UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Automatic computation of navigational affordances explains selective processing of geometry in scene perception: behavioral and computational evidence

Permalink

https://escholarship.org/uc/item/4jk572xw

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

Authors

Belledonne, Mario Yildirim, Ilker

Publication Date

2021

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Automatic computation of navigational affordances explains selective processing of geometry in scene perception: behavioral and computational evidence

Mario Belledonne

Yale University, New Haven, Connecticut, United States

Ilker Yildirim

Yale University, New Haven, Connecticut, United States

Abstract

One of the more surprising findings in visual cognition is the apparent sparsity of our scene percepts. Yet, scene perception also enables planning and navigation, which require a detailed, structured analysis of the scene geometry, including exit locations and the obstacles along the way. Here, we hypothesize that computation of navigational affordances (e.g., paths to an exit) is a "default" task in the mind, and that task induces selective analysis of the scene geometry most relevant to computing these affordances. In an indoor scene setting, we show that observers more readily detect changes if these changes impact shortest paths to visible exits. We show that behavioral detection rates are explained by a new model of attention that makes heterogeneous-precision inferences about the scene geometry, relative to how its different regions impact navigational affordance computation. This work provides a formal window into the contents of our scene percepts.