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Abstract  

This paper presents a new class of analytical solutions for transient flow into unsaturated rock 

matrix. These analytical solutions are derived using specially correlated but physically meaningful 

relative permeability and capillary functions, while the transient flow process in unsaturated rock 

matrix blocks is generally described by the Richards’ equation. The analytical solutions describe the 

full transient behavior of flow into unsaturated matrix blocks with the special relative permeability 

and capillary functions, and are proven (through various examples) to be useful to verify numerical 

model results. 
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1. Introduction 

 

Fluid flow through variably saturated fractured porous media occurs in many subsurface systems 

related to petroleum-reservoir engineering, vadose zone hydrology, and soil sciences. For 

quantitative analysis of such flow in unsaturated soil or rock, Richards’ equation has been used 

as a fundamental basis. However, because of its nonlinear nature, Richards’ equation solutions 

for general unsaturated flow may be obtained only by a numerical approach. Even though 

significant progress has been made in numerical modeling of unsaturated flow and infiltration 

since the late 1950s, analytical approaches still prove to be irreplaceable. This is because 

analytical solutions, if available, provide more direct insight into the physics of unsaturated flow 

phenomena than numerical or laboratory studies, especially when dealing with effects of various 

parameters. Moreover, even in numerical studies, analytical solutions are often needed to 

examine and verify numerical schemes or results.  

 

In the past few decades, a considerable amount of effort has been devoted in groundwater 

hydrology and soil science to mathematical modeling of steady-state and transient Richards’ 

flow through unsaturated porous media (see various articles Milly [1988], Pullan [1990], and 

Bodvarsson et al. [2000]). As a result, many exact and approximate analytical solutions have 

been developed. In general, the analytical solutions derived for Richards’ equation are dependent 

upon the level of the applied linearizations or approximations. These existing, closed-form 

analytical solutions may be divided into the following classes: (1) steady-state solutions using 

the exponential hydraulic conductivity model [Gardner, 1958] and quasi-linear approximations 
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[Pullan, 1990]; (2) transient infiltration solutions using special forms of soil retention curves 

[e.g., Warrick et al., 1990 and 1991; Hills and Warrick, 1993; Warrick and Parkin, 1995; Chen 

et al., 2001] or using linearization and the Kirchhoff transformation [e.g., Basha, 1999]; (3) 

approximate and asymptotic solutions [e.g., Philip, 1969; Zimmerman and Bodvarsson, 1989; 

Zimmerman et al., 1990; Zimmerman and Bodvarsson, 1995]. Most of these analytical solutions, 

however, are limited to one-dimensional (1-D) flow or a constant soil-water-diffusivity 

approximation with semi-infinite flow domains.  

 

Despite the advances made so far, exact forms of analytical solutions to Richards’ equation 

remain intractable under general flow conditions, because of the known nonlinearity of Richards’ 

equation. This explains why continual research efforts have been made to find new solutions 

over the past half century. The present work is motivated by our modeling studies of 

characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, 

Nevada, a potential repository site for storing high-level radioactive waste. The dual-continuum 

numerical-modeling method has been used in those studies to handle fracture-matrix flow and 

interaction in unsaturated fractured tuffs at the site. The effort of verifying the accuracy of 

numerical schemes and calculations for fracture-matrix interactions motivated us to resort to 

analytical solutions to examine numerical-model results. 

 

The objective of this work is to present a new class of analytical solutions for unsaturated flow 

within a matrix block, which can be used to examine numerical solutions and the accuracy of 

different modeling approaches for handling fracture-matrix interactions. These analytical solutions 
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are derived from a linearized Richards’ equation, which requires a specially correlated relationship 

between relative permeability and capillary-pressure functions.  

 

2. Linearization of Richards’ Equation  

  

Consider the flow of an incompressible liquid in a homogeneous, isothermal, incompressible, and 

isotropic porous medium, such as an unsaturated rock matrix. Ignoring air dynamics and gravity, the 

flow is commonly described by Richards’ equation:    

 ( ww
w

rw S
t

Pkk
∂
∂φ=








∇

µ
∇ • )            (2.1) 

where k is the absolute permeability, k  is the relative permeability to the water phase, µ  is 

the viscosity of the water phase,  is the pressure in the water phase, φ is the effective porosity  

of the formation, and S  is the water saturation.  

rw w

wP
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To find analytical solutions for Equation (2.1) but keep Pc and krw as nonlinear functions of Sw, 

we select a relative permeability in the form: 

             (2.2) ( )α= *
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and capillary pressure in the form: 
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where Pg(Pa) is a constant air (or gas) pressure,  and C (Pa) are coefficients,  and β  are 

exponential constants, respectively, of relative permeability and capillary-pressure functions, and 

is the effective water saturation, 

kC p α

*
wS

 
wr

wrw*
w S1

SSS
−
−

=             (2.4) 

with  being the residual water saturation. Note that if Brooks and Corey’s capillary function is 

used [Brooks and Corey, 1964], the coefficient C

wrS

p in Equation (2.3) becomes the air entry pressure 

Pb (i.e., C ) and , with λ being an index of pore size distribution [Honarpour et. al., 

1986]. 

bp P= λ=β /1

 
If the following condition  

              (2.5) 1+β=α

is satisfied, the Richards equation (2.1) can be readily linearized as follows:  
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where D, called soil-water or moisture diffusivity [Philip, 1969],  is defined by  
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with dimension of m2/s. 

 

Note that the linearization expressed in Equations (2.2) through (2.7) is different from simply 

assuming a constant moisture diffusivity, D [e.g., Philip, 1969], because relative permeability 
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and capillary pressure are still nonlinear functions of saturation in Equations (2.2) and (2.3). In 

fact, they are quite generally used relations in modeling two-phase porous media flow 

[Honarpour et. al., 1986], which are particularly useful in assessing the accuracy of numerical 

approaches that solve the nonlinear Richards equation (2.1).  

 

3. Analytical Solutions 

 

In this work, we are primarily interested in a cubic shape of matrix blocks: a rock matrix cube, 

surrounded by a 3-D orthogonal fracture network, as shown in Figure 1. Because fluid flow or 

pressure propagation in the highly permeable fractures are usually much more rapid than in the low-

permeability matrix, we can assume that the water pressure at the surface of the matrix cube is 

constant everywhere at any given time. To facilitate analytical solutions, we will define the physical 

problem with the linearized Richards’ Equation (2.6) associated with the initial and boundary 

conditions as follows: 

Initial condition within matrix: 

   at t = 0 within the matrix block       (3.1) iw SS =

 

The boundary conditions at the matrix surface (e.g., half the dimension of a 3-D matrix block) are:  

   on a matrix surface for t  > 0        (3.2) bw SS =

where S  and are constant initial and boundary saturations, respectively.   i bS
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3.1 Exact 3-D Solution  



Let us first introduce the following dimensionless variables. The dimensionless distances are 

defined as 

 
a2
zZ,

a2
yY,

a2
xX ===               (3.3) 

 
and the dimensionless time is 

2a
tD

=τ                 (3.4) 

where a is half dimension of the 3-D cube.  The normalized (or scaled) water saturation is 

ib

iw
D SS
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−
−

=               (3.5) 

 
Under these transformations, the unsaturated water flow problem is mathematically equivalent to 

the heat transfer problem solved by Carslaw and Jaeger [1959]. Therefore, the solution, in terms of 

the normalized saturation, can be expressed as: 
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The rate of mass flow into or from the cube through the matrix surface is given by 

 )               (3.7) (q)SS(Da2)t(q Dib τ−ρ=

where ρ  is the water density and  is a dimensionless mass flow rate, defined as   )(qD τ
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The cumulative mass flow into or from the cube is given by 
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where  is a dimensionless cumulative mass exchange, defined as   )(QD τ
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3.2 Solution for 1-D Spherical Flow  

In most modeling studies of fracture-matrix flow, 3-D inter-flow within matrix blocks is 

approximated as 1-D spherical flow when using a double-porosity concept [Warren and Root, 1963] 

or a multiple interacting continua (MINC) concept [Pruess and Narasimhan, 1985]. Using the term, 

1-D “spherical” flow, is because the governing equation of such flow can be shown to be identical 

to that of radially symmetric 1-D spherical flow under the MINC approximation, i.e., 

thermodynamic variables (pressure, temperature, concentration, and etc) are the same spatially at an 

equal distance from the matrix surface [Pruess and Narasimhan, 1985]. The advantage of the 1-D 

flow approximation is that it significantly reduces the total numbers of meshes for discretizing 

matrix blocks. In practice, the 1-D flow approximation is perhaps the most commonly used 

approach in discretization for modeling fracture-matrix interactions. Therefore, an analytical 

solution for such a 1-D spherical flow problem is very useful.  

 

With the 1-D spherical flow MINC approximation, the unsaturated flow toward the center of a cubic 

matrix block can be generally described by [e.g., Lai et al., 1983], 
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where x is the distance from a nested cross-sectional surface within the matrix block (having an 

equal distance to the matrix surface) to the center of the cube (see Figure 1). 

 

Using the same dimensionless variables, defined by Equations (3.3) - (3.5), the analytical solution of 

Equation (3.11), subject to (3.1) and (3.2), is given [Carslaw and Jaeger, 1959] as 

 τπn

1n

n

D

22

e)Xπnsin(2
n
1)(

Xπ
11τ)(X,S −

∞

=
∑ −

+=          (3.12) 

The rate of mass flow into or from the cube through the matrix surface and the cumulative mass of 

flow into or from the cube are given by Equations (3.7) and (3.9), respectively, while the 

dimensionless mass flow rate, is given as   

             (3.13) ∑
∞

=

τπ−=τ
1n

n
D

22

e24)(q

The dimensionless cumulative mass exchange is given as   
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∞

=

τπ−
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2D

22

e
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161)(Q            (3.14) 

4. Discussion and Application 

 

With the proposed linearization to Richards’ equation in Section 3, many more analytical 

solutions can be easily derived for 1-D, 2-D and 3-D problems in a finite, semi-finite, or infinite 

flow domain (e.g., in analogy with the corresponding heat conduction problems [Carslaw and 

Jaeger, 1959]). Note that the assumptions used in deriving such analytical solutions will impose 

limitations on their applicability. Specifically, the requirements of specially correlated relations 

between relative permeability and capillary functions and no gravity effects are critical to 
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deriving analytical solutions. These assumptions are the necessary conditions to linearizing the 

flow governing equation or for the existence of analytical solutions. Despite these restrictions, 

relative permeability and capillary functions of Equations (2.2) and (2.3) are among the most 

widely used relations in unsaturated flow. On the other hand, in most field studies capillary 

forces in the matrix system are generally dominant in controlling fracture-matrix flow relative to 

the effect of gravity, as long as matrix block sizes are relatively small. For these reasons, gravity 

effects have been ignored in almost all dual-continuum models for studies of multiphase or 

unsaturated flow in fractured reservoirs. 

 

4.1 Type Curves of Transient Fracture-Matrix Flow 

Here, we use the analytical solutions presented above to generate several type curves for transient 

flow into rock matrix. These type curves are calculated and presented in terms of the dimensionless 

variables for saturation, flow rate, and cumulative mass exchanges to make the plots independent of 

the size of matrix blocks and specific sets of rock or fluid properties and more convenient to use. In 

addition, the type curves give us some insight into transient flow processes through unsaturated 

fractured rock and can be used directly for verifying simulation results of numerical models to 

particular applications. 

 

Spatial distributions of normalized water saturation within the matrix, as a function of dimensionless 

time and distance, are shown in Figure 2, calculated using Equation (3.12), i.e., the 1-D flow 

approximation solution. The 1-D spherical approximation for flow inside the matrix has been the 

commonly used conceptual model for handling fracture-matrix interactions with the dual-continuum 
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approach. The type curves in Figure 2 cover the entire transient flow period of imbibition or 

drainage processes between fracture and matrix systems. 

 

Figure 3 presents type curves of dimensionless flow rate and cumulative mass exchange, 

respectively, using both 3-D solutions [Equations (3.8) and (3.10)] and 1-D approximations [(3.13) 

and (3.14)]. Note that there is a very small difference between 3-D and the 1-D solutions in 

describing flow into matrix blocks. A previous modeling study [Wu and Pruess, 1988] also 

concludes that the 1-D spherical inside-matrix flow assumption using a 1-D nested mesh provides a 

good approximation to two-phase oil-water, counter-flow imbibition problems. The comparison of 

1-D and 3-D inside-matrix flow results in Figure 3 indicates that the simplified 1-D, MINC-type 

approximation may be accurate enough for estimating mass exchanges between fracture and matrix 

systems in practical applications. 

4.2 Evaluation of Numerical-Modeling Results 

Numerical modeling approaches are widely used for simulating interactions between fractures 

and rock matrix in variably saturated fractured porous media. The key issue in numerical-

modeling efforts is how to handle fracture-matrix interactions under different flow conditions. 

Among the commonly used methods for dealing with such interactions is the dual-continuum 

method, including double- and multiporosity models [e.g., Barenblatt et al., 1960; Warren and 

Root, 1963; Kazemi, 1969; Pruess and Narasimhan, 1985; Wu and Pruess, 1988]. In the double-

porosity concept [Barenblatt et al., 1960; Warren and Root, 1963], a flow domain is composed 

of matrix blocks with low permeability embedded in a network of interconnected fractures.  

Global flow in the formation occurs only through the fracture system, conceptualized as an 
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effective continuum, and matrix blocks are treated as spatially distributed source/sink terms, 

based on a quasi-steady-state assumption of inter-porosity flow.   

 

As a generalization to the Warren-Root model, a more rigorous dual-continuum method, the 

MINC concept [Pruess and Narasimhan, 1985], takes into account gradients of pressures, 

temperatures and concentrations between fractures and matrix by appropriate subgridding of the 

matrix blocks. This approach provides a better approximation to transient fracture-matrix 

interactions than the one-block representation of fractures or the matrix in a double-porosity 

model. In comparison, however, the double-porosity model may produce inaccurate modeling 

results when gradients of pressures or moisture condition are large or changing rapidly at or near 

fracture-matrix interfaces. This section presents efforts to qualify such numerical errors 

introduced by the dual-continuum conceptual model in handling fracture-matrix flow.  

 

Many different conceptual models for fracture-matrix interaction have been evaluated for the 

Yucca Mountain site characterization studies [Doughty, 1999]. Currently, the most widely used 

model is based on the dual-continuum or dual-permeability concept, in which fractured rocks in 

different hydrogeological units are approximated as two globally connected and interacting 

fracture and matrix continua [e.g., Wu et al., 2002]. We use the analytical solution for 1-D 

spherical flow into a cubic matrix to examine the numerical simulation results. The test problem 

concerns both imbibition (flow into matrix) and drainage (flow out of matrix). The numerical 

simulations were performed using a numerical reservoir simulator [Pruess, 1991; Wu et al., 1996]. 

Note that the governing equation solved in numerical modeling is still the original Richards’ 
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equation (2.1) instead of the linearized forms of Equations (2.6) or (3.11).   

 

The example problem deals with transient flow processes into a 1 × 1 × 1 meter cube of matrix, which is 

discretized into 2, 5, 10, 30, and 500 nested cells, respectively, using volume fractions of the MINC 

concept for 1-D spherical flow toward or from the matrix center. The basic parameters used for the 

example are listed in Table 1. Saturation distribution within matrix at four different times, calculated 

using the analytical and numerical solutions of the water imbibition problem, are displayed in Figure 4 

with three different discretizations of 10, 30, and 500 cells, respectively. As shown in Figure 4, the 

numerical results with refined grids (30 and 500) cells are in excellent agreement with the analytical 

solution during the entire transient imbibition period. In contrast, the simulation using the coarser 10-

cell grid cannot in general match the analytical solution well, except near the matrix surface.  

  

It should be mentioned that the scheme of MINC subgridding of matrix normally uses a set of volume 

fractional values, leading to nested cells with approximately equal volumes. In general, an equal-

volume mesh results in smaller grid spacings near matrix surface or fractures and thus gives better 

numerical accuracy for estimating fracture-matrix interactions [Pruess and Narasimhan, 1985]. 

However, it creates larger grid spacing at or near the matrix center because of the requirement of equal 

mesh volume. This explains why the results using a 10-cell grid cannot well match the analytical 

solution inside the matrix block. On the other hand, a two-cell (or double-porosity) model using only 

one gridblock average to represent the matrix system cannot match saturation distribution at all. Only 

after a long time (100 days for this case), do all the numerical and analytical solutions converge to a 

steady-state solution of Sw=0.8.  
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Figure 5 shows the saturation distribution within the matrix for a case of water drainage from the 

matrix, simulated using the same matrix subgriddings, respectively, as in the imbibition case. Similarly, 

the model results using refined grids of 30 and 500 cells match well with the analytical solution. 

However, the 10-cell model results are in worse agreement with the analytical solution than the 

imbibition case (Figure 4). This is primarily because of the change in flow directions in the two cases, 

since the identical griddings were used for the same cell grids. In the previous imbibition case, the 

upstream of flow at the matrix surface (or fracture), specified with fixed pressure/saturation flow 

condition, is simulated using relatively refined subgrids. In comparison, for the drainage situation, only 

the downstream condition at the matrix surface is physically fixed. The upstream of the drainage flow is 

located at the center of the matrix block, which is very transient  with pressure head declining rapidly 

with time. The temporal discretization errors by the fully-implicit time-stepping scheme are worsened 

by coarser gridding near the matrix center, leading to large numerical errors.  

 

Figure 6 shows the change of water-imbibing rate at the matrix surface and cumulative imbibition 

mass into the matrix over time. In this case, all the numerical results are in good agreement with the 

analytical results. In contrast, simulated drainage flow rates and cumulative mass exchanges in 

Figure 7 show very different results for different matrix subgriddings. In this case, due to the same 

reasons as for saturation distributions, two-cell or double porosity and five-cell discretizations give 

extremely large errors to estimated drainage rates, compared with the results from 30- or 500-cell 

models or analytical solution. Furthermore, the “humps” in drainage rate versus time curves, for 

five-cell, even ten-cell discretizations, reflect numerical errors of the coarse-grid models in 
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estimating potential or saturation gradients near the matrix surface, which is time-dependent. This 

indicates that the accuracy in modeling drainage processes is highly dependent on matrix grid 

resolutions and may require more refined grids than modeling imbibition processes, because of the 

more transient nature at the upstream condition of flow. This example demonstrates the usefulness 

of the linearization approach and the resulting analytical solutions in assessing numerical methods 

that solve the nonlinear Richards’ equation.  

 

 

5. Concluding Remarks 

 

This paper presents a new linearization approach to Richards’ equation, based on the assumptions of 

(1) negligible gravitational effect and (2) a special correlation of capillary pressure and relative 

permeability functions. Under such simplifications, a set of analytical solutions for transient flow 

into unsaturated matrix is derived. The analytical-solution approach of this work can be easily 

extended to different flow geometries, such as cylindrical, radial, and other multidimensional 

unsaturated flow.  

 

The new analytical solutions, though limited by the assumptions for their applications, can be used 

to obtain some insight into the physics of transient imbibition and drainage processes of fracture-

matrix interactions. In particular, several dimensionless type curves, specifically spatial saturation 

distributions and flow rates for mass exchange crossing fracture-matrix interfaces, are provided in 

this work. These type curves are independent of matrix-block size and specific parameters of fluid 
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and rock, and can be useful in verifying numerical models and their results in modeling flow 

through unsaturated fractured rock using a dual-continuum approach. Note that under the 

linearization approach proposed here, the relative permeability and capillary pressure remain to be 

nonlinear functions of saturation, an important feature that proved to be useful in assessing 

numerical methods that solve the highly nonlinear Richards equation. 

  

As an application example, the analytical solutions were used to examine numerical solutions for 

modeling both transient imbibition and drainage flow processes within rock matrix. The test 

indicates that numerical approaches, in particular, the errors associated with numerical temporal and 

spatial discretization, generally need to be checked before their application to field studies of 

unsaturated flow in fractured rock. The 1-D MINC-type flow approximation can provide a good 

approximation to unsaturated flow inside the matrix, while it may need very detailed grid 

refinements to model transient drainage flow behavior in fractured rocks.   
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Captions of figures 
 
Figure 1. Schematic of 3-D orthogonal fractures and concept of 3-D and 1-D flow 

approximation inside matrix blocks. 
 
Figure 2. Type curves of normalized saturation within matrix versus dimensionless time and 

distance. 
 
Figure 3. Type curves of dimensionless flow rate and cumulative mass exchanges on matrix 

surface versus dimensionless time. 
 
Figure 4. Comparison of calculated saturation distributions from analytical and numerical 

solutions for imbibition into a cubic matrix block. 
 
Figure 5. Comparison of calculated saturation distributions from analytical and numerical 

solutions for drainage from a cubic matrix block. 
 
Figure 6. Comparison of calculated water imbibing rates and cumulative imbibition from 

analytical and numerical solutions into a cubic matrix block. 
 
Figure 7. Comparison of calculated water drainage rates and cumulative drainage from 

analytical and numerical solutions from a cubic matrix block. 
 
 
Table 1. Parameters for the comparison problem. 
 

Parameter Value Unit 

Half dimension of the matrix cube a = 0.5 m 

Effective porosity φ = 0.30  

Matrix permeability k = 1.0 × 10-15 m2 

Water  density ρ = 1,000 kg/m3 

Water viscosity µw = 1.0 × 10-3 Pa•s 

Residual saturation Swr = 0.2  
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Initial saturation Si= 0.8 and 0.2  

Saturation on matrix surface Sb= 0.2 and 0.8  

Coefficient of permeability function Ck = 1.0  

Exponential of permeability function α = 2.0  

Coefficient of capillary function Cp = 1.0× 104 Pa 

Exponential of capillary function β = 1.0  
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Figure 1. Schematic of 3-D orthogonal fractures and concept of 3-D and 1-D flow 
approximation inside matrix blocks. 
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Figure 2. Type curves of normalized saturation within matrix versus dimensionless time and 
distance. 
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Figure 3. Type curves of dimensionless flow rate and cumulative mass exchanges on matrix 
surface versus dimensionless time. 

 
 

  

 

 

23



0 0.1 0.2 0.3 0.4 0.5
Distance from Matrix Surface (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
at

er
S

at
ur

at
io

n

Numerical 500-Cells
Analytical
Numerical 10-Cells
Numerical 30-Cells

t=100 d

t=5 d

t=1 d

t=0.1 d

 

Figure 4. Comparison of calculated saturation distributions from analytical and numerical 
solutions for imbibition into a cubic matrix block. 
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Figure 5. Comparison of calculated saturation distributions from analytical and numerical 
solutions for drainage from a cubic matrix block. 
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Figure 6. Comparison of calculated water imbibing rates and cumulative imbibition from 
analytical and numerical solutions into a cubic matrix block. 
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Figure 7. Comparison of calculated water drainage rates and cumulative drainage from 
analytical and numerical solutions from a cubic matrix block. 
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