set 

of random values were then generated based on the above-mentioned cost criteria for 
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implementing a given monitoring project. A uniform distribution was used to randomize the 

costs within their defined ranges. The reduction in predictive uncertainty in relation to the 

cost of sampling the head and salinity was evaluated by dividing the DW by the cost of the 

project implementation for simultaneous observation wells (i.e., N=1, 2…,5). 

Results and Discussion 

Bayesian models 

Calibration-constrained realizations were generated for the hydraulic conductivity field. The 

model-to-measurement misfit ranged from 251 to 258m
2
 with an average residual absolute 

error of ~2m across all of the stochastic models Mk. Figure 7 shows the calibration-

constrained log hydraulic conductivity fields along with the position of the salt/fresh water 

interface in zone 6 after a 50-year simulation based on the 10 generated stochastic models. 

The stochastic results are only shown for zone 6, where the OD was performed. The 

uncertainty with the estimated log hydraulic conductivity had a noticeable impact on the 

computation of the position of the interface. In four of the models (models M1, M5, M6 and 

M10), the log hydraulic conductivity values were low along the coastline, and therefore the 

landward displacement of the interface caused by groundwater abstraction was small as 

compared with that in other models that contained large hydraulic conductivity values. In the 

other models, it was apparent that the high hydraulic conductivity values tended to exacerbate 

SWI, subsequently decreasing the depth to the interface. Since the large uncertainties in the 

estimated hydraulic conductivities of zones 6 increased the uncertainties in the model 

prediction, it was necessary to quantify the prediction uncertainty. 

Figure 7: Log hydraulic conductivity distribution in zone 6 using 10 stochastic models Mk: k=1, 2 … 10; along 

with the position of the interface with 75% (black), 50% (gray), and 25% (white) of sea water concentration 

(35gr/l) after 50 years simulation 
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We used the range of the simulated values obtained using the generated calibration-

constrained realizations of the hydraulic conductivity to quantify the uncertainty in predicting 

the displacement of the salt/fresh water interface after the 50 years simulation. The histogram 

of the log hydraulic conductivity values approached an almost or a near normal distribution 

that ranged from 0.85 to 2.33 m/day (Figure 8-a). The distribution was negatively skewed due 

to the limitations imposed by the low hydraulic conductivity values through a trapezoidal 

membership function during the randomization process. Figure 8-b shows the histogram of 

the predicted values for the displacement of the interface where the transitional mixing zone 

was limited to 1 gr/l (threshold for drinking water). The predicted values are shown as 

percent displacement of the interface from its initial position with respect to the coastline, 

which involved calculating the percent increase in the volume of salinity concentration of 

greater than 1gr/l in freshwater due to groundwater abstraction. The histogram for the model 

prediction exhibited a large level of uncertainty in the predicted percent change of the 

position of the interface, ranging from 40 to 70% (Figure 8-b). The prediction histogram had 

a shape similar to that of the log hydraulic conductivity value (Figure 8-a vs. 8-b). This 

underlines the importance of estimating or knowing the hydraulic conductivity in the deep 

parts of a coastal aquifer to compute the displacement of the interface.  

Figure 8: Histograms for log hydraulic conductivity values for zone 6 and for the corresponding model 

prediction of the percent change in the position of the 3D salt/fresh water interface with salinity >1gr/l from the 

coastline  

Optimal design for measurements with single depth at a single observational well 

The OD analysis determined if the uncertainty in the model predictions would be affected by 

adding measurements of head and salinity obtained from a single depth at a single 

observational well in zone 6. The DW of these measurements was found to be sensitive to 

both the spatial location of the observational well and to the depth at which the measurements 

were taken (Figure 9). Head and salinity measurements made near points A and B were found 
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to be more effective at informing model predictions of salinity levels at these points as 

compared to measurements made at other locations (Figures 9-b and 9-c). The DW increased 

slightly (~20% more) when the head and salinity measurement depth increased by 20% 

(Figure 9-b vs. 9-e and Figure 9-c vs. 9-f). Measurements acquired at depths shallower than 

points A and B (e.g., 300m BSL) informed the predictions more effectively (i.e. variables 2 

and 3) when they were sampled from an observational well located on the seaward side of 

these points (Figures 9-b and 9-c).  Conversely, measurements taken at the same depths as 

points A and B (e.g. 360m BSL) had more impact on reducing the predictions’ uncertainties 

when they were sampled from an observational well located on the landward side of these 

points (Figures 9-e and 9-f).  

The observation wells that were located parallel to the coastline and within the transition zone 

predicted better the displacement of the salt/fresh water interface (i.e. prediction variable 1) 

(Figures 9-a and 9-d). A single observational well that had the highest impact on the 

uncertainty reduction of prediction variable 1 was located ~500m from the coastline if the 

measurements were taken at a depth of 300m BSL (Figure 9-a). When the measurement 

depth increased by 60 meters, an observational well that was located 200 meters further 

landward provided the most information for predicting variable 1 (Figure 9-a vs. 9-d).  

However, adding a single observational well had less impact on reducing the uncertainty 

associated with predicting variable 1 as compared to variables 2 and 3. Our findings showed 

the importance of considering the three dimensionalities in an OD when predicting SWI. 

Figure 9: Data worth (DW) of new (yet to be collected) observation locations with measurements of head and 

salinity at different depths coresponding to prediction variables: 

1 (interface displacement); 2 (salinity increase at point A); and 3 (salinity increase at point B) 

Optimal design for measurements with multiple depths at a single observational well 

Figure 10 shows the contoured VI averaged over the 10 models for the three prediction 

variables (the 3D displacement of interface and the salinity levels at points A and B), given a 
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set of specific weight distributions assigned to these three variables. Different locations for an 

observational well were specified according to the different weights of the prediction 

variables. The optimal location of a single observational well lied close to the points A and B 

when all prediction variables were assigned a similar weight (Figure 10-a). The DW of a 

single observational well was twice as high when predicting salinity levels at points A and B 

than when predicting the interface displacement (Figure 10-a vs. 10-b and 10-c). Although 

increasing the weight assigned to predicting variable 1 (w1) two-fold increased the VI in the 

observational wells located within points A and B, the best location for a single observational 

well was found to be still close to these points (Figures 10-b and 10-c). An eight-fold increase 

in w1 as compared to w2 and w3 shifted the best location ~500 meters upward (Figure 10-d). 

It was found that it was better to collect head and salinity data in the middle of zone 6 within 

points A and B; that would provide a more accurate prediction of the interface displacement 

(variable 1) (Figure 10-e) because most models showed the highest intrusion occurring along 

the middle of the coastline (Figure 7). Compared with observational wells located elsewhere, 

the observational wells located in the middle of zone 6 sensed more concentration changes as 

the interface approached landward. Our results suggest that designing the location of only one 

observational well did not noticeably reduce the uncertainty in the prediction of the interface 

displacement (i.e. variable 1). Moreover, the uncertainty with predicting salinity levels at 

points A and B appears to approach nil as the number of new observational wells reaches the 

number of prediction variables (i.e. two observation wells for two point-source prediction 

variables). In contrast, more observational wells provided substantial information on 

estimating the interface displacement. 

Figure 10: Black solid triangle represents the optimal design location for a single observation with measurement 

of head and salinity at multiple depths for multiple prediction variables - a) w1=w2=w3=0.33; (b) w1=0.6, 

w2=0.3, w3=0.1; (c) w1=0.6, w2=0.1, w3=0.3; (d) w1=0.8, w2=w3=0.1; (e) w1= 1, w2=w3=0. wi is prediction 

weight - colored contours are VI that was averaged over the models Mk- locations of points A and B are shown 

in black rectangles 
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Optimal design for measurements with multiple depths at multiple observational wells  

The performance of the methodology was examined for a larger number of observations in 

the case where the weight was given solely to the model prediction of the 3D displacement of 

the interface (i.e. prediction variable 1). The optimal locations for N=2, … and 5 

simultaneous new observations (i.e. proposed design) were specified separately for each of 

the 10 models Mk. Altogether, 10 designs were proposed for every N. Figure 11 shows the 

effectiveness of each of the proposed designs in reducing the prediction uncertainty when 

considering the impact of model non-linearity. Boxplots were used as a means of comparing 

the proposed designs across the 10 models. In these plots, the averaged DW using all models 

is shown for each design along with the estimated DW for that model. Each boxplot contains 

10 estimated DWs and the highest DW in each boxplot corresponds to the original model Mk 

for which the design Dk was proposed.  

The results suggest that the best proposed design having N=2 observations corresponded to 

model M5 (Figure 11-a). The corresponding design (D5) had the highest mean DW and the 

smallest variance compared with the designs obtained from other models, suggesting that the 

uncertainty with regards to the hydraulic conductivity values did not significantly affect 

identifying the optimal locations when N was equal to 2 observations. For the designs with 3 

observations, the highest mean estimate of DW (of 0.72) corresponded to D1, D6, D7, and D10 

(Figure 11-b). Among these designs, D7 had the smallest variance, and its proposed locations 

for 3 observations were selected as the optimal observational locations. The design 

corresponding to model M1 (i.e. design D1) had the highest impact (mean DW of ~0.75) on 

the reduction of prediction uncertainty in all the models when it was used to propose the 

optimal locations for 4 new observational wells (Figure 11-c). The mean DW for the designs 

with 5 observations ranged from 0.68 to 0.78 and the variance of the DW ranged from 0.01 to 

0.05 (Figure 11-d). We selected D1 as the best design for proposing the locations for the 5 
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new observational wells because it had the highest DW (of 0.78) compared with all other 

designs. 

An inspection of all boxplots together (Figure 11) reveals that the median is higher than the 

mean for most designs, indicating that the DW has a heavy left tail. The DW (i.e. additional 

uncertainty reduction) per additional observation decreases with increasing the number of 

observations. Interestingly, the spread of the DW also decreased as the number of 

observations was increased. The designs with a larger number of observations appeared to 

have similar centers that exceeded those found for the designs with fewer observations. 

Overall, an increased number of observations resulted in the reduction of the prediction 

uncertainty, which is not surprising, however it also increased the number of outliers, 

indicating that the model non-linearity can strongly affect the estimation of DW for a large-

size design. From the estimated DWs, we noticed that the models (M7 and M9) that caused 

such influence contained a very high mean log hydraulic conductivity (of > 2m/day) as 

compared with that in other models (Figure 7). In these models, the DW was very low when 

applying the proposed designs that were specified using other models (Mk). 

Figure 11: Estimated DW of proposed designs Dk from models Mk (k=1,2…10) for N=2, 3, 4, and 5 

observation wells in plots a to d respectively: x-axis corresponds to a proposed design specified using a model 

Mk and y-axis is the estimated DW when applying a proposed design on all models – Black dot is the mean 

estimate of the DW and red line is the median of the estimated DWs for each design using all models. 

The observation sets with the highest averaged DW for design sizes N=1,2, …, 5 (Figure 12) 

showed that the proposed locations changed with the number of planned additional 

observations. Measurements were found to be spread from north to south parallel to the 

coastline with an increasing number of observations. In the small size design, the proposed 

locations were found to be independent of previously proposed locations. For example, the 

locations for the two observations did not correspond to that associated with the design size 

of 1 (Figure 12-b vs. 12-a). As the design size increased (e.g. design size of 3 to 5), the 
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locations of some observation wells were similar to the preceding design size. For example, 

in the design size of 5, three of the five proposed observation locations were approximately 

the same as three of the four observation locations in the design size of 4 (Figure 12-e vs. 12-

d).  

Figure 12: Optimal design for N=1, …5 new observations with measurement of salinity at multiple depths for 

predicting the displacement of the salt/water interface. ▲ is a proposed location for a new observation.  The 

colored contours represent the DW for a single observation with measurement at multiple depths 

Cost-effective analysis 

The cost criteria were applied on the proposed design sizes of N=1 … 5 (Figure 13). Each 

point represents how the reduction of prediction uncertainty (i.e. increase in DW) exceeded 

its cost. The least and most cost-effective designs were the designs for 5 and 2 observations, 

respectively (red and green dots in Figure 13). This indicates that although the prediction 

uncertainty decreases by increasing the number of observations (Figure 11), the optimal 

design size varies according to the cost criteria. The most effective criterion was found to be 

P1/Ps (the cost of implementing the first observation according to the cost at start-up). An 

inspection of the cost-effective results shows that the optimal size of a design should include 

a maximum of two observations when the cost of implementing the first observation is more 

than 50% of the start-up cost of the monitoring project (Figures 13-c and 13-d). Under this 

condition, the optimal size can be increased by decreasing the cost of implementing an 

additional observation to < 80% of the cost of operating the first observation (i.e. P1
+
/P1) 

(Figures 13-a and 13-b). With P1/Ps < 30%, the optimal size can be increased up to 4 

observations if P1
+
/P1 is <0.8 (Figure 13-a). The implementation of 5 observations seems to 

be the most cost-effective only if the cost of implementing the first observation is much lower 

than the start-up cost, which may not be plausible. 

Figure 13: Cost-effective analysis for size of proposed design: x-axis shows the ratio of the cost of 

implementing the first observation (P1) to the start-up cost (Ps) (which is scaled between 0 and 1), y-axis is the 

reduction of uncertainty (data worth (DW)) with predicting the 3D displacement of interface to the full cost of a 
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project (Po), dots correspond to an observation set of n=1,2…5 observations – each plot shows the different 

analysis according to the operation cost of an additional observation (P1+) to the cost of implementing the first 

observation (P1) – DW is constant at each design size and only the cost of design varies 

Conclusion 

In this study, we extended an existing linear data worth (DW) method that optimizes the 

process of locating multiple new observational locations (yet to be collected) in order to 

reduce the uncertainty in predicting multiple variables in a groundwater system. Compared to 

previous studies that used two dimensional locations for the observations, our method also 

optimizes simultaneous for measurements occurring at different depths at a single or multiple 

locations (i.e. three dimensions) at a minimum cost. We also suggested the use of BMA, 

which was used to define weights for each Bayesian model that contains a set of stochastic 

parameters. The capability to produce the calibration dataset (also considered as a model 

prediction) by the stochastic parameters was used to calculate the weight of each Bayesian 

model. The final outcome of the optimal design (OD) was a set of proposed locations for an 

observational set that accounts for the non-linearity of the model.  

We applied the proposed methodology on a pilot heterogeneous coastal aquifer that lacks 

hydrogeological information for its deep geologic layers. The target of the design was to find 

the best locations for placing 1, 2…,5 new observations that could contribute to the reduction 

of the prediction uncertainties. Two types of prediction were used as the optimization targets: 

capturing the increase in salinity at two points located in the deep part of the aquifer and the 

displacement of the interface caused by groundwater abstraction. The types of observations 

that were accounted for included head and salinity at different locations in three dimensions. 

The following findings were deduced from the OD results of our case study: 
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 It is important to sample data at different depths and locations if the target of a 

monitoring design is to predict a solute transport over a three-dimensional geologic 

domain. 

 Model non-linearity has a slight impact on proposing a single location for an 

observational well with head and salinity measurements. This impact increases by 

increasing the design size. 

 The DW of an observational well with head and salinity measurements depends 

primarily on its spatial proximity to the coastline, while the depth of measurement is 

secondary but also important. The proposed spatial location for an observational well 

moves toward the coastline when the depth of measurement decreases. 

 When the depth of measurement is less than the depth of a point at which the 

predicted salinity concentration is required, a proposed observation should be located 

adjacent to that point and seaward (i.e. in the direction of the sea). Conversely, when 

the depth of the measurement is equal to or greater than the depth of the point, the 

observation should be located adjacent to the point and landward (i.e. further inland). 

 To reduce uncertainty with the future interface, observational wells should be located 

close to the coastline if the measurements to be taken are located at shallow depths. 

Conversely, observational wells can be located farther from the coast as measurement 

depth increases. 

 The proposed spatial locations for (head and salinity) observations change with the 

design size. The locations become more similar when the number of planned 

additional observations increases. 

 The optimal size for the monitoring plan depends mostly on the ratio between the 

start-up cost of the monitoring project and the cost of drilling the first observation 
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well, while the implementation cost of additional observational wells is secondary but 

also important. 

 For the current application, a maximum of two observation wells is needed to obtain a 

cost-effective monitoring plan if the cost of implementing the first observation and the 

monitoring data is more than 50% of the start-up cost of the monitoring project. If the 

cost of implementing the first observation is equal or greater than the start-up cost, 

only one observation is recommended for a cost-effective design. Monitoring data 

from multiple observation wells are the most cost-effective if the start-up cost is much 

more than the cost of implementing the first observation (e.g. using nearby pumping 

wells as observation wells).  

This study stresses that the effectiveness of the proposed methodology to secure the optimal 

results hinges on properly weighing the stochastic models when non-linearity is high. This 

underlines the importance of a priori knowledge of the system, before designing a monitoring 

network to produce an effective and successful model calibration. While an increase in the 

number of planned observations can reduce the prediction uncertainties during the model 

calibration stage, the cost-effectiveness of a monitoring design was found to be mostly 

contingent on the cost of operating the first observational location. The results of this study 

can be used for future field-studies to guide adaptations and implementing sampling 

strategies in aquifers. Due to the long model run-times to simulate SWI, we limited the OD to 

steady-state measurements of head and salinity. With transient measurements, it is expected 

that the proposed locations for observation wells will shift landward with the movement of 

the interface. 
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Figure Captions 

Figure 1: Optimal Design framework 

Xold: Sensitivity matrix of existing observations to parameters; Y: Sensitivity matrix of predictions to 

parameters; C(e): Covariance matrix of measurement noise (e); C(P): Covariance matrix of 

parameters (P) innate variability; X: Jacobian matrix;      
  is the base predictive uncertainty 

variance; Xnew: Sensitivity matrix of new observation wells to parameters; L: Sensitivity matrix of an 

observation well with measurements at multiple depths to parameters; Dk is a proposed design using 

model Mk; and Po, N is operation cost of a monitoring project for N new observations 

 

 

Figure 2. Location of the pilot aquifer, its faults and geologic cross-sections 
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Figure 3. Geologic cross-sections CC′ and EE′ 
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Figure 4: Location of historic head observations in the pilot aquifer with geologic zones 
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Figure 5: Potential new observations locations for monitoring head and salinity in zone 6, along with 

the locations of new pumping wells and model prediction points A and B at the depth of 360 meters 

below sea level – colored contours are the average of log hydraulic conductivity between all 

stochastic models – X and Y axes are in units of meters 
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Figure 6: Model grids, boundary conditions, and locations of abstraction wells  

in the upper part of the Beirut coastal aquifer 
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Figure 7: Log hydraulic conductivity distribution in zone 6 using 10 stochastic models Mk: k=1, 2 … 

10; along with the position of the interface with 75% (black), 50% (gray), and 25% (white) of sea 

water concentration (35gr/l) after 50 years simulation 
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Figure 8: Histograms for log hydraulic conductivity values for zone 6 and for the corresponding 

model prediction of the percent change in the position of the 3D salt/fresh water interface with salinity 

>1gr/l from the coastline  
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Figure 9: Data worth (DW) of new (yet to be collected) observation locations with measurements of 

head and salinity at different depths coresponding to prediction variables: 

1 (interface displacement); 2 (salinity increase at point A); and 3 (salinity increase at point B) 
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Figure 10: Black solid triangle represents the optimal design location for a single observation with 

measurement of head and salinity at multiple depths for multiple prediction variables - a) 

w1=w2=w3=0.33; (b) w1=0.6, w2=0.3, w3=0.1; (c) w1=0.6, w2=0.1, w3=0.3; (d) w1=0.8, 

w2=w3=0.1; (e) w1= 1, w2=w3=0. wi is prediction weight - colored contours are VI that was 

averaged over the models Mk- locations of points A and B are shown in black rectangles 

 

Figure 11: Estimated DW of proposed designs Dk from models Mk (k=1,2…10) for N=2, 3, 4, and 5 

observation wells in plots a to d respectively: x-axis corresponds to a proposed design specified using 

a model Mk and y-axis is the estimated DW when applying a proposed design on all models – Black 

dot is the mean estimate of the DW and red line is the median of the estimated DWs for each design 

using all models. 
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Figure 12: Optimal design for N=1, …5 new observations with measurement of salinity at multiple 

depths for predicting the displacement of the salt/water interface. ▲ is a proposed location for a new 

observation.  The colored contours represent the DW for a single observation with measurement at 

multiple depths 

 

Figure 13: Cost-effective analysis for size of proposed design: x-axis shows the ratio of the cost of 

implementing the first observation (P1) to the start-up cost (Ps) (which is scaled between 0 and 1), y-

axis is the reduction of uncertainty (data worth (DW)) with predicting the 3D displacement of 

interface to the full cost of a project (Po), dots correspond to an observation set of n=1,2…5 

observations – each plot shows the different analysis according to the operation cost of an additional 

observation (P1+) to the cost of implementing the first observation (P1) – DW is constant at each 

design size and only the cost of design varies 
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