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While the hippocampus has been classically studied for its role in learning and memory,
there is significant support for a role of the HPC in regulating emotional behavior. Emerging
research suggests these functions may be segregated along the dorsoventral axis of the
HPC. In addition to this regional heterogeneity, within the HPC, the dentate gyrus is one of
two areas in the adult brain where stem cells continuously give rise to new neurons. This
process can influence and be modulated by the emotional state of the animal, suggesting
that adult neurogenesis within the DG may contribute to psychiatric disorders and cognitive
abilities. Yet, the exact mechanism by which these newborn neurons influence behavior
remains unknown. Here, we will examine the contribution of hippocampal neurogenesis
to the output of the HPC, and suggest that the role of neurogenesis may vary along the
DV axis. Next, we will review literature indicating that anatomical connectivity varies along
the DV axis of the HPC, and that this underlies the functional segregation along this axis.
This analysis will allow us to synthesize novel hypotheses for the differential contribution
of the HPC to cognition and mood.
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INTRODUCTION
The hippocampus (HPC) has classically been implicated in
learning and memory beginning with studies of Henry Molaison
who exhibited profound memory deficits after undergoing a
bilateral medial temporal lobectomy to alleviate his drug-resistant
seizures (Scoville and Milner, 1957). In recent years, a role for the
HPC in emotional control has become more widely appreciated
as well. For example, decreased hippocampal volume has been
reported in depressed patients (Sheline et al., 1999; Videbech
and Ravnkilde, 2004). While it is believed that the HPC plays
a critical role in both cognition and mood, the detailed cir-
cuitry by which it modulates such seemingly disparate processes
remains unclear. Circuit tracing studies show that the output
of the HPC differs along the dorsoventral (DV) axis, indicat-
ing that depending on the locus of hippocampal output, dif-
ferent downstream structures may be recruited (Fanselow and
Dong, 2010). Elucidating how the HPC modulates these tar-
gets may provide an entry point for understanding how the
HPC regulates both learning and emotion. In addition, local
circuit properties of the HPC may influence its net output.
Here, we will examine one such property specific to the dentate
gyrus (DG) subregion of the HPC: adult hippocampal neu-
rogenesis (AHN). AHN is a unique form of plasticity that is
often implicated in cognitive function and anxiety-like behavior.
Next, we will explore the HPC’s various outputs particularly
focusing on the role of the HPC in anxiety modulation and

the candidate regions that may be critical for this modula-
tion. And finally, we will discuss how AHN may modulate
local circuitry impacting hippocampal output to downstream
targets.

LOCAL HETEROGENEITY IN THE DENTATE GYRUS
ADULT NEUROGENESIS
Neural progenitor cells in the subgranular zone of the DG produce
new neurons throughout adulthood. In rodents, these adult-born
granule cells (abGCs) develop over a period of several weeks
during which time they exhibit distinct properties that set them
apart from mature GCs (Zhao et al., 2008; Deng et al., 2010; Drew
et al., 2013). During their development, GCs exhibit a period of
increased synaptic plasticity characterized by a reduced threshold
for induction of long-term potentiation (LTP) and an increase in
LTP amplitude (Schmidt-Hieber et al., 2004; Ge et al., 2007). By
6–8 weeks after birth, new neurons’ synaptic plasticity becomes
indistinguishable from other fully mature GCs (Ge et al., 2007).
In humans, recent studies using radiocarbon dating techniques
have found that neurogenesis occurs at significant levels in the
HPC throughout adulthood (Spalding et al., 2013). Specifically, it
was found that the majority of DG cells are subject to exchange,
with about 1400 new GCs added to the adult human DG daily,
corresponding to an annual turnover rate of 1.75%. This was
a striking finding, as it suggested that levels of neurogenesis in
humans are comparable to that in mice.
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The process of neurogenesis is highly regulated by the cognitive
and emotional state of an animal. Interventions such as learn-
ing, environmental enrichment (EE), exercise, and antidepressant
(AD) treatment increase levels of AHN while negative interven-
tions like chronic stress, increased glucocorticoid levels, and social
isolation, lead to decreases (Gould et al., 2000; Malberg et al.,
2000; Dranovsky and Hen, 2006). In addition, AHN is required
for some of the behavioral effects of ADs (Santarelli et al., 2003;
David et al., 2009).

In recent years, the mechanism by which AHN may regu-
late stress responses has become clearer. Schloesser et al. (2009)
showed that mice with suppressed neurogenesis exhibited an
increased corticosterone response after exposure to acute restraint
stress. In addition, neuroendocrine and behavioral responses to
a mild stressor are exaggerated in mice with reduced neuro-
genesis, linking HPC output with the hypothalamic-pituitary-
adrenal (HPA) axis (Snyder et al., 2011). Chronic stress produces
a dysregulation in HPC-HPA connectivity, which can be corrected
by AD treatment. However, suppressing levels of AHN blunts this
restorative ability of fluoxetine (Surget et al., 2011).

In the cognitive realm, it has been proposed that newborn
neurons play an essential role in pattern separation, the process
of transforming similar inputs into non-overlapping, dissimilar
outputs that has been attributed to the DG (Kheirbek et al.,
2012a). In a contextual fear discrimination (CFD) paradigm used
to test behavioral pattern separation (McHugh et al., 2007), mice
whose abGCs had been suppressed by either irradiation (Sahay
et al., 2011), genetic means (Tronel et al., 2012), or had been
manipulated to reduce the newborn neurons’ enhanced plastic-
ity (Kheirbek et al., 2012b), produced deficits in discriminating
between highly similar contexts. Furthermore, using two spatial
separation pattern separation tasks, the radial arm maze and a
nose-poke touch screen task, Clelland et al. (2009) showed that
irradiated mice performed worse than sham mice in conditions
of high spatial similarity. Finally, increasing the number of abGCs
in the DG improves the animal’s ability to perform context and
spatial pattern separation, either by specifically inhibiting their
apoptosis (Sahay et al., 2011), or elevating levels of neurogenesis
through running (Creer et al., 2010). While these experiments
show the importance of abGCs in cognitive tasks, impairments
in pattern separation may also contribute to anxiety disorders
by impairing memory generalization. Such impairments could
underlie the pathological fear responses seen in anxiety disor-
ders such as post-traumatic stress disorder and panic disorder
(Kheirbek et al., 2012a). As neurogenesis is highly regulated by an
individual’s emotional state, reduced neurogenesis due to stress
either before or after a traumatic event could result in a deficit in
pattern separation leading to overgeneralization of fear to neutral
contexts.

DORSOVENTRAL GRADIENTS IN ADULT NEUROGENESIS
Studies targeting the DG GCs have supported a functional het-
erogeneity within the structure, which may underlie the DG’s
ability to regulate both mood and cognition. In an optogenetic
study, it was found that the dorsal DG (dDG) controls exploratory
drive and encoding of contextual fear memories while the ventral
DG (vDG) regulates innate anxiety (Kheirbek et al., 2013). In

addition, studies have shown projections from the entorhinal
cortex innervate the DG in a topographic manner (Moser and
Moser, 1998) and increased basal network activity in the dDG
as measured by immediate early gene (IEG) induction (Piatti
et al., 2011). Neuromodulatory influence on the HPC may differ
as well, as serotonergic input is enriched in the vDG with a
concomitant increase in 5-HT1A receptor mRNA levels (Gage
and Thompson, 1980; Tanaka et al., 2012). This suggests that
the dorsal and ventral DG may represent distinct neurogenic
environments (Piatti et al., 2011). Therefore, the subpopulations
that make up the pool of newborn neurons in each region may
be differentially effected by environmental and chemical inter-
ventions and functionally distinct as well (Kheirbek and Hen,
2011; Samuels and Hen, 2011). Under baseline conditions, the
dDG has a higher density of immature neurons and a faster
maturation rate (Snyder et al., 2009; Jinno, 2011b; Snyder et al.,
2011). Neurogenesis also declines with age but this reduction
occurs faster in the vDG (Jinno, 2011a). In addition to baseline
differences, stress and ADs have a more prominent influence
on neurogenesis in the ventral HPC (vHPC). Stressed mice
exhibit decreased cell proliferation and neurogenesis in the vDG,
which is reversed by chronic AD treatment (Jayatissa et al., 2006;
Tanti et al., 2012). Agomelatine, a melatonin receptor agonist
and 5-HT2C receptor antagonist with antidepressant efficacy in
humans increased neurogenesis specifically in the vDG of rats,
consistent with an enrichment of 5-HT2C in the vHPC (Banasr
et al., 2006; Tanaka et al., 2012). In major depressive disorder
patients, AD-induced increases in neurogenesis are localized to
the anterior HPC (human equivalent of the vHPC in rodents)
(Boldrini et al., 2009). Finally, local ablation of neurogenesis in
the dorsal or ventral DG confirmed this functional dissociation,
with dorsal abGCs being required for CFD, and ventral abGCs
being required for the anxiolytic/antidepressant effects of fluoxe-
tine.

Considering the impact of neurogenesis on mood raises the
question of how changes within the DG can influence down-
stream circuitry relevant for stress and anxiety. Identifying the
targets of the HPC that are important in mood and emotional
processing, and elucidating how the HPC modulates that cir-
cuitry, will be essential for understanding the functional role of
the HPC in anxiety modulation.

REGIONAL HETEROGENEITY IN THE HIPPOCAMPUS
HIPPOCAMPAL CIRCUITRY
In the tri-synaptic circuit, the entorhinal cortex sends information
from association cortices via the perforant path to the DG. DG
GCs then send excitatory mossy fiber projections to CA3 pyra-
midal neurons which project to CA1 via the Schaffer collaterals,
and CA1 sends projections to the subiculum. Of these subfields,
CA3, CA1, and subiculum can send projections outside of the
HPC. It is these projections that may have differing effects on
behavior, as dorsal hippocampal targets are primarily involved in
spatial memory tasks and context-reward associations (Cenquizca
and Swanson, 2007; Luo et al., 2011), while vHPC targets impact
emotional expression (Figure 1).

The dorsal HPC (dHPC) may directly impact spatial mem-
ory tasks by providing contextual information via dorsal CA1
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FIGURE 1 | Projections along the dorsoventral axis of the
hippocampus. The dorsal hippocampus projects to the retrosplenial area
(RSP) of the anterior cingulate cortex and to the ventral tegmental area
(VTA) via the septum. These projections serve a functional role in
context-dependent cognitive processes. Dorsal hippocampus also sends

projections to the ventral hippocampus. Projections from the ventral
hippocampus include: the medial prefrontal cortex (mPFC), hypothalamus,
amygdala, bed nuclues of the stria terminalis (BNST), and the VTA via the
nucleus accumbens (nACC). Ventral hippocampal projections function to
modulate fear expression and anxiety.

projections to the retrospenial area of the anterior cingu-
late cortex (Figure 1; Cenquizca and Swanson, 2007). Indeed,
dHPC and retrosplenial lesions have been shown to disrupt
learning in spatial memory tasks (Moser et al., 1995; Vann
and Aggleton, 2002, 2004; Pothuizen et al., 2004), and dorsal
CA1 silencing abolishes behaviorally induced IEG expression
in the retrosplenial cortex during spatial memory tasks (Kubik
et al., 2012). In addition to modulating spatial memory, the
dHPC may provide contextual information for reward-context
association tasks involving dopamine release from the ventral
tegmental area (VTA) via dorsal CA3 projections to the septum
(Figure 1; Risold and Swanson, 1996). Specifically, Luo et al.
(2011) found that dorsal CA3 activity disinhibits dopaminer-
gic VTA neurons by activating long-range inhibitory projec-
tions in the lateral septum. Although the behavioral relevance
of this circuit has not been demonstrated, this study pro-
vides a specific circuit through which dHPC may impact
the VTA reward system. Taken together, projections from the
dHPC serve a functional role in context-dependent cognitive
processes.

In the ventral axis, vCA1 and vSUB are the major output
centers of the HPC. Although some anatomical distinctions and
differences in terminal densities within sub-nuclei have been
reported between vCA1 and vSUB projections (Canteras and
Swanson, 1992; McDonald, 1998; Kishi et al., 2000; Cenquizca
and Swanson, 2007), the majority of their projection patterns
are largely overlapping. It is also important to note that the
densest projection from vCA1 is to vSUB, further suggest-
ing a large degree of overlap in information processing (Cen-
quizca and Swanson, 2007). We will therefore discuss vHPC
projections in terms of both vCA1 and vSUB, unless otherwise
specified.

vHPC OUTPUTS TO THE NUCLEUS ACCUMBENS AND VTA
Although Luo et al. (2011) described a pathway for dHPC modu-
lation of VTA dopamine release, the vHPC has also been proposed
to impact the VTA reward system (Figure 1; Legault and Wise,
2001; Lisman and Grace, 2005; Valenti et al., 2011). The vHPC
projects directly to the nucleus accumbens (nACC; Christie et al.,
1987; Totterdell and Smith, 1989), and vSUB activity is necessary
for novelty-evoked and stress-induced VTA dopamine release
(Legault and Wise, 2001; Valenti et al., 2011). Understanding
whether dorsal and ventral HPC modulation of VTA dopamine
release are functionally overlapping pathways or serve behav-
iorally distinct functions will be important for establishing the
role of the HPC in reward and novelty processing.

vHPC OUTPUTS TO THE MEDIAL PREFRONTAL CORTEX
A major target of the ventral HPC is the medial prefrontal cor-
tex (Figure 1; mPFC; Cenquizca and Swanson, 2007). Although
hippocampal projections to the mPFC have been traditionally
implicated in cognitive spatial memory tasks and goal-directed
behavior (Seamans et al., 1998; Seamans and Yang, 2004; Hok
et al., 2005; Burton et al., 2009), vHPC input to the mPFC has
been studied more recently for its role in innate anxiety and
conditioned fear. Interestingly, vHPC-mPFC synchrony has been
shown to increase during anxiogenic tasks (Adhikari et al., 2010),
and anxiety-related single unit activity within mPFC is modified
by vHPC activity (Adhikari et al., 2011). vHPC input has also been
implicated in regulating fear expression through mPFC activity
modulation in conditioned fear paradigms. Specifically, Sotres-
Bayon et al. (2012) established a differential contribution of vHPC
and basolateral amygdala (BLA) inputs to the prelimbic (PL)
mPFC in fear expression before and after extinction learning.
They found that the BLA drives activity of PL neurons leading
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to fear expression in conditioned rats, while in fear extinction,
vHPC activity suppresses fear expression by decreasing PL neuron
activity presumably through activation of local inhibitory PL
neurons.

vHPC OUTPUTS TO THE AMYGDALA AND BED NUCLEUS OF THE STRIA
TERMINALIS
The vHPC also projects to most major subfields of the amyg-
dala (Figure 1; Canteras and Swanson, 1992; McDonald, 1998;
Pitkänen et al., 2000; Kishi et al., 2006; Cenquizca and Swanson,
2007). While recent evidence has implicated vHPC-amygdala
circuitry in innate anxiety and social behavior (Felix-Ortiz et al.,
2013; Felix-Ortiz and Tye, 2014), there is considerable evidence
implicating this circuit in conditioned fear. Pharmacologic inhi-
bition, lesion studies, and in vivo recordings have suggested
a coordinated role between the vHPC and amygdala in both
contextual and cued fear expression processes (Corcoran and
Maren, 2001; Seidenbecher et al., 2003; Maren and Holt, 2004;
Corcoran et al., 2005). Additionally, recent studies have more
precisely shown that inactivation of both dorsal and ventral
hippocampal pyramidal neurons can impact unique aspects of
contextual fear conditioning. Goshen et al. (2011) found that
acute dorsal CA1 inactivation resulted in disruption of fear mem-
ory acquisition and retrieval, and Zhu et al. (2014) found that
vHPC inactivation resulted in disruption of memory consolida-
tion, but not encoding or retrieval. It is possible that these effects
are mediated by vHPC projections to the BLA complex, given
its role in associative learning. Still, specific manipulations of
vHPC terminal fields within the amygdala during both encoding
and retrieval have not been performed and will be necessary to
clearly elucidate their contribution to contextual learning and
fear expression.

Nuclei within the amygdala that receive the densest projections
from both vCA1 and vSUB are the posteriormedial cortical and
posterior basomedial nucleus, which both receive extensive olfac-
tory input and are heavily interconnected with the hypothalamus
(Canteras and Swanson, 1992; McDonald, 1998; Kishi et al., 2006;
Cenquizca and Swanson, 2007; Hübner et al., 2014). The posterior
basomedial amygdala has recently been suggested to participate
in a predator response circuit (Martinez et al., 2011; Gross and
Canteras, 2012). In this circuit, vHPC input may provide con-
textual information necessary for proper behavioral responses to
predator cues and contextual conditioning. Though the specific
role of the vHPC in this circuit remains to be determined, these
studies highlight a connection between the vHPC and multiple
fear expression pathways.

The bed nucleus of the stria terminalis (BNST) also receives
direct projections from the vHPC (Figure 1; Cullinan et al., 1993),
and is heavily interconnected with the amygdala, hypothalamus,
and VTA (Dong et al., 2001a,b; Dong and Swanson, 2004a,b,
2006a,b,c; Stamatakis et al., 2014). Recently, a differential function
for the BNST in these circuits has been implicated in more
specific features of anxiety (Jennings et al., 2013; Kim et al., 2013).
Future studies using cell-type and projection specific dissection
techniques will elucidate not only the differential contribution
of each projection field to behavior, but also how the vHPC
modulates local circuits within the amygdala, BNST, and mPFC.

vHPC OUTPUTS TO THE HYPOTHALAMUS
Given the role of the HPC-HPA connection in the modulation
of emotional state, determining how vHPC projections modulate
hypothalamic activity will significantly advance our understand-
ing of mood regulation processes. Both vCA1 and vSUB project
extensively to many subnuclei of the hypothalamus, including the
anterior hypothalamus (AH), lateral hypothalamus (LH), pre-
mamillary, ventromedial, dorsomedial, and mammillary bodies,
all of which have been implicated in the expression of defensive
behaviors (Figure 1; Canteras et al., 1997; Dielenberg et al., 2001;
Cezario et al., 2008). Of these nuclei, the AH and LH receive
the densest projection from vCA1 (Canteras and Swanson, 1992;
Kishi et al., 2000; Cenquizca and Swanson, 2006). Interestingly,
activation of GABAergic inputs to AH from the lateral septum, an
extension of the septo-hippocampal axis, has recently been shown
to increase corticosterone levels and produce persistent anxiety-
like behaviors (Anthony et al., 2014). Although HPC contribu-
tion to this pathway remains unknown, this study describes a
circuit through which the HPC could modulate HPA responses
to stress. Dissecting the differential roles of hypothalamic sub-
nuclei in defensive, sexual, and feeding behaviors has thus far
been challenging given anatomical limitations. However, recent
advances have been made (Lin et al., 2011) with novel cell-type
specific targeting strategies to overcome those limitations (Silva
et al., 2013; Anthony et al., 2014). Utilizing these approaches will
increase our understanding of specific hypothalamic sub-nuclei
function and further elucidate the potential role of vHPC input in
mood regulation.

DISCUSSION
Thus far, the experiments described demonstrate the importance
of AHN in modulating cognition and mood, suggest that the
abGCs’ function may be segregated along the septotemporal axis
of the DG, and dissect the various outputs of the HPC that
likely underlie the functional segregation of the HPC. However,
the question of how newborn neurons modify hippocampal
output still remains. One possibility is that these neurons are
independent units that excite downstream CA3 neurons with
which they make functional synapses as early as 2 weeks of age
(Gu et al., 2012). Alternatively, there is evidence that abGCs
may modulate activity of the mature population of GCs. In vivo
recordings in mice show that both irradiation and genetic ablation
of neurogenesis increase the magnitude of γ bursts in the DG
and lead to greater coordination of single unit activity with these
γ bursts (Lacefield et al., 2012). Burghardt et al. (2012) has
shown mice with ablated neurogenesis were impaired in a conflict
condition of the active place avoidance task, and this impairment
was associated with increased IEG expression in the dDG, also
suggesting abGCs can modulate overall dentate network activity.
Furthermore, using voltage sensitive dye imaging, it was found
that mice with increased neurogenesis exhibited a decrease in the
activation of the granule cell layer. The opposite was seen after
suppression of AHN (Ikrar et al., 2013). The mechanism for this
modulation remains unknown, but an attractive candidate would
be via modulation of local interneurons that may feed-back on to
the mature population, in turn altering output to directly impact
behavior. Future studies testing the connection between AHN and
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vHPC output will be crucial for understanding how the HPC is
involved in mood regulation.

ACKNOWLEDGMENTS
Lindsay Tannenholz is supported by NIMH 1F31MH100842.
Jessica C. Jimenez is supported by a Howard Hughes Medical
Institute Gilliam Fellowship. Mazen A. Kheirbek is supported
by NIMH K01MH099371, the Sackler Institute, and a NARSAD
Young Investigator Award.

REFERENCES
Adhikari, A., Topiwala, M. A., and Gordon, J. A. (2010). Synchronized activity

between the ventral hippocampus and the medial prefrontal cortex during
anxiety. Neuron 65, 257–269. doi: 10.1016/j.neuron.2009.12.002

Adhikari, A., Topiwala, M. A., and Gordon, J. A. (2011). Single units in the
medial prefrontal cortex with anxiety-related firing patterns are preferentially
influenced by ventral hippocampal activity. Neuron 71, 898–910. doi: 10.1016/j.
neuron.2011.07.027

Anthony, T. E., Dee, N., Bernard, A., Lerchner, W., Heintz, N., and Anderson,
D. J. (2014). Control of stress-induced persistent anxiety by an extra-amygdala
septohypothalamic circuit. Cell 156, 522–536. doi: 10.1016/j.cell.2013.12.040

Banasr, M., Soumier, A., Hery, M., Mocaer, E., and Daszuta, A. (2006).
Agomelatine, a new antidepressant, induces regional changes in hippocam-
pal neurogenesis. Biol. Psychiatry 59, 1087–1096. doi: 10.1016/j.biopsych.2005.
11.025

Boldrini, M., Underwood, M. D., Hen, R., Rosoklija, G. B., Dwork, A. J., John
Mann, J., et al. (2009). Antidepressants increase neural progenitor cells in
the human hippocampus. Neuropsychopharmacology 34, 2376–2389. doi: 10.
1038/npp.2009.75

Burghardt, N. S., Park, E. H., Hen, R., and Fenton, A. A. (2012). Adult-born
hippocampal neurons promote cognitive flexibility in mice. Hippocampus 22,
1795–1808. doi: 10.1002/hipo.22013

Burton, B. G., Hok, V., Save, E., and Poucet, B. (2009). Lesion of the ventral
and intermediate hippocampus abolishes anticipatory activity in the medial
prefrontal cortex of the rat. Behav. Brain Res. 199, 222–234. doi: 10.1016/j.bbr.
2008.11.045

Canteras, N. S., Chiavegatto, S., Ribeiro Do Valle, L. E., and Swanson, L. W.
(1997). Severe reduction of rat defensive behavior to a predator by discrete
hypothalamic chemical lesions. Brain Res. Bull. 44, 297–305. doi: 10.1016/s0361-
9230(97)00141-x

Canteras, N. S., and Swanson, L. W. (1992). Projections of the ventral subiculum
to the amygdala, septum and hypothalamus: a PHAL anterograde tract-tracing
study in the rat. J. Comp. Neurol. 324, 180–194. doi: 10.1002/cne.903240204

Cenquizca, L. A., and Swanson, L. W. (2006). Analysis of direct hippocampal
cortical field CA1 axonal projections to diencephalon in the rat. J. Comp. Neurol.
497, 101–114. doi: 10.1002/cne.20985

Cenquizca, L. A., and Swanson, L. W. (2007). Spatial organization of direct
hippocampal field CA1 axonal projections to the rest of the cerebral cortex.
Brain Res. Rev. 56, 1–26. doi: 10.1016/j.brainresrev.2007.05.002

Cezario, A. F., Ribeiro-Barbosa, E. R., Baldo, M. V., and Canteras, N. S. (2008).
Hypothalamic sites responding to predator threats–the role of the dorsal pre-
mammillary nucleus in unconditioned and conditioned antipredatory defen-
sive behavior. Eur. J. Neurosci. 28, 1003–1015. doi: 10.1111/j.1460-9568.2008.
06392.x

Christie, M. J., Summers, R. J., Stephenson, J. A., Cook, C. J., and Beart, P. M.
(1987). Excitatory amino acid projections to the nucleus accumbens septi in
the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA.
Neuroscience 22, 425–439. doi: 10.1016/0306-4522(87)90345-9

Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D. Jr., Fragniere, A., Tyers,
P., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial
pattern separation. Science 325, 210–213. doi: 10.1126/science.1173215

Corcoran, K. A., and Maren, S. (2001). Hippocampal inactivation disrupts contex-
tual retrieval of fear memory after extinction. J. Neurosci. 21, 1720–1726.

Corcoran, K. A., Desmond, T. J., Frey, K. A., and Maren, S. (2005). Hippocampal
inactivation disrupts the acquisition and contextual encoding of fear extinction.
J. Neurosci. 25, 8978–8987. doi: 10.1523/jneurosci.2246-05.2005

Creer, D. J., Romberg, C., Saksida, L. M., Van Praag, H., and Bussey, T. J. (2010).
Running enhances spatial pattern separation in mice. Proc. Natl. Acad. Sci. U S A
107, 2367–2372. doi: 10.1073/pnas.0911725107

Cullinan, W. E., Herman, J. P., and Watson, S. J. (1993). Ventral subicular interac-
tion with the hypothalamic paraventricular nucleus: evidence for a relay in the
bed nucleus of the stria terminalis. J. Comp. Neurol. 332, 1–20. doi: 10.1002/cne.
903320102

David, D. J., Samuels, B. A., Rainer, Q., Wang, J. W., Marsteller, D., Mendez, I.,
et al. (2009). Neurogenesis-dependent and -independent effects of fluoxetine
in an animal model of anxiety/depression. Neuron 62, 479–493. doi: 10.1016/j.
neuron.2009.04.017

Deng, W., Aimone, J. B., and Gage, F. H. (2010). New neurons and new memories:
how does adult hippocampal neurogenesis affect learning and memory? Nat.
Rev. Neurosci. 11, 339–350. doi: 10.1038/nrn2822

Dielenberg, R. A., Hunt, G. E., and Mcgregor, I. S. (2001). “When a rat smells
a cat”: the distribution of Fos immunoreactivity in rat brain following expo-
sure to a predatory odor. Neuroscience 104, 1085–1097. doi: 10.1016/s0306-
4522(01)00150-6

Dong, H. W., Petrovich, G. D., and Swanson, L. W. (2001a). Topography of
projections from amygdala to bed nuclei of the stria terminalis. Brain Res. Brain
Res. Rev. 38, 192–246. doi: 10.1016/s0165-0173(01)00079-0

Dong, H. W., Petrovich, G. D., Watts, A. G., and Swanson, L. W. (2001b). Basic
organization of projections from the oval and fusiform nuclei of the bed nuclei
of the stria terminalis in adult rat brain. J. Comp. Neurol. 436, 430–455. doi: 10.
1002/cne.1079

Dong, H. W., and Swanson, L. W. (2004a). Organization of axonal projections from
the anterolateral area of the bed nuclei of the stria terminalis. J. Comp. Neurol.
468, 277–298. doi: 10.1002/cne.10949

Dong, H. W., and Swanson, L. W. (2004b). Projections from bed nuclei of the stria
terminalis, posterior division: implications for cerebral hemisphere regulation
of defensive and reproductive behaviors. J. Comp. Neurol. 471, 396–433. doi: 10.
1002/cne.20002

Dong, H. W., and Swanson, L. W. (2006a). Projections from bed nuclei of the
stria terminalis, anteromedial area: cerebral hemisphere integration of neuroen-
docrine, autonomic and behavioral aspects of energy balance. J. Comp. Neurol.
494, 142–178. doi: 10.1002/cne.20788

Dong, H. W., and Swanson, L. W. (2006b). Projections from bed nuclei of the
stria terminalis, dorsomedial nucleus: implications for cerebral hemisphere
integration of neuroendocrine, autonomic and drinking responses. J. Comp.
Neurol. 494, 75–107. doi: 10.1002/cne.20790

Dong, H. W., and Swanson, L. W. (2006c). Projections from bed nuclei of the
stria terminalis, magnocellular nucleus: implications for cerebral hemisphere
regulation of micturition, defecation and penile erection. J. Comp. Neurol. 494,
108–141. doi: 10.1002/cne.20789

Dranovsky, A., and Hen, R. (2006). Hippocampal neurogenesis: regulation by stress
and antidepressants. Biol. Psychiatry 59, 1136–1143. doi: 10.1016/j.biopsych.
2006.03.082

Drew, L. J., Fusi, S., and Hen, R. (2013). Adult neurogenesis in the mammalian
hippocampus: why the dentate gyrus? Learn. Mem. 20, 710–729. doi: 10.
1101/lm.026542.112

Fanselow, M. S., and Dong, H. W. (2010). Are the dorsal and ventral hippocampus
functionally distinct structures? Neuron 65, 7–19. doi: 10.1016/j.neuron.2009.
11.031

Felix-Ortiz, A. C., Beyeler, A., Seo, C., Leppla, C. A., Wildes, C. P., and Tye, K. M.
(2013). BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79,
658–664. doi: 10.1016/j.neuron.2013.06.016

Felix-Ortiz, A. C., and Tye, K. M. (2014). Amygdala inputs to the ventral hippocam-
pus bidirectionally modulate social behavior. J. Neurosci. 34, 586–595. doi: 10.
1523/JNEUROSCI.4257-13.2014

Gage, F. H., and Thompson, R. G. (1980). Differential distribution of nore-
pinephrine and serotonin along the dorsal-ventral axis of the hippocam-
pal formation. Brain Res. Bull. 5, 771–773. doi: 10.1016/0361-9230(80)
90220-8

Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., and Song, H. (2007). A critical period
for enhanced synaptic plasticity in newly generated neurons of the adult brain.
Neuron 54, 559–566. doi: 10.1016/j.neuron.2007.05.002

Goshen, I., Brodsky, M., Prakash, R., Wallace, J., Gradinaru, V., Ramakrishnan, C.,
et al. (2011). Dynamics of retrieval strategies for remote memories. Cell 147,
678–689. doi: 10.1016/j.cell.2011.09.033

Frontiers in Behavioral Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 147 | 5

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Tannenholz et al. Local and regional hippocampal heterogeneity

Gould, E., Tanapat, P., Rydel, T., and Hastings, N. (2000). Regulation of hippocam-
pal neurogenesis in adulthood. Biol. Psychiatry 48, 715–720. doi: 10.1016/s0006-
3223(00)01021-0

Gross, C. T., and Canteras, N. S. (2012). The many paths to fear. Nat. Rev. Neurosci.
13, 651–658. doi: 10.1038/nrn3301

Gu, Y., Arruda-Carvalho, M., Wang, J., Janoschka, S. R., Josselyn, S. A., Frankland,
P. W., et al. (2012). Optical controlling reveals time-dependent roles for adult-
born dentate granule cells. Nat. Neurosci. 15, 1700–1706. doi: 10.1038/nn.3260

Hok, V., Save, E., Lenck-Santini, P. P., and Poucet, B. (2005). Coding for spatial
goals in the prelimbic/infralimbic area of the rat frontal cortex. Proc. Natl. Acad.
Sci. U S A 102, 4602–4607. doi: 10.1073/pnas.0407332102

Hübner, C., Bosch, D., Gall, A., Lüthi, A., and Ehrlich, I. (2014). Ex vivo dissection
of optogenetically activated mPFC and hippocampal inputs to neurons in
the basolateral amygdala: implications for fear and emotional memory. Front.
Behav. Neurosci. 8:64. doi: 10.3389/fnbeh.2014.00064

Ikrar, T., Guo, N., He, K., Besnard, A., Levinson, S., Hill, A., et al. (2013). Adult
neurogenesis modifies excitability of the dentate gyrus. Front. Neural Circuits
7:204. doi: 10.3389/fncir.2013.00204

Jayatissa, M. N., Bisgaard, C., Tingstrom, A., Papp, M., and Wiborg, O. (2006).
Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a
chronic mild stress rat model of depression. Neuropsychopharmacology 31,
2395–2404. doi: 10.1038/sj.npp.1301041

Jennings, J. H., Sparta, D. R., Stamatakis, A. M., Ung, R. L., Pleil, K. E., Kash, T. L.,
et al. (2013). Distinct extended amygdala circuits for divergent motivational
states. Nature 496, 224–228. doi: 10.1038/nature12041

Jinno, S. (2011a). Decline in adult neurogenesis during aging follows a topographic
pattern in the mouse hippocampus. J. Comp. Neurol. 519, 451–466. doi: 10.
1002/cne.22527

Jinno, S. (2011b). Topographic differences in adult neurogenesis in the mouse hip-
pocampus: a stereology-based study using endogenous markers. Hippocampus
21, 467–480. doi: 10.1002/hipo.20762

Kheirbek, M. A., Drew, L. J., Burghardt, N. S., Costantini, D. O., Tannenholz, L.,
Ahmari, S. E., et al. (2013). Differential control of learning and anxiety along
the dorsoventral axis of the dentate gyrus. Neuron 77, 955–968. doi: 10.1016/j.
neuron.2012.12.038

Kheirbek, M. A., and Hen, R. (2011). Dorsal vs ventral hippocampal neurogenesis:
implications for cognition and mood. Neuropsychopharmacology 36, 373–374.
doi: 10.1038/npp.2010.148

Kheirbek, M. A., Klemenhagen, K. C., Sahay, A., and Hen, R. (2012a). Neurogenesis
and generalization: a new approach to stratify and treat anxiety disorders. Nat.
Neurosci. 15, 1613–1620. doi: 10.1038/nn.3262

Kheirbek, M. A., Tannenholz, L., and Hen, R. (2012b). NR2B-dependent plasticity
of adult-born granule cells is necessary for context discrimination. J. Neurosci.
32, 8696–8702. doi: 10.1523/JNEUROSCI.1692-12.2012

Kim, S. Y., Adhikari, A., Lee, S. Y., Marshel, J. H., Kim, C. K., Mallory, C. S., et al.
(2013). Diverging neural pathways assemble a behavioural state from separable
features in anxiety. Nature 496, 219–223. doi: 10.1038/nature12018

Kishi, T., Tsumori, T., Ono, K., Yokota, S., Ishino, H., and Yasui, Y. (2000).
Topographical organization of projections from the subiculum to the hypotha-
lamus in the rat. J. Comp. Neurol. 419, 205–222. doi: 10.1002/(sici)1096-
9861(20000403)419:2<205::aid-cne5>3.0.co;2-0

Kishi, T., Tsumori, T., Yokota, S., and Yasui, Y. (2006). Topographical projection
from the hippocampal formation to the amygdala: a combined anterograde
and retrograde tracing study in the rat. J. Comp. Neurol. 496, 349–368. doi: 10.
1002/cne.20919

Kubik, S., Miyashita, T., Kubik-Zahorodna, A., and Guzowski, J. F. (2012). Loss
of activity-dependent Arc gene expression in the retrosplenial cortex after hip-
pocampal inactivation: interaction in a higher-order memory circuit. Neurobiol.
Learn. Mem. 97, 124–131. doi: 10.1016/j.nlm.2011.10.004

Lacefield, C. O., Itskov, V., Reardon, T., Hen, R., and Gordon, J. A. (2012). Effects
of adult-generated granule cells on coordinated network activity in the dentate
gyrus. Hippocampus 22, 106–116. doi: 10.1002/hipo.20860

Legault, M., and Wise, R. A. (2001). Novelty-evoked elevations of nucleus accum-
bens dopamine: dependence on impulse flow from the ventral subiculum and
glutamatergic neurotransmission in the ventral tegmental area. Eur. J. Neurosci.
13, 819–828. doi: 10.1046/j.0953-816x.2000.01448.x

Lin, D., Boyle, M. P., Dollar, P., Lee, H., Lein, E. S., Perona, P., et al. (2011).
Functional identification of an aggression locus in the mouse hypothalamus.
Nature 470, 221–226. doi: 10.1038/nature09736

Lisman, J. E., and Grace, A. A. (2005). The hippocampal-VTA loop: controlling
the entry of information into long-term memory. Neuron 46, 703–713. doi: 10.
1016/j.neuron.2005.05.002

Luo, A. H., Tahsili-Fahadan, P., Wise, R. A., Lupica, C. R., and Aston-Jones, G.
(2011). Linking context with reward: a functional circuit from hippocampal
CA3 to ventral tegmental area. Science 333, 353–357. doi: 10.1126/science.
1204622

Malberg, J. E., Eisch, A. J., Nestler, E. J., and Duman, R. S. (2000). Chronic
antidepressant treatment increases neurogenesis in adult rat hippocampus. J.
Neurosci. 20, 9104–9110.

Maren, S., and Holt, W. G. (2004). Hippocampus and Pavlovian fear conditioning
in rats: muscimol infusions into the ventral, but not dorsal, hippocampus impair
the acquisition of conditional freezing to an auditory conditional stimulus.
Behav. Neurosci. 118, 97–110. doi: 10.1037/0735-7044.118.1.97

Martinez, R. C., Carvalho-Netto, E. F., Ribeiro-Barbosa, E. R., Baldo, M. V., and
Canteras, N. S. (2011). Amygdalar roles during exposure to a live predator
and to a predator-associated context. Neuroscience 172, 314–328. doi: 10.1016/j.
neuroscience.2010.10.033

McDonald, A. J. (1998). Cortical pathways to the mammalian amygdala. Prog.
Neurobiol. 55, 257–332. doi: 10.1016/s0301-0082(98)00003-3

McHugh, T. J., Jones, M. W., Quinn, J. J., Balthasar, N., Coppari, R., Elmquist,
J. K., et al. (2007). Dentate gyrus NMDA receptors mediate rapid pattern sep-
aration in the hippocampal network. Science 317, 94–99. doi: 10.1126/science.
1140263

Moser, M. B., and Moser, E. I. (1998). Functional differentiation in the hippocam-
pus. Hippocampus 8, 608–619. doi: 10.1002/(sici)1098-1063(1998)8:6<608::aid-
hipo3>3.0.co;2-7

Moser, M. B., Moser, E. I., Forrest, E., Andersen, P., and Morris, R. G. (1995). Spatial
learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. U S A
92, 9697–9701. doi: 10.1073/pnas.92.21.9697

Piatti, V. C., Davies-Sala, M. G., Espósito, M. S., Mongiat, L. A., Trinchero, M. F.,
and Schinder, A. F. (2011). The timing for neuronal maturation in the adult
hippocampus is modulated by local network activity. J. Neurosci. 31, 7715–7728.
doi: 10.1523/JNEUROSCI.1380-11.2011

Pitkänen, A., Pikkarainen, M., Nurminen, N., and Ylinen, A. (2000). Reciprocal
connections between the amygdala and the hippocampal formation, perirhinal
cortex and postrhinal cortex in rat. A review. Ann. N Y Acad. Sci. 911, 369–391.
doi: 10.1111/j.1749-6632.2000.tb06738.x

Pothuizen, H. H., Zhang, W. N., Jongen-Relo, A. L., Feldon, J., and Yee, B. K. (2004).
Dissociation of function between the dorsal and the ventral hippocampus in
spatial learning abilities of the rat: a within-subject, within-task comparison of
reference and working spatial memory. Eur. J. Neurosci. 19, 705–712. doi: 10.
1111/j.0953-816x.2004.03170.x

Risold, P. Y., and Swanson, L. W. (1996). Structural evidence for functional domains
in the rat hippocampus. Science 272, 1484–1486. doi: 10.1126/science.272.5267.
1484

Sahay, A., Scobie, K. N., Hill, A. S., O’carroll, C. M., Kheirbek, M. A., Burghardt,
N. S., et al. (2011). Increasing adult hippocampal neurogenesis is sufficient to
improve pattern separation. Nature 472, 466–470. doi: 10.1038/nature09817

Samuels, B. A., and Hen, R. (2011). Neurogenesis and affective disorders. Eur. J.
Neurosci. 33, 1152–1159. doi: 10.1111/j.1460-9568.2011.07614.x

Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., et al.
(2003). Requirement of hippocampal neurogenesis for the behavioral effects of
antidepressants. Science 301, 805–809. doi: 10.1126/science.1083328

Schloesser, R. J., Manji, H. K., and Martinowich, K. (2009). Suppression of
adult neurogenesis leads to an increased hypothalamo-pituitary-adrenal axis
response. Neuroreport 20, 553–557. doi: 10.1097/WNR.0b013e3283293e59

Schmidt-Hieber, C., Jonas, P., and Bischofberger, J. (2004). Enhanced synaptic
plasticity in newly generated granule cells of the adult hippocampus. Nature 429,
184–187. doi: 10.1038/nature02553

Scoville, W. B., and Milner, B. (1957). Loss of recent memory after bilateral hip-
pocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21. doi: 10.1136/jnnp.
20.1.11

Seamans, J. K., Floresco, S. B., and Phillips, A. G. (1998). D1 receptor modulation
of hippocampal-prefrontal cortical circuits integrating spatial memory with
executive functions in the rat. J. Neurosci. 18, 1613–1621.

Seamans, J. K., and Yang, C. R. (2004). The principal features and mechanisms
of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 74, 1–58.
doi: 10.1016/j.pneurobio.2004.05.006

Frontiers in Behavioral Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 147 | 6

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Tannenholz et al. Local and regional hippocampal heterogeneity

Seidenbecher, T., Laxmi, T. R., Stork, O., and Pape, H. C. (2003). Amygdalar
and hippocampal theta rhythm synchronization during fear memory retrieval.
Science 301, 846–850. doi: 10.1126/science.1085818

Sheline, Y. I., Sanghavi, M., Mintun, M. A., and Gado, M. H. (1999). Depression
duration but not age predicts hippocampal volume loss in medically healthy
women with recurrent major depression. J. Neurosci. 19, 5034–5043.

Silva, B. A., Mattucci, C., Krzywkowski, P., Murana, E., Illarionova, A., Grinevich,
V., et al. (2013). Independent hypothalamic circuits for social and predator fear.
Nat. Neurosci. 16, 1731–1733. doi: 10.1038/nn.3573

Snyder, J. S., Radik, R., Wojtowicz, J. M., and Cameron, H. A. (2009). Anatomical
gradients of adult neurogenesis and activity: young neurons in the ventral
dentate gyrus are activated by water maze training. Hippocampus 19, 360–370.
doi: 10.1002/hipo.20525

Snyder, J. S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H. A. (2011). Adult
hippocampal neurogenesis buffers stress responses and depressive behaviour.
Nature 476, 458–461. doi: 10.1038/nature10287

Sotres-Bayon, F., Sierra-Mercado, D., Pardilla-Delgado, E., and Quirk, G. J. (2012).
Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron
76, 804–812. doi: 10.1016/j.neuron.2012.09.028

Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner,
H. B., et al. (2013). Dynamics of hippocampal neurogenesis in adult humans.
Cell 153, 1219–1227. doi: 10.1016/j.cell.2013.05.002

Stamatakis, A. M., Sparta, D. R., Jennings, J. H., Mcelligott, Z. A., Decot, H., and
Stuber, G. D. (2014). Amygdala and bed nucleus of the stria terminalis circuitry:
implications for addiction-related behaviors. Neuropharmacology 76(Pt. B),
320–328. doi: 10.1016/j.neuropharm.2013.05.046

Surget, A., Tanti, A., Leonardo, E. D., Laugeray, A., Rainer, Q., Touma, C.,
et al. (2011). Antidepressants recruit new neurons to improve stress response
regulation. Mol. Psychiatry 16, 1177–1188. doi: 10.1038/mp.2011.48

Tanaka, K. F., Samuels, B. A., and Hen, R. (2012). Serotonin receptor expression
along the dorsal-ventral axis of mouse hippocampus. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 367, 2395–2401. doi: 10.1098/rstb.2012.0038

Tanti, A., Rainer, Q., Minier, F., Surget, A., and Belzung, C. (2012). Differential
environmental regulation of neurogenesis along the septo-temporal axis of
the hippocampus. Neuropharmacology 63, 374–384. doi: 10.1016/j.neuropharm.
2012.04.022

Totterdell, S., and Smith, A. D. (1989). Convergence of hippocampal and dopamin-
ergic input onto identified neurons in the nucleus accumbens of the rat. J. Chem.
Neuroanat. 2, 285–298.

Tronel, S., Belnoue, L., Grosjean, N., Revest, J. M., Piazza, P. V., Koehl, M., et al.
(2012). Adult-born neurons are necessary for extended contextual discrimina-
tion. Hippocampus 22, 292–298. doi: 10.1002/hipo.20895

Valenti, O., Lodge, D. J., and Grace, A. A. (2011). Aversive stimuli alter ventral
tegmental area dopamine neuron activity via a common action in the ventral
hippocampus. J. Neurosci. 31, 4280–4289. doi: 10.1523/JNEUROSCI.5310-10.
2011

Vann, S. D., and Aggleton, J. P. (2002). Extensive cytotoxic lesions of the rat
retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial
memory. Behav. Neurosci. 116, 85–94. doi: 10.1037/0735-7044.116.1.85

Vann, S. D., and Aggleton, J. P. (2004). Testing the importance of the retrosplenial
guidance system: effects of different sized retrosplenial cortex lesions on heading
direction and spatial working memory. Behav. Brain Res. 155, 97–108. doi: 10.
1016/j.bbr.2004.04.005

Videbech, P., and Ravnkilde, B. (2004). Hippocampal volume and depression:
a meta-analysis of MRI studies. Am. J. Psychiatry 161, 1957–1966. doi: 10.
1176/appi.ajp.161.11.1957

Zhao, C., Deng, W., and Gage, F. H. (2008). Mechanisms and functional implica-
tions of adult neurogenesis. Cell 132, 645–660. doi: 10.1016/j.cell.2008.01.033

Zhu, H., Pleil, K. E., Urban, D. J., Moy, S. S., Kash, T. L., and Roth, B. L.
(2014). Chemogenetic inactivation of ventral hippocampal glutamatergic neu-
rons disrupts consolidation of contextual fear memory. Neuropsychopharmacol-
ogy doi: 10.1038/npp.2014.35. [Epub ahead of print].

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 28 February 2014; accepted: 11 April 2014; published online: 06 May 2014.
Citation: Tannenholz L, Jimenez JC and Kheirbek MA (2014) Local and regional
heterogeneity underlying hippocampal modulation of cognition and mood. Front.
Behav. Neurosci. 8:147. doi: 10.3389/fnbeh.2014.00147
This article was submitted to the journal Frontiers in Behavioral Neuroscience.
Copyright © 2014 Tannenholz, Jimenez and Kheirbek. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Behavioral Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 147 | 7

http://dx.doi.org/doi:10.3389/fnbeh.2014.00147
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive

	Local and regional heterogeneity underlying hippocampal modulation of cognition and mood
	Introduction
	Local heterogeneity in the dentate gyrus
	Adult neurogenesis
	Dorsoventral gradients in adult neurogenesis

	Regional heterogeneity in the hippocampus
	Hippocampal Circuitry
	vHPC outputs to the nucleus accumbens and VTA
	vHPC outputs to the medial prefrontal cortex
	vHPC outputs to the amygdala and bed nucleus of the stria terminalis
	vHPC outputs to the hypothalamus

	Discussion
	Acknowledgments
	References




