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From Static to Dynamic Structures: Improving Binding
Affinity Prediction with Graph-Based Deep Learning
Yaosen Min, Ye Wei,* Peizhuo Wang, Xiaoting Wang, Han Li, Nian Wu, Stefan Bauer,
Shuxin Zheng, Yu Shi, Yingheng Wang, Ji Wu,* Dan Zhao,* and Jianyang Zeng*

Accurate prediction of protein-ligand binding affinities is an essential
challenge in structure-based drug design. Despite recent advances in
data-driven methods for affinity prediction, their accuracy is still limited,
partially because they only take advantage of static crystal structures while the
actual binding affinities are generally determined by the thermodynamic
ensembles between proteins and ligands. One effective way to approximate
such a thermodynamic ensemble is to use molecular dynamics (MD)
simulation. Here, an MD dataset containing 3,218 different protein-ligand
complexes is curated, and Dynaformer, a graph-based deep learning model is
further developed to predict the binding affinities by learning the geometric
characteristics of the protein-ligand interactions from the MD trajectories. In
silico experiments demonstrated that the model exhibits state-of-the-art
scoring and ranking power on the CASF-2016 benchmark dataset,
outperforming the methods hitherto reported. Moreover, in a virtual screening
on heat shock protein 90 (HSP90) using Dynaformer, 20 candidates are
identified and their binding affinities are further experimentally validated.
Dynaformer displayed promising results in virtual drug screening, revealing
12 hit compounds (two are in the submicromolar range), including several
novel scaffolds. Overall, these results demonstrated that the approach offer a
promising avenue for accelerating the early drug discovery process.

1. Introduction

Protein-ligand binding plays a key role in a wide range of biologi-
cal processes, such as enzyme catalysis, signaling pathways, and
the maintenance of cell structure.[1,2] Understanding the binding
mechanisms of ligand molecules is essential for the design and
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development of novel drugs with high affin-
ity and selectivity.[3,4] Therefore, developing
accurate computational methods for mod-
eling protein-ligand binding and predicting
the corresponding affinities is one of the
most fundamental tasks in drug discovery.

Recent advances in computational meth-
ods have enabled protein-ligand binding
affinity predictions through physics- and
knowledge-based approaches.[5,6] The
molecular docking algorithms utilize
coarse-grained physical models to predict
and evaluate the binding conformation of
small molecules. However, such methods
usually incorporate expert knowledge and
hand-tuned parameters, thus often leading
to biased results.[7] All-atom molecular
dynamics (MD) is another popular com-
putational technique to investigate the
structural and dynamical properties of
biological systems. It is mainly based on
Newtonian mechanics to reveal the full
atomic detail at a fine spatial-temporal
resolution, which is the basis of numerous
binding affinity calculation approaches,
such as MM/PB(GB)SA and alchemical

free energy.[8–10] Nevertheless, molecular dynamics simula-
tion usually consumes a large amount of computational re-
sources, which impedes its application to high-throughput virtual
screening.[11]

Data-driven approaches are another emerging trend for solv-
ing the binding affinity prediction task.[12] Primarily benefiting
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from the rapidly growing number of experimental protein-ligand
complexes, data-driven approaches have achieved a certain ac-
curacy level through learning the binding modes directly from
3D structures. Nonetheless, current state-of-the-art methods of-
ten require sophisticated feature engineering while offering lim-
ited generalizability.[13] More importantly, various attempts, such
as docking-based,[14–17] feature-based,[18–24] voxel-based,[25–27] and
graph-based[28–34] methods, mainly focus on tuning models on
the X-ray crystallographic structures, which only capture the av-
erage conformational distributions of crystallized molecules and
neglect their possible dynamic patterns. In fact, both proteins
and ligands are not rigid structures, and they constantly inter-
act with each other and the aqueous environment, following a
specific conformation distribution. Such a conformation distri-
bution in an equilibrium state is called a thermodynamic en-
semble, and all the conformations collectively contribute to the
affinity of the protein-ligand binding. Although such a thermo-
dynamic ensemble can be obtained through MD simulation,
large-scale MD trajectory datasets are still scarce due to the large
amount of computational resources required. Recently, a number
of noteworthy approaches have been proposed to address this is-
sue. For instance, a recently developed molecular dynamics sim-
ulation framework, called TorchMD, leverages machine learn-
ing to enhance the empirical force fields in terms of efficiency
and accuracy.[35] Another deep learning framework has been pro-
posed to predict conformations in flexible regions of the target
protein that rely on interactions with bound ligands.[36] Further-
more, other deep learning based approaches have also been ex-
plored to learn the MD trajectory features and then extend trajec-
tories beyond the original MD-accessible timespans.[37,38] These
existing works present promising approaches to overcome the
current computational limitations of MD simulations. With this
progress, recent efforts have been made as well to construct com-
prehensive MD simulation datasets through classical or machine
learning force fields.[39–42] Nevertheless, few existing data-driven
approaches have taken such thermodynamic ensembles into ac-
count to predict protein-ligand binding affinities.[43]

In light of this, we hereby explore the potential of inte-
grating a data-driven deep learning model and MD simulated
thermodynamic ensembles in improving the protein-ligand
binding affinity prediction. We first curated a large-scale MD
trajectory dataset, containing 3,218 different protein-ligand com-
plexes, based on the PDBBind dataset.[44] Then, we introduced
a graph transformer framework, named Dynaformer, which
was trained based on this MD trajectory dataset. To capture
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the binding modes between proteins and ligands, Dynaformer
utilizes a roto-translation invariant feature encoding scheme,
taking various interaction characteristics into account, includ-
ing interatomic distances, angles between bonds, and various
types of covalent or non-covalent interactions. Compared to
other existing methods, Dynaformer showed superior scoring
and ranking power on the CASF-2016 benchmark dataset.[20]

Through several case studies, we also discussed the underlying
thermodynamic binding mechanisms that may contribute to the
performance improvement achieved by Dynaformer. Further-
more, we experimentally validated several novel hits identified
by Dynaformer against heat shock protein 90 (HSP90), an
attractive drug target against cancer. We demonstrated that
our model can be applied to a real-world hit discovery task
and serve as an effective tool to accelerate the drug discovery
process.

2. Results

2.1. The Thermodynamic Ensemble Determines the Binding
Affinity

A thermodynamic ensemble of a protein-ligand system repre-
sents a distribution of complex conformations in equilibrium.
Theoretically, these conformations, with varying probabilities
of occurrence, collectively depict the free energy state of the
system.[45–47] Therefore, conformation snapshots sampled from
the thermodynamic ensemble can approximate the distribution
of conformation space and further reflect the free energy state
of ligand binding. In other words, an MD trajectory can provide
more information about ligand binding than a single static struc-
ture (Figure 1A). More specifically, the binding affinity Ki is de-
termined by the Gibbs free energy change ΔG of the binding
process,[48] which can be defined as:

−RTlnKi = ΔG = ΔGgas + ΔGsolv (1)

where R represents the molar gas constant, T represents the tem-
perature, ΔGgas stands for the binding free energy between the
pair of protein and ligand in the gas phase, and ΔGsolv stands for
the solvation free energy difference between the protein-ligand
complex and the sum of stand-alone protein and ligand sys-
tems. Both ΔGgas and ΔGsolv can be represented by the ensemble-
averaged energy terms related to the atomic features derived from
each snapshot (see Experimental Section for more details). There-
fore, in principle, with sufficiently sampled snapshots from an
MD simulation, the binding affinity can be expressed as a func-
tion of the atom features of the snapshots.

Based on the above principle, training deep learning models
to model the energy terms using the thermodynamic ensem-
bles sampled from MD simulations can enable one to predict the
protein-ligand binding affinities. Here, we first built a large-scale
dataset containing MD simulations of 3,218 protein-ligand com-
plexes based on experimental structures derived from the Protein
Data Bank (PDB).[49] All of the complexes were further filtered
based on the PDBBind dataset,[44] which consists of protein and
small molecule complex structures with known binding affini-
ties. In this study, we performed a 10-nanosecond (ns) simulation
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Figure 1. An illustrative overview of the thermodynamic ensemble and the MD trajectory dataset. A) The conformations in a thermodynamic ensemble
generally follow a specific distribution. In principle, the binding affinity is determined by the properties of the thermodynamic ensemble rather than a
single conformation. Based on this fact, we built a dataset containing various thermodynamic ensembles sampled by MD simulations. More details
can be found in the main text. B) Relationship between the mean ligand RMSD and the binding affinity in the MD trajectory dataset. The mean ligand
RMSD is calculated as the average distance deviation of the ligand from its original position in the crystal structure during the simulation. The heatmap
and the mean RMSD range in the inset indicate that the ligand dynamics are related to binding affinities, i.e., the higher the mean ligand RMSD, the
lower the binding affinity. C) Representative examples of ligand RMSD and their binding affinities, including unstable (PDB ID: 4y3j), intermediate (PDB
ID: 3udh), and stable (PDB ID: 2yge) MD trajectories. In the unstable case, the ligand RMSD increased sharply at the 60th snapshot, indicating that
the ligand left the binding site. The ligand with intermediate stability remained relatively flexible but stayed near the binding site. In the stable case, the
ligand stuck tightly to the binding pocket, yielding low ligand RMSDs.

for each complex and sampled 100 snapshots from each simula-
tion to characterize the conformational space. All snapshots were
collected to derive the MD trajectory dataset.

To gain comprehensive insight into the relationships between
complex stabilities and corresponding binding affinities, we also
performed a deep analysis of our MD trajectory dataset. More
specifically, we first derived the relative position movement of
each ligand during the simulation by calculating the average root
mean squared deviation (RMSD) between its initial and current
positions over 100 snapshots at the binding site. Then, we exam-
ined the association between the mean RMSDs of ligands and ex-
perimentally measured binding affinities. Our analysis revealed
that conformations from MD simulations exhibited varying lev-
els of stability, and the stabilities of ligands were roughly inversely
correlated with binding affinities (Figure 1B). More specifically,
the upper bound for the mean RMSD of the ligand decreased
as the binding affinity increased. In total, 78.3% of trajectories
in the dataset exhibited high stability, with mean RMSDs of lig-
ands smaller than 3Å; 20.6% of trajectories displayed interme-
diate flexibility, where certain atoms or functional groups in the

ligands were flexible but did not leave the original binding sites,
with mean RMSDs of ligands between 3Å and 10Å; and 1.1% of
complexes were unstable, with mean RMSDs of ligands greater
than 10Å, exhibiting a high level of ligand flexibility. In the un-
stable cases, the binding affinities tended to be low, and ligands
even left the original binding pockets and entered the solvent.
Several typical examples are shown in Figure 1C. In the unsta-
ble example (PDB ID: 4y3j) with the lowest binding affinity, the
ligand left the binding site shortly after the simulation began,
while in the intermediate (PDB ID: 3udh) and stable (PDB ID:
2yge) examples, the ligands remained in the binding sites, dis-
playing relatively higher binding affinities. This preliminary data
analysis validated that ligand dynamics can provide extra infor-
mation with respect to the corresponding binding affinity. The
Dynaformer predictions on the snapshots of the trajectories, in
turn, provide additional evidence for this observation. In addi-
tion, the variances of Dynaformer predictions were higher for
weaker binders, thus indicating lower confidence levels. There-
fore, our MD trajectory dataset contains more information than
its static crystal structure counterparts and thus should be able to
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Figure 2. Illustration of our virtual screening pipeline with Dynaformer. A) Hit discovery through our deep learning model Dynaformer based on an MD
trajectory dataset. First, crystal structures of protein-ligand complexes are collected to form an MD trajectory dataset. Then, the simulated trajectories
are utilized for training the binding affinity prediction model. Next, the trained model is evaluated against a benchmark dataset. The model with the
best performance is then used as a scoring function for the virtual screen of the compound candidates. Finally, the wet-lab experiment validates the hit
molecules for further hit-to-lead optimization. B) An example snapshot of protein-ligand from the MD trajectory dataset and its graph representation. In
order to create such a graph representation to feed into the model, atoms from both the ligand and the protein are chosen based on their proximity to
the ligand within a specified distance cutoff. The nodes and the edges represent the atoms and their covalent or non-covalent interactions, respectively.
C) The architecture of Dynaformer. The node features (i.e., atomic features) are first fed into a multi-head attention module. The structural encodings,
including distance, angle, and edge features, are encoded and added as the attention bias. After the final layer, the feature representations of the graph
are globally pooled and fused with the pre-calculated fingerprints, which are knowledge-based features capturing structural and chemical properties.
The fused representations are then used for the final prediction of the binding affinity. Abbreviations in the figure: Linear, linear layer; Feed-forward,
feed-forward neural network; MatMul, matrix multiplication.

contribute to binding affinity prediction (Figure S3, Supporting
Information).

2.2. Virtual Screening Pipeline with Dynaformer

An overview of our virtual screening pipeline using Dynaformer
is shown in Figure 2A, including the MD trajectory dataset prepa-

ration, model training, performance evaluation, virtual screen-
ing, and wet-lab validation. To feed data into our deep learning
model, snapshots from MD trajectories are converted into graphs
representing the ligand binding structures. Each snapshot is con-
verted into a graph containing nodes and edges that represent
features of atoms and their relationships, such as chemical bonds
and non-covalent interactions (Figure 2B). A graph includes
atoms and the interatomic interactions from both the ligand and
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the protein within a certain distance cutoff. After preparing the
MD trajectory dataset, we propose a novel graph transformer ar-
chitecture, named Dynaformer (Figure 2C), to fully take advan-
tage of the characteristics of molecular dynamics from the dataset
and improve the predictions of protein-ligand binding affinities.

Inspired by Graphormer, Dynafomer extends it by integrat-
ing interatomic interaction features that encapsulate the spatio-
temporal relationships inherent in MD trajectories.[50] To cap-
ture the intricate non-covalent interaction features, Dynaformer
introduces additional attention bias terms to encode the struc-
tural information regarding the interatomic distances and angles
between these bonds. In addition, the Gaussian basis function
(GBF) is used for structural encodings, which is a common form
of energy function in computational chemistry to map structural
information to energy contributions (Equation 5 in Experimen-
tal Section).[51] In this way, from the graph representation of a
protein-ligand complex, we are able to model the protein-ligand
interactions of a snapshot from an MD trajectory. Moreover, three
fingerprints from ECIF,[24] RF-score,[22] and GB-score[52] are used
to model longer-range interactions that may affect ligand binding
beyond the distance cutoff of the graph representation. These fin-
gerprints are fused into the final linear layer.

As mentioned previously, MD simulations are notoriously
time-consuming, making MD trajectory data rarely used in high-
throughput virtual screening. To ensure practical applicability
and accurate prediction in realistic scenarios, we employed a
pretraining-finetuning strategy in our framework. More specifi-
cally, we first pretrained Dynaformer on the graphs derived from
the MD trajectory dataset through predicting the correspond-
ing binding affinities. All graphs from the same MD trajectory
shared the same binding affinity label in pretraining, suggesting
an equal contribution to the binding affinity from each snapshot
within a thermodynamic ensemble. The time order of snapshots
in MD trajectories was therefore discarded. This setting allowed
the model to infer binding affinity from a single snapshot, en-
capsulating information such as ligand interactions and atomic
flexibility from the whole trajectory. Then, for the benchmarking
test and the virtual screening applications, the pretrained model
was further finetuned on the PDBBind dataset. This finetuning
stage was designed to align the upstream MD pretraining pro-
cess with downstream virtual screening applications to achieve
better performance. Furthermore, it can eliminate the need of
time-consuming MD simulations in the inference stage. More
details about the Dynaformer architecture and the pretraining-
finetuning strategy can be found in the Experimental Section.
After finetuning, the Dynaformer model can serve as a scoring
function for novel hit discovery in a real-world virtual screening
application. In detail, the docking structures between the target
of interest and the molecules from a compound library are fed
into the model to predict the binding affinity. The top-ranked
molecules are then selected as the hit molecules and further in-
vestigated in the downstream wet-lab experiments (Figure 2A).

2.3. Molecular Dynamics Data Improves Binding Affinity
Prediction

To evaluate the performance of Dynaformer on binding affinity
prediction, we tested it on the CASF-2016 benchmark dataset,

which consisted of 285 protein-ligand complexes covering 57
different target classes.[20] Following the CASF-2016 evaluation
protocols, we compared the scoring and ranking power of Dy-
naformer to a variety of baseline methods, including docking-
based,[14-17] feature-based,[18-24,53] voxel-based,[25-27] and graph-
based[28-34] methods. In this evaluation, the same PDBBind
dataset for finetuning Dynaformer was utilized for the train-
ing of all baseline methods, with the exception of ECIF[24] and
MSECIF,[53] as they were trained on a PDBBind subset as re-
ported in the original studies. Moreover, the prediction results of
docking-based and other feature-based methods were obtained
from the CASF-2016 benchmark dataset. This experimental set-
ting guaranteed a fair comparison of different methods. The scor-
ing power of a model refers to its ability to accurately predict
binding affinities, which can be measured using the metrics Pear-
son’s correlation coefficient (Pearson r), root-mean-square error
(RMSE), and standard deviation (SD), while the ranking power
of a model indicates its ability to correctly rank the relative or-
der of binding ligands, which can be measured using the met-
rics Spearman’s coefficient (Spearman 𝝆), Kendall’s coefficient
(Kendall 𝝉), and predictive index (PI). The scoring and ranking
performances of different methods are shown in Figure 3A,B,
respectively. The evaluation results showed that Dynaformer out-
performed all the baseline methods. In addition, the prediction
scatter plot in Figure 3C revealed a high correlation with a Pear-
son r of 0.858 and a low prediction bias with an RMSE of 1.114
between the Dynaformer predicted and experimentally measured
binding affinities.

We next carried out comprehensive ablation studies on
Dynaformer, to validate the efficacy of its specific designs
(Figure 3D). We first introduced multiple variations of the Dy-
naformer model, such as -F (i.e., Dynaformer without the finger-
prints), -3D (i.e., without the structural encoding module), and
-M (i.e., without pretraining on the MD dataset). Then, we com-
pared the prediction performances of Dynaformer and its vari-
ations using Pearson r and Spearman 𝝆. Dynaformer achieved
superior performances in comparison with its variations, thus
indicating the effectiveness of the individual modules employed
in Dynaformer. More specifically, as expected, the pretraining on
the MD trajectory data played the most significant role in en-
hancing the scoring and ranking power of Dynaformer. In ad-
dition, the 3D structural encoding module, which encodes dis-
tance and angle information using the GBF module, also played a
crucial role in improving the prediction performance. Moreover,
incorporating the pre-calculated fingerprints also yielded a per-
formance gain, probably due to the increased receptive field. It is
noteworthy that the architecture of Dynaformer significantly con-
tributes to the performance of binding affinity prediction. Even
without the pretraining on the MD dataset (i.e., the -M varia-
tion in Figure 3D), the performance of Dynaformer remained
comparable with the best of baseline methods that were trained
with the same crystal structures. Feature-based methods, such as
ECIF, while capable of capturing interaction features of protein-
ligand complexes, were unable to model the geometric topologies
of interactions. Voxel-based and graph-based methods that uti-
lize 3D convolutional neural networks or graph neural networks,
while capable of modeling geometric topologies of interactions,
had limited capacity in capturing remote interactions due to the
locality nature of the employed networks. This highlighted the
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Figure 3. Performance evaluation of binding affinity prediction. A) Scoring power evaluation on the 285 CASF-2016 complexes. The scoring power
illustrates the inter-target performance of how well the predictions correlate with the experimentally measured binding affinities. Pearson coefficient
(Pearson r), root mean squared error (RMSE), and standard deviation (SD) are used as evaluation metrics. B) Ranking power evaluation on the 57
classes of target proteins from CASF-2016, in which each target bound to five different ligands. The goal of evaluating the ranking power is to assess the
intra-target performances of scoring functions in terms of how accurately they predict the relative order of molecules. Evaluation metrics are measured
in terms of the average values of Spearman’s coefficient (Spearman 𝜌), Kendall’s coefficient (Kendall 𝝉), and predictive index (PI) on each target.
C) A detailed scatter plot of the Dynaformer predicted pKi and experimentally measured pKi values of the 285 protein-ligand complexes from CASF-
2016, demonstrating the effectiveness of Dynaformer in predicting binding affinity with high correlation and low prediction bias. D) Ablation studies of
Dynaformer. Here, -F indicates a modified version of Dynaformer without any pre-calculated fingerprints; -3D stands for a modified version of Dynaformer
without the structural encoding module; -M stands for a modified version of Dynaformer that is trained without MD trajectories, i.e., only crystal structures
are used for training; The results showed consistent improvements in both scoring and ranking power by incorporating MD data.

strength of more generalized graph transformers, such as Dy-
naformer, can capture both geometric relationships and remote
interactions, thus boosting the prediction performance.

To demonstrate that incorporating the pretraining on the MD
dataset is necessary, we further investigated whether Dynaformer
can capture the intrinsic binding-related patterns from the MD
trajectory dataset, such as the entropy feature, the enthalpy fea-
ture, and the subtle differences in protein-ligand interactions.
More specifically, we performed three case studies from the test
set of CASF-2016, where Dynaformer offered more accurate pre-
dictions in comparison with baseline methods. We employed
ECIF and SIGN as baselines for comparison in these case stud-

ies, which were fingerprint-based and graph-based binding affin-
ity prediction models trained on static crystal structures, respec-
tively.

In the first case, we showed that Dynaformer can predict the
binding affinity more accurately through learning the ligand flex-
ibility, i.e., the additional entropic information derived from the
MD trajectory. In the protein-ligand complex structure shown in
Figure 4A (PDB ID: 2v7a), which is a ligand bound to the T315I
Abl kinase domain.[54] As can be seen in the zoomed-in figure,
the head of the ligand (i.e., the pyrrolo[3,4-c]pyrazole group) is
tightly buried in the binding pocket, whose contacts with the pro-
tein are highly conserved during the MD simulation. In detail,

Adv. Sci. 2024, 11, 2405404 2405404 (6 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 4. Illustrative examples of Dynaformer trained with MD trajectories improves binding affinity prediction. A) An example (PDB ID:2v7a) of im-
proved affinity prediction through incorporating additional entropic information. The head of the ligand is tightly bound in the pocket, resulting in a
significant favorable enthalpy change. The random movement of the solvent-exposed ligand tail contributes to a favorable entropy change during ligand
binding. B) An example (PDB ID: 3udh) of improved affinity prediction through better protein-ligand interaction modeling. With a rigid structure and
no rotatable bonds, the binding affinity relies primarily on the enthalpy changes from binding site interactions. Despite a few favorable interactions,
subpockets around the ligand remain unoccupied. Therefore, the ligand moves away from its initial position during the simulation, leading to low bind-
ing affinity. The ability of Dynaformer to model these interactions results in better prediction. C) An example of ranking ligands with subtle interaction
differences. The three ligands (PDB IDs: 2qbr, 2qbq and 2qbp) have the same scaffold (the shaded area) but different tail structures. Dynaformer better
addresses activity cliffs by differentiating between ligands sharing the same scaffold but with varying binding affinities. D) Conformational stability of the
three ligands shown in (C). The 2qbp ligand exhibited high stability during the simulation, while the 2qbq ligand partially left the original binding site after
1 ns and the 2qbr ligand left the binding site after 9 ns. The varying binding affinities of these ligands can be attributed to the hydrophobic interactions
with the second subpocket on the right side shown in (C). E) The interaction fraction analysis of the three ligands shown in (C). The percentages of
simulation snapshots with different protein-ligand interactions are shown. Higher binding affinity corresponded to more stable interactions (e.g., 𝜋 −
𝜋 stacking, hydrogen bond and hydrophilic interaction) observed during the simulation. With such interaction features and better modeling capability,
Dynaformer can provide more accurate ligand rankings. ECIF and SIGN are selected as baselines for comparison in (A–D).

the carbonyl oxygen of residue E316 and the amide nitrogen
of residue M318 are found to interact with the two nitrogen
atoms of the pyrrolopyrazole scaffold, and the nitrogen of the
amide group forms a hydrogen bond with the carbonyl oxygen of
residue M318. In addition, the benzyl group is also involved in
hydrophobic interactions with residue L370. These interactions
on the head of the ligand lead to a considerably favorable enthalpy
change due to the formation of non-covalent interactions. In ad-
dition, the tail of the ligand (i.e., the N-methylpiperazine group)
is exposed to the solvent and wiggles randomly, which is also
entropically favorable for ligand binding. This wiggling can be
confirmed from the MD trajectories, as shown in the root mean
square fluctuation (RMSF) plot in Figure 4A, which measures the

fluctuation of an atom around its average position. Consequently,
this ligand showed a strong binding affinity, i.e., pKi = 8.3. In the
prediction results, ECIF and SIGN underestimated the binding
affinity by a relatively large margin, while Dynaformer predicted
the binding affinity more accurately. In this case, both the crystal
structure and MD trajectory data contain enthalpy information.
But the MD trajectory data includes additional entropic informa-
tion, i.e., the features of ligand flexibility, which play a crucial role
in the binding affinity. Through incorporating this extra informa-
tion, Dynaformer was able to achieve better prediction accuracy.

In the second case, we show that Dynaformer can more
accurately predict the binding affinity by modeling the enthalpy
change, which is the energy term caused by the ligand-protein
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interactions. As demonstrated in Figure 4B, the aspartyl pro-
tease 𝛽-secretase (BACE) is in complex with a compound in the
spiropyrrolidine scaffold (PDB ID: 3udh), which was screened
from a fragment library.[55] Unlike the molecule shown in the
first case, the ligand here has a rigid structure, i.e., a single
conformational state and zero rotatable bonds. Therefore, its
binding affinity depends mainly on the enthalpy change caused
by the interactions with the binding site. In the determined
structure, the pyrrolidine nitrogen is located between the two
catalytic acids on the side chain of residues D32 and D228,
forming stable hydrogen bonds. In addition, the oxindole and
the phenyl ring next to the pyrrolidine ring exhibit strong
complementarity in terms of the occupancy of the binding site.
However, the adjacent subpockets are still left unoccupied, as it
was the primary optimization direction as discussed in the orig-
inal work.[55] As a result, the binding affinity of the ligand was
as low as pKi = 2.8. In our MD trajectories, the ligand gradually
moved away from its initial position after a few nanoseconds, as
evidenced by an average ligand RMSD of over 5Å. Such behavior
is typically associated with a weak binding affinity, despite some
favorable protein-ligand interactions. Our test validated that
the Dynaformer can learn such knowledge through training
based on the MD trajectories, thus providing a more accurate
prediction (pKi = 3.6). Similar behaviors were also observed in
other protein-ligand complexes with low binding affinities, such
as the complexes with PDB IDs 4y3j and 3gv9.

With the third case shown in Figure 4C, Dynaformer demon-
strated its ability to distinguish ligands with subtle differences
in protein-ligand interactions, thus allowing it to tackle the “ac-
tivity cliff”, where similar ligands have distinct binding affinities.
Here, three ligands with a thiophene scaffold bind to PTP1B (pro-
tein tyrosine phosphatase 1B) with varying potency, in which the
ligand of PDB ID 2qbp showed ten times stronger binding affin-
ity compared to that of PDB ID 2qbq, and the ligand of PDB ID
2qbq showed ten times stronger binding affinity compared to that
of PDB ID 2qbr.[56] 2-phenylthiophene, as the structural core of
these three compounds, adopts an identical binding pose to oc-
cupy the active site, and the tail groups enter another hydropho-
bic subpocket. The ligand RMSD plots in Figure 4D indicated
that the ligand from 2qbp exhibited high conformational stabil-
ity at the binding site (mean ligand RMSD < 1 Å), which was
likely due to the highly conserved 𝜋-𝜋 stacking with residue F182
and hydrogen bonds with residues K120 and R221. On the other
hand, even though the other two ligands shared similar interac-
tions as 2qbp, the ligand of PDB ID 2qbq partially left the original
binding site after 1 ns of simulation, and the structural core of the
ligand of PDB ID 2qbr finally left the binding site after around
9 ns of simulation. Figure 4E displays the percentage of snap-
shots that key interactions were observed during the simulation.
Such statistical information was another piece of evidence show-
ing how conserved the interactions were. The occupancy of the
hydrophobic subpocket by the different tail groups decreased pro-
gressively with each modification in the ligand structure, from
2qbp to 2qbq and finally to 2qbr. Therefore, these structurally
similar ligands provided distinct binding strengths, with pKi =
8.4, 7.4, and 6.3 for 2qbp, 2qbq, and 2qbr, respectively. Through
the rich interaction information learned from the MD trajectories
and its ability to model such interactions, Dynaformer achieved
a better ranking result compared to those of baselines ECIF and

SIGN (Figure 4C) and thus may provide more reliable guidance
toward the downstream hit discovery task.

In summary, the above detailed analyses showed that the MD
trajectories may provide useful insights in understanding the
protein-ligand binding affinities, and our Dynaformer model was
capable of capturing such rich features for achieving better pre-
diction results.

2.4. Hit Discovery for the HSP90 Target

To verify the applicability of Dynaformer in realistic scenarios
such as hit discovery in the early drug discovery process, we
applied Dynaformer to discover potent hit compounds through
scoring the docked protein-ligand structures. The original dock-
ing score often contains many false positives among the top-
scoring candidates.[57] Consequently, numerous experiments are
often required to identify the true hit compounds. In this study,
we demonstrate that Dynaformer can more efficiently deliver hit
compounds by scoring docked poses. In particular, we selected
heat shock protein 90 (HSP90) as our target protein, which is a
vital chaperone protein involved in the important biological path-
ways of many refractory diseases, including cancer, neurodegen-
erative diseases, and viral infections. To inhibit the function of
HSP90, a common strategy is to design small molecules target-
ing its ATP binding pocket to suppress the ATPase activity in the
N-terminal domain. Here, our training data from the PDBBind
dataset only included 18 protein-ligand structures associated with
ATPase activity, with pKi values ranging from 3.84 to 8.32. All of
these structures can be categorized as known inhibitor scaffolds
summarized in the literature.[58,59]

Next, we performed docking on HSP90 against the Chem-
Bridge DIVERSet-EXP library, which contains 50,000 small
molecules that cover a diverse pharmacophore space. The docked
conformers were obtained using Autodock Vina, a widely used
open-source docking software.[16,60] The reference protein-ligand
structure (PDB ID: 2xdl) was chosen from the test set, CASF-
2016, to identify the binding pocket. Then, the docked poses were
used to score and rank the molecules based on the Dynaformer
predictions. After that, the top-ranked compounds were filtered
and visually inspected for prioritization, following the approach
and criteria described in the literature[7,61] (see Experimental Sec-
tion for details). To ensure the fairness of prioritization, we cre-
ated a pool consisting of molecules among the top 10% from both
Dynaformer and the original scoring function in Autodock Vina.
From the pool, 20 molecules were chosen without knowing their
rankings. Finally, surface plasmon resonance (SPR) experiments
were conducted for each of the 20 molecules to measure the in-
hibition constant Ki. In total, 12 of the 20 molecules had measur-
able binding affinities.

Figure 5A displays the chemical structures, experimentally
measured Ki, and SPR sensorgrams of the 12 molecules that
showed measurable binding affinities. The predicted and exper-
imentally measured Ki values are summarized in Figure 5B, for
comparing the prediction power of Dynaformer and Autodock
Vina. The only difference here between Dynaformer and
Autodock Vina was the scoring function used for binding affinity
prediction, and the input docking structures remained the same.
The results demonstrate that Dynaformer is able to predict highly
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Figure 5. Virtual screening against the target HSP90 and the corresponding experimental validation. A) Structures, experimentally measured Ki values,
and the SPR sensorgrams of the top 12 molecules with measurable binding affinities from the virtual screening. B) Detailed Ki values of the selected
12 molecules and their ranking statistics by Dynaformer and Autodock Vina. To the best of our knowledge, compounds 1, 3, 4, 6, and 12 show promise
as novel candidates for hit-to-lead optimization. C) The correlations of the predictions by Dynaformer and Autodock Vina predictions versus the exper-
imental Ki values of the 12 compounds. D) The possible binding modes of the top three compounds, in which the interacting residues are consistent
with the previous studies. Overall, the wet-lab validations demonstrated that Dynaformer can effectively identify hit compounds with favorable binding
affinities and novel scaffolds.
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potent molecules more effectively than the scoring function used
in Autodock Vina, and the Pearson r coefficient indicates that
the performance of Dynaformer (0.72) outperforms Autodock
Vina (0.24) by a large margin (Figure 5C). More specifically,
Dynaformer ranked the top three compounds in the library at
0.78%, 5.10%, and 0.06%, which is much higher than Autodock
Vina’s ranking. In addition, the possible binding modes of the top
three compounds were consistent with the known binding pat-
terns from previous studies of rational drug design (Figure 5D).
For example, previous investigations revealed that one) the hy-
drogen bond networks between inhibitors and residues D93,
T184, and K58 are crucial for stable binding, and two) enhanced
affinity and selectivity can be achieved when the lipophilic bottom
of the pocket (including residues M98, F138, Y139, V150, and
V186) is occupied by the aromatic moiety of the ligand.[58,59,62–65]

Additionally, we found that some scaffolds of molecules with
measurable binding affinities shown in Figure 5B have been val-
idated by previous studies. For instance, compounds 2, 7, 10, and
11 were inhibitors containing the resorcinol-like scaffold discov-
ered in natural products. Compounds 5 and 9 shared a similar
backbone belonging to the purine scaffold, while compound 8
was similar to an aminotriazine compound previously reported
in a fragment-based screening.[59,66] Notably, we found that com-
pounds 1, 3, 4, 6, and 12 have the potential to serve as promising
novel candidates for further hit-to-lead optimization. To the best
of our knowledge, there is no known precedent in the literature
for these compounds, making them particularly valuable for fu-
ture lead optimization. Quantitative analysis further showed that
the 20 compounds identified in the virtual screening have low
similarity compared to the HSP90 ligands in CASF-2016, with a
Tanimoto similarity of only 0.270 for the ECFP4 fingerprints of
the most similar molecule pair (Figure S4, Supporting Informa-
tion). In summary, our wet-lab validation results demonstrated
that Dynaformer can deliver effective hit compounds with favor-
able binding affinities and novel scaffolds, thus facilitating the
drug discovery process.

3. Discussion

Protein-ligand binding affinity prediction is a fundamental prob-
lem in early drug discovery, as it can greatly help reduce the im-
mense costs associated with wet-lab experiments in lead com-
pound design. In this study, we first curated a comprehensive
MD trajectory dataset consisting of 3,218 complexes contain-
ing proteins and bound small molecules. Each trajectory, with
conformation snapshots from the thermodynamic ensemble, ap-
proximates the conformation space distribution and represents
the ligand binding free energy state. We then developed Dy-
naformer, a graph transformer model that learns the underlying
physico-chemical patterns of ligand binding from this MD trajec-
tory dataset. Through extensive testing and ablation studies, we
showed that MD trajectories contain rich features related to en-
thalpy and entropy and thus provide more information than static
crystal structures. Our results demonstrated that Dynaformer
significantly outperformed baseline approaches on the CASF-
2016 benchmark dataset, highlighting the importance of incor-
porating MD trajectory data to enhance the scoring and ranking
power of binding affinity prediction. We further illustrated the
efficacy of Dynaformer as a scoring function in a real-world hit

discovery process against HSP90. By scoring the docked poses
of a library containing 50,000 molecules, Dynaformer can effec-
tively identify hit compounds with favorable binding affinities
and novel scaffolds. Among the 20 experimentally tested com-
pounds, 12 molecules exhibited measurable binding affinities,
including two compounds with submicromolar Ki values.

Our work underscores the potential of employing MD trajecto-
ries and deep learning models to enhance binding affinity predic-
tion. In both a benchmark dataset and a real-world drug discov-
ery scenario, we have illustrated the effectiveness of Dynaformer
as a scoring function and its ability to discover novel hit com-
pounds. We anticipate that prediction performance can be fur-
ther improved by incorporating more high-quality data and care-
fully designed training tasks.

4. Experimental Section
Decomposition of the Free Energy Related to the Protein-Ligand Binding

Affinity: The free energy ΔG of protein-ligand binding, which determines
the binding affinity, could be decomposed into multiple components. Each
component could be represented as a function associated with atomic fea-
tures from the MD trajectories, providing a solid theoretical basis for learn-
ing structure-to-affinity relationships using deep learning models. Gener-
ally, ΔG could be expressed as the sum of two components, the gas-phase
binding free energy and the solvation free energy, that is,

−RTlnKi = ΔG = ΔGgas + ΔGsolv (2)

where ΔGgas represents the interaction energy between the given pair of
protein and ligand at their gas phase, and ΔGsolv stands for the solvation
free energy difference between the protein-ligand complex and the sum of
stand-alone protein and ligand systems. R and T stand for the universal
gas constant and temperature, respectively, and Ki stands for the thermo-
dynamic equilibrium constant of the binding process.

The energy term ΔGgas is the binding free energy between protein
and ligand in the gas phase, and it can be further split into two parts,
i.e., the enthalpy term ΔHgas and the entropy term ΔSgas. Follow-
ing the calculation scheme of the interaction entropy method,[67,68]

both ΔHgas and ΔSgas can also be expressed with the interaction energies
Eint, that is,

ΔGgas = ΔHgas − TΔSgas

= ⟨Eint⟩ + RTln⟨e𝛽ΔEint ⟩ (3)

where the enthalpy ΔHgas and entropy −TΔSgas terms correspond to⟨Ebind
pl

⟩ and RTln⟨e𝛽ΔEint ⟩, respectively, 𝛽 stands for a constant 1/RT, 〈Eint〉

stands for the trajectory-averaged interaction energy of protein and lig-
and contributed by different interaction types, such as hydrogen and hy-
drophobic interactions, Van der Waals interactions, 𝜋 −𝜋 stackings, and
other long-range interactions. More specifically, Eint could be expressed as
∑∑u(i, j), which was the sum of the interaction energy between each pair
of atoms i and j from the protein and ligand, respectively. Here, ΔEint =
Eint − 〈Eint〉 represents the fluctuation of the interaction energy around the
trajectory-averaged value.

The ΔGsolv term is the solvation free energy difference between the
protein-ligand complex and the sum of stand-alone protein and ligand sys-
tems. It can be further split into two parts, i.e., the non-polar solvation free
energy ΔGnp and the polar solvation free energy ΔGpol, that is,

ΔGsolv = ΔGnp + ΔGpol

=
⟨∑

(𝛾SASA(i) + 𝛿)
⟩
+
⟨∑

qiΦ(i)
⟩ (4)

Adv. Sci. 2024, 11, 2405404 2405404 (10 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

where the non-polar solvation free energy ΔGnp term, can be obtained us-
ing an empirical solvent-accessible surface area (SASA) formula parame-
terized by 𝛾 and 𝛿, and ΔSASA stands for the change of solvent accessi-
ble surface area (SASA) upon binding.[69] The polar solvation free energy
ΔGpol term was controlled by the electrostatic potential Φ(i), which could
be obtained through solving the Poisson-Boltzmann (PB) equation or the
Generalized Born (GB) equation.[70] The ΔGpol can then be calculated by
summing over the electrostatic potential Φ(i) at the position of each atom
i, weighted by the partial charge qi of atom i.

In summary, each of the above components of the binding free energy
change could be expressed as a function of the features of the atoms or
atom pairs involved in the ligand binding. Therefore, they could be natu-
rally represented and approximated through training the Dynaformer on
the large-scale MD trajectory data. Since each term was actually averaged
over the MD trajectory, the results could be more robust compared to
those obtained from a single static crystal structure.

Preparation of the MD Trajectory Dataset: The protein-ligand com-
plexes from the PDBBind dataset[44] were used as the initial conforma-
tions for the molecular dynamics simulations. PDBBind contained a com-
prehensive collection of high-quality crystal complex structures of proteins
and ligands curated from the Protein Data Bank (PDB),[49] together with
the corresponding experimentally measured binding affinity data. More
specifically, the PDBBind dataset consisted of three parts, i.e., general, re-
fined, and core sets. The general set included 21,382 complexes, while the
refined set was a subset of the general set containing 4,852 structures,
selected by a set of rules based on the quality of crystal structures and
binding data.[71] The core set, which was separately organized as CASF
(Comparative Assessment of Scoring Functions), was a stand-alone test
set consisting of 285 high-quality complexes covering 57 classes of tar-
gets for evaluating different computational models. The general and re-
fined sets were updated annually, while the CASF set was not. Here, the
model and all baseline models were evaluated on the latest version of
CASF, i.e., CASF-2016.

Subsequently, the web-based CHARMM-GUI was used to clean up the
data and prepare their corresponding MD simulation input files.[72,73] The
MD simulations were performed based on the CHARMM36 force field[73]

and using the NAMD engine, which was a parallel molecular dynamics
program designed for high-performance simulation of large biomolecu-
lar systems.[74] For each MD simulation, the complex was solvated in a
truncated periodic TIP3P water box, and the minimum distance from the
surfaces of the box to the complex atoms was set to 10 Å. Counterions were
added to neutralize systems, and the initial configuration was decided us-
ing a short Monte Carlo simulation. The ligand topology and parameter file
were generated using the ParamChem service.[75] The missing residue was
modeled using GalaxyFill.[76] The simulation temperature was maintained
at 303.15 K. For a stable protein-ligand complex, several nanoseconds
were usually sufficient for free energy calculation, as in MM/PB(GB)SA.[77]

However, severe structural stability issues, such as ligand drifting and pro-
tein unfolding, become more obvious if the MD simulation duration was
longer. Therefore, to tradeoff simulation time and computational complex-
ity, a simulation time of 10 ns was finally chosen. A 0.5 ns NVT (constant
volume and temperature) was set for the equilibrating stage before a 10
ns NPT (constant pressure and temperature) simulation was performed.

In practice, any complex associated with the following conditions,
which led to failed MD simulations was concluded: 1) covalent ligands
that had a covalent bond with the protein; 2) complicated or multiple lig-
ands that led to failed force field parametrization; 3) the protein structure
contained too many missing residues and failed to repair; and 4) specific
types of proteins, such as membrane proteins, which were not suitable for
simulation in a water box. After removing the above cases, 3,218 protein-
ligand complexes were selected from the PDBBind refined set. For each
complex, a 10 ns simulation was performed, using the previously men-
tioned protocol, and from each simulation, 100 snapshots were sampled
to form a trajectory.

Data Preprocessing for Dynaformer: In this study, the structure of a
protein-ligand complex, obtained from either an MD trajectory or a crystal
structure, was converted into a graph representation, which was subse-
quently fed into Dynaformer as input data. More specifically, the ligand,

the binding pocket, and their interatomic relationships are presented as
a graph, i.e.,  = ( , ), as depicted in Figure 2B. Here, the node set
 = {v0, v1, v2,… , vn} represents the set of input atom feature vectors,
where n stands for the number of atoms and v0 refers to a virtual node
employed as a global representation of the graph . The graph  is com-
prised of atom features derived from the ligand and the binding pocket.
The binding pocket here was characterized by atoms that belong to the
protein and were situated within a specific distance (dp) from any atom

of the ligand. The edge set  =
{

ei,j | i, j ∈ 

}
stands for the set of co-

valent or non-covalent bond feature vectors, with ei, j indicating the bond
feature vector between atoms i and j. Here, covalent interactions occur
between atoms possessing chemical bonds, whereas non-covalent inter-
actions transpire between any two atoms within a distance threshold (ds).

The same features as used in the Open Graph Benchmark (OGB) were
adopted,[78] and the comprehensive definitions of node and edge fea-
tures can be found in Table S1 (Supporting Information). The snapshots
from MD trajectories were extracted using the MDAnalysis library,[79] and
feature extraction was performed with the RDKit library.[80] In the experi-
ments, dp = ds = 5 Å was set.

The Model Architecture of Dynaformer: Dynaformer was a transformer-
based model that learned protein-ligand binding features from molecular
dynamics data. Building on Graphormer,[50] a roto-translation invariant
encoding scheme was proposed to encode the atomic features. At a high
level, the Dynaformer predicted the binding affinity given the collective
interaction patterns of a ligand at the active binding site.

First, how Dynaformer encodes the distance and angle features be-
tween atoms was highlighted. As previously stated, binding free energy
depends on the atomic features and interactions of atom pairs in the com-
plex. To represent these scalar values for distances and angles, a Gaussian
basis function (GBF) was utilized. The GBF was advantageous in model-
ing non-linear relationships between atom pairs, such as Van der Waals
and electrostatic potentials.[81] Moreover, the GBF was a smooth func-
tion that could be seamlessly integrated into neural networks. The specific
calculations for structural encodings are performed using the subsequent
formulas:

GBF(xk) = exp

[
−

(xk − 𝜇k)2

2𝜎2
k

]
, k = 1,… , K

d(i, j) = GBF
([

vi|rij|vj

]
Wd

)

a(i, j) = GBF

([
vi|∑

k

∠ijk|vj

]
Wa

)
(5)

where 𝜇k and 𝜎k stand for the learnable parameters, K stands for the num-
ber of encoding heads, xk stands for a distance or angle value for encoding,
vi stands for the atomic features of atom i, | stands for the concatenation
operation between vectors, rij represents the Euclidean distance scalar in
Ås between atoms i and j, ∠ijk indicates the angle scalar in degrees be-
tween bonds formed by atoms i, j, and k, and Wd, Wa correspond to the
weight matrices for distance and angle features, respectively.

Then, the Dynaformer architecture was briefly introduced and empha-
size the self-attention module. Dynaformer had two main components in
each encoder layer: a multi-head self-attention module (MHA) and a feed-
forward network (FFN). The encodings of structural features as described
in Figure 2C are fused into an MHA module, which then updates the fea-
ture representations of each atom and their contributions to the final bind-
ing affinity. In each head of MHA, the attention is calculated as follows:

Attention(Q, K, V) = softmax(A) ⋅ V (6)

Aij =

(
hiWQ

)(
hjWK

)T

√
dK

+ d(i, j) + a(i, j) + 1
P

P∑
p=1

epwT
p (7)
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where Q = HWQ, K = HWK, V = HWV stand for the query, key, and value
matrices in the transformer model, H = {hi} stands for hidden represen-
tations of nodes, matrix A stands for the self-attention matrix, Aij is the
unnormalized attention score between atoms i and j, and dK stands for
the dimensionality of the query, key, and value, which serves as a normal-
ization term. In addition, the term 1

P

∑P
p=1 epwT

p encodes the interatomic
interactions on the shortest path between atoms i and j, where wp denotes
the weight that projects edge feature vector ep to a scalar and P stands for
the maximum length of the shortest path to keep the calculation feasi-
ble. This term is an extension of the adjacency matrix, which encodes the
topological relationships between any pair of atoms.

In this MHA module, the feature representations of nodes were up-
dated through the attention matrix A, which was a weighted summation
of all node representations. In every layer of Dynaformer, the atomic rep-
resentations gradually exchange information and aggregate into the rep-
resentation of the virtual node. After the last encoder layer, the feature
representation of the virtual node was fused with the three pre-calculated
fingerprints from ECIF,[24] RF-score,[22] and GB-score[52] for predicting the
binding affinities. Such a scheme allowed the Dynaformer to learn the ef-
fective structural patterns contributing to the final binding affinities. A de-
tailed explanation of the model architecture is stated in the Supporting In-
formation. In summary, the Dynaformer model offered a novel approach
to predict protein-ligand binding affinities by utilizing a roto-translation
invariant encoding scheme for atomic and structural features.

Training and Hyperparameter Settings: The training of Dynaformer con-
sisted of two stages, i.e., pretraining and finetuning. The model configu-
ration and the pretraining hyperparameters are summarized in Table S2
(Supporting Information). The binding affinities of MD trajectories were
labeled according to their PDB IDs, which means that all snapshots
of one trajectory share the same label. The mean squared error (MSE)
loss function was used to pretrain the model. Different from the vanilla
transformer,[82] four layers with 512 hidden dimensions were chosen
through grid searching. An adversarial graph data augmentation method,
named FLAG,[83] was also used to mitigate the potential overfitting prob-
lem in the pretraining stage. For the finetuning stage, Dynaformer was
finetuned on the PDBBind general set. In this stage, the mean absolute
error (MAE) was used as a loss function as it resulted in larger loss val-
ues. In addition, the peak learning rate was adjusted to 10−5 and the batch
size was set to 16. At both stages, the datasets were split into training and
validation subsets with a ratio of 9:1. The validation set was used to guide
the training or finetuning process. The training process was taken in about
24 h with eight NVIDIA V100-32GB GPUs.

Hit Discovery Details Against HSP90: The HSP90 protein structure and
small molecules from a compound library were prepared for docking.
The protein structure and the corresponding pocket position were deter-
mined from a reference structure (PDB ID: 2xdl) from the RCSB PDB.
PyMOL[84] (version 2.5.0, open-source) was used to remove the solvent
molecules, ions, and the original ligand. The average coordinates of the
original ligand, x = 65.4, y = 35.0, z = 25.5, were utilized as the center of
the docking box. Hydrogens and charges were added to the protein and
converted the conformation into the PDBQT format using ADFRsuite[85]

(version 1.0, build 5). For small molecules, the ETKDG algorithm from
the RDKit library[80] (version 2022.3.3) was used to generate the initial
conformations of molecules from the Chembridge DIVERSet-EXP library.
Up to ten conformers were generated for each molecule, with a mini-
mum heavy atom RMSD = 0.5Å between conformers. Here, redocking
could help stride over the energy barrier and thus reach the stable docking
pose. All initial conformers were processed using the Meeko Python li-
brary (https://github.com/forlilab/Meeko), including salt removal, hydro-
gen addition, and partial charge assignment. Finally, all initial conform-
ers were converted to the PDBQT format before docking. Then, Autodock
Vina[60] (version 1.2.3) was utilized for docking the protein and small
molecule conformers. The docking box size was chosen to be 25Å, and
the exhaustiveness of the global search was set to 32. To better examine
the capability of Dynaformer, the most basic molecular docking setup was
used, in which flexible docking was not taken into account. Autodock Vina
was run in parallel on 3200 CPUs, and all docking jobs were finished within

20 h. The best docking pose and the corresponding docking energy of each
molecule were kept. The pipeline of receptor preparation, ligand prepara-
tion, and docking is shown in Figure S1 (Supporting Information).

Subsequently, the docked structures undergo binding affinity prediction
using Dynaformer within one hour. The top 10% of molecules from both
Dynaformer predictions and Autodock Vina docking energy were com-
bined together. Following the literature,[57,61] a filtering and visual inspec-
tion procedure was conducted. In particular, a filtering process according
to Veber’s rule and Lipinski’s rule of five[86,87] was used. More specifically,
molecules were removed that have more than five hydrogen bond donors,
more than ten hydrogen bond acceptors, a calculated octanol-water par-
tition coefficient (Clog P) exceeding five, more than ten rotatable bonds,
or a polar surface area larger than 140 Å2. Additionally, molecules with
high intrinsic energy, such as those containing 3-, 4-, 7-, or more than
12-membered rings, were excluded. Then, a visual inspection was per-
formed based on the HSP90 ATP binding pocket. Following similar princi-
ples in previous structure-activity analysis, promising molecules were se-
lected based on whether the ligand possesses a hydrophobic head and a
hydrophilic tail.[58,62–66] Up to 20 molecules were selected for the subse-
quent wet lab validation experiments (Figure S2, Supporting Information).

Finally, the binding affinities of the above 20 molecules were experi-
mentally validated. Surface plasmon resonance (SPR) measurements were
performed by the Biacore S200 instrument (GE Healthcare Life Sciences).
HSP90 (9-236) was cross-linked on the surface of the Series S Sensor Chip
CM5 (GE Healthcare) at pH 4.0 by an amine coupling kit with 1-ethyl-(3-
dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and NHS. Ex-
periments were performed in a running buffer (1 × PBS with 5% DMSO).
Each compound was serially diluted by a factor of two in the running buffer.
The compound solution flowed through the surface of the chip at a flow
rate of 30 L·min-1. Sensorgrams were analyzed and generated by Biacore
Evaluation Software. The inhibition constants Ki of 8 out of 20 molecules
could not be determined, probably due to poor aqueous solubility or non-
specific binding.

Binding Affinity Evaluation Metrics: Pearson r. The Pearson correlation
coefficient, also known as the Pearson r, measures the linear relationship
between two sequences of data points: x = {xi} and y = {yi}. More specif-
ically, it can be defined as:

r(x, y) =
∑N

i=1(xi − x)(yi − y)√∑N
i=1(xi − x)2 ∑N

i=1(yi − y)2
(8)

where N stands for the number of samples, and x, y stand for the mean
values of x = {xi} and y = {yi}, respectively. Pearson r varies between [−1,
1], 0 indicates no correlation, and −1 or 1 indicate the exact negative or
positive linear relationship. Note that Pearson r is invariant to the scale or
location of the two variables, which means that it did not suggest the error
between prediction and groundtruth.

RMSE. The root mean squared error (RMSE) was used to determine the
average error of binding affinity prediction, as a complementary evaluation
towards Pearson r. It is defined as:

RMSE(x, y) =

√√√√ 1
N

N∑
i=1

(xi − yi)2 (9)

where N is the number of samples, x = {xi} and y = {yi} are the predictions
and the groundtruth binding affinity values.

Spearman 𝝆. The Spearman correlation coefficient, denoted as Spear-
man 𝝆 is a nonparametric measure of the ranking order between two
sequences of data points. In other words, Spearman 𝝆 has a similar form
as Pearson r but calculates the ranking values rx and ry to assess the
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monotonic relationships between variables. More specifically, it can be
defined as:

𝝆(x, y) =
∑N

i=1(rxi − rx)(ryi − ry)√∑N
i=1(rxi − rx)2 ∑N

i=1(ryi − ry)2
(10)

where N stands for the number of samples, rx = {rxi} and ry = {ryi} stand
for the ranking orders of complexes between the predicted and experimen-
tal binding affinities, respectively, and rx, ry stand for the mean rank orders,
respectively. Spearman 𝝆 is invariant to the specific values, but it is sensi-
tive to the order of variables.

Kendall 𝝉 . The Kendall correlation coefficient, denoted as Kendall 𝝉 , is
a measure of the ordinal association between two sequences of ranking
data points. More specifically, it can be defined as:

𝝉(x, y) =
Nconcord − Ndiscord√

(Nconcord + Ndiscord +  )(Nconcord + Ndiscord + )
(11)

where Nconcord and Ndiscord stand for the numbers of concordant and
discordant pairs, respectively. Here, given two pairs of prediction and
groundtruth {(x1, y1), (x2, y2)}, if sign(x2 − x1) = sign(y2 − y1), this pair
is called a concordant pair. In contrast, if sign(x2 − x1) = −sign(y2 − y1),
this pair is called a discordant pair. A pair is tied if x1 = x2 or y1 = y2. 
and  are the numbers of tied pairs in x and y, respectively. Kendall 𝝉 is
invariant to the specific values, but it is sensitive to the order of variables.

PI. The predictive index (PI) is an evaluation metric mainly proposed for
virtual screening.[88] In particular, PI measures how well a scoring function
can correctly rank different ligands for a specific target by taking the differ-
ences in binding affinities into account. More specifically, it can be defined
as:

PI(x, y) =

∑N
j>i

∑N
i=1 𝜔ijSij∑N

j>i
∑N

i=1 𝜔ij

(12)

where 𝜔ij stands for the absolute difference of binding affinities between

ligands i and j, i.e., 𝜔ij = |pK(i)
i − pK(j)

i | = |yi − yj|, Sij ∈ {1, 0} indicates if
the ranking orders of binding affinities xi and xj are consistent between
prediction and groundtruth.

Molecular Structure Analysis Metrics: RMSD The root mean squared
deviation (RMSD) measures the average deviation of a matching set of
atoms between two structures. It is expressed as:

RMSD =

√√√√ 1
N

N∑
i=1

𝛿2
i (13)

where N stands for the number of samples and 𝛿i stands for the Euclidean
distance between the atom i and the reference position, i.e., usually the
initial position.

RMSF. The root mean squared fluctuation (RMSF) was the fluctuation
around an average, per atom or residue, over a sequence of structures,
such as a trajectory. More specifically, it can be expressed as:

RMSF =
√⟨(xi − xi)2⟩ (14)

where xi stands for the coordinates of the particle i, and xi stands for the
trajectory-averaged position of i.

The RMSD quantified how much a structure diverges from a reference
over time, while the RMSF could measure the mobility of parts of the sys-
tem. Thus, parts of the structure with high RMSF values diverge from the
average, indicating high mobility.

Statistical Analysis: The binding affinity values Ki were preprocessed
into pKi = −log10Ki. The performance of binding affinity prediction was
evaluated using multiple metrics: Pearson correlation coefficient, root-
mean-square error (RMSE), standard deviation (SD), Spearman correla-
tion coefficient, Kendall correlation coefficient, and predictive index (PI).
Statistical significance was assessed using appropriate multiple compari-
son tests. P-values were adjusted for multiple hypothesis testing as spec-
ified in the text. Confidence intervals (CIs) were calculated to estimate the
precision of the obtained results. Data were presented as means and stan-
dard deviations. All statistical analyzes were performed using Python 3.10
with NumPy, SciPy, MDAnalysis, and Seaborn packages. Protein-ligand
complex structures were visualized using PyMol 2.4 (open-source ver-
sion). Small molecule structures were visualized with ChemSketch free-
ware.
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