
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Geometric Algorithms for Deep Point Networks

Permalink
https://escholarship.org/uc/item/4jm1j7dr

Author
AGARWAL, NITIN

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4jm1j7dr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Geometric Algorithms for Deep Point Networks

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Nitin Agarwal

Dissertation Committee:
Professor Gopi Meenakshisundaram, Chair

Professor Charless Fowlkes
Assistant Professor Shuang Zhao

2020

c© 2020 Nitin Agarwal

DEDICATION

To my grandparents.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

ACKNOWLEDGEMENTS x

CURRICULUM VITAE xi

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 3D Deep Learning . 2

1.1.1 Task Space in 3D Computer Vision . 3
1.1.2 3D Representation . 4

1.2 Roadmap . 5

2 Deep Point Networks 6
2.1 Motivation & Background . 7
2.2 Challenges & Design Choices . 8

2.2.1 Symmetric Functions . 8
2.2.2 Local vs Global Features . 9
2.2.3 Invariance to Geometric Transformation 12

2.3 Applications for Point Networks. 12

3 Learning Shape Representation using Quadric Loss 15
3.1 Motivation . 16
3.2 Related Work . 18

3.2.1 Learning Shape Representation . 18
3.2.2 3D Reconstruction Losses . 19

3.3 Quadric Loss . 21
3.3.1 Background . 22
3.3.2 Efficient Computation . 23
3.3.3 Geometric Interpretation . 23

3.4 Experiments . 24
3.4.1 Dataset . 24

iii

3.4.2 Network & Implementation Details 26
3.4.3 Evaluation Metric . 27
3.4.4 Shape Reconstruction . 28
3.4.5 More Qualitative Results . 30

3.5 Discussion . 31

4 Surface Reconstruction using GAM 32
4.1 Motivation & Introduction . 33
4.2 Related Work . 35

4.2.1 Surface Generation for Deep Networks 35
4.2.2 Single View Reconstruction . 37

4.3 Guided and Augmented Meshing . 39
4.3.1 Overview . 39
4.3.2 Projection . 41
4.3.3 Simplification . 43

4.4 Analyzing GAM . 44
4.4.1 How does GAM preserve Geometry & Topology 44
4.4.2 Effect of Mesh Prior on GAM . 45
4.4.3 Effect of Output Points on GAM . 47
4.4.4 Bounds on the Mesh Prior . 48

4.5 Single View Reconstruction . 51
4.5.1 Data . 52
4.5.2 Evaluation Metric . 52
4.5.3 Network & Implementation Details 53
4.5.4 Baselines . 53
4.5.5 Comparison with Point & Implicit Networks 54
4.5.6 Comparison with Prior Works . 55
4.5.7 More Qualitative Results . 57
4.5.8 Results on Natural Images . 59

4.6 Training Point Networks with GAM . 59
4.6.1 Data & Implementation Details . 60
4.6.2 Mesh Loss . 60
4.6.3 Results. 61

4.7 Other Applications . 62
4.7.1 Fair Evaluation of Point Networks . 62
4.7.2 Reconstruction Surface for Sparse Point Clouds 65

4.8 Limitation & Discussion . 65

5 AntHQ : A High Quality 3D Mesh Dataset with Artistic Embellishments. 66
5.1 Motivation . 67
5.2 AntHQ Dataset . 68

5.2.1 Data Collection . 69
5.2.2 Data Processing . 69
5.2.3 Web Interface . 70

5.3 Future Applications . 72

iv

6 Conclusion 74

Bibliography 77

v

LIST OF FIGURES

Page

1.1 Problem tasks can vary depending on the type of 3D scene. For static in-
door scenes predicting scene layout and understanding object relationships
might seem important while for outdoor scenes object detection and track-
ing could take precedence. 3

1.2 Popular 3D shape representations. 4

2.1 A PointNet architecture where MLPs convert high dimensional point fea-
tures RM into a RK . These features are subsequently aggregated into a K
dimensional feature vector using symmetric functions such as max pooling. 8

2.2 Grouping strategies for computing local point features for point networks.
While simple strategies such as computing a fixed number of closest points
within a specific radius can be used for uniform points distributions, blindly
extending such techniques for input with non-uniform point distribution
gives poor results. 11

2.3 Applications of Point Networks . 13

3.1 (a) Input point cloud reconstructed using an auto-encoder network with (b)
Chamfer loss alone and (c) Chamfer + Quadric loss. Reconstructed meshes
are generated using Poisson surface reconstruction on output point cloud. . 17

3.2 Computation of point-surface losses. Let the the reconstructed point s cor-
respond to the point t in the input mesh. (a) Normal loss computes the
inner product between the edge formed by s and xi and the ground truth
normal vector n̂ at t; (b) Surface loss computes the point-triangle distance
Φ between s and f , where f represents a triangle and not a plane, and takes
the minimum of them with different triangles; (c) Quadric loss (our contri-
bution) computes the sum of the square of the distance between s and each
of the plane p (p = [a, b, c, d]T) formed by the triangle incident at t using the
quadric matrix qi which is computed as qi = pip

T
i . Please see Eq. 3.4 for

more details. 19

vi

3.3 Geometric Interpretation of quadric loss. Quadric loss is an ellipsoidal loss
and it penalizes the reconstructed points more in the normal direction.
Here we show the iso-error envelope of Quadric, L1 and L2. For illus-
tration purposes, we draw iso-errors in 2D on few points (yellow) on the
input surface. Points lying on flat planes would ideally have ellipsoids
with 0 minor axis and ∞ major axes lengths, i.e the reconstructed points
can be placed anywhere on the plane. Note that the ellipsoid for points on
sharp features like corners is very small compared to L1 and L2, ensuring
the reconstructed points to preserve such features. 22

3.4 Effect of Point-Surface loss. Reconstruction results (2500 points) on exam-
ple 3D models from the test set with different loss functions. In compar-
ison to Chamfer focusing on preserving the input point distribution, our
quadric loss encourages points to be on edges and corners. On flat planes
(like the top and bottom faces of the cylinders in the bottom row) recon-
structed points minimize the quadric error by lying on the plane, but can
be outside the ground truth model. Such artifacts can be avoided by the
combination of quadric and Chamfer loss (top row of Figure 3.5). 25

3.5 Reconstruction results of 3D models from the test set. To obtain a mesh
from the reconstructed point clouds, we follow a similar procedure as At-
lasNet [30]. i.e. we shoot rays at the model from infinity to obtain a dense
sample of points followed by Poisson surface reconstruction (PSR) [42].
Chamfer loss when added to surface, normal and quadric loss improves
the reconstruction result as compared to them individually. Note, sharp
edges and corners are achieved with quadric and Chamfer togather. 28

3.6 More qualitative comparison results. 30

4.1 Surface Reconstruction. Surfaces reconstructed using all the original ver-
tices with (b) BPA (c) SPR and (d) our method. We reconstruct the same
mesh as the input mesh and preserve the geometry and topology even with
30% of the original points. Please zoom in for details. 34

4.2 Surface reconstruction using GAM. Our method uses both the output points
(orange) from a point network and a mesh prior to generate a surface for
the output points. For the sake of illustration, here we use the ground truth
mesh as priors for GAM. (a) Projection of output points on the mesh surface
is followed by (b) Triangulation to ensure that they are incorporated into
the mesh prior. (c) Simplification via sequential edge collapse removes all
the original points. (d) Unprojection of the points recovers the final surface
for the output point set. Please zoom in for details. 39

4.3 Projection. (a-b) Sequential processing of points leads to two different tri-
angulations for the same set of projected points. (c) For a triangle, we map
all the projected points and its base vertices to a dense 2D grid. To prevent
Voronoi vertices (black points) from lying outside the grid, (d) we rescale
the points to an equilateral triangle. (e) We then compute the Voronoi dia-
gram and use it to generate Delaunay triangulation for the projected points. 41

vii

4.4 Effects of Mesh Prior on GAM. Surfaces generated using the same points
(orange) but with three mesh priors of different resolution (shown in inset).
GAM creates geometrically similar but topologically different meshes. . . . 45

4.5 Non-Manifold Mesh Priors. GAM reconstruct accurate surfaces even with
non-manifold mesh priors which have multiple connected components.
The topology of mesh prior is carried over to the output mesh (see pink
arrow). 46

4.6 Effects of Points on GAM. Surfaces generated from GAM when Gaussian
noise is added to the mesh vertices. Using the same mesh prior (ground
truth mesh), we preserve as much detail as maintained by the points. 47

4.7 A point p sampled on the surface of a mesh is at a distance f from its medial
axis. 48

4.8 Accurate points. If the points from the point network (green) lie accurately
on the surface of the ground truth shape, then the mesh prior (blue) needs
to lie within the Minkowski (pink) sum of the feature size of all points on
the original surface. 49

4.9 Accurate mesh prior. Using the ground truth mesh as the mesh prior (blue),
the maximum error in the output points (green) can be σ2. 50

4.10 General Case where the error is in both the mesh prior (blue) and the out-
put points of the point network (green). 51

4.11 Single View Reconstruction Results. Using meshes from IM-NET as pri-
ors, GAM reconstructs surfaces for the output points (orange) of a point
network (PSG+). Unlike BPA, GAM guarantees to connect all the output
points and reconstructs meshes with both accurate geometry and correct
topology. 56

4.12 SVR on Natural Images. Single-view reconstruction results on two images
from Pix3D [76]. 56

4.13 Single View Reconstruction. Qualitative comparison of meshes from vari-
ous SVR approaches. Using meshes from IM-NET as priors, GAM recon-
structs accurate surfaces for the output points (orange) of PSG+. 57

4.14 More Qualitative results for Single-View Reconstruction. 58
4.15 Training with GAM. Training a point network using mesh loss on surfaces

reconstructed by GAM allows us to redistribute the points towards the
edges of the shape, generating adaptive meshes. On the contrary, training
the same network with Chamfer loss on output points generates meshes
with uniformly distributed points. 62

4.16 Meshing Sparse Point Clouds. GAM can be used to generate surfaces for
point networks which output sparse point clouds. 64

5.1 AntHQ Dataset. A sample representation of models from our AntHQ dataset. 68
5.2 Screenshot of our web-interface where a user is selecting an object category. 70
5.3 Screenshot of our web-interface displaying the models in the table category. 71
5.4 Screenshot of our web-interface displaying the statistics of a single table

model. 71

viii

LIST OF TABLES

Page

3.1 3D reconstruction results on models from the test set. We compare differ-
ent loss functions using Chamfer distance (CD), computed on 2500 points,
multiplied by 103 and Metro error [17], multiplied by 10. Among all four
losses, Chamfer loss best preserves the overall structure and point distri-
bution which is reflected in its low CD and Metro values. Quadric loss
preserves sharp edges and corners (Fig. 3.4) but has a higher CD when
compared to Chamfer loss. Combining quadric with Chamfer achieves best
results. 27

4.1 GAM vs Points/Implicit Networks. F1-scores on ShapeNet testset where
we reconstruct meshes using GAM which combines geometry from a point
network (PSG+) and topology from implicit networks (OccNET or IM-
NET). Such a combination performs better (shown in bold) than either the
implicit network (columns 2 & 4) or the point network. Using the ground
truth meshes as prior for GAM gives an upper bound for the same output
points. 54

4.2 Quantitative Results for SVR. We compare several SVR methods by their
output representation, |V | (mean±std), CD (x103), F1 score and topology of
the output mesh. For [81], † reports the results from their paper and ‡ using
the model released by authors. We show that meshes reconstructed from
GAM using IM-NET as priors achieves high fidelity and correct topology. . 55

4.3 Quantitative comparison of training a point network with CD vs a mesh
loss on surfaces generated from GAM. 62

4.4 Evaluating Point Networks for SVR. We compare four point networks with
different number of output points by CD (x103) on the output points, F1
scores on the surfaces reconstructed using BPA, SPR & GAM and the mean
% of unreferenced vertices in these reconstructed surfaces. Analyzing the
network’s performance through the output points alone can often be mis-
leading. Evaluating the surfaces reconstructed by GAM using the output
points gives a more accurate assessment. 63

ix

ACKNOWLEDGMENTS

I first wish to thank my PhD advisor, Professor Gopi Meenakshisundaram for being a
wonderful mentor over the past six years. I am deeply indebted to him for always mak-
ing the time to discuss my work and for his insightful comments on my research. He
has always been understanding and supportive, even when I decided to switch my re-
search interest from medical imaging to deep learning. In addition to my research, he has
constantly helped me navigate my way though graduate school, internships, and life in
general.

I thank my committee members, Professors Charless Fowlkes and Shuang Zhao for sup-
porting me along the way and for their comments on ways to improve my work. I would
like to also acknowledge the support of my collaborators: Professors Niloy Mitra, Sung-
Eui Yoon and Xiangmin Xu with whom I have had the pleasure to work with in various
capacities during the last six years. I am also grateful for all the support given by Pro-
fessor Aditi Majumder, especially during the initial years of my PhD. I also acknowledge
the other faculty (Dr. Raymond Klefstad and Dr. Mustafa Ibrahim for whom I TAed) and
the staff (Holly Byrnes, Mary Carrillo and Sholeh Satari) in the ICS Department for their
assistance throughout my time here.

I shared a special bond with my colleagues in the iGravi and the Vision lab at UCI, espe-
cially Jia, Mahdi, Hao, Mehdi, Yu, Zahra, Ali, Cheng, Samia, Zhanhang, Jessica, Isabela,
Andy and Shu and I am grateful to them for numerous things from sharing their GPUs
to keeping me company in the lab when I was working till late. Coming from Seattle, I
never thought I could like any other US city as much, but my friends - Dhrub, Ani, Pri-
mal, Roberto, Sabur, Biswadeep, Rohit, Gaurav with whom I went hiking, played tennis,
and discovered Irvine, made it possible. My interactions with them helped me survive
the graduate program.

No part of this journey would have been possible without the love of my family. I would
like to thank my parents and my brother for their belief in me and for their encouragement
all along the way. I am especially grateful to my wife Bijetri, who tolerated my late nights,
crazy deadlines, incessant grumblings for six years. It has been and will always be a
comfort to have her by my side.

x

CURRICULUM VITAE

Nitin Agarwal

EDUCATION

Doctor of Philosophy in Computer Science 2014-2020
University of California, Irvine Irvine, California
Masters of Science in Bioengineering 2011-2013
University of Washington, Seattle Seattle, Washington
Bachelor in Engineering in Electronics & Instrumentation 2010
Birla Institute of Technology and Science, Pilani Rajasthan, India

SELECT PUBLICATIONS

1. Nitin Agarwal, M. Gopi.“GAM: Guided and Augmented Meshing for Deep Point
Networks.” In International Conference on 3D Vision (3DV), 2020. (under review)

2. Nitin Agarwal, Sung-Eui Yoon, M. Gopi. “Learning Embedding of 3D models with
Quadric Loss.” In British Machine Vision Conference (BMVC), 2019.

3. Nitin Agarwal, Xiangmin Xu, M. Gopi. “Geometry Processing of Conventionally
Produced Mouse Brain Slice Images.” In Journal of Neuroscience Methods, 2018.

4. Nitin Agarwal, Xiangmin Xu, M. Gopi. “Automatic Detection of Histological Arti-
facts in Mouse Brain Slice Images”. In International Conference on Medical Image
Computing and Computer Assisted Intervention, Workshop on Medical Computer
Vision: Algorithms for Big Data (MICCAI), 2016.

5. Nitin Agarwal, Xiangmin Xu, Gopi Meenakshisundaram. “Robust Registration of
Mouse Brain Slices with Severe Histological Artifacts.“ In Indian Conference on
Computer Vision, Graphics and Image Processing (ICVGIP), 2016.

DATASET

1. Nitin Agarwal, Andrew Self, M.Gopi. “AntHQ: A High Quality 3D Mesh Dataset
with Artistic Embellishments.”

2. Nitin Agarwal, Lujia Chen, Sina Sobhani, Xiangmin Xu, M.Gopi. “Annotated 3D
Mouse Brain Model”.

xi

https://www.ics.uci.edu/~agarwal/mouseBrain/index.html
https://www.ics.uci.edu/~agarwal/mouseBrain/index.html

ABSTRACT OF THE DISSERTATION

Geometric Algorithms for Deep Point Networks

By

Nitin Agarwal

Doctor of Philosophy in Computer Science

University of California, Irvine, 2020

Professor Gopi Meenakshisundaram, Chair

Point networks have recently enjoyed a lot of success due to the significant growth in 3D

data and the development of novel point network architectures focusing on new appli-

cations. In this dissertation, I show that the performance of existing point networks can

be improved by using insights from classical geometry processing algorithms. I demon-

strate this first by proposing a new point-surface loss function called Quadric loss, which

preserves sharp features such as edges and corners of 3D shapes. Inspired by the classi-

cal quadric simplification, Quadric loss minimizes the quadric error between the recon-

structed points and the input surface. I show that combining Quadric loss with other

popular point based loss functions can achieve better reconstruction results than existing

approaches. Next, I propose a new meshing algorithm called Guided and Augmented

Meshing, GAM, which generates a surface for the output points of a point network us-

ing a mesh prior. GAM decouples the geometry from the topology by making the point

network solely responsible for geometry and the mesh prior responsible for topology. I

show the benefits of such a disentanglement for single-view shape prediction and fair

evaluation of deep point networks. Finally, I also present a novel 3D mesh dataset which

was curated during this research, along with its several promising future applications.

xii

Chapter 1

Introduction

1

The fundamental objective of this dissertation is to demonstrate that the performance of

deep point networks can be improved by borrowing insights from classical geometry pro-

cessing algorithms. In this chapter, we provide an overview of the dissertation, starting

with a motivation of the broader area of 3D deep learning and categorization of the task

space in 3D computer vision. We then discuss the various representation for 3D shapes,

including their advantages and shortcomings, before focusing on deep point networks.

We conclude this chapter by providing a road map to this thesis.

1.1 3D Deep Learning

We, humans live in a three-dimensional world. Recognizing objects around us and being

able to interact with them is essential for our survival and sustenance. For example,

understanding the shape and size of 3D objects and performing actions with them, such

as lifting a coffee mug, sitting on a chair, speaking with our mobile phones and writing

on a notebook are crucial parts of our lives.

For several decades, 3D visual computing has predominantly focused on single 3D mod-

els or small model collections where hand-crafted geometric algorithms have stood out.

However, the development of new technologies and reconstruction algorithms, over the

past few years has drastically increased the amount of accessible 3D data. Motivated by

the far-reaching impact of dataset efforts such as the WordNet [23] and ImageNET [20],

the whole computer vision community has made significant progress in collecting and

curating large scale 3D dataset, both for single objects (e.g. ShapeNet [13], ObjectNet3D

[90], ModelNET [88], ABC [46]) and 3D scenes (e.g. NYU Depth Dataset [72], SceneNN

[37], ScanNet [18], MatterPort [12]). Such efforts compel us to redefine 3D visual comput-

ing from the perspective of big 3D data and to develop novel learning based geometric

algorithms.

2

Indoor Scene Outdoor Scene

Figure 1.1: Problem tasks can vary depending on the type of 3D scene. For static in-
door scenes predicting scene layout and understanding object relationships might seem
important while for outdoor scenes object detection and tracking could take precedence.

1.1.1 Task Space in 3D Computer Vision

Problems in 3D computer vision can be categorized in many ways. One could classify

them according to where the 3D data is accessed or produced in the algorithm, what kind

of object representations are the algorithms using etc. However, in this dissertation, we

categorize 3D computer vision tasks as either object-centric or scene-centric.

Object centric. Object centric tasks refer to problems where the analysis is done on the

whole 3D shape or a region of the shape. Examples of major tasks include object classifi-

cation, segmentation, correspondence estimation, shape abstraction, 3D reconstruction of

single objects.

Scene centric. In scene centric tasks, the analysis is done on the entire 3D scene, which

usually comprises of several 3D objects. These 3D scenes can either be indoor or outdoor

(Figure 1.1). Depending on the type of 3D scene, the tasks can include object detection

and classification, tracking, predicting scene layout, predicting object functionality, com-

puting relationship between objects.

3

RGB Image Depth Image Voxel SDF Points Mesh

Figure 1.2: Popular 3D shape representations.

Although most of the algorithms discussed in this dissertation can be scaled to scene

centric tasks, we primarily focus at object centric tasks.

1.1.2 3D Representation

Among all the digital representations we have for real physical objects, 3D is arguably

the most expressive encoding. 3D objects can exist in a variety of representations like

collection of RGB images, RGB-D images, volumetric grids, signed distance functions

(SDF), point clouds and polygonal meshes (Figure 1.2). Each of these representations

facilitate different application scenarios. Additionally, each type of data format has its

specific properties, which can pose challenges to the design of learning algorithms.

For example, one advantage of structured representation like images and voxels is that

basic operations like convolution and pooling are well defined. Although voxel based

representations are memory intensive and suffer from poor resolution [88], there have

been works which try to address these issues [82, 69]. On the other hand, unstructured

representations like points and meshes are light weight and can represent high resolu-

tion models, but are not friendly to deep learning. However, with the recent success of

point and mesh architectures [65, 66, 80, 59], convolution operations have been extended

to these irregular structures enabling a host of new applications. Another popular rep-

resentation that has lately gained attention is the signed distance function (SDF), where

4

instead of explicitly encoding the object geometry, we only encode the distance to the

surface. Although SDFs can represent high resolution models and are friendly to convo-

lution, they typically require iso-surface extraction for mesh generation using algorithms

like marching cubes [55].

1.2 Roadmap

As mentioned earlier, in this dissertation we develop algorithms for deep point networks,

specifically focusing on object centric applications.

The dissertation is organized as follows. We first provide a brief background on deep

point networks including commonly used architectures, design choices and applications

in Chapter 2. In Chapter 3, we present a novel point-surface loss function which captures

sharp features in 3D shapes. Next, we describe an algorithm to mesh the output points of

a deep point network using a mesh prior in Chapter 4. We explore its various applications

and utility to points networks. Finally, in Chapter 5 we introduce a new high quality mesh

dataset and discuss its applications before concluding in Chapter 6.

5

Chapter 2

Deep Point Networks

6

In this chapter, we first motivate and give background on deep point networks. We then

discuss few challenges and design choices that one needs to take into consideration while

design point networks. We then conclude this chapter by describing some common ap-

plications of deep point networks.

2.1 Motivation & Background

As discussed in the previous chapter, 3D data can usually be represented with different

formats, including depth images, point clouds, meshes, volumetric grids and signed dis-

tance functions. As a commonly used format, point cloud representation preserves the

original geometric information in 3D space without any discretization. Further, it is also

the output format for a majority of 3D range scanners (e.g LiDAR, Kinect) and reconstruc-

tion algorithms, making it the preferred representation for many scene understanding

related applications such as autonomous driving and robotics.

Recently, deep learning on point clouds has been attracting more and more attention, es-

pecially in the last five years. Several publicly available datasets are also released, such

as ModelNet [88], ShapeNet [13], PartNet [57], ScanNet [18], ApolloCar3D [13], and the

KITTI Vision Benchmark Suite [26]. These datasets have further boosted the research of

deep learning on 3D point clouds, with an increasingly number of methods being pro-

posed to address various problems related to point cloud processing, including 3D shape

classification, 3D object detection and tracking, 3D point cloud segmentation, 3D point

cloud registration, 6-DOF pose estimation, and 3D reconstruction to name a few.

7

Figure 2.1: A PointNet architecture where MLPs convert high dimensional point features
RM into a RK . These features are subsequently aggregated into a K dimensional feature
vector using symmetric functions such as max pooling.

2.2 Challenges & Design Choices

Although there has been tremendous amount of success in the applications of deep neu-

ral networks for image classification, segmentation and detection, extending these ap-

proaches to unstructured data such as point clouds is challenging. Below we discuss few

challenges and design choice which arise in a point network architecture for any applica-

tion.

2.2.1 Symmetric Functions

The first and foremost challenge in designing a network which can consume unordered

point clouds is making the network invariant to point ordering. Unlike images, point

clouds have an irregular structure making it difficult to extend basic operations like con-

volution and pooling. Although there are works which transform points clouds into

more structured representation like voxels and collection of images, these unnecessar-

ily increase the memory footprint while also introducing quantization artifacts that can

obscure natural invariances of the data.

8

In order to make the network invariant to point ordering, an easy strategy could be to sort

the input points. However, in high dimensional space there does not exist an ordering

that is stable with respect to point permutation. For if such an ordering exists, it defines a

mapping which preserves spatial proximity as the dimension reduces, which is difficult to

achieve in a general case. Another approach could be to train a recurrent neural network

(RNN) with multiple permutations of the input hoping that the network learns to be

invariant to the point ordering. Although this may seem plausible, in practice this is

difficult to scale to thousands of input points, which is quite common for point sets.

A common strategy which most works adopt is to first apply a set of functions {h1, h2,, hn}

with shared parameters to each point separately and then aggregate those high-dimensional

features through symmetric functions such as max pooling as shown in Figure 2.1 and

Equation 2.1.

f({x1, x2,, xn}) ≈ g(h1(x1), h2(x2),hn(xn)), (2.1)

where f ∈ RK is a feature vector for the entire pointset, h : RM → RK is approximated

by multi-layer perceptron (MLP) and g : (RKx xRK) → RK is a symmetric function.

Although there exists other symmetric functions such as mean, minimum, multiplication,

etc., maximum and sum are the most common and widely used.

2.2.2 Local vs Global Features

Unlike meshes, point clouds do not have any connectivity information associated with

them. Unless the connectivity is borrowed from the ground truth mesh from which the

point clouds were sampled, there are two approaches for carrying out convolutions on

9

point clouds. Depending on the application, convolution can either be performed on

individual points or it can be performed on groups of points.

Point Features. The most simple pointnet architecture is where several MLPs which share

weights are learnt across multiple layers to embed each point in a high-dimensional fea-

ture vector. These MLPs essentially learn local point features which then serve as building

blocks for designing more complex architectures.

Global Features. Applications such as point cloud segmentation [85] and classification

[65] require an understanding of the entire shape. Hence, networks for these applica-

tions first learn individual point features and later aggregate them using symmetric func-

tions (section 2.2.1) to obtain a single global feature vector. These feature vectors may

then pass through fully-connected layers before providing a final prediction. Quite often,

these global features are concatenated with individual points or local features to further

improve the networks performance.

Local Features. Designing point networks which require local neighbourhood informa-

tion can be difficult. For example, networks which predict local geometric properties such

as normals and curvatures [32] need to obtain features that are local to the point. How-

ever, computing an appropriate neighbourhood for performing convolution can itself be

tricky, especially if the point set comes with non-uniform density in different areas.

Depending on the density and distribution of the input points, different strategies can

be adopted for grouping points around a local neighbourhood to learn local features.

If the points in the input are uniformly distributed, a simple strategy such as k nearest

neighbours [85] or even computing a fixed number of closest points within a specific

radius [32] can give good result. However, the networks performance can drastically drop

if the same strategy is adopted for input that has non-uniform distribution of points. As

10

illustrated in Figure 2.2 using any of the above mentioned approaches would yield low

performance.

To compute local features on non-uniform input points, two hierarchical methods were

proposed by PointNet++ [66]. Multi-scale grouping (MSG) computes feature vectors us-

ing multiple scales but at a single resolution level and later concatenates these features

into a single feature vector. Computing features at multiple scales enables the network

to overcome any discrepancies introduced due to non-uniform density. Contrarily, multi-

resolution grouping (MRG) concatenates feature vectors from two levels which represent

two different resolutions. This is computationally more efficient as it avoids feature ex-

traction in large scale neighbourhoods at the highest resolution level.

Uniform Point Distribution Non-Uniform Point Distribution

Figure 2.2: Grouping strategies for computing local point features for point networks.
While simple strategies such as computing a fixed number of closest points within a spe-
cific radius can be used for uniform points distributions, blindly extending such tech-
niques for input with non-uniform point distribution gives poor results.

11

2.2.3 Invariance to Geometric Transformation

Another obstacle in designing networks for geometric data such as point clouds is for the

network to be invariant to any geometric transformation. Unlike 2D images, point clouds

can undergo geometric transformations such as translation and rotation. Typically, such

transformations should not affect the output result especially for applications like object

detection, classification, segmentation, etc. A natural solution to this is to align all the

input point clouds to a canonical space before extracting features using point networks.

However, this limits the generalization power of the network. An alternative can be to

use a spatial transformer [38]. Spatial transformers are mini point networks which pre-

dict a 3 x 3 affine transformation that can be directly used to transform the input point

coordinates. Further, these spatial transformers are optimized during training and hence

are specific to each application and perform better than manual alignment.

2.3 Applications for Point Networks.

PointNet [65] and PointNet++ [66] have been instrumental in the success of deep point

networks. They have been the motivation behind many point network architectures. Be-

low we discuss few of these applications. For a comprehensive list, please refer to [33].

Representation Learning refers to learning a compact representation of the input 3D shape.

Given a point cloud, an autoencoder is trained in an unsupervised manner to learn an

embed which accurately captures the entire shape [1, 2]. Such embeddings have several

applications including classification, clustering, shape interpolation, shape analogies etc.

Further, depending on the network architecture, training such an autoencoder can also as-

sist computing shape correspondences. For example, networks which learn to deform 2D

12

Figure 2.3: Applications of Point Networks

patches to fit the input shape [30, 93], have been shown to learn semantically meaningful

correspondences across different shapes.

Single-View Shape Prediction or point-set generation refers to reconstructing a 3D point

cloud from a single-view RGB image [22, 52]. This problem is ill-posed and extremely

challenging as the network needs to learn and draw inferences about hidden or occluded

parts of the 2D image. Surface reconstruction can then be performed on the output point

clouds to obtain a final 3D mesh.

Part Segmentation involves predicting a part label for each point in the input point cloud

[65, 85]. Point networks focusing on part segmentation are trained in a supervised manner

using datasets with ground truth part labels. These networks often concatenate both

global and local features to output the final point prediction.

13

Object Classification is the task of classifying the input point cloud into one of k categories,

where k depends on the number of categories in the input dataset [65, 66]. Networks for

object classification usually only require global features for predicting the object category.

Normal Estimation refers to computing the normal vector for each point in the input point

cloud [32]. Normal vectors are usually computed using surface information available in

mesh data. Computing normal vectors using only points is challenging as normal compu-

tation is sensitive to point density. Hence, networks which predict these local geometric

properties primarily use local features and require sufficiently dense sampling to avoid

artifacts due to spatial proximity of points that are geodesically remote.

Point Upsampling as the name suggests involves upsampling a sparse input point cloud

[96, 94]. Classical surface reconstruction algorithms like Ball-Pivot algorithm [9] cannot

accurately reconstruct surfaces from sparse point clouds as they heavily depend on the

point density and distribution.

Given the numerous applications for deep point networks mentioned above, any funda-

mental contribution towards point cloud processing will prove to be a boon for the 3D

deep learning community.

14

Chapter 3

Learning Shape Representation using

Quadric Loss

15

In this chapter, we first motivate the need for sharp features in 3D shapes and briefly de-

scribe the loss functions available today for 3D reconstruction. We then introduce quadric

loss and discuss its geometric interpretation. Finally, we show experimental results high-

lighting the advantages and shortcomings of quadric loss before concluding the chapter.

3.1 Motivation

Following the tremendous success in image classification and detection, deep learning

based techniques have been widely extended to 3D data, opening up numerous 3D ap-

plications such as 3D object classification, segmentation, shape representation and cor-

respondence finding to name a few. In this chapter we focus on shape representation,

particularly on learning a better embedding or shape representation of 3D models using

an auto encoder.

Early 3D deep learning techniques use 2D and 3D convolution modules to design their

network architectures. Recent techniques extend such convolution modules to handle

irregular representations such as points [65, 66] and meshes [53, 19, 78, 68]. Together with

these architectures, different loss functions have been proposed for 3D reconstruction. At

a high level, they can be classified as being between two points (e.g., L1, Earth Mover

Distance [22]) or between a point and a surface (e.g., surface loss [95]). Among these loss

functions, Chamfer loss [95] has been widely used for reconstructing 3D models.

While these loss functions work well in maintaining the overall structure of the 3D model,

they do not preserve high-frequency information such as edges and corners. To address

this issue, we propose a novel loss function, Quadric loss, for preserving such detailed

structures. Inspired by mesh simplification techniques, Quadric loss is defined as the

sum of squared distances between a reconstructed point and planes defined by triangles

16

(a) Input Point Cloud (b) Chamfer (c) Chamfer+Quadric (d) Original Mesh

Figure 3.1: (a) Input point cloud reconstructed using an auto-encoder network with (b)
Chamfer loss alone and (c) Chamfer + Quadric loss. Reconstructed meshes are generated
using Poisson surface reconstruction on output point cloud.

incident to its corresponding point in the input mesh. Intuitively, the Quadric loss penal-

izes the displacement of points along the normal direction of those planes, maintaining

sharp edges and corners as shown in Figure 3.1.

To demonstrate the benefits of Quadric loss, we conduct experiments with 3D CAD mod-

els, and compare various loss functions both qualitatively and quantitatively. Overall, we

find that the combination of Chamfer and our Quadric loss shows the best result, since

Chamfer loss maintains the overall structure and point distribution, while the Quadric

loss preserves sharp features.

The main contributions of this chapter are as follows:

• We propose a new point-surface loss named Quadric loss, which preserves sharp

features such as corners and edges in the reconstructed models. It is fast, easy to

compute and is fully differentiable. It does not introduce any hyperparameters and

can be used with most existing point or mesh based architectures without modifica-

tion.

• We evaluate our loss function extensively and also provide its geometric interpreta-

tion.

17

• We compare our Quadric loss with other point-surface loss functions and the popu-

lar Chamfer loss and discuss in detail the merit and demerit of each.

3.2 Related Work

3.2.1 Learning Shape Representation

There is a rich literature for learning compact 3D shape representations using deep learn-

ing techniques. Prior works [75, 50, 27, 87] have used image and voxel based represen-

tations of 3D models to learn a discriminative representation for the task of 3D object

recognition, classification and generation. Although their structured representations fa-

cilitate the use of traditional 2D and 3D convolution, they are not readily available for

handling complex and high resolution models. On the other hand, part-based approaches

[49, 58, 89] can produce shapes with complex structures, but the level of detail is restricted

to the components and primitives used.

Recently, convolution has been extended to more unstructured representations like 3D

point datasets and meshes. PointNet [65] and PointNet++ [66] have been widely used as

an encoder to achieve superior performance on various tasks such as object classification

[65, 85], segmentation [65, 85], point set generation [1, 93], shape correspondence [31] etc.

Mesh based networks have also been used to learn embeddings for shape completion

[53, 19] and shape deformation [78, 68].

Since point and mesh based representations, when compared to voxel-based represen-

tations, are light-weight, flexible in terms of reconstructing complex models and scale

well to high resolution models, we propose a loss function which can be used by such

networks to further enhance the embedding and reconstruction quality of 3D models.

18

Qt =

7X

i=1

qi

<latexit sha1_base64="Y8dGjmzoDpfM2WX8Vt4L+6FtFfg=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2WmCnVTKLpx2YJ9QDsOmTRtQ5PMmGSEMgxu/BU3LhRx61e4829M21lo64ELh3Pu5d57gohRpR3n28qtrK6tb+Q3C1vbO7t79v5BS4WxxKSJQxbKToAUYVSQpqaakU4kCeIBI+1gfD312w9EKhqKWz2JiMfRUNABxUgbybePGr6GVdhTMfcTWnXTu6SSJvc+TX276JScGeAycTNSBBnqvv3V64c45kRozJBSXdeJtJcgqSlmJC30YkUihMdoSLqGCsSJ8pLZCyk8NUofDkJpSmg4U39PJIgrNeGB6eRIj9SiNxX/87qxHlx6CRVRrInA80WDmEEdwmkesE8lwZpNDEFYUnMrxCMkEdYmtYIJwV18eZm0yiX3vFRuXBRrV1kceXAMTsAZcEEF1MANqIMmwOARPINX8GY9WS/Wu/Uxb81Z2cwh+APr8weMhJbn</latexit>

s
<latexit sha1_base64="4KhsXsLRS0yWwJxg4osvGl7oqcQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcSQwM9N+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn88RTcmaVAQljbZ9CMld/b2Q0MmYSBXZyltAsezPxP6+bYnjtZ0IlKXLFFh+FqSQYk9n5ZCA0ZygnllCmhc1K2IhqytCWVLIleMsnr5JWrepdVGv3l5X6TV5HEU7gFM7Bgyuowx00oAkMFDzDK7w5xnlx3p2PxWjByXeO4Q+czx8XF5Ew</latexit>

p1

p2

p3
p4

p5

p6
p7

t
<latexit sha1_base64="N8HxvA6Y/ZvbKr3Q/JexCreHa0g=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcSQww2m/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8YnJEx</latexit>

x2

s
<latexit sha1_base64="4KhsXsLRS0yWwJxg4osvGl7oqcQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcSQwM9N+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn88RTcmaVAQljbZ9CMld/b2Q0MmYSBXZyltAsezPxP6+bYnjtZ0IlKXLFFh+FqSQYk9n5ZCA0ZygnllCmhc1K2IhqytCWVLIleMsnr5JWrepdVGv3l5X6TV5HEU7gFM7Bgyuowx00oAkMFDzDK7w5xnlx3p2PxWjByXeO4Q+czx8XF5Ew</latexit>

x1

x3

x4

x5

x6

x7

t
<latexit sha1_base64="N8HxvA6Y/ZvbKr3Q/JexCreHa0g=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcSQww2m/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8YnJEx</latexit>

bn
<latexit sha1_base64="qzewa5tC/uvc0ZWhSHQ8j2+Kz1U=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7AekoWw2m3bpZjfsTpQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBXcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMSrTlLWpEkr3QmKY4JK1gYNgvVQzkoSCdcPx7czvPjJtuJIPMElZkJCh5DGnBKzk9594xEYEcjkdVGtu3Z0DrxKvIDVUoDWofvUjRbOESaCCGON7bgpBTjRwKti00s8MSwkdkyHzLZUkYSbI5ydP8ZlVIhwrbUsCnqu/J3KSGDNJQtuZEBiZZW8m/uf5GcTXQc5lmgGTdLEozgQGhWf/44hrRkFMLCFUc3srpiOiCQWbUsWG4C2/vEo6jbp3UW/cX9aaN0UcZXSCTtE58tAVaqI71EJtRJFCz+gVvTngvDjvzseiteQUM8foD5zPH8h2kZQ=</latexit>

Lquad = sT Qts
<latexit sha1_base64="jXBAtnGy9OQrMTCERAbnu0N7Zmo=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkVdCMU3bhw0UJf0MYwmUzboZOHMxOxhPyKGxeKuPVH3Pk3TtsstPXAhcM593LvPV7MmVSW9W2srK6tb2wWtorbO7t7++ZBqS2jRBDaIhGPRNfDknIW0pZiitNuLCgOPE473vhm6nceqZAsCptqElMnwMOQDRjBSkuuWbpz04cE+xm6QvK+2XCVdM2yVbFmQMvEzkkZctRd86vvRyQJaKgIx1L2bCtWToqFYoTTrNhPJI0xGeMh7Wka4oBKJ53dnqETrfhoEAldoUIz9fdEigMpJ4GnOwOsRnLRm4r/eb1EDS6dlIVxomhI5osGCUcqQtMgkM8EJYpPNMFEMH0rIiMsMFE6rqIOwV58eZm0qxX7rFJtnJdr13kcBTiCYzgFGy6gBrdQhxYQeIJneIU3IzNejHfjY966YuQzh/AHxucPOzuT6g==</latexit>

s
<latexit sha1_base64="4KhsXsLRS0yWwJxg4osvGl7oqcQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcSQwM9N+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn88RTcmaVAQljbZ9CMld/b2Q0MmYSBXZyltAsezPxP6+bYnjtZ0IlKXLFFh+FqSQYk9n5ZCA0ZygnllCmhc1K2IhqytCWVLIleMsnr5JWrepdVGv3l5X6TV5HEU7gFM7Bgyuowx00oAkMFDzDK7w5xnlx3p2PxWjByXeO4Q+czx8XF5Ew</latexit>

t
<latexit sha1_base64="N8HxvA6Y/ZvbKr3Q/JexCreHa0g=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcSQww2m/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8YnJEx</latexit>

f1

f2

f3
f4

f5

f6 f7

(a) Normal Loss (b) Surface Loss (c) Quadric Loss

Lsurface = mini=[1,7]�(s, fi)
<latexit sha1_base64="AOjBsmsJ9+oxjPVZW0mty2K1uLo=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0WsUEpShbopFN24cFHBPiANYTKdtEMnkzAzEUroJ7jxV9y4UMStS3f+jdM2C209cOFwzr3ce48fMyqVZX0buZXVtfWN/GZha3tnd8/cP2jLKBGYtHDEItH1kSSMctJSVDHSjQVBoc9Ixx9dT/3OAxGSRvxejWPihmjAaUAxUlryzNNbL5WJCBAmE1iHIeVeSuuOXa65E9hrDmlJlgOPnnlm0apYM8BlYmekCDI0PfOr149wEhKuMENSOrYVKzdFQlHMyKTQSySJER6hAXE05Sgk0k1nD03giVb6MIiELq7gTP09kaJQynHo684QqaFc9Kbif56TqODSTSmPE0U4ni8KEgZVBKfpwD4VBCs21gRhQfWtEA+RQFjpDAs6BHvx5WXSrlbs80r17qLYuMriyIMjcAxKwAY10AA3oAlaAINH8AxewZvxZLwY78bHvDVnZDOH4A+Mzx9mG5uG</latexit>

Lnormal =
7X

i=1

|(s � xi) · bn|
<latexit sha1_base64="rKKp1AQ429WFdby+7/F9Y16kqqE=">AAACIHicbVDLSgNBEJz1bXxFPXoZDIIeDLsqxIsgevHgQcGokI3L7OzEDJnHMtOrhnU/xYu/4sWDInrTr3ESc/BV0FBUddPdFaeCW/D9d29oeGR0bHxisjQ1PTM7V55fOLU6M5TVqRbanMfEMsEVqwMHwc5Tw4iMBTuLO/s9/+yKGcu1OoFuypqSXCre4pSAk6Jy7TDKlTaSiALv4NBmMsr5TlBc5LUC367a9ZuIr+GQJhpweM0T1iaQq+I2Klf8qt8H/kuCAamgAY6i8luYaJpJpoAKYm0j8FNo5sQAp4IVpTCzLCW0Qy5Zw1FFJLPNvP9ggVeckuCWNq4U4L76fSIn0tqujF2nJNC2v72e+J/XyKC13cy5SjNgin4tamUCg8a9tHDCDaMguo4Qari7FdM2MYSCy7TkQgh+v/yXnG5Ug83qxvFWZXdvEMcEWkLLaBUFqIZ20QE6QnVE0R16QE/o2bv3Hr0X7/WrdcgbzCyiH/A+PgFipqMh</latexit>

(a) Normal Loss (b) Surface Loss (c) Quadric Loss

Figure 3.2: Computation of point-surface losses. Let the the reconstructed point s cor-
respond to the point t in the input mesh. (a) Normal loss computes the inner product
between the edge formed by s and xi and the ground truth normal vector n̂ at t; (b) Sur-
face loss computes the point-triangle distance Φ between s and f , where f represents
a triangle and not a plane, and takes the minimum of them with different triangles; (c)
Quadric loss (our contribution) computes the sum of the square of the distance between
s and each of the plane p (p = [a, b, c, d]T) formed by the triangle incident at t using the
quadric matrix qi which is computed as qi = pip

T
i . Please see Eq. 3.4 for more details.

3.2.2 3D Reconstruction Losses

Losses commonly used with point and mesh based networks for 3D reconstruction can

be broadly classified into two categories - between two points or between a point and a

surface.

Point based Loss: Point based loss functions compute the dissimilarity between two

pointset distributions. Let S1 and S2 be the input and output point distributions. Losses

like L1 [19] and L2 [31, 53] require both one-to-one correspondence and the cardinality of

the two pointsets to be the same (Equation 3.1).

19

LL1(S1, S2) =
∑

x∈S1
y∈S2

|x− y| and LL2(S1, S2) =
∑

x∈S1
y∈S2

||x− y||2 (3.1)

Earth movers distance (EMD) or Wasserstein metric [22] is similar to these losses as it

requires the input cardinality between pointsets to be the same. It solves an optimization

problem where it computes a bijection φ between the two pointsets (Equation 3.2).

LEMD(S1, S2) = min
φ:S1→S2

∑

x1∈S1

||x− φ(x)||22 (3.2)

However, a major drawback of EMD is that it is both memory and compute intensive,

hence is usually approximated [22]. Chamfer distance (CD) [22, 81, 30], which has become

a standard for reconstructing 3D objects, computes the shortest distance of each point in

one pointset to the other pointset (Equation 3.3).

LCD(S1, S2) =
∑

x∈S1

||x− y||22 +
∑

y∈S2

||x− y||22 (3.3)

This distance is computed in both directions. It does not require the cardinality of the

input points to be the same nor does it require any one-to-one correspondence. Although

CD works well at recovering the overall structure, it does not preserve sharp features like

corners and edges, and often results in collapse of smaller structures [19].

Point-Surface based Loss: Point-surface based loss functions try to minimize the distance

between the output reconstructed point and the input surface. Yu et al. [95] propose

surface-loss (point-triangle), which computes the minimum of the shortest distances be-

tween an output point and each triangle in a subset of triangles defining the input mesh

(Figure 3.2b). Similar to surface-loss, Yu et al. [95] also propose edge-loss, which requires

20

the edges in the input model to be manually annotated. Wang et al. [81] propose normal-

loss to incorporate higher-order features in their reconstruction. It minimizes the inner

product of the edge formed from the output point and the neighbours of the correspond-

ing input point with its normal vector. In other words, it requires the edges between the

output point and the neighbours of the corresponding input point to be orthogonal to the

ground truth normal vector (Figure 3.2a).

Departing from these prior approaches, we propose a new point-surface based loss func-

tion named quadric loss, which encourages sharp corners and edges to be preserved in

the output reconstruction (Figure 3.1). Unlike edge-loss, quadric loss does not require the

edges to be annotated in the input models. Quadric loss minimizes the distances between

the output point and the planes defined by the triangles incident to its corresponding

point in the input mesh (Figure 3.2c). It is fast and easy to compute as oppose to surface

loss for which one needs to consider all the seven cases, as the point which minimizes

the point-triangle distance can be on the 3 edges, 3 vertices or inside the triangle [95].

Quadric loss is also differentiable making it amiable for training via back propagation.

3.3 Quadric Loss

Quadric error metric was originally proposed for mesh simplification [70, 25], i.e, the

task of reducing of a mesh with a high polygon count to a low polygon count while pre-

serving as much visual geometric detail as possible. Quadric error computes the squared

distance between a point and a plane in IR3. Inspired by this quadric error metric, we pro-

pose quadric loss, a point-surface loss function, which penalizes the reconstructed points

in the normal direction, thereby preserving sharp edges and corners in the output recon-

struction as shown in Figure 3.1.

21

3.3.1 Background

Let a point s be represented in homogeneous coordinates [x, y, z, 1]T , and a plane p be

represented as [a, b, c, d]T where a2 + b2 + c2 = 1. The distance of s from p is given by

ax+ by + cz + d, which can be computed as pT s. The square of the distance of s from p is

given by

(pT s)2 = (pT s)(pT s) = sT (ppT)s = sTQps, (3.4)

Quadric loss L1 loss L2 loss

Iso-error envelopes

Figure 3.3: Geometric Interpretation of quadric loss. Quadric loss is an ellipsoidal loss and
it penalizes the reconstructed points more in the normal direction. Here we show the
iso-error envelope of Quadric, L1 and L2. For illustration purposes, we draw iso-errors in
2D on few points (yellow) on the input surface. Points lying on flat planes would ideally
have ellipsoids with 0 minor axis and∞ major axes lengths, i.e the reconstructed points
can be placed anywhere on the plane. Note that the ellipsoid for points on sharp features
like corners is very small compared to L1 and L2, ensuring the reconstructed points to
preserve such features.

22

where Qp is a symmetric matrix called the quadric matrix [25], determined only by the

plane and not by the point. Given a set of planes p1, p2, ...pk, the sum of the squared

distance of s from this set of planes is given by

∆(s) =
∑

sTQis = sT (
∑

Qi)s = sTQs, where Q =
∑

Qi. (3.5)

It should be clear that in a mesh, the quadric error of a vertex s from the planes defined

by the triangles incident on s is zero.

3.3.2 Efficient Computation

Given an input meshMwith Vin ∈ IRNx3 vertices and a set of reconstructed points Vout ∈

IRNx3, let s be a reconstructed point corresponding to input vertex t. We want s to be on

all the triangles incident on t just as t is on those planes in the input mesh. So the quadric

error of s from the planes defined by the triangles incident on its corresponding point t,

namely sTQs, has to be minimized. We call sTQs as the quadric loss, which we compute

between Vin and Vout as the following:

Lquad(Vin,Vout) =
1

N

∑

s∈Vout
t∈Vin

sTQts (3.6)

3.3.3 Geometric Interpretation

The iso-value surfaces sTQs defined by the quadric matrix Q at the input vertex t, rep-

resents a family of ellipsoids centered at t, for which one of the three axes corresponds

to the normal vector of the surface at t. The length of the other two axes are inversely

23

proportional to the curvature of the surface in those directions. For example, in a pla-

nar region, the length of the ellipsoidal axes is infinity along the plane and zero along

the normal vector direction. In other words, the reconstructed point can be anywhere on

the plane, but any displacement along the normal vector direction will introduce more

quadric loss. For vertices along a sharp, straight edge of a 3D model, the quadric error

ellipsoid will have infinite length along the edge and zero length for the other two axes.

In other words, the reconstructed point can be placed anywhere along the straight edge

for the quadric error to be still zero, but any displacement away from the edge will incur

a loss. A similar argument holds for a pointed corner of a 3D model. The quadric ellip-

soid will be very small, restricting the freedom of placement of the reconstructed point as

shown in Figure 3.3. Hence, unlike Chamfer and L2 loss which are spherical losses - points

equidistant from the input vertex have equal loss, quadric loss is an ellipsoidal loss which

penalizes displacement of points more in the normal direction.

3.4 Experiments

In this section, we present the results of training an auto-encoder with various point-

surface loss functions. Specifically, we compare our quadric loss with surface loss [95]

and normal loss [81] for the task of shape reconstruction. We analyze the reconstruction

results both qualitatively and quantitatively, and also compare our proposed loss with

the popular Chamfer loss.

3.4.1 Dataset

To train the autoencoder, we use the recently published ABC dataset [46]. Although

this dataset contains more than 1 million high quality CAD models of mechanical parts,

24

Input Surface Loss Normal Loss Chamfer Loss Ours

Figure 3.4: Effect of Point-Surface loss. Reconstruction results (2500 points) on example
3D models from the test set with different loss functions. In comparison to Chamfer focus-
ing on preserving the input point distribution, our quadric loss encourages points to be
on edges and corners. On flat planes (like the top and bottom faces of the cylinders in the
bottom row) reconstructed points minimize the quadric error by lying on the plane, but
can be outside the ground truth model. Such artifacts can be avoided by the combination
of quadric and Chamfer loss (top row of Figure 3.5).

we randomly selected 5000 CAD models for our experiment. The reason of using ABC

dataset over other 3D shape repositories like ShapeNet [13] and ModelNet40 [88] is the

presence of sharp edges and corners, which are commonly found in mechanical parts

(Figure 3.5). As some of the models comprised of multiple disconnected components, we

separated each model into its connected components such that each model has a single

mesh. This increased our dataset size to 8064 models. We also simplified the models us-

ing Q-slim [25] to reduce the vertex count to 2500 vertices, and centered and normalized

them to a unit sphere. We randomly split the data to get a distribution of 90% for training

and 10% for testing.

25

3.4.2 Network & Implementation Details

Although Quadric Loss can potentially be used with any point or mesh based network,

we use an auto-encoder based network and analyze the reconstruction quality during

shape reconstruction. We use the encoder from Dynamic Graph CNN (DGCNN) [85],

which performs convolution over k-nearest neighbours in the feature space at every layer

and is currently the state of the art for point cloud analysis. Specifically, we use the clas-

sification architecture without the spatial transformer and the fully connected layers to

encode a point cloud of 2500 vertices into a latent vector dimension of 1024.

For the decoder we use AtlasNet [30], which takes in the 1024 embedding from the

DGCNN encoder and generates an output surface using N learnt parameterizations. We

follow the same training strategy as AtlasNet, which is to sample the learned parameter-

izations at every training step to avoid over-fitting. For all the experiments in this paper,

we use this auto-encoder architecture with k = 20, N = 25 and an output point cloud size

of 2500.

In order to compare the three point-surface loss functions, we train 4 networks - one

with CD + surface loss, one with CD + normal loss, one with CD + quadric loss and one

with CD alone. To compute the three losses (surface, normal and quadric), we use the

correspondences found from Chamfer distance. For all the experiments we use Adam

[44] optimizer with a batch size of 16. The learning rate was set to 0.001 for all losses

except the networks trained with quadric loss for which we found a slower learning rate

of 0.0001 to be most effective. All learning rates were multiplied by 0.8 every 100 epochs.

For a fair comparison we train all the networks to the same number of epochs and we

also ensure that the total loss in each network is an equal contribution of both the loss

functions by weighting the terms appropriately. All the code was implemented in Pytorch

and training was performed on NVIDIA TITAN Xp GPU.

26

Losses CD Metro

median max median max

Normal loss 397.09 1750.6 10.65 28.38
Surface loss 21.86 398.85 6.11 24.93
Quadric loss 9.44 217.5 3.18 20.80
Chamfer loss 1.97 40.87 3.13 19.08

Normal + Chamfer loss 2.97 39.83 3.38 19.21
Surface + Chamfer loss 2.23 37.04 3.16 18.87
Quadric + Chamfer loss 2.21 36.78 2.96 18.80

Table 3.1: 3D reconstruction results on models from the test set. We compare different loss
functions using Chamfer distance (CD), computed on 2500 points, multiplied by 103 and
Metro error [17], multiplied by 10. Among all four losses, Chamfer loss best preserves
the overall structure and point distribution which is reflected in its low CD and Metro
values. Quadric loss preserves sharp edges and corners (Fig. 3.4) but has a higher CD
when compared to Chamfer loss. Combining quadric with Chamfer achieves best results.

3.4.3 Evaluation Metric

To evaluate the quality of the reconstructed shapes, we compare it with the ground truth

shapes using two criteria. First, we compare the Chamfer distance (CD) [22] between the

input and output point clouds. CD alone is a necessary but not a sufficient condition

for a good reconstruction; CD can be minimized by assigning just one point in one point

cloud to a cluster of points in the other point cloud. Hence, we also compare the Metro

error between the input and output meshes using the publicly available software [17].

Simply put, it computes the Euclidean distance between two meshes by sampling points

on them. We report the maximum distance between the two meshes because outliers

dictate the visual quality and fidelity of the reconstructed mesh.

27

Ground Truth Mesh Chamfer Chamfer+Surface Chamfer+Normal Chamfer+Quadric

Figure 3.5: Reconstruction results of 3D models from the test set. To obtain a mesh from
the reconstructed point clouds, we follow a similar procedure as AtlasNet [30]. i.e. we
shoot rays at the model from infinity to obtain a dense sample of points followed by
Poisson surface reconstruction (PSR) [42]. Chamfer loss when added to surface, normal
and quadric loss improves the reconstruction result as compared to them individually.
Note, sharp edges and corners are achieved with quadric and Chamfer togather.

3.4.4 Shape Reconstruction

We evaluate the learnt embedding by analyzing the reconstruction quality of the 3D mod-

els. We report the quantitative results in Table 3.1 where the results are from computing

the median and the maximum values of all models in the test set.

Reconstruction without Chamfer: In order to study the effect of various point-surface

losses, we train the auto encoder with surface, normal, and quadric losses independently

28

without chamfer loss. We report the qualitative results in Figure 3.4. As compared to sur-

face and normal loss, quadric loss alone reconstructs the models much better. Through

our extensive experiments we find training of normal loss also to be much difficult as

compared to surface and quadric loss. i.e. it does not converge. Quadric loss in com-

parison to surface loss preserves the sharp features better while surface loss is able to

achieve better point distribution. As surface loss computes the closest triangle to the re-

constructed point and minimizes that distance, it is difficult for it to reconstruct sharp

features like edges and corners.

As quadric loss encourages more reconstructed points to lie along the edges and corners,

it has a higher CD than network trained with Chamfer loss alone. Also, notice the small

difference in Metro error between Chamfer and quadric loss. This is because Metro error

is computed by sampling the meshes and not the points (like CD). Also, quadric loss with

AtlasNet decoder is able to reconstruct the patches (N learnt parameterizations) close

to the input surface. This demonstrates that Metro error does not care about the point

distribution as long as the output mesh surface is close to the input mesh surface. Hence,

a good reconstruction should preserve both the point distribution (low CD) and overall

structure (low Metro).

Reconstruction with Chamfer: Chamfer loss when added improves reconstructions based

on surface, normal, or quadric losses (Figure 3.5). Quadric with chamfer achieves the best

reconstruction results overall. Addition of quadric to Chamfer loss further reduces the

maximum CD from 40.87 to 36.78. This is because as Chamfer loss tries to preserve the

point distribution, quadric loss tries to preserve sharp features like edges and corners.

Hence, models reconstructed using both quadric and Chamfer enjoy best of both worlds

- sharp features and good point distribution.

29

Input Point Cloud Chamfer Chamfer+Quadric Original Mesh

Figure 3.6: More qualitative comparison results.

3.4.5 More Qualitative Results

We also provide more qualitative results of using Quadric loss along with Chamfer loss

for reconstructing 3D models. As Quadric loss is an ellipsoidal loss which does not care

30

about point distribution and only tries to preserve sharp features like edges and corners,

it needs to be accompanied by a spherical loss like Chamfer loss to complement it. In

Figure 3.6 we show the reconstruction result of models from the test set with Chamfer

loss alone and Chamfer with Quadric loss.

3.5 Discussion

In this chapter we propose a new point-surface loss function, named quadric loss, which

penalizes the displacement of points in the normal direction thereby preserving sharp fea-

tures like edges and corners in the reconstructed models. Quadric loss is easy to compute,

fully differentiable and can be integrated into most point and mesh based architectures.

Quadric loss can also successfully reconstruct models having no sharp features. How-

ever, as quadric loss is an ellipsoidal loss, it cannot preserve the input point distribution.

For points on the planar faces of a surface, since the quadric loss is zero anywhere on

the plane, the reconstructed points may lie outside the extents of the planar face. Hence,

quadric loss should always be accompanied with a spherical loss like chamfer loss which

preserves the input point distribution. Note that Chamfer has its own weakness; its value

could be minimized by assigning one point to a cluster of points. Depending on the ap-

plication, these two losses could be weighted appropriately. Since Chamfer and quadric

loss functions complement each other, combining these two loss functions achieve better

embedding than using any one of them.

31

Chapter 4

Surface Reconstruction using GAM

32

In this chapter, we first motivate and give some background on reconstructing a surface

for the output points of a point network. We then introduce the proposed surface re-

construction method, GAM and analyze its various properties. Finally, we show the ad-

vantages of GAM for single-view shape prediction and fair evaluation of point network

before discussing the limitation and concluding the chapter.

4.1 Motivation & Introduction

Meshes are a natural choice for representing 3D shapes as they can describe complex

topologies and surface details while being memory efficient. They are also essential to

applications like rendering, simulation, shape analysis and 3D printing to name a few. In

this work, we focus on reconstructing surface meshes for point sets which are the output

of point reconstruction networks.

Generating surfaces from point clouds has a rich history in computer graphics. Loosely

speaking, surface reconstruction requires computing a surface for a set of input points

such that those points lie on the reconstructed surface [7, 8, 29]. Such points usually

come from 3D range scan data which inherently have noise [8]. For this reason most

reconstruction algorithms tend to generate an approximate surface where the input points

are not the vertices of the final mesh [42, 43, 3, 61].

However, with the recent success of deep point networks [65, 66], many learning based

geometric algorithms have started to output 3D point clouds [22, 1, 52]. Reconstructing a

surface connecting all these output points would not only help in visualizing and evaluat-

ing these point networks but could also assist in training them end-to-end for 3D surface

prediction.

33

(a) Ground Truth (b) BPA (c) SPR (d) Ours (e) Ours (30%pts) (a) Ground Truth (b) BPA (c) SPR (d) Ours (e) Ours(30%pts)

Figure 4.1: Surface Reconstruction. Surfaces reconstructed using all the original vertices
with (b) BPA (c) SPR and (d) our method. We reconstruct the same mesh as the input mesh
and preserve the geometry and topology even with 30% of the original points. Please
zoom in for details.

Keeping these ideas in mind, in this chapter we propose GAM - guided and augmented

meshing, an automatic meshing algorithm for point clouds (“reconstructed/output points”)

which are typically the output of point based networks. GAM guarantees correct geom-

etry and topology of the final surface while preserving as much geometric features as

maintained by the output points of the network. Furthermore, GAM can be used both

in post-processing to mesh the output points or to train the point network to directly

optimize the vertex positions of the final 3D mesh.

The key insight of GAM is to use a mesh prior with similar topology as the ground truth

shape for reconstructing a surface for the output points. In our method, the output mesh

is guided by the mesh prior through a process of augmenting the mesh prior vertices with

the output points, and iteratively removing all the mesh prior vertices while retaining

only its topology. This process results in an output mesh that has only the output points

but with the topology of the mesh prior. Hence, unlike traditional surface reconstruc-

tion problems where the objective is to reconstruct an approximating surface using only

a point cloud, our goal is to use both a mesh prior and the output points to generate a

surface which faithfully preserves the topology and the output geometric features. We

34

demonstrate this through single-view 3D reconstruction (SVR) where we use meshes

from implicit networks as mesh priors, to generate surfaces for the output points of a

point reconstruction network. By combining the outputs of these two networks, we show

that the result not only performs better than the individual reconstruction methods, but

also outperforms priors works (Figure 4.11). Further, while most SVR methods fail to ex-

ploit the mesh representation and generate surfaces with uniform distribution of vertices,

even in low curvature and planar regions, we show that by training point reconstruction

networks with GAM, we can optimize the vertex position to generate adaptive meshes

[74] with arbitrary topology.

In addition to SVR, we show the advantages of GAM for evaluating point networks.

Unlike existing surface reconstruction methods like Ball-Pivot Algorithm (BPA) [9] and

Screened-Poisson Reconstruction (SPR) [43], GAM is insensitive to both density and dis-

tribution of points. This makes GAM an ideal candidate for meshing the output points

from a variety of point networks [84, 54, 2]. Using the ground truth shapes as mesh priors,

we show that surfaces reconstructed by GAM are more reliable and should also be used

to analyze the performance of point reconstruction networks rather than solely relying on

the output points.

4.2 Related Work

4.2.1 Surface Generation for Deep Networks

One straightforward way of reconstructing a surface for the output points from a deep

network is for the network to implicitly encode the point ordering such that the same

input connectivity can be used for the output points. Such networks are typically mesh

based networks [53, 78, 68, 77] which use L1 or L2 reconstruction loss between the input

35

and output points. These methods require the number of points in the input and output

to be the same. Other methods use a fixed template mesh which is deformed to match the

ground truth 3D shape and later the connectivity of the template is used as a surrogate for

the output points [30, 81, 39, 24, 74]. Although these methods achieve impressive results,

they limit the topology of the reconstructed mesh to that of the template. Further, extend-

ing these approaches to existing point networks by enforcing one-to-one correspondence

(i.e. via L1 or L2 loss) reduces the network’s performance.

Point based networks, which do not enforce one-to-one correspondences between the

input and output points, use analytical surface reconstruction techniques like BPA and

SPR to reconstruct surfaces [96, 95, 30, 67]. While BPA does not introduce new points,

making it an ideal choice for surface generation, it cannot guarantee correct topology. It is

extremely sensitive to the point distribution and radius of the pivoting ball and can even

produce results without connecting all the points (Figure 4.1b). On the other hand, SPR is

an interpolating technique which is robust to noise but cannot guarantee correct geometry

as it fails to capture sharp features (Figure 4.1c). Further, SPR requires accurate normals,

which if asked from the network, diminishes the network’s performance [30]. Although

other reconstruction [11, 29, 61] and remeshing [10] techniques have been proposed, they

are more complex and non-trivial to be incorporated inside point networks.

We propose a simple surface generation algorithm that can be used both to post-process

the output points of point networks and can be incorporated inside these point network

to train them end-to-end for surface prediction. Our method guarantees correct geome-

try and topology by connecting all the output points and does not require any additional

information such as normals. It only uses a mesh prior as a guide which depending

on the application, can either be generated using other reconstruction methods or is al-

ready present. Furthermore, our method does not introduce any additional points and is

insensitive to both the number and distribution of output points. It even works on non-

36

manifold meshes, a common feature in popular 3D shape repositories like ShapeNET

[13].

4.2.2 Single View Reconstruction

A variety of representations have been explored for predicting 3D shapes from a single

view image.

Voxels & Points. Methods which reconstruct voxels [15, 87, 92], while intuitive, are often

limited by voxel resolution, resulting in missing details. Although techniques like Octree

[69, 82] help scale to higher resolutions, they are complex and usually suffer from voxel-

based discretization artifacts. Points are popular alternatives as they are light weight,

flexible and can describe fine geometry [22, 52, 93]. However, they require meshing [9, 43]

as a post-processing step to generate the actual 3D surface. Further, these meshing meth-

ods often require heavy parameter tuning to reconstruct surfaces with correct topology

and geometry.

Fixed Topology Methods. A few methods [81, 74] use graph convolutions to directly predict

triangle meshes. They use template models for 3D supervision which constraints the

topology of the final mesh to that of the template (usually genus zero). Impressive 3D

shape reconstruction has also been realized without 3D supervision [41, 39, 40]. However,

they still rely on fixed or category-specific templates restricting the final mesh topology.

Arbitrary Topology Methods. There have been efforts to generate meshes with complex

topologies. Pan et al. [62] propose a topology modification network which progressively

removes faces that have high error from a zero genus template. Methods which represent

shapes using multiple, possibly overlapping patches [30, 83] can also reconstruct models

with arbitrary topologies. However, these intersecting, overlapping patches with open

37

boundaries are not suitable for downstream applications. Further, there are works which

formulate SVR as a two-stage problem - shape retrieval and deformation [64, 48, 47].

While such methods can also produce meshes with arbitrary topology, they are limited to

the diversity of shapes they can reconstruct by the models in the repository.

Implicit Methods. Recently, signed distance functions [63, 91, 14] have also been used for

3D shapes. Although these methods can represent meshes with arbitrary topology, they

fail to capture fine details and reconstruct smooth meshes. They optimize auxiliary losses

defined on intermediate representations and require an additional post-processing step

like marching cubes [55] for mesh extraction. Further, they generate dense uniform points

even in low curvature and planar regions and thus do not exploit the advantages of a

mesh representation.

Hybrid Methods. Hybrid methods combine the benefits of two or more representations.

Liao et al. [51] combine voxel and mesh representation by proposing a differentiable

marching cubes algorithm to convert the output of a volume decoder to a mesh and op-

timized the network using geometric losses. Gkioxari et al. [28] improved upon this by

first obtaining a coarse voxel prediction with correct topology and then refining it using

graph convolutions to recover details. Tang et al. [79] proposed to combine all three -

point, voxel and mesh representations for SVR where the skeletal points predicted from

the RGB image is converted to a coarse volume using voxelization before being refined

using a series of 3D and graph convolutions to produce an output mesh.

Our Approach. We propose a surface reconstruction technique that combines the benefits

of point and implicit representation. We combine the output of point networks which are

good at geometry (does not have topology), and meshes from implicit networks which

are good at topology (maybe bad at geometry) to reconstruct meshes with both high fi-

delity and correct topology. Hence, unlike previous hybrid techniques which first obtain

a coarse mesh from a voxel predictor and later refine that mesh to get details, GAM dis-

38

entangles geometry from topology, by making the point network solely responsible for

geometry and the mesh prior responsible for topology. Further, by training point net-

works with GAM, we optimize the vertex positions to generate adaptive meshes with

arbitrary topology.

4.3 Guided and Augmented Meshing

4.3.1 Overview

Our goal is to compute a surface for the output points from a point network using a mesh

prior which coarsely resembles the ground truth shape and has correct topology. Depend-

ing on the application, such mesh priors can either be obtained using other reconstruction

methods (e.g implicit methods) or are already present (e.g ground truth meshes). We pro-

(a) Projection (b) Triangulation (c) SimplificationMesh Prior (d) Generated Surface

Output Points

Mesh Prior (a) Projection (b) Triangulation (c) Simplification (d) Generated Surface

Figure 4.2: Surface reconstruction using GAM. Our method uses both the output points
(orange) from a point network and a mesh prior to generate a surface for the output
points. For the sake of illustration, here we use the ground truth mesh as priors for GAM.
(a) Projection of output points on the mesh surface is followed by (b) Triangulation to
ensure that they are incorporated into the mesh prior. (c) Simplification via sequential
edge collapse removes all the original points. (d) Unprojection of the points recovers the
final surface for the output point set. Please zoom in for details.

39

pose to use these mesh priors to guide the reconstruction of an output mesh with the

output points. Such a reconstruction is more accurate in terms of topology and geometry

than an off-the-shelf surface reconstruction algorithm like BPA or SPR. If the output points

from a point network are exactly the same as the vertices of the ground truth mesh, we

want the reconstructed mesh also to be exactly the same as the ground truth mesh. Figure

4.1d shows such a case where using the input vertices we reconstruct the ground truth

mesh, whereas other methods do not. For any other output point sets, we would like the

reconstructed mesh to best preserve the input geometric features and topology. To this

end, we propose a new meshing algorithm called guided and augmented meshing, GAM,

for which the input is a mesh prior and the reconstructed points from a point network

and the output is a triangular mesh connecting those reconstructed points. GAM works

with both manifold and non-manifold mesh priors, and with both dense and sparse re-

constructed points. Furthermore, it does not require the reconstructed points to have the

same cardinality as the mesh prior. These properties make GAM suitable to be used with

a wide variety of 3D deep learning point networks.

GAM has two main algorithmic steps. First, the mesh prior is augmented by projecting the

reconstructed points onto the mesh prior and retriangulating to include these projected

points in the mesh prior. This ensures that the topology of the mesh prior is carried over

to GAM’s output. Second, all the original points in the augmented mesh are removed

by collapsing them to the nearest projected points, resulting in a mesh with only the

projected points as vertices and with the connectivity that is guided by the mesh prior.

Finally, the projected points are “unprojected”, yet retaining their mesh connectivity to

get the final meshing of the reconstructed points as shown in Figure 4.2. We now discuss

these two steps in detail.

40

Figure 4.3: Projection. (a-b) Sequential processing of points leads to two different trian-
gulations for the same set of projected points. (c) For a triangle, we map all the projected
points and its base vertices to a dense 2D grid. To prevent Voronoi vertices (black points)
from lying outside the grid, (d) we rescale the points to an equilateral triangle. (e) We
then compute the Voronoi diagram and use it to generate Delaunay triangulation for the
projected points.

4.3.2 Projection

GAM induces the topology of the mesh prior into the output mesh by first projecting the

reconstructed points onto the mesh prior and retriangulating the mesh. Hence, unlike

other surface reconstruction algorithms that starts with no connectivity, GAM starts with

the connectivity of the mesh prior and finds the final output connectivity by removing

unwanted edges.

Once the points are projected onto the mesh prior, they have to be connected to existing

points in the mesh to create a valid triangulation. A valid triangulation could be achieved

through sequential projection of each point where if the point projects - (a) inside a trian-

gle, 1-3 split of the triangle is performed, (b) on an edge, 1-2 split is performed on each

incident triangle and (c) on an existing input mesh vertex, it is replaced with the projected

point. However, the connectivity and quality (sliver triangles) of the resulting triangula-

tion depends on the order of the projected points as shown in Figure 4.3(a-b). We propose

41

an order-independent triangulation to process all the projected points inside a triangle in

parallel using a novel interpretation of Delaunay triangulation. Our method is determin-

istic and provides consistently high quality triangulation. Further, it is fast and can easily

be incorporated inside point networks (section 4.6) unlike other triangulation techniques

[6, 71].

Given the vertices of a base triangle and the projected points which lie inside the triangle,

we first map all these points to a dense 2D grid. We then compute for each grid point

the closest mapped point. We observe that a small neighborhood of grid points that is

closest to three different mapped points contains a Voronoi vertex, which in turn indi-

cates a Delaunay triangle connecting the corresponding three closest mapped points. To

prevent Voronoi vertices from lying outside the 2D grid, we rescale the base triangle to an

equilateral triangle and map all the projected points to their corresponding barycentric

coordinates before computing the above mapping as shown in Figure 4.3(c-d). In order

to ensure that the triangulation is computed fast, we perform the following optimiza-

tions - a) All points that project on the edges of the base triangle are perturbed slightly

to fall inside either of the neighbouring triangles. This allows us to process all the trian-

gles independently and in parallel. b) We only process triangles which contain at least

one projected point. c) Triangles with only one projected point are directly split into 3

triangles. d) Triangles with more than one projected point are processed using the above

projection-to-grid method.

In all cases, the projection operation refers to finding the closest point on the mesh prior,

and moving the reconstructed point to that closest point on the mesh. This definition

of projection gracefully handles projecting points on a mesh with boundaries as well.

Finally, if the input mesh is a non-manifold mesh, all the above operations and definitions

work without any modification.

42

4.3.3 Simplification

Using the mesh generated from the previous step, we next perform simplification where

we remove all the original vertices (from mesh prior) through edge collapse operations so

that the final mesh contains only the projected vertices. As the order of the edge-collapses

determine the final connectivity of the mesh, we sequence the edge collapses based on a

cost function.

In order to simplify the mesh we first label all the projected points as 0 and the original

points as 1 and select all the edges between the original points and the original and the

projected points. Any edge between two projected points is not collapsed. The final point

after the collapse of an edge between (a) two original points is, for the sake of simplicity,

set to be the mid point of that edge and that mid point is again labelled as original point,

and (b) an original and a projected point is set to be the projected point since we cannot

move the projected point. Based on these final positions of the points the cost for edge

collapse operations is computed as:

∆(v) = e(l1+l2)||v1 − v2||22 (4.1)

where v1 and v2 are the vertices forming an edge and l1 and l2 are their corresponding

labels. Edges are placed in a priority heap with minimum cost edge on top, and are

iteratively removed from the top and collapsed, until the heap is empty. After each edge

collapse, the cost to collapse the new edges are computed and they are added to the heap

if they are not between two projected points.

Although this works well in practice, there could be few edge collapses that cause triangle

flips. In such cases, that edge collapse is skipped, edge removed from the heap, and

revisited again after other edge collapses. Note, that an edge collapse that introduces

43

triangle flips may become a valid edge collapse after other neighborhood edge collapses.

However, at the end, all original vertices are removed through edge collapses irrespective

of whether it creates flipped triangles or not. Although quadric error [25] could be used as

a cost function, we empirically found our weighted edge length cost (Equation 4.1), which

favors short edges, reduces the number of triangle flips. Finally, the projected points are

unprojected back to their original reconstructed point positions to get a final mesh (Figure

4.2d).

4.4 Analyzing GAM

Before evaluating the performance of GAM on various applications, we first analyze the

effects of various components on GAM. Specifically, how does GAM preserve topology of

the mesh prior in the output surface (section 4.4.1). As the input to GAM is a mesh prior

and output points, we also study the effects of both of these inputs on the output recon-

structed surface in sections 4.4.2 & 4.4.3 respectively. And lastly, we also give theoretical

bounds on the mesh prior for an accurate surface reconstruction by GAM in section 4.4.4.

4.4.1 How does GAM preserve Geometry & Topology

GAM preserves the topology of the mesh prior as all operations such as local triangu-

lation and edge collapse are topology preserving operations. Under extreme simplifica-

tion, certain edges, if collapsed, may geometrically (visually) close genus of the model,

although in implementation with multi-edge data-structure between vertices, the genus

and rest of the topology can be maintained. With sufficient number of output points from

the network such extreme simplifications and hence visual change of topology can be

prevented. GAM also preserves the geometry as much as possible based on the output

44

2500 Input Points Voxel Res. 100 Voxel Res. 500 Voxel Res. 4000

Figure 4.4: Effects of Mesh Prior on GAM. Surfaces generated using the same points (or-
ange) but with three mesh priors of different resolution (shown in inset). GAM creates
geometrically similar but topologically different meshes.

quality of points networks. Since these reconstructed points are projected to the closest

point in the mesh, GAM does its best to preserve the geometry by imposing the connec-

tivity of the input mesh to the closest reconstructed points.

4.4.2 Effect of Mesh Prior on GAM

As GAM uses a mesh prior to generate a surface for the output points from a point net-

work, a natural question to ask is what are the prerequisite of a mesh prior. Here we

study the effects of the mesh prior on the final reconstructed surface.

We voxelize the ground truth shape at three different resolutions and use the same set of

points to reconstruct surfaces using GAM. Specifically, we create three mesh priors whose

number of octree leaf nodes are 100, 500 and 4000 respectively and use 2500 points which

are sampled on the ground truth mesh. As evident from the Figure 4.4, using the same

points, GAM reconstructs geometrically similar shapes whose topology is dictated by the

45

Mesh Prior Output Mesh Mesh Prior Output Mesh

Figure 4.5: Non-Manifold Mesh Priors. GAM reconstruct accurate surfaces even with
non-manifold mesh priors which have multiple connected components. The topology of
mesh prior is carried over to the output mesh (see pink arrow).

topology of the mesh prior. This confirms that GAM does not need accurate mesh priors

for surface generation. As long as the mesh priors have correct topology and coarsely

resemble the original mesh, accurate surfaces will be generated. In our experience, such

mesh priors, if not already present, can be easily obtained using existing reconstruction

methods (volumetric/implicit networks). We, however, observe that surfaces generated

using coarser meshes have different triangulation. This is due to the edge collapse oper-

ation during simplification where the cost to collapse an edge depends on the length of

the edge. If we allow edge-flip as an operation during simplification, it is possible that

we can generate consistent triangulation’s independent of the template mesh resolution.

Non-Manifold Mesh Priors. We also show few surfaces generated from GAM using

non-manifold mesh priors which contain multiple connected components (Figure 4.5).

As GAM borrows the topology of the mesh prior, we observe that the output mesh is

disconnected as the mesh prior itself is not a single watertight mesh.

46

(a) Input Points (b) 5% Noise

(c) 20% Noise (d) 30% Noise

Figure 4.6: Effects of Points on GAM. Surfaces generated from GAM when Gaussian noise
is added to the mesh vertices. Using the same mesh prior (ground truth mesh), we pre-
serve as much detail as maintained by the points.

4.4.3 Effect of Output Points on GAM

Next, we demonstrate that GAM always reconstructs meshes with correct topology while

preserving as much details as maintained by the output points of the network. We show

this by injecting noise in the vertices of a mesh and evaluating the surface reconstructed

from GAM, which uses the original mesh as prior. Specifically, keeping the mesh prior

fixed, we reconstruct surfaces with GAM by adding Gaussian noise in the normal direc-

tion with standard deviation 5%, 20% and 30% of the length of the bounding box diagonal

to the vertices of the mesh.

47

Figure 4.7: A point p sampled on the surface of a mesh is at a distance f from its medial
axis.

From Figure 4.6 we observe that adding noise in the normal direction does not affect the

output (i.e. triangulation) of GAM, as the output points are projected to the same point on

the mesh prior. This suggests that the error in the final reconstruction (low F1 score) is due

to the point location and not from GAM. We also observe that GAM reconstructs a smooth

surface provided the points lie close to the surface of the mesh prior. However, as GAM

guarantees to connect all output points, rough surfaces can be generated even if there is

noise in only few points. This helps GAM differentiate subtle differences between two

point clouds making it an ideal meshing algorithm for evaluating point reconstruction

networks (section 4.7.1).

4.4.4 Bounds on the Mesh Prior

While in section 4.4.2 we studied the effects of mesh prior on GAM, here we provide

some theoretical bounds on the mesh prior for generating an accurate surface with correct

topology through GAM. We first define what is a feature size. We then consider two cases

and give theoretical bounds on the mesh prior for each of them. And finally, we conclude

by providing a theorem along with a formal proof for the general case.

48

Figure 4.8: Accurate points. If the points from the point network (green) lie accurately on
the surface of the ground truth shape, then the mesh prior (blue) needs to lie within the
Minkowski (pink) sum of the feature size of all points on the original surface.

Feature Size. For reconstructing a surface, feature size f for a point p on the surface is

defined as the Euclidean distance from p to the nearest point on the medial axis [4], which

can be represented by the set of Voronoi vertices as shown in Figure 4.7.

Accurate Points. First, we consider the case when the output points from the point network

are accurate i.e they lie on the surface of the ground truth shape. In order to prevent the

points from projecting onto the lower surface of the mesh prior, the mesh prior needs to

lie within the Minkowski sum of the feature size of all points on the original surface as

shown in Figure 4.8 and Equation 4.2.

σ1f < (f + f − σ1f)

σ1f < (2f − σ1f)

σ1 < 1

(4.2)

Accurate Mesh Prior. Second, we consider the case when the output points from the point

network have noise while the mesh prior is accurate i.e. the same as ground truth. Again,

49

in order to prevent the points from projecting onto the lower surface of the mesh prior,

σ2 < 1 as shown in Figure 4.9 and Equation 4.3.

σ2f < (f + f − σ2f)

σ2f < (2f − σ2f)

σ2 < 1

(4.3)

General Case. We now discuss the more general case where there could be error in both

the mesh prior and the output points from the point network.

Lemma 1. In order for GAM to reconstruct surfaces with correct topology, the sum of the error

in the mesh prior (σ1) and the error in the output points (σ2) needs to be less than 1.

Proof. In order to reconstruct a surface with correct topology, the upper output points

need to be projected onto the upper mesh prior. From Figure 4.10 and Equation 4.4 we can

conclude that σ1 + σ2 < 1. Hence, the upper bound on the mesh prior is when σ1 = 0 i.e.

the mesh prior is the same as the ground truth surface and the lower bound is σ1 < 1−σ2.

Figure 4.9: Accurate mesh prior. Using the ground truth mesh as the mesh prior (blue),
the maximum error in the output points (green) can be σ2.

50

Figure 4.10: General Case where the error is in both the mesh prior (blue) and the output
points of the point network (green).

However, for all practical purposes, σ1 +σ2 < 0.5 for reconstructing a surface with correct

topology using GAM.

σ1f + σ2f < (f − σ2f + f − σ1f)

(σ1 + σ2)f < (2f − (σ1 + σ2)f)

2(σ1 + σ2)f < 2f

σ1 + σ2 < 1

(4.4)

4.5 Single View Reconstruction

We first analyze the effectiveness of GAM for single-view 3D reconstruction where we use

GAM in post-processing to combine the outputs of a point network and implicit networks

and compare the resulting meshes with previous state-of-the-art methods.

51

Given a single RGB image of an object, the task is to reconstruct a 3D mesh with correct

topology and accurate geometry. To this end we first train a point generation network

called PSG+ to output 2000 points. We then use meshes from implicit networks (OccNET

[56] and IM-NET [14]) as priors for GAM to generate a surface for the output points.

4.5.1 Data

We use 3D models from 13 categories of ShapeNetCore.v1 [13] and renderings from

3DR2N2 [15] which together have been widely used for SVR [15, 28, 81]. We sample

points on the surface of the meshes to train the point networks. We use the same train/test

split as [15, 81] (34989 train & 8756 test meshes) and use renderings from all 24 viewpoints

for a fair comparison.

4.5.2 Evaluation Metric

Since our goal is to asses the quality of the reconstructed mesh, similar to [28, 74], we

sample 10k points uniformly at random from the surfaces of both the predicted and the

ground-truth mesh and use it to compute Chamfer distance (CD) [22] and F1τ score [45].

F1τ score reports the harmonic mean of the precision and recall, which is computed as

fraction of predicted or ground truth points within τ distance to points on the other sur-

face [45]. We use the same evaluation protocol as [81] and use a 0.57 mesh scaling factor

and τ = 10−4 on the squared Euclidean distance. Lower is better for CD and higher is

better for F1 score.

52

4.5.3 Network & Implementation Details

We use a point network architecture where for the image encoder we use ResNet-18 [34]

and for the point decoder 4 fully-connected layers of size 1024, 512, 256, (3x2000). We use

ReLU non-linearity and batch normalization on the first three and tanh on the final layer.

We train this network using Chamfer loss [22] for 30 epochs with 32 images per batch and

Adam optimizer [44] at a learning rate 10−4 which decays by 0.8 every 10 epochs. After

training, we use GAM as post-processing to combine the output points from our point

network (PSG+) and the meshes from implicit networks to generate the final predicted

mesh.

4.5.4 Baselines

We compare our results with several state-of-the-art SVR methods. 3DR2N2 [15] and

MVD [73] are voxel based methods which reconstruct meshes with arbitrary topology.

Implicit networks such as OccNET [56] and IM-NET [14] also generate meshes with ar-

bitrary topology but at high resolution. PSG [22] outputs point predictions. P2M [81]

and GEOMetrics [74] deform a template to output a 3D mesh with fixed topology (zero

genus). N3MR [41] also deforms a template with a fixed topology but uses a differentiable

renderer to train without any 3D supervision. MeshRCNN [28] first predicts voxels with

correct topology and then refines it to output a 3D mesh. We compare these methods not

only on their mean CD and F1 scores on ShapeNet testset, but also on their topology and

number of vertices in their output mesh. For MeshRCNN, we report the performance

of their “pretty” model as it generates topologically correct meshes. For PSG, F1 scores

were computed directly using the output points [81]. For OccNet and IM-NET, we use the

models released by authors and simplify [25] the meshes to approximately 2000 vertices

for a fair comparison.

53

Table 4.1: GAM vs Points/Implicit Networks. F1-scores on ShapeNet testset where we
reconstruct meshes using GAM which combines geometry from a point network (PSG+)
and topology from implicit networks (OccNET or IM-NET). Such a combination performs
better (shown in bold) than either the implicit network (columns 2 & 4) or the point net-
work. Using the ground truth meshes as prior for GAM gives an upper bound for the
same output points.

F1τ F12τ

Category PSG+ OccNET IM-NET GT Mesh PSG+ OccNET IM-NET GT Mesh

[56] w/ GAM [14] w/ GAM w/ GAM [56] w/ GAM [14] w/ GAM w/ GAM

Plane 82.83 72.24 85.46 81.90 85.76 88.01 91.70 82.27 91.99 89.41 92.13 93.68
Bench 64.07 67.67 73.03 75.50 74.07 76.45 81.86 80.93 83.66 86.41 84.55 86.06
Cabinet 44.83 67.54 71.06 67.54 70.90 72.99 70.91 79.90 84.17 80.88 84.26 86.37
Car 55.48 59.70 76.02 63.48 76.41 80.45 80.40 73.54 88.23 76.36 88.51 91.25
Chair 51.61 64.14 68.29 67.40 69.02 71.98 74.45 77.61 81.36 80.93 82.04 84.32
Monitor 45.16 58.89 64.06 60.75 63.03 67.49 70.11 73.11 78.56 74.72 78.26 81.04
Lamp 48.10 47.84 56.34 54.15 57.19 60.79 66.02 58.24 68.45 66.03 69.20 72.45
Speaker 36.67 50.86 57.69 56.33 59.60 61.50 61.79 63.80 73.01 70.41 74.37 76.04
Firearm 81.69 72.95 82.35 78.36 83.02 85.70 91.39 84.36 89.74 88.51 90.28 92.30
Couch 42.81 60.77 64.98 63.34 66.16 67.70 68.50 74.08 79.38 76.38 80.10 81.14
Table 60.92 71.65 70.09 72.12 69.60 72.08 80.26 81.26 82.18 83.29 81.84 84.68
Cellphone 63.98 76.78 79.03 78.16 80.26 81.34 84.49 86.62 89.38 87.23 89.96 89.97
Watercraft 55.13 46.84 66.09 60.93 65.54 70.14 76.09 60.70 79.75 74.82 79.34 83.17

Mean 56.41 62.91 70.39 67.68 70.82 73.59 76.77 75.11 82.30 79.65 82.68 84.80

Apart from comparing against previous methods, we also compare our results with few

ablated versions of our method. Similar to PSG, we directly evaluate the output points of

our point network and report it as PSG+. Further, instead of GAM, we generate surfaces

for the same output points using existing meshing methods like BPA and SPR. For SPR,

for the normals of the output points, we use the normal vectors of their closest points in

the ground truth mesh. For both BPA and SPR, we choose the parameters which gave us

the best results and reconstruct the meshes using MeshLab [16].

4.5.5 Comparison with Point & Implicit Networks

Since GAM uses the output of both point and implicit networks, we first compare GAM

with these two networks for single-view shape prediction. Table 4.1 shows that com-

bining the geometry from a point network (PSG+) and topology from implicit networks

(OccNET/IM-NET) performs better than either the implicit or the point network alone.

54

Table 4.2: Quantitative Results for SVR. We compare several SVR methods by their output
representation, |V | (mean±std), CD (x103), F1 score and topology of the output mesh. For
[81], † reports the results from their paper and ‡ using the model released by authors. We
show that meshes reconstructed from GAM using IM-NET as priors achieves high fidelity
and correct topology.

Representation |V | CD (↓) F1τ (↑) Topology

N3MR [41] Mesh 642±0 - 33.80 fixed
3DR2N2 [15] Voxel - - 39.01 arbitrary
PSG [22] Points 1024±0 - 48.58 -
P2M [81]† Mesh 2466±0 - 59.72 fixed
OccNET [56] Implicit Field 1998±8 0.825 62.91 arbitrary
MVD [73] Voxel - - 66.39 arbitrary
GEOMetrics [74] Mesh 574±99 - 67.37 fixed
IM-NET [14] Implicit Field 1999±21 0.502 67.68 arbitrary
P2M [81]‡ Mesh 2466±0 0.444 68.94 fixed
MeshRCNN [28] Mesh 1896±928 0.397 69.30 arbitrary

PSG+ Points 2000±0 0.424 56.41 -
SPR Mesh 9069±929 1.206 59.53 arbitrary
BPA Mesh 1871±27 0.399 70.81 arbitrary
GAM w/ OccNET Mesh 2000±0 0.415 70.39 arbitrary
GAM w/ IM-NET Mesh 2000±0 0.387 70.82 arbitrary

Further, we get similar F1 scores using mesh priors from either OccNet or IM-NET. This

confirms that GAM does not require accurate mesh priors as long as they coarsely resem-

ble the ground truth shape in terms of both topology and geometry. We also reconstruct

surfaces using the ground truth meshes as prior for GAM. This gives us an upper bound

and indicates that the performance can further be improved with an implicit network that

outputs a more accurate topology.

4.5.6 Comparison with Prior Works

We now compare our results with previous works. In Table 4.2 we show that by com-

bining the geometry from our point network (PSG+) and topology from IM-NET we out-

perform previous methods both in terms of CD and F1 score using similar number of

vertices. Further, when comparing GAM against other meshing methods, we outperform

55

Image GEOMetric MeshRCNN BPA GAM w/IM-NET

Figure 4.11: Single View Reconstruction Results. Using meshes from IM-NET as priors,
GAM reconstructs surfaces for the output points (orange) of a point network (PSG+).
Unlike BPA, GAM guarantees to connect all the output points and reconstructs meshes
with both accurate geometry and correct topology.

SPR by a wide margin but perform similar to BPA. BPA, however, cannot be used for sur-

face reconstruction as it does not guarantee correct topology and often fails to connect all

Image Output Mesh Image Output Mesh

Figure 4.12: SVR on Natural Images. Single-view reconstruction results on two images
from Pix3D [76].

56

the points as shown in Figure 4.11 and Table 4.2. On the contrary, GAM generates meshes

with correct topology and guarantees to connect all the output points.

4.5.7 More Qualitative Results

In Figure 4.13 and 4.14 we provide more qualitative comparisons of surfaces reconstructed

from GAM when used in post-processing to combine the output points of our point net-

Image GEOMetric MeshRCNN BPA GAM w/ IM-NET

Figure 4.13: Single View Reconstruction. Qualitative comparison of meshes from vari-
ous SVR approaches. Using meshes from IM-NET as priors, GAM reconstructs accurate
surfaces for the output points (orange) of PSG+.

57

Image GEOMetric MeshRCNN BPA GAM w/ IM-NET

Figure 4.14: More Qualitative results for Single-View Reconstruction.

58

work (PSG+) and meshes from IM-NET. Unlike GEOMetric which deforms a fixed tem-

plate, we borrow the topology from IM-NET to reconstruct meshes with correct topology.

Furthermore, using the output of point networks which are specifically trained for geom-

etry, we reconstruct meshes with higher fidelity than MeshRCNN using similar number

of points (see the wings/engine of the planes and the details around the wheels of the

cars in Figure 4.13 & 4.14). Lastly, using BPA to generate a surface for the output points

of the point network gives inconsistent results as it fails to connect all the output points.

4.5.8 Results on Natural Images

Having seen reconstruction results on synthetic images, its quite natural to ask how does

GAM perform on natural images. We show results in Figure 4.12 using images from

Pix3D [76] dataset, which consists of 10069 real-world images and 395 unique 3D models.

Specifically, we use GAM to combine the mesh prior and the output points obtained from

IM-NET and PSG+ respectively.

4.6 Training Point Networks with GAM

In the previous section we train the point network using Chamfer loss between the ground

truth and the reconstructed points and used GAM in post processing to generate meshes

with uniformly distributed points. Here we show that by incorporating GAM inside the

point network, we can reconstruct adaptive meshes with arbitrary topology. Specifically,

during training, we generate a surface for the output points using GAM and compute a

mesh loss between the ground truth and the output surface. By backpropogating this loss

through the point network, we regress on the output points such that the output surface

is as close as possible to the ground truth surface. Note, GAM does not have any learn-

59

able parameters and is deterministic where for the same output points, it will generate

the same mesh.

We demonstrate this by training two point networks to output 250 points for SVR. We

train one network with Chamfer loss on the output points and the other withLmesh (Equa-

tion 4.5) on the meshes reconstructed using GAM. We use implicit meshes as priors for

GAM and train both networks on renderings from two categories of ShapeNet.

4.6.1 Data & Implementation Details

To demonstrate the advantages of training point networks with GAM, we train two net-

works using data from two categories (chair and couch) of ShapeNet [13] where we use

one image per shape making a total of 7956 train and 1991 test images. Both networks

have the same architecture where for the image encoder we use ResNet-18 [34] and for

the point decoder 4 fully-connected layers of size 1024, 512, 256, (3x250). The only differ-

ence is that one network is trained with Chamfer loss and the other using a mesh loss on

the surfaces generated from GAM. We use ReLU non-linearity and batch normalization

on the first three and tanh on the final layer. We use data from two categories (chair and

couch) of ShapeNet, specifically one image per shape making a total of 7956 train and

1991 test images. We train both networks with a batch size of 4 images and Adam op-

timizer with learning rate 10−4 for 100 epochs. After training we reconstruct the output

meshes for both networks using GAM.

4.6.2 Mesh Loss

Since the point network now directly predicts a 3D surface, we need a loss function which

computes an error between the predicted meshM2 and the ground truth meshM1. Simi-

60

lar to [28, 62], although we can sample points on both meshes and define a point loss (like

Chamfer loss) on these resampled points, this would result in the output points being

uniformly distributed thereby not fully taking advantage of the mesh representation. We

on the other hand only want the predicted surface to lie close to the ground truth surface

and are indifferent to the output point distribution. Hence, we define the mesh loss as:

Lmesh(M1,M2) =
∑

p∈P

Φ(p, Q̂) +
∑

q∈Q

Φ(q, P̂) (4.5)

where P and Q are the ground truth and output points, P̂ and Q̂ are the points sampled

on the ground truth mesh M1 and the predicted mesh M2 respectively, and Φ(a,B) =

min
b∈B
||a − b||22. Essentially, Lmesh minimizes both the distance between the ground truth

points to the predicted surface for high coverage and the distance between the output

points to the ground truth surface for high accuracy. We approximate both the meshes

by densely sampling 10k points on their surfaces using a differentiable mesh sampling

strategy [74]. This replaces the expensive point-surface distance computation with the

fast point-point distance computation.

4.6.3 Results.

We compare the output meshes from both networks in Figure 4.15. We find training

with GAM to perform slightly better in terms of mean F1 score. Further, while Cham-

fer loss uniformly distributes the points, Lmesh pushes the points towards the edges of

the shape as GAM, being invariant to point distribution, can still reconstruct accurate

surfaces. Clustering of points on the edges suggests that we could possibly reduce the

number of points further, however this goes beyond the focus of this paper and is left as

a potential future work.

61

Output pts Output Mesh Output pts Output Mesh

(a) Image (b) Train with CD (c) Train with Mesh Loss

Figure 4.15: Training with GAM. Training a point network using mesh loss on surfaces
reconstructed by GAM allows us to redistribute the points towards the edges of the shape,
generating adaptive meshes. On the contrary, training the same network with Chamfer
loss on output points generates meshes with uniformly distributed points.

Table 4.3: Quantitative comparison of training a point network with CD vs a mesh loss
on surfaces generated from GAM.

F1τ Train Train
w/ CD w/ Lmesh

Chair 44.64 48.17
Couch 44.88 45.33

Mean 44.76 46.75

4.7 Other Applications

The properties of GAM together with point networks allow for several other applications.

4.7.1 Fair Evaluation of Point Networks

Most point based reconstruction networks [22, 52, 1, 2] have access to ground truth meshes,

but still evaluate their network by comparing the output points with the ground truth

points/surfaces. We show that evaluating the output points alone can be misleading and

62

Table 4.4: Evaluating Point Networks for SVR. We compare four point networks with
different number of output points by CD (x103) on the output points, F1 scores on the
surfaces reconstructed using BPA, SPR & GAM and the mean % of unreferenced vertices
in these reconstructed surfaces. Analyzing the network’s performance through the output
points alone can often be misleading. Evaluating the surfaces reconstructed by GAM
using the output points gives a more accurate assessment.

|V |
∆(↓)

2500 2000 1000 500

C
ha

ir

CD (↓) 4.60 5.01 6.76 9.13 98.47%
F1τ (BPA) (↑) 68.775.9% 69.085.8% 65.635.4% 57.395.4% 19.82%
F1τ (SPR) (↑) 56.6499.9% 55.3099.9% 50.39100% 44.6499.9% 26.88%
F1τ (GAM) (↑) 72.740% 73.320% 70.950% 69.250% 4.79%

Pl
an

e

CD (↓) 2.23 2.36 3.26 4.61 106.7%
F1τ (BPA) (↑) 86.076.2% 85.866.2% 84.845.1% 83.434.0% 3.06%
F1τ (SPR) (↑) 68.9299.9% 65.8299.9% 61.7799.9% 53.33100% 22.62%
F1τ (GAM) (↑) 88.590% 88.780% 87.890% 86.250% 2.64%

often wrongly implicate the network to have low performance. Evaluating the surfaces

reconstructed using the output points with the ground truth meshes (as priors for GAM)

provides a more accurate assessment for the point network’s performance.

To demonstrate this we train four point networks with the same backbone architecture but

different number of output points (2500, 2000, 1000, 500) for SVR. We train these networks

for the same amount of time on two categories (chair and plane) of ShapeNet. After

training we not only report the CD on the output points, but also evaluate the surfaces

(using F1 score) reconstructed using BPA, SPR and GAM using the ground truth meshes

as priors. We also measure the error from networks with 2500 and 500 output points and

report it as ∆ in Table 4.4.

Results We draw the following conclusions from Table 4.4. (a) Networks trained using

low number of output points have higher CD (∆≈100%) incorrectly suggesting that those

networks are weak and their output points are not reconstructed properly. However, an-

alyzing their F1 scores suggests that all surfaces are similar (small ∆) and all networks

perform equally well. This shows that we cannot solely evaluate the output points to as-

63

(a) Original Mesh (b) Output from [2] (c) BPA (d) GAM

Figure 4.16: Meshing Sparse Point Clouds. GAM can be used to generate surfaces for
point networks which output sparse point clouds.

sess the network’s performance and should also evaluate the meshes reconstructed using

those output points. (b) Meshes reconstructed using BPA and SPR on average fail to in-

clude 5.6% and 99% of the output points respectively. Hence, they should not be used to

mesh the points from a point network. Both BPA and SPR are highly sensitive to the input

point distribution and require dense and uniform points for an accurate reconstruction.

(c) For all the four point networks, meshes reconstructed using GAM have a higher F1

score than BPA and SPR. This suggests that the points from all networks capture accurate

geometry but the meshing algorithms (BPA and SPR) reconstructed poor surfaces. While

BPA cannot guarantee correct topology as it fails to connect all output points, SPR cannot

guarantee correct geometry as it interpolates the output points using additional points

(Fig. 4.1). GAM is independent of both point density & distribution and always includes

only and all the output points of the point network in the reconstructed mesh. It guaran-

tees correct topology & geometry and hence can be used in post-processing to decouple

the reconstruction error from the network error. Please see the supplementary for tests on

the robustness of GAM.

64

4.7.2 Reconstruction Surface for Sparse Point Clouds

As GAM is indifferent to both point density & distribution, it can be used with various

point networks which output sparse point clouds [84, 54, 2]. As opposed to BPA or SPR,

GAM guarantees to reconstruct an accurate surface connecting all the output points using

the ground truth meshes as priors. Such meshes can then be used for qualitative and/or

quantitative analysis of the network (Fig. 4.16).

4.8 Limitation & Discussion

In this paper, we introduce GAM, a new meshing algorithm to generate a surface for the

output points of a point network using a mesh prior. GAM decouples geometry from

topology by making the point network solely responsible for geometry and the mesh

prior responsible for topology. We show the benefits of such a disentanglement for single-

view shape prediction and fair evaluation of point networks. Further, unlike traditional

surface reconstruction algorithms, GAM is independent of the density and distribution

of the output points and guarantees to reconstruct a surface with correct topology and

geometry.

As GAM aims to preserve the geometry from point networks, the resulting meshes are

often less smooth than implicit methods. Using GAM to generate adaptive but smooth

meshes could be interesting future direction. GAM also requires a mesh prior which is

aligned and coarsely resembles the ground truth shape. Although this may seem as a

strong assumption, in our experience such mesh priors, if not already present, can be

obtained from other reconstruction methods. Therefore, we believe GAM is an attractive

meshing algorithm for deep point networks.

65

Chapter 5

AntHQ : A High Quality 3D Mesh

Dataset with Artistic Embellishments.

66

In this chapter, we first motivate the need for a high quality 3D mesh dataset. We then

describe various efforts put in data collection, data processing and designing the web in-

terface. Finally, we conclude by discussing a few promising future applications facilitated

by such a high quality 3D dataset.

5.1 Motivation

Recent technologies and algorithms have led to an explosion in the amount of 3D data that

we can generate and store. Repositories of 3D CAD models are expanding continuously,

predominantly through aggregation of 3D content on the web. 3D range scanners (e.g

LiDAR, Kinect), RGB-D sensors and other technology for scanning and reconstruction are

providing geometric representation of objects that can eventually become CAD-quality

models.

Some of the most prominent 3D datasets in-

clude ShapeNet [13], ModelNet [88], ABC [46].

While these datasets have had a major impact

on developing learning based algorithms for

tasks such as object detection, segmentation,

correspondence compution, single-view 3D re-

construction, normal estimation, to name a few, most of the models in these datasets are

synthetic (CAD models) and lack details as shown in the inset figure.

In order to fill this gap, we constructed AntHQ (pronounced as antique), a dataset of

realistic 3D models containing detials and artistic embellishments.

In constructing AntHQ, we aim to fulfill three primarily goals:

67

Figure 5.1: AntHQ Dataset. A sample representation of models from our AntHQ dataset.

1. Open up new research directions such as fine grained object classification, high fi-

delity 3D reconstruction etc.

2. Extend current learning based geometric algorithms to a richer and more realistic

class of datasets.

3. Inspire the community to work towards collecting and growing similar high fidelity

datasets.

5.2 AntHQ Dataset

AntHQ is a dataset comprising of approximately 130 3D models from each of the five

object categories - chairs, tables, mirrors, doors and closets (Figure 5.1). Although in

comparison to other shape repositories, ”AntHQ” dataset contains only 630 models, we

hope such an effort is the first of many in collecting such high fidelity models.

In the following sections, we describe how 3D models are collected for AntHQ, the data

processing pipeline, the web-interface for sharing the dataset with the community and

finally discuss several promising future applications using this dataset.

68

5.2.1 Data Collection

To build this dataset, we first complied a list of object categories which frequently contain

rich decorations and embellishments. From this list we selected five categories which

are also common in other datasets - chairs, tables, mirrors, doors and closets. We then

collected for each of these categories nearly 250 models from various publically available

online repositories such as Cadnav 1, Yobi3D 2, GradCAD 3, Free3D 4, etc. A subset of

these models which contained high quality decorations and styles were manually selected

and processed.

5.2.2 Data Processing

In order to carry out any meaningful data processing, we first needed to clean the raw

data. This comprised of removing unwanted objects from the 3D models such as floors

and walls, removing any unreferenced vertices, duplicate vertices, zeros area faces in

the mesh. We also ensured that all the meshes are triangulated, i.e. any quad mesh is

converted into a triangular mesh. These preprocessing steps were important to ensure a

smooth data processing pipeline.

We started the processing by first aligning all the models to a canonical space using the [5].

Models which failed were manually aligned. A lot of learning based geometric algorithms

require the input data to contain the same number of points. Although one can sample

equal number of points on the mesh. However, it is difficult to ensure that those sample

points represent the details in the 3D models. Hence, next we simplified all the models

to contain the same number of vertices. Simplification usually decreases the quality of

1https://www.cadnav.com/
2https://yobi3d.com/
3https://grabcad.com/
4https://free3d.com/

69

Figure 5.2: Screenshot of our web-interface where a user is selecting an object category.

the 3D models. In order to preserve the details yet reduce the number of vertices, we

simplified all the models to 8000 vertices using quadric simplification [25]. All models

were subsequently checked for detail preservation. We plan to release both the high-

resolution and simplified meshes to the community in ply format for download.

5.2.3 Web Interface

Along with the dataset, we also provide a web interface for convenient access to all of

the models within AntHQ. Our interface can be easily navigated by researchers, where

they can select the category of interest and browse through all the models in that spe-

cific category as shown in Figure 5.2 and Figure 5.3. Further, researchers can view both

the high resolution and the simplified instance of the model along with their individual

statistics as shown in Figure 5.4. In addition, to make the dataset conveniently accessible

to researchers, we provide a single link to download all the models.

70

Figure 5.3: Screenshot of our web-interface displaying the models in the table category.

Figure 5.4: Screenshot of our web-interface displaying the statistics of a single table
model.

71

5.3 Future Applications

We now discuss few promising applications facilitated by our AntHQ dataset.

Understanding the Style of 3D object. It is well

known that fine grained details can provide

information about the style of object. For ex-

ample, in the paper ‘what makes Paris look

like Paris?’ [21], the authors show that small

patches in images can not only capture the

”look and feel” of the image but also inform

us about its geographical location. In the im-

age on the right, neoclassical columned en-

tryway sporting a balcony, a Victorian win-

dow, and, of course, the cast iron railing are

all very indicative of London. Translating

these ideas to 3D, capturing and extracting

fine grained details of 3D models can help us better understand the style of 3D models.

Fine Grained Object Classification. Fine grain

classification is another topic which is well

studied in the computer vision literature.

Neural networks can successfully perform

fine grain classification in images on specific

object categories such as birds, flowers due to

the presence of datasets with fine grained la-

bels [86, 60]. However, extending this to 3D

is a non-trivial task. One can possibly record

72

fine grained object labels during 3D model

collection. However, such labels are often missing in online repositories. AntHQ dataset

will allow researchers to design learning based geometric algorithms which can accu-

rately capture fine grained details in feature embeddings. Such embeddings can then be

used to cluster the models in the dataset. On the right, we show a sample image where

authors used handcrafted geometric algorithms to cluster 3D models by their style [36].

Detail Transfer. Collecting 3D models with

details can also facilitate in detail transfer.

For example, using such a high resolution

dataset, we can design deep neural networks

which can automatically transfer the details

of one 3D objects (e.g legs of one chair) to an-

other 3D object of same or different category.

In a recent paper [35], similar idea was pro-

posed however the authors focused mostly

on isotropic details rather than local details.

Nonetheless, such techniques can help create

new 3D models and impact e-commerce web-

sites such as Amazon and IKEA. They also

have applications in the real estate industry

where users can automatically transform their room from one style (e.g. European) to

another style (e.g. Chinese).

73

Chapter 6

Conclusion

74

In this thesis, we use insights from classical geometry processing algorithms to make two

contributions for improving the performance of deep point networks. First, we present

a point-surface loss function, named quadric loss, which penalizes the displacement of

points in the normal direction thereby preserving sharp features in the reconstructed

models. Quadric loss is differentiable and has nice geometric properties making it at-

tractive to most point and mesh based networks. However, as quadric loss is an ellip-

soidal loss, it cannot preserve the input point distribution. For points on planar regions,

the reconstructed points may lie outside the surface. And hence, quadric loss should be

accompanied by a spherical loss such as Chamfer loss, which preserves the input point

distribution. Second, we present GAM, a surface reconstruction algorithm to mesh the

output points of a point network using a mesh prior. GAM guarantees to generate a sur-

face connecting all the output points but with the topology of the mesh prior. We show

the advantages of GAM for single-view shape prediction. Further, we demonstrate that

by training point networks with GAM, we can directly optimize the output vertex posi-

tions to generate adaptive meshes. Another appealing property of GAM is its invariance

to point density and distribution. We demonstrate its advantages for fair evaluation of

point networks and generating surfaces for networks which output sparse point clouds.

Both the approaches studied in this thesis leave considerable room for future research.

For example, a requirement for computing quadric loss is that there needs to be an input

triangulation available to compute the input quadric matrices. In would be interesting to

analyze the effects of approximating the input triangulation with k nearest neighbours,

which could be directly computed on point clouds. This will increase the generalizability

of quadric loss to raw point clouds. Another direction for future research is to see the

effects of bidirectional quadric loss, where we also compute the quadric loss between the

input points and the quadric matrices computed on the output surface.

75

For surface reconstruction using output points of a point network, we currently need a

mesh prior, which closely resembles the ground truth shape and has correct topology. It

would be interesting to explore other alternatives from where we could get the topologi-

cal information, such as RGB-D images or signed distance functions. Another limitation

of GAM is its speed, especially for training point networks. The main bottleneck for the

speed is simplification, where we currently process the edges sequentially. A promis-

ing future direction will be to explore various optimizations during simplification, such

as batch processing of triangles, which do not have any projected points. This would

substantially decrease the processing time and make training point networks with GAM

much easier.

And lastly, I hope the dataset presented in this thesis “AntHQ” is the first of many high-

quality datasets opening the doors to exiting to new applications, especially in augmented

and virtual reality, 3D modeling and simulation. I genuinely believe such models will

bring us one step closer to better understanding 3D shapes and in turn 3D scenes.

76

Bibliography

[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Learning representations
and generative models for 3d point clouds. In ICML, 2018.

[2] N. Agarwal, S.-E. Yoon, and M. Gopi. Learning embedding of 3d models with
quadric loss. In BMVC, 2019.

[3] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Computing
and rendering point set surfaces. TVCG, 2003.

[4] N. Amenta and M. Bern. Surface reconstruction by voronoi filtering. Discrete &
Computational Geometry, 1999.

[5] M. Averkiou, V. G. Kim, and N. J. Mitra. Autocorrelation descriptor for efficient
co-alignment of 3d shape collections. In Computer Graphics Forum, 2016.

[6] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, 1996.

[7] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva. A benchmark for
surface reconstruction. TOG, 2013.

[8] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A. Levine,
A. Sharf, and C. T. Silva. A survey of surface reconstruction from point clouds.
Computer Graphics Forum, 2017.

[9] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-pivoting
algorithm for surface reconstruction. TVCG, 1999.

[10] M. Botsch and L. Kobbelt. A remeshing approach to multiresolution modeling. In
SGP, 2004.

[11] F. Calakli and G. Taubin. Ssd: Smooth signed distance surface reconstruction. Com-
puter Graphics Forum, 2011.

[12] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng,
and Y. Zhang. Matterport3d: Learning from rgb-d data in indoor environments.
arXiv preprint arXiv:1709.06158, 2017.

77

[13] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich 3D
Model Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University
— Princeton University — Toyota Technological Institute at Chicago, 2015.

[14] Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling. In
CVPR, 2019.

[15] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In ECCV, 2016.

[16] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia.
Meshlab: an open-source mesh processing tool. In Eurographics Italian chapter confer-
ence, volume 2008, pages 129–136, 2008.

[17] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring error on simplified
surfaces. In Computer Graphics Forum, 1998.

[18] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In CVPR, 2017.

[19] A. Dai and M. Nießner. Scan2mesh: From unstructured range scans to 3d meshes.
arXiv preprint arXiv:1811.10464, 2018.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

[21] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. Efros. What makes paris look like
paris? TOG, 2012.

[22] H. Fan, H. Su, and L. Guibas. A point set generation network for 3d object recon-
struction from a single image. In CVPR, 2017.

[23] C. Fellbaum. Wordnet. The encyclopedia of applied linguistics, 2012.

[24] L. Gao, J. Yang, T. Wu, Y.-J. Yuan, H. Fu, Y.-K. Lai, and H. Zhang. Sdm-net: Deep
generative network for structured deformable mesh. In SIGGRAPH ASIA, 2019.

[25] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In
SIGGRAPH, 1997.

[26] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In CVPR, 2012.

[27] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta. Learning a predictable and
generative vector representation for objects. In ECCV, 2016.

[28] G. Gkioxari, J. Malik, and J. Johnson. Mesh r-cnn. In ICCV, 2019.

78

[29] M. Gopi, S. Krishnan, and C. T. Silva. Surface reconstruction based on lower dimen-
sional localized delaunay triangulation. Computer Graphics Forum, 2000.

[30] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. Atlasnet: A papier
approach to learning 3d surface generation. In CVPR, 2018.

[31] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. Shape correspondences
from learnt template-based parametrization. In ECCV, 2018.

[32] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mitra. Pcpnet learning local shape
properties from raw point clouds. Computer Graphics Forum, 2018.

[33] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. Deep learning for 3d
point clouds: A survey. PAMI, 2020.

[34] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[35] A. Hertz, R. Hanocka, R. Giryes, and D. Cohen-Or. Deep geometric texture synthesis.
In SIGGRAPH, 2020.

[36] R. Hu, W. Li, O. V. Kaick, H. Huang, M. Averkiou, D. Cohen-Or, and H. Zhang.
Co-locating style-defining elements on 3d shapes. TOG, 2017.

[37] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and S.-K. Yeung. Scenenn:
A scene meshes dataset with annotations. In 3DV, 2016.

[38] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In
NeurIPS, 2015.

[39] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning category-specific mesh
reconstruction from image collections. In ECCV, 2018.

[40] A. Kar, S. Tulsiani, J. Carreira, and J. Malik. Category-specific object reconstruction
from a single image. In CVPR, 2015.

[41] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. In CVPR, 2018.

[42] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In SGP,
2006.

[43] M. Kazhdan and H. Hoppe. Screened poisson surface reconstruction. TOG, 2013.

[44] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[45] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. TOG, 2017.

79

[46] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev, M. Alexa,
D. Zorin, and D. Panozzo. Abc: A big cad model dataset for geometric deep learning.
In CVPR, 2019.

[47] C. Kong, C.-H. Lin, and S. Lucey. Using locally corresponding cad models for dense
3d reconstructions from a single image. In CVPR, 2017.

[48] A. Kurenkov, J. Ji, A. Garg, V. Mehta, J. Gwak, C. Choy, and S. Savarese. Deformnet:
Free-form deformation network for 3d shape reconstruction from a single image. In
WACV, 2018.

[49] J. Li, K. Xu, S. Chaudhuri, E. Yumer, H. Zhang, and L. Guibas. Grass: Generative
recursive autoencoders for shape structures. TOG, 2017.

[50] Y. Li, H. Su, C. R. Qi, N. Fish, D. Cohen-Or, and L. J. Guibas. Joint embeddings of
shapes and images via cnn image purification. TOG, 2015.

[51] Y. Liao, S. Donne, and A. Geiger. Deep marching cubes: Learning explicit surface
representations. In CVPR, 2018.

[52] C.-H. Lin, C. Kong, and S. Lucey. Learning efficient point cloud generation for dense
3d object reconstruction. In AAAI, 2018.

[53] O. Litany, A. Bronstein, M. Bronstein, and A. Makadia. Deformable shape comple-
tion with graph convolutional autoencoders. In CVPR, 2018.

[54] M. Loizou, M. Averkiou, and E. Kalogerakis. Learning part boundaries from 3d point
clouds. In SGP, 2020.

[55] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface con-
struction algorithm. In SIGGRAPH, 1987.

[56] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In CVPR, 2019.

[57] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su. Partnet: A
large-scale benchmark for fine-grained and hierarchical part-level 3d object under-
standing. In CVPR, 2019.

[58] C. Nash and C. K. Williams. The shape variational autoencoder: A deep generative
model of part-segmented 3d objects. Computer Graphics Forum, 2017.

[59] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks
for graphs. In ICML, 2016.

[60] M.-E. Nilsback and A. Zisserman. A visual vocabulary for flower classification. In
CVPR, 2006.

[61] Y. Ohtake, A. Belyaev, M. Alexa, M. Alexa, G. Turk, and H.-P. Seidel. Multi-level
partition of unity implicits. TOG, 2003.

80

[62] J. Pan, X. Han, W. Chen, J. Tang, and K. Jia. Deep mesh reconstruction from single
rgb images via topology modification networks. In ICCV, 2019.

[63] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learn-
ing continuous signed distance functions for shape representation. arXiv preprint
arXiv:1901.05103, 2019.

[64] J. K. Pontes, C. Kong, S. Sridharan, S. Lucey, A. Eriksson, and C. Fookes. Im-
age2mesh: A learning framework for single image 3d reconstruction. In ACCV, 2018.

[65] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In CVPR, 2017.

[66] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In NeurIPS, 2017.

[67] M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra, and M. Ovsjanikov. Point-
cleannet: Learning to denoise and remove outliers from dense point clouds. Com-
puter Graphics Forum, 2019.

[68] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black. Generating 3d faces using convolu-
tional mesh autoencoders. In ECCV, 2018.

[69] G. Riegler, A. Osman Ulusoy, and A. Geiger. Octnet: Learning deep 3d representa-
tions at high resolutions. In ICCV, 2017.

[70] R. Ronfard and J. Rossignac. Full-range approximation of triangulated polyhedra.
Computer Graphics Forum, 1996.

[71] J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation.
Computational geometry, 2002.

[72] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support
inference from rgbd images. In European conference on computer vision, pages 746–760.
Springer, 2012.

[73] E. Smith, S. Fujimoto, and D. Meger. Multi-view silhouette and depth decomposition
for high resolution 3d object representation. In NeurIPS, 2018.

[74] E. J. Smith, S. Fujimoto, A. Romero, and D. Meger. Geometrics: Exploiting geometric
structure for graph-encoded objects. arXiv preprint arXiv:1901.11461, 2019.

[75] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional neu-
ral networks for 3d shape recognition. In ICCV, 2015.

[76] X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. B. Tenenbaum, and W. T.
Freeman. Pix3d: Dataset and methods for single-image 3d shape modeling. In CVPR,
2018.

81

[77] Q. Tan, L. Gao, Y.-K. Lai, and S. Xia. Variational autoencoders for deforming 3d mesh
models. In CVPR, 2018.

[78] Q. Tan, L. Gao, Y.-K. Lai, J. Yang, and S. Xia. Mesh-based autoencoders for localized
deformation component analysis. In AAAI, 2018.

[79] J. Tang, X. Han, J. Pan, K. Jia, and X. Tong. A skeleton-bridged deep learning ap-
proach for generating meshes of complex topologies from single rgb images. In
CVPR, 2019.

[80] N. Verma, E. Boyer, and J. Verbeek. Feastnet: Feature-steered graph convolutions for
3d shape analysis. In CVPR, 2018.

[81] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang. Pixel2mesh: Generating 3d
mesh models from single rgb images. In ECCV, 2018.

[82] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. O-cnn: Octree-based convolu-
tional neural networks for 3d shape analysis. TOG, 2017.

[83] P.-S. Wang, C.-Y. Sun, Y. Liu, and X. Tong. Adaptive o-cnn: a patch-based deep
representation of 3d shapes. In SIGGRAPH Asia, 2018.

[84] X. Wang, Y. Xu, K. Xu, A. Tagliasacchi, B. Zhou, A. Mahdavi-Amiri, and H. Zhang.
Pie-net: Parametric inference of point cloud edges. arXiv preprint arXiv:2007.04883,
2020.

[85] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic
graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829, 2018.

[86] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona.
Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California Institute
of Technology, 2010.

[87] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling. In NeurIPS,
2016.

[88] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A
deep representation for volumetric shapes. In CVPR, 2015.

[89] Z. Wu, X. Wang, D. Lin, D. Lischinski, D. Cohen-Or, and H. Huang. Structure-aware
generative network for 3d-shape modeling. arXiv preprint arXiv:1808.03981, 2018.

[90] Y. Xiang, W. Kim, W. Chen, J. Ji, C. Choy, H. Su, R. Mottaghi, L. Guibas, and
S. Savarese. Objectnet3d: A large scale database for 3d object recognition. In ECCV,
2016.

[91] Q. Xu, W. Wang, D. Ceylan, R. Mech, and U. Neumann. Disn: Deep implicit surface
network for high-quality single-view 3d reconstruction. In NeurIPS, 2019.

82

[92] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspective transformer nets: Learning
single-view 3d object reconstruction without 3d supervision. In NeurIPS, 2016.

[93] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point cloud auto-encoder via
deep grid deformation. In CVPR, 2018.

[94] W. Yifan, S. Wu, H. Huang, D. Cohen-Or, and O. Sorkine-Hornung. Patch-based
progressive 3d point set upsampling. In CVPR, 2019.

[95] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. Ec-net: an edge-aware point set
consolidation network. In ECCV, 2018.

[96] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. Pu-net: Point cloud upsampling
network. In CVPR, 2018.

83

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	3D Deep Learning
	Task Space in 3D Computer Vision
	3D Representation

	Roadmap

	Deep Point Networks
	Motivation & Background
	Challenges & Design Choices
	Symmetric Functions
	Local vs Global Features
	Invariance to Geometric Transformation

	Applications for Point Networks.

	Learning Shape Representation using Quadric Loss
	Motivation
	Related Work
	Learning Shape Representation
	3D Reconstruction Losses

	Quadric Loss
	Background
	Efficient Computation
	Geometric Interpretation

	Experiments
	Dataset
	Network & Implementation Details
	Evaluation Metric
	Shape Reconstruction
	More Qualitative Results

	Discussion

	Surface Reconstruction using GAM
	Motivation & Introduction
	Related Work
	Surface Generation for Deep Networks
	Single View Reconstruction

	Guided and Augmented Meshing
	Overview
	Projection
	Simplification

	Analyzing GAM
	How does GAM preserve Geometry & Topology
	Effect of Mesh Prior on GAM
	Effect of Output Points on GAM
	Bounds on the Mesh Prior

	Single View Reconstruction
	Data
	Evaluation Metric
	Network & Implementation Details
	Baselines
	Comparison with Point & Implicit Networks
	Comparison with Prior Works
	More Qualitative Results
	Results on Natural Images

	Training Point Networks with GAM
	Data & Implementation Details
	Mesh Loss
	Results.

	Other Applications
	Fair Evaluation of Point Networks
	Reconstruction Surface for Sparse Point Clouds

	Limitation & Discussion

	AntHQ : A High Quality 3D Mesh Dataset with Artistic Embellishments.
	Motivation
	AntHQ Dataset
	Data Collection
	Data Processing
	Web Interface

	Future Applications

	Conclusion
	Bibliography

