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Abstract

Background—Modern neuroscience research demands computing power. Neural circuit 

mapping studies such as those using laser scanning photostimulation (LSPS) produce large 

amounts of data and require intensive computation for post-hoc processing and analysis.

New Method—Here we report on the design and implementation of a cost-effective desktop 

computer system for accelerated experimental data processing with recent GPU computing 

technology. A new version of Matlab software with GPU enabled functions is used to develop 

programs that run on Nvidia GPUs to harness their parallel computing power.

Results—We evaluated both the central processing unit (CPU) and GPU-enabled computational 

performance of our system in benchmark testing and practical applications. The experimental 

results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental 

data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on 

computational tasks. Further, we present a comparison of numerical accuracy between GPU and 

CPU computation to verify the precision of GPU computation. In addition, we show how GPUs 

can be effectively adapted to improve the performance of commercial image processing software 

such as Adobe Photoshop.

Comparison with Existing Method(s)—To our best knowledge, this is the first 

demonstration of GPU application in neural circuit mapping and electrophysiology-based data 

processing.
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Conclusions—Together, GPU enabled computation enhances our ability to process large-scale 

data sets derived from neural circuit mapping studies, allowing for increased processing speeds 

while retaining data precision.

Introduction

Computer-based resources can greatly facilitate neuroscience research. As neuroscientists 

demand more computing power for circuit mapping studies, researchers may resort to 

expensive solutions such as clusters and supercomputers for large-scale computational tasks. 

Due to recent advances in the graphics processing unit (GPU) computing technology, 

today’s GPU does much more than rendering graphics as originally intended, and GPUs can 

provide an inexpensive and computationally powerful alternative to CPU based solutions 

(Nageswaran et al., 2009; Baladron et al., 2012).

Traditionally, a central processing unit (CPU) has been the computation core of computers. 

The CPU is specialized in optimizing serial operations while containing various sub-circuits 

for multiple types of tasks, such as coordinating concurrent software processes, predicting 

branches, handling high priority interrupts and managing cache-memory traffic. However, 

its serial processing nature limits its ability to perform intensive parallel computation. In 

comparison, the newest generations of GPUs have stream multiprocessors and act as 

powerful massively parallel coprocessors. Yet, the price paid for such power at a relatively 

modest cost is that GPUs are unconventional in their organization, and in particular are 

highly constrained in their communication bandwidth with the main CPU and in the type of 

operations that can efficiently be executed in parallel. It is often extremely difficult to map a 

given application for effective (fast) execution on GPUs. Regardless, because of their 

promise, scientists and engineers have returned to exploring the power of GPUs for various 

applications ranging from astrophysics and finance to biomedical research, enabled by the 

recent advances in hardware and integrated programming interfaces such as Nvidia’s 

Compute Unified Device Architecture (CUDA) platform. In a custom-designed system, 

GPU-accelerated applications can split their computationally intense tasks into a number of 

threads which could be further processed by thousands of cores of GPUs. In addition, the 

recent addition of double-precision floating point units provides GPUs the capability to 

produce accurate results that can satisfy the strictest computational requirements.

In the field of neuroscience, GPU computing has been successfully used for computer-

intensive tasks, including large-scale modeling and simulation of neural network, high-speed 

imaging and real-time reconstructions (Nageswaran et al., 2009; Wilson, 2011; Yang et al., 

2011; Baladron et al., 2012; Tomer et al., 2012; Fang and Lee, 2013). However, to our best 

knowledge, no or few studies have tapped into the GPU computation for neural circuit 

mapping data analysis while large scale neural circuit mapping experiments in vitro 

(Shepherd et al., 2005; Xu et al., 2010; Franke et al., 2012; Kuhlman et al., 2013) and in 

vivo (Ohki et al., 2005; Nauhaus et al., 2008; Nauhaus et al., 2009) produce large amounts 

of data in short times that require tremendous computation power for post-hoc processing 

and analysis. The ability to take advantage of GPU-enabled computation in a desktop 

computer system presents a sufficient and cost-effective solution to individual neuroscience 

research laboratories that have no access to or cannot afford the access to high-performance 
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computing centers. To promote a wider application of GPUs in neuroscience research, in 

this paper, we first introduce how to assemble a GPU-enabled desktop computer system 

with detailed hardware and software information. We then compare CPU and GPU-enabled 

computational performance of our system in benchmark testing and practical applications. 

We specifically present an approach of using GPUs in Matlab to achieve accelerated 

processing of large amounts of neural circuit mapping data. Finally, we present an analysis 

of numerical accuracy between GPU and CPU computation to verify the precision of GPU 

computation.

Materials and Methods

In this section, we describe the configuration and assembly of a GPU-enabled desktop 

computer system. We also describe our data acquisition and relevant analysis, and detail on 

the algorithms used to optimize the data organization, exploit the memory hierarchy and 

integrate GPU computation.

System Components

Our system consists of an Intel i7-3930K CPU and an Nvidia Tesla K20c GPU (Figure 1). 

The CPU has 6 physical cores which share a 12MB L3 cache. It communicates with 32 GB 

system memory at a bandwidth of 49.64 GB/sec. Note that the CPU memory bandwidth 

varies at different memory clocks. The GPU has 2496 physical cores that are clustered in 13 

Stream Multiprocessors (SMX), which share a 1.5MB L2 cache and communicate with a 5 

GB graphic memory with 208 GB/sec bandwidth. The system memory and GPU are 

connected througha PCI-E 2.0 x16 bus with a transfer speed of 8 GB/s each way. Please see 

Table 2A for detailed comparison of specifications.

For such a custom built desktop computer system, we have selected components (see Table 

1) to maximize the performance while keeping the cost within a reasonable range. The CPU 

is from Intel’s high performance product line. We have carefully over-clocked it and the 

CPU performance increased by 25–29% as tested using GPUBench (see below). The RAM 

used is also a high-clocked version from a reputable manufacturer to match the over-clocked 

CPU. The whole system is cooled by 7 fans with the CPU cooled by a closed-loop liquid 

cooler. Such intense cooling is necessary since overheating can trigger the protection 

mechanism in the CPU, resulting in reduced performance, less accurate computation and 

even chip degradation. The motherboard should support two graphic cards running 

concurrently at PCIE x16 2.0. A full size tower case is required to fit all the components 

including the heavy-duty cooling and ventilation system. The whole computer system needs 

to prove stable by running intensive computation tasks for 48 hours and the maximum 

recorded CPU core temperature needs to be below 75 °C, recommended by the Intel 

documentation. The final cost of the entire system (as per Table 1) was around $7500, and 

the Tesla K20c GPU, although donated by NVidia, had a market value of $3500 by the time 

the system was assembled.
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System Assembly

The general computer assembly has been described in many existing guides (e.g., http://

www.gskill.us/forum/showthread.php?t=10512). It is a good practice to assemble basic 

components on the bench and have them individually tested outside of the tower case. After 

the initial test, we can now fit every component into the case. Although the layout of the 

components is fixed with the specified tower case and motherboard, it is important to route 

connection cables between components in a tangle-free manner. It is equally important to 

determine the location of the CPU liquid cooler radiator and air flow directions. Ambient 

cool air needs to be drawn by the fan from the case bottom, and should be heated up as it 

travels through the hard drives, GPUs, the CPU radiator and RAMs. The cooling fans placed 

at the top and rear of the tower case draws the heated air out of the case. Dust filters at the 

front of the incoming fan helps to reduce dust accumulation on internal components. Please 

see Supplemental Figures 1 and 2 for the images of our final assembled system. After the 

system assembly is completed, we recommend to overclock the system to achieve 

performance gains. Finally, it is important to test the stability for a custom assembled 

system. Many tools are available for free on the internet, and the common choices include 

Intel Burn Test, Linx, prime95 and Memtest.

The necessary software includes the operating system software, driver software, Matlab 

(Mathworks, Natick, MA) and CUDA Software Development Kit (SDK) for support of 

GPU computing. We use Windows 8 x64 due to its large user volume and better support for 

Solid-State hard drives. After Window 8 is installed, it is recommended to run the embedded 

system assessment test to ensure that the operating system (OS) can fully evaluate the 

hardware performance. Without such a test, the OS may use a default performance profile, 

limiting the hardware capability. The drivers for the motherboard, graphic card and Tesla 

Card are available for download at the manufacturer’s websites, and they should be specific 

to your component choices. We use a system monitoring software, Aida64 (http://

www.aida64.com/) to keep track of the system status. It provides monitoring data of the 

CPU and GPU temperatures, voltages, cooling performance, and other parameters. This 

software has a safe-operating mechanism which alerts and puts the computer to a standby 

mode when any overheating is detected.

We use Matlab software (version r2013b) as a GPU computing platform as the software is 

commonly used in neuroscience research and the new version contains the latest Parallel 

Computing Toolbox with many GPU enabled functions. In order for Matlab to have access 

to the Tesla card, CUDA driver from Nvidia website (https://developer.nvidia.com/cuda-

downloads) has been downloaded and installed. A simple benchmark using GPUBench 

(provided by the Parallel Computing Team of Matlab) is performed to ensure every 

hardware component is running without any unexpected throttling.

GPU computation for accelerated processing of experimental data

Different from most previous neuroscience applications in neuronal network modeling and 

simulation, this custom system is intended for using GPU-parallel computation in actual 

experimental data analysis that requires intensive computation. We have developed and 

applied photostimulation-based mapping techniques for local cortical circuit connectivity 
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analysis. Particularly, laser scanning photostimulation (LSPS) combined with whole cell 

recording in living brain slice preparations allows high resolution mapping of regional 

distributions of presynaptic input sources to single neurons (Figure 2). Because the 

simultaneous recording from a postsynaptic neuron with photostimulation of clusters of 

presynaptic neurons at many different locations, the LSPS methodology provides 

quantitative measures of spatial distribution of excitatory or inhibitory inputs.

The experimental procedure and the design of our laser scanning photostimulation system 

has been described previously (Shi et al., 2010; Xu et al., 2010; Kuhlman et al., 2013). A 

laser unit (model 3501, DPSS Lasers, Santa Clara, CA) was used to generate a 355 nm UV 

laser for glutamate uncaging. Once stable whole cell recordings were achieved with good 

access resistance (usually <20 MΩ), the microscope objective was switched from 60× to 4× 

for laser scanning photostimulation. At low magnification (4× objective lens, 0.16 NA; 

UplanApo, Olympus), the slice images were acquired by a high-resolution digital CCD 

camera (Retiga 2000, Q-imaging, Austin, TX) and used for guiding and registering 

photostimulation sites in cortical slices. For each recorded neuron, we usually map 

photostimulation-evoked inputs from a grid of 1 mm × 1mm with 16 × 16 stimulation sites 

(Figure 2). Various laser stimulation positions were achieved through galvanometer-driven 

X-Y scanning mirrors (Cambridge Technology, Cambridge, MA), as the mirrors and the 

back aperture of the objective were in conjugate planes, thereby translating mirror positions 

into different scanning locations at the objective lens focal plane. During mapping 

experiments, photostimulation was applied to the 16×16 patterned sites (centered at the 

recorded neuron) in a nonraster, nonrandom sequence, while whole-cell voltage-clamp 

recordings were made from the recorded postsynaptic neurons with EPSCs and IPSCs 

measured at the holding potential of −70 mV and 0 mV, respectively, across 

photostimulation sites. Data were acquired with a Multiclamp 700B amplifier (Molecular 

Devices, Sunnyvale, CA), data acquisition boards (models PCI MIO 16E-4 and 6713, 

National Instruments, Austin, TX), and custom-modified version of Ephus software (Ephus, 

available at https://www.ephus.org/). Data were digitized at 10 kHz, and stored on a 

computer. Electrophysiological signals were recorded for 1000 ms in length for each 

stimulation. Each map dataset of 256 traces is about 20.48 MB in size. Although the 

example data size is not large, it served a demonstration purpose.

As for the analysis of photostimulation map data, a new technique that combines the design 

of a bank of approximate matched filters with the detection and estimation theory was 

implemented for automated detection and extraction of photostimulation-evoked EPSCs or 

IPSCs (Shi et al., 2010). Specifically, the Matlab program, “synaptic_event_detection”, uses 

a bank of existing matched templates to detect synaptic event in the signal traces. During the 

detection stage with the CPU computation, the data trace under investigation is first high-

pass filtered (>10 Hz) with a 5th order, infinite impulse response Butterworth filter. The role 

of this filter is to minimize the effect of the direct uncaging response, whose duration is 

much longer than that of synaptically mediated indirect responses. To minimize the phase 

distortions, this filter is implemented as a zero-phase forward and reverse digital filter. The 

high-pass filtered signal is then convolved with all the filters from the bank, with potential 

EPSCs or IPSCs providing a better fit to the templates and thus exhibiting larger 

convolution amplitudes. The convolution traces (one for each filter) are time-shifted to 
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minimize the difference between the time of the convolution peak and a potential EPSC/IPS 

peak, and thus facilitate a more precise estimation of event occurrence times. Time-shifted 

convolution traces are then compared to detection thresholds. For each convolution trace, 

the samples that exceed the detection threshold form the so-called suprathreshold time 

segments. Within each eligible suprathreshold segment, a synaptic event was extracted and 

the center of mass of each convolution trace is found and declared as an occurrence time 

candidate of an EPSC/IPSC. For more technical information, please refer to Shi et al. 

(2010). Of the above processing steps, the convolution of matched filters with high-passed 

signal traces requires the most intensive computation, which we have targeted for GPU 

implementation.

GPU-oriented Programming Considerations

The CPU and GPU architectures are illustrated in Figure 1. The stream processors of a GPU 

can only access the data that are stored in its video memory, cache or shared memory. The 

video RAM (VRAM) is large enough (5 GB on the K20c GPU) to store the data and results 

relevant to the computation. To use a GPU for computation, the data needs to be explicitly 

transferred to VRAM from the system memory (RAM) through the PCIE 2.0 bus. The 

transfer rate of PCIE 2.0 is 8.0GB/s for each direction, which is much lower compared with 

the GPU-VRAM or CPU-RAM speed (Fig. 1). There is also an initiation latency of data 

transfer, with the average measured latency being 0.3 ms. To maximize the GPU 

performance, it is critical to reduce the number of data transfers between RAM and VRAM.

We modified the “synaptic_event_detection” program in light of the above consideration of 

effective GPU computation (Figure 3). All the high-passed signal traces from each map data 

set are concatenated as one large vector and transferred to VRAM altogether. The same 

operation is done for the matched filters, which are originally stored in a Matlab cell array. 

An auxiliary vector is created to store the lengths of matched filters, and help index 

individual matched filters in the filter vector. In GPU-enabled computation, the large vector 

of signal traces is convolved with each matched filter and the resultant trace is then 

transferred back to RAM for event detection and extraction. The code for such GPU-tailored 

modifications is shown in Appendix 2. A complete CPU code of the 

“synaptic_event_detection” program is described in our previous publication (Shi et al., 

2010) and available at our website: http://xulab.anat.uci.edu/synapticeventdetection/

index.htm).

Results

CPU versus GPU Performance Benchmarking in Matlab

To compare the potential speedup of using GPUs, we first examined the performance of 

CPU versus GPU-enabled computation using ‘GPUBench’ in Matlab. Basic scientific 

computations were performed through different GPUBench tests including MTimes, 

Backslash and fast Fourier transform (FFT). MTimes involves the multiplication of two 

matrices, A and B, whereas Backslash involves the matrix “division”, A/B. The Backslash 

operation essentially finds the solution of a system A*X=B by Gaussian elimination. FFT 

computes the discrete Fourier transform (DFT) of a vector X. A, B and X were generated 
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using Matlab’s random number function, rand(). GPUBench uses the Matlab integrated 

timer command (tic, toc) to measure the processing time of GPU and CPU kernels. The 

performance of both kernels in GFlops is then calculated by dividing the number of floating 

point operations by the actual processing time. The processing time does not include the 

allocation/deallocation of RAM or VRAM, since the memory spaces are allocated at the 

beginning and are not reallocated during benchmarking. Also, the GPU benchmark does not 

include the time to transfer the data to VRAM and the computational results back to RAM.

The performance of both single and double precision floating point computation was 

evaluated in different tests (Figure 4A; Table 2B). Compared to CPU performance in terms 

of GFlops, GPU-enabled computation achieved a speed up of 705%, 315% and 2207%, 

respectively, in single precision computation of MTimes, backslash and FFT, while their 

respective speed up was 577%, 388% and 1326% in double precision computation. These 

dramatically increased speeds are due to powerful massively parallel coprocessors in the 

GPU.

Convolution Speed Comparison

For LSPS map data analysis, we use the custom-made Matlab program, 

“synaptic_event_detection”, which uses a bank of existing matched templates to detect 

synaptic events in signal traces. Since convolution using the Matlab function, conv(), is a 

computational core of the program for synaptic event detection, we are interested in 

examining the performance of CPU and GPU-enabled computation in convolving data 

vectors of different lengths with an 1-dimensional (1-D) template of a fixed length. As the 

convolution computation is not included in the GPUBench software, we implemented a 

simple benchmark code (see Appendix 1) that performs 1-D convolution in Matlab. Vectors 

of different lengths were generated by using the Matlab rand() function. The lengths of data 

vectors are 2X * 10000 (X ∈ [1, 2, … 8]). A second vector was generated by the Matlab 

rand() function to be used as a convolution filter with its length being 20000. The data 

vectors of different lengths were convoluted with this fixed filter. Again, the time of 

memory allocation/deallocation is not included in actual computation time; the GPU 

computation time includes the necessary data transfer between RAM and VRAM. As shown 

in Figure 4B and Table 2C, GPU constantly outperformed CPU in convolving data with a 

vector length of 40000 and higher. Relative to CPU processing, the speed up of GPU 

computation tends to increase with the larger vector length. When the data vector length is 

28 * 10000 (the total length of 256 traces contained in one typical LSPS map data set), the 

speed up is about 700%.

Acceleration of Electrophysiological Data Processing

To examine the performance gains in actual experimental data analysis, we compared the 

processing speed of the CPU version of the “Synaptic Event Detection” program versus its 

GPU-enabled version (see Appendix 2 for code comparison). As described in Methods, the 

GPU version of this function was modified to minimize the number of data transfer over 

PCIE x16 2.0 bus. All individual traces (256 traces from one map data set) were first 

concatenated to a large trace. The data of both the signal trace and matched filters are of 

double precision floating point types. During the automated event detection stage of the 
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“Synaptic Event Detection” program, the key step that requires intensive computation is to 

convolve signal traces with a bank of matched filters (Figure 5A). Typically, as illustrated in 

Figure 3, the CPU completed the convolution of 256 signal traces with each of the 29 

matched filters in a total of 2.55 seconds. In comparison, the GPU completed the 

convolution in 0.51 seconds, which corresponds to a speed increase of 500% for this 

operation. Note that the data transfer overhead was 0.03 seconds each way and the cost for 

reformatting data for the GPU computation was 0.15 seconds. Since both event detection 

cores are on the CPU, the processing time is comparable at 1.90 seconds and 1.94 seconds in 

the CPU and GPU versions, respectively. The GPU version takes much less time (59% of 

the CPU version) for processing all 256 electrophysiological traces that are contained in one 

data map. This data processing acceleration would make a huge difference in computational 

times in consideration of our batch analysis of hundreds of different data maps.

Although both CPUs and GPUs are compatible with IEEE 754-2008 Floating-Point 

Standard, it is important to compare the accuracy of GPU computation results to those of 

CPU as the CPU and GPU use different architectures for double floating point computation. 

We used CPU results as a standard and examined how much the GPU results deviated from 

them. The convolution of the same signal trace using 29 different matched filters was 

acquired from both CPU and GPU versions of the detection program. The difference was 

calculated by comparing the convolution traces of using the GPU versus the CPU program. 

As shown in Figure 5B, the maximum difference between CPU and GPU convolved traces 

is 81.5± 3.72 * 10−13 pA. These tiny differences may result from different floating point 

rounding modes used by the CPU and GPU (Yablonski, 2011). In practice, these numerical 

differences have no impact on our data analysis. When we used the synaptic events that 

were detected and extracted in both programs for quantification and visualization, there is no 

difference across the data maps and they are identical (Figure 6). Thus, GPU enabled 

computation enhances our ability of processing large data sets derived from 

photostimulation circuit mapping experiments. It also allows us to increase data processing 

speeds while retaining data precision.

Image Processing Application

GPUs have been used for enhancing image visualization through custom-written programs 

(Eilemann et al., 2012). In this paper, we also show GPUs can be effectively adapted to 

improve the performance of image processing in Adobe Photoshop. This is major 

commercially available software that is widely used in academic research for routine image 

edits and analysis. The Photoshop software has adopted GPU computation since the release 

of the CS4 version. However, the latest version of Photoshop CC cannot utilize the Tesla 

K20c card. We used its sibling GTX680 card (a high-end consumer-grade GPU installed in 

our desktop system) to complete this test. GTX680 shares the same microarchitecture of 

Tesla K20c but it has a lower configuration with 1536 physical cores running at 1006MHz 

with 2GB VRAM and costs a fraction of the price of the Tesla K20c. We examined how 

much the GPU could speed up general Photoshop operations on two testing images of 

different sizes. The images are in .tif formats with 24 bit depth for the RGB mode; image 1 

has 8176 pixels × 6132 pixels with a size of 150MB, and image 2 has 16352 × 12264 with a 

size of 573MB. To ensure consistent benchmark results, we used a fixed series of Photoshop 
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actions (http://cdn.pugetsystems.com/articles/PugetBench.zip) to apply blurry effects to the 

tested images. These actions included Field blur, Iris blur and Tilt-Shift effect. We found 

that GPU-enabled computation achieved 165% speedup (16 sec versus 26 sec) in completion 

of the three actions on the smaller image, and 196% speedup on the larger image (52 sec 

versus 102 sec), respectively.

Discussion

Although GPUs have been used in several neuroscience fields including neural network 

simulations and high speed imaging (Nageswaran et al., 2009; Baladron et al., 2012), our 

work addresses the GPU application in neural circuit mapping and electrophysiology-based 

data processing. To our best knowledge, this is the first demonstration in this subfield of 

neuroscience. In addition, we extend previous studies by presenting a comparison of 

numerical accuracy between GPU and CPU computation to verify the precision of GPU 

computation. This is an important aspect of GPU application, but has not been rigorously 

tested before.

We utilize GPU and CPU co-processing to speed up large-scale neural circuit mapping data 

analysis, taking LSPS mapping data analysis as an example. A GPU-enabled desktop 

computer system was designed and assembled toward this purpose. We described GPU-

oriented program considerations, and presented the algorithms for integrating GPU 

processing with detailed flow-chart diagrams of the implementation for an accelerated 

version of the synaptic event detection program. Our results indicate that cost-effective GPU 

computation facilitates large-scale data with increased speeds and with unaltered accuracy. 

In addition, we showed that even a high-end consumer-grade GPU is capable of speeding up 

Adobe Photoshop’s performance by 50–90%, depending on the operations and the image 

sizes.

Compared with CPUs, the newest GPUs have an order of magnitude higher computation 

power and memory bandwidth. However, GPUs are designed as special-purpose co-

processors and their programming interfaces are harder to use than those on the CPUs. 

Although GPU manufacturers and other organizations have developed various development 

kits that allows users with programming knowledge of high-level languages to take control 

of many stream processors of a GPU, it still requires steep learning to understand the GPU 

programming paradigm, data structure and complex optimization rules. As Matlab is a 

commonly used mathematical programming suite and its new parallel computing toolbox 

contains many functions that support GPU-enabled computing, we chose to use Matlab as a 

computing platform. We modified the existing Matlab programs to utilize GPU computation 

with merely three basic steps: 1) transfer data to the GPU, 2) compute and 3) gather results. 

As the GPU on-board memory limits the capabilities of processing large volumes of data, 

preprocessing data with CPUs is necessary. However, the efficiency may be significantly 

hampered by the relative high-latency of the data exchange between CPUs and GPUs. 

Therefore we optimize the Matlab GPU program and follow the rule of “Communicate less, 

compute more”. For our synaptic event detection program, the GPU takes over the intensive 

computation load from the CPU and returns the results in a quick and accurate manner to the 

system memory (with a 5x speed increase) for further CPU processing. In addition, as 
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Matlab-derived CUDA code is suboptimal and can be further improved, we plan to re-write 

the Matlab GPU kernel in CUDA code and then have it run in the Matlab environment. Such 

an approach could achieve a balance between execution efficiency and code re-writing 

effort.

Although we focus on data analysis of synaptic event data sets derived from LSPS 

experiments, the performance gain enabled by GPU computation should be likely extended 

to data analysis of multiple electrode array (MEA) recordings, fast voltage sensitive dye 

(VSD) imaging and large-scale single cell resolution calcium imaging experiments (Ohki et 

al., 2005; Nauhaus et al., 2008; Franke et al., 2012). MEA and bulk loading calcium imaging 

techniques offer the possibility to simultaneously record from large numbers of neurons 

(e.g., up to several thousand neurons) with relative ease, but at the expenses of increased 

efforts to detect and extract single neuronal activities from the recorded ensembles. Their 

data processing that requires intensive computation for spike sorting and calcium transient 

event detection can be similarly accelerated with GPUs using the algorithms outlined in this 

paper. Furthermore, while the speedup and accuracy demonstrated in the present study using 

the particular LSPS data analysis leads the GPU to be considerable for electrophysiology-

based neural circuit mapping, GPU-enabled desktop computer systems will be potentially 

essential for real-time closed-loop experiments, with the potential for running data analysis 

in real time while collecting data from technically challenging, large scale recordings. We 

believe that GPU-enabled desktop computer systems will facilitate real-time closed-loop 

experiments, with the potential for running data analysis in real time while collecting data 

from technically challenging recordings. In addition, we record from rare types of neurons 

and we would like to maximize the number of different protocols carried out for each 

recording. One limitation is that we only estimate when we have data sufficient for 

achieving required statistical power for any given protocol. Ideally if we could confirm such 

statistical thresholds by concurrent real time analysis enabled by the GPU system, we could 

maximize the amount of data extracted from a given recording. As our high-speed VSD 

imaging experiments generate large amount of data (Clement et al., 2012; Olivas et al., 

2012; Shi et al., 2014) and require extensive data processing such as noise filtering, 

averaging and linear drift removal, we will also be able to extend the GPU-enabled 

computation to facilitate image data acquisition and analysis.

In conclusion, we believe that when appropriately applied, affordable GPU-enabled 

computation is efficient and powerful. Thus we advocate for its wider applications in 

neuroscience research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

GPU Graphical processing Unit

CPU Central Processing Unit

Ram Random Access Memory

VRAM Video Random Access Memory

LSPS Laser Scanning Photostimulation
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Appendix 1: 1-D convolution benchmark code

%Initiate the vector for timing

result_cpu=zeros(8,1);

result_gpu=zeros(8,1);

%%Create the fixed length vector

b=rand(20000,1);

%% Start computation

for i =1:8

A=rand(10000 *2^i,1);

tic

tmp_CPU_result=conv(A,b);

result_cpu(i)=toc;

tic

tmp_GPU_result=conv(gpuArray(A), gpuArray(b));

GPU_result=gather(tmp_GPU_result);

result_gpu(i)=toc;

gpuDevice(1);

end

Appendix 2. Code comparison of the CPU and the GPU version of 

“synaptic_event_detection”

The code is simplified to emphasize the optimization of GPU performance. Note how the 

convolution of all traces are gathered together to minimize the data transfer overhead.

%% CPU CODE %%

for i=1 : size(Original_Trace,2)

%%High pass filter of original trace

sf = filtfilt(NUM,DEN,Original_Trace(:,i));

for j=1: cellcount-1

%% The filter is produced after de-mean and normalization

%% of the model.

m_dmean=Model{j}-mean(Model{j});

Filter = m_dmean/sum(abs(m_dmean));

%% Convolute signal trace with the model
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temp=conv(sf,Filter);

%% Offset the convoluted trace so that it would better

%% align with the original trace.

fitting{j}=temp((1+round(length(Model{j})/2)...

+Phase_Diff(j)):(size(Original_Trace,1)...

+round(length(Model{j})/2)...

+Phase_Diff(j)));

end

%%%Misc code omitted

%% Identify events

vara=Align_Peaks(Original_Trace(:,i), fitting{j});

end

%Save results

%% GPU CODE%

%% Concatenate the filters into one single vector

for j=1:cellcount-1

m_dmean=Model{j}-mean(Model{j});

Filter = [Filter,m_dmean/sum(abs(m_dmean))];

F_Length(j+1)=F_Length(j)+length(m_dmean);

end

%% High pass filter of original trace

sf = (filtfilt(NUM,DEN,Original_Trace));

%% Convert the high passed signal trace to

%% a one-dimension vector

%% Transfer the data to GPU memory

sf=gpuArray(sf(:));

Filter=gpuArray(Filter);

F_Length=gpuArray(F_Length);

%% Assign memory in host for

%% storing convolution trace

result_gpu=cell(cellcount-1,1);

for j=1: cellcount-1

%% Computation on GPU,

%% then transfer data back to host memory.

tmp=Filter(gpuArray.colon(F_Length(j)+1,...

F_Length(j+1)));

result_gpu{j}=gather(conv(sf,tmp));

%% Offset the convoluted trace so that it would better

%% align with original trace.

result_gpu{j}=result_gpu{j}...

((1+round(length(tmp)/2)+...

Phase_Diff(j)):(size(sf,1)+...
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round(length(tmp)/2)+Phase_Diff(j))...

);

end

for i=1 : size(Original_Trace,2)

%% Separate the convolution traces

%% for each trace

for j=1: Filter_Count-1

fitting{j}=result_gpu{j}...

((i-1)*10000+(1:10000));

end

%% Identify events

vara=Align_Peaks(Original_Trace(:,i),...

fitting);

end
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Highlights

• We describe the use of GPU technology for large-scale neuroscience data 

processing.

• The GPU application focuses on neural circuit mapping-based data analysis.

• To our best knowledge, this is the first demonstration in this subfield of 

neuroscience.

• GPU computation allows for increased speeds while retaining data precision.
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Figure 1. Architectural structures of the central processing unit (CPU) and the graphic 
processing unit (GPU) in our custom-made desktop computer system
We use the CPU of Intel i7-3930K (6 cores) and the GPU of Nvidia Tesla K20c (2496 

cores). The double arrows indicate memory transfer for computation. The transfer speeds 

between the cache and the system memory (i.e., RAM), between GPU cores and the video 

RAM (VRAM), and between the VRAM and the system memory are 49.64 GB/sec, 

208GB/sec and 8 GB/sec, respectively.
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Figure 2. Illustration of laser scanning photostimulation (LSPS) combined with whole cell 
recordings to map local circuit input to a hippocampal CA1 interneuron
A shows a mouse hippocampal slice image with the superimposed photostimulation sites 

(16×16 cyan *, spaced at 100 μm × 100 μm). The glass electrode was recording from an 

interneuron in the oriens lacunosum-moleculare (OLM) layer of CA1. The red circle 

indicates the cell body location. B shows an array of photostimulation-evoked response 

traces from the photostimulation locations shown in A, with the cell held at −70 mV in 

voltage clamp mode to detect inward excitatory synaptic currents (EPSCs). Only the 250 ms 

of the recorded traces after the onset of laser photostimulation (1 ms, 20 mW) are shown. C 
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shows the enlarged and expanded traces from the highlighted traces in B. This type of 

experimentation generates large amounts of data, and requires intensive computation for 

post-hoc data analysis.
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Figure 3. Example data processing flowchart for CPU and GPU computation
The data used here are from a typical LSPS map data set (shown in Figure 2B) with 256 

signal traces (each containing 10000 sample points). The two versions share the steps of 

‘Read Raw electrophysiology trace’, ‘System Memory’ and ‘Save results’. They differ in 

major computation processes, with the left branch for CPU processing and the right branch 

for GPU processing. The computation that takes place in the GPU is coded by the green 

color. The processing time of each step is noted in yellow. For CPU computation in a FOR 

loop, the processing time for each iteration is summed up to get the combined time. The 

total processing times of CPU and GPU branches are marked outside of the brackets.
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Figure 4. Basic comparisons of CPU versus GPU performance
A. Benchmark testing comparison of the CPU and GPU processing capabilities, assessed by 

their performance (GFlops) in three widely used computation, MTimes, Backslach and FFT, 

in the software platform of Matlab. B. GPU versus CPU speed up of 1-D convolution. 

Vectors of different lengths were generated by using the Matlab function, rand(). The vector 

length = 2X * 10000 (X ∈ [1, 2, … 8]). The x-axis represents the value of X. The filter 

vector with its length of 20000 points was generated by the rand() function as well. The y-

axis is the speed up of GPU convolution versus CPU convolution on the same vector and 

filter pair. The time of GPU convolution included the time of transferring data to and back 

from the GPU memory.
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Figure 5. Data convolution accuracy via GPU computing
A. Example data trace convolution through GPU enabled computation. The top portion 

shows the actual signal trace with 6 EPSC events (color-coded) identified and extracted 

shown below. Note the first, large peak is determined to be a direct uncaging response. The 

bottom portion shows three convolved traces of the signal trace to the 3 example matched 

filters shown by the right side, with potential EPSCs having better fitting of the templates 

and exhibiting larger convolution amplitudes. For the subsequent event detection, the 

convolution traces are compared to a detection threshold and an outlier threshold (see the 

Method). B–C. The difference of CPU-based versus GPU-enabled convolution results of the 

same data trace. The x-axis represents data points while the y-axis shows the difference in 

convolution amplitude in the unit of pA. In B the y-axis scale is set to [−8, 10] *10−13. C 

shows the same trace as shown in B while the y-axis scale is set to [−1, 1].
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Figure 6. Visualization of the final detected events by using CPU and GPU-enable computation 
via the “Synaptic Event Detection” program
A–B, Color-coded maps of average input strength to the recorded cell, based on the detected 

EPSC events using CPU(A) and GPU(B) computation, respectively. Warm colors indicate 

stronger excitatory synaptic input from the photostimulation sites. The maps shown were 

constructed based on detection results of 8 raw data maps as shown in Figure 2B. C–D, The 

standard deviation maps of input strength across the 8 raw maps, using CPU(C) and GPU(D) 

computation, respectively. These map results are consistent and look identical.
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Table 1

Structural components and general computation capabilities of the CPU and GPU used in our desk computer 

system.

Components Model Price, each ($) Note

Hard Drive Samsung 840 Pro 218 Two units In RAID 0 mode

Motherboard ASUS Rampage IV extreme 439

CPU Intel i7-3930k 499 Running at 4.5 GHz

CPU Cooler Corsair H100i closed loop liquid cooler 105.99

System Memory G.SKILL 32 GB Quad Channel DDR3 300 Running at 2.133 GHz

Graphic Card Asus GTX 680 A455-0686 520

CUDA card Nvidia Tesla K20c 3,500

Case Cooler Master HAF X RC-942-KKN1 200

Power Corsair AX1200i 320

Keyboard/Mouse Logitech MK520 Combo 41.99

Monitor Asus PB278Q 27″ 649

Speaker Creative T10 40

Operating System Windows 8 Pro x64 149

All the data shown in the table are provided by the published documents from the manufactures (http://www.techpowerup.com/cpudb/858/core-

i7-3930k.html; http://www.techpowerup.com/gpudb/564/tesla-k20c.html). The price info is as of June 30th, 2013.
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