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Estimating Changes in the Observed
Relationship Between Humidity and
Temperature Using Noncrossing Quantile
Smoothing Splines

Karen A. MCKINNON and Andrew POPPICK

The impacts of warm season heat extremes are dependent on both temperature and
humidity, so it is critical to properly model their relationship, including how it may be
changing. This presents statistical challenges because the bivariate temperature—humidity
(measured here by dew point) distribution is complex and spatially variable. Here, we
develop a flexible, semiparametric model based on quantile smoothing splines to sum-
marize the distributional dependence of dew point on temperature, including how the
dependence is changing with increasing global mean temperature. Noncrossing con-
straints enforce both the validity of the modeled distributions and the physical constraint
that dew point cannot exceed temperature. The proposed method is first demonstrated
with four synthetic, representative case studies. We then apply it to data from 2416
weather stations spanning the globe, with a focus on analyzing dew point trends during
hot days. In general, dew point is increasing on both hot, humid and hot, dry days in the
tropics and high latitudes, but decreasing in the subtropics, especially on hot, dry days.
These changes appear to be mostly explained by changes in the temperature—dew point
relationship, rather than by increases in temperature with a fixed temperature—dew point
relationship.

Key Words: Dew point; Global Summary of the Day; High-dimensional regularization;
Noncrossing quantiles; Quantile regression; Quantile smoothing splines.

1. INTRODUCTION

A large body of work has illustrated the role of anthropogenic climate change in increas-
ing the probability of warm season heat waves (e.g., Meehl and Tebaldi 2004; Perkins et al.
2012), which remain the largest contributor among weather events to human mortality in
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high-income countries (Wahlstrom and Guha-Sapir 2015). However, the impact of tempera-
ture on human comfort and mortality, as well as on plant health and productivity, is addition-
ally dependent on the moisture content of the air. Physiologically, increased atmospheric
moisture reduces the ability of the body to cool itself through sweating; epidemiological
studies have found an increase in hospitalizations (Mastrangelo et al. 2007; Guirguis et al.
2014) and mortality (Barreca 2012) on hot and humid days that exceeds what would be
expected on hot but less humid days. Conversely, summer-maturing crops such as corn, soy,
and cotton are sensitive to low-humidity, high-heat conditions, which are associated with
increased moisture demand from the atmosphere (Tanner and Sinclair 1983). Similarly, the
occurrence and rate of spread of wildfires have been related to these hot, dry conditions,
which desiccate the natural foliage, thus increasing the ease of combustion (Seager et al.
2015).

Depending on the impact of interest, it may be possible to collapse information about
heat and humidity into a single variable and proceed with a traditional univariate analysis.
For example, wet bulb temperature, defined as the temperature indicated by a thermometer
covered in a water-soaked cloth, is a reasonable indicator of human comfort and has been
used to identify regions in climate projections that may exceed theoretical limits for human
tolerance within the next century (Pal and Eltahir 2016; Coffel et al. 2017). Vapor pressure
deficit measures moisture demand from the atmosphere and plays a major role in crop health
(Hsiao et al. 2019) and wildfire probability (Seager et al. 2015). However, a more general
analysis of the relationship between temperature and moisture, and how it may be changing
with climate change, requires a multivariate analysis.

The underlying dependence structure between climate variables such as temperature and
humidity tends to be complex and spatially variable, and potentially inconsistent between
the center and tails of the distribution. Misspecification of this dependence structure can
lead to large errors in estimation of the probability of joint extremes (AghaKouchak et al.
2014; Zscheischler et al. 2018), so flexible statistical methods are required in order to model
both the bivariate dependence structure and how it is changing.

One common approach to estimating multivariate distributions and the associated proba-
bility of compound extremes in climate data is the use of copulas, which allow for a separation
of the marginal distributions from the dependence structure (Nelsen 2007). Copulas have
been used to estimate the joint distribution of hot and dry events in California (AghaKouchak
et al. 2014), storm surge and heavy precipitation along the United States coast (Wahl et al.
2015), and rainfall intensity and storm duration (De Michele and Salvadori 2003), among
other applications. See Hao et al. (2018) for a review of the use of copulas in hydroclimate.
While powerful, the copula approach requires choosing a copula family that encodes strong
assumptions about the multivariate distribution (e.g., about the tail dependence structure)
and typically is chosen for mathematical convenience. Copula models can further be diffi-
cult to interpret, especially if different copula families are chosen to model different regions
due to spatial variability in dependence structures (as in, e.g., Ribeiro et al. 2019). To allow
for greater flexibility, other researchers have developed nonparametric methods to estimate
bivariate exceedance probabilities (Cooley et al. 2019).

Alternatively, it may be of interest to view one climate variable as a ‘driver’ (one controls
or causes the other) and the other as the response for physical reasons, practical consider-
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ations, or both. In the case of temperature and humidity, both of these motivations apply.
Physically, the maximum (saturated) moisture content of the atmosphere is a function of
temperature. Practically, many climate analyses focus primarily on temperature, so model-
ing other variables as a function of temperature can be advantageous. This framing opens up
the use of flexible regression-based methods to model compound extreme events. We focus
on quantile regression, which provides information about the sensitivity of a given quantile
of a distribution to covariates (Koenker and Bassett 1978). Quantile regression has been
used extensively to quantify time trends in the distribution of climate variables including
daily temperature (Reich 2012; McKinnon et al. 2016; Rhines et al. 2017; Haugen et al.
2018), tropical cyclone intensity (Elsner et al. 2008), and drought (Chamaillé-Jammes et al.
2007), but the approach has typically not been used with multiple covariates as we do here.
An appeal of quantile regression is the ability to nonparametrically model how the extremal
percentiles of a conditional distribution are changing, as compared its center. The approach
is complementary to fitting an extreme value distribution as a function of time-varying
covariates (e.g., Katz et al. 2002; Ouarda and Charron 2019, for climate variables), which
requires making parametric assumptions based on asymptotic approximations but may be
used to extrapolate further into the tails of the distribution. We develop a quantile regression
model to describe the humidity distribution conditional on local temperature, and identify
changes in the relationship associated with increasing global temperatures.

Unlike dry-bulb temperature, which is the familiar temperature measurement made with
a thermometer, there are many different but interrelated measures of humidity. We quantify
humidity via dew point temperature, which is defined as the temperature to which an air
parcel would need to be cooled in order for the moisture in it to condense. Dew point has
the advantages that (1) it is measured directly by weather stations, (2) it can be interpreted
straightforwardly as a metric for the amount of moisture in the air, (3) it has a minimal diurnal
cycle so its daily average can be more straightforwardly calculated from a finite number of
point-in-time measurements, and (4) it is a good indicator of human comfort (Davis et al.
2016). Dew point and (dry-bulb) temperature are connected in two key ways. First, dew
point is physically constrained to not exceed temperature. Second, given sufficient moisture
availability from the environment, dew point will increase with increasing temperature
because a warmer atmosphere can hold more moisture. However, moisture availability is
temporally and spatially variable, leading to substantial variability in the temperature—dew
point relationship.

The characteristics of daily temperature and dew point data raise at least four model-
ing, estimation, and uncertainty quantification challenges. First, the bivariate dependence
structure between temperature and dew point is spatially variable and complex and can-
not generally be summarized by simple transformations to a bivariate normal distribution.
Second, changes in the relationship between temperature and dew point are of particular
interest to us and are likely to be a function of both local temperature and quantile, in addition
to warming global temperatures. Third, the conditional quantiles of dew point should not
exceed the associated values of local temperature. Finally, daily temperature and dew point
exhibit temporal dependence due to climate processes that drive within-season correlation,
which is important to account for in quantifying uncertainty in the estimated relationship
between temperature and the quantiles of dew point. We address the first three issues through
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Figure 1. The spatial distribution of global summary of the day stations that have sufficient data to be included
in our analysis (see main text).

our use of a regularized, noncrossing, semiparametric quantile regression model, and pro-
pose a nonparametric block bootstrap to estimate uncertainty accounting for within-season
correlations. Our focus will be on changes in dew point distributions on the hottest days,
motivated by their impacts, but the proposed methodology can also be used to study other
aspects of the temperature—dew point relationship.

The remainder of the paper is organized as follows: We begin by introducing the data
source for our application in Sect. 2. We then introduce our model based on noncrossing
penalized quantile smoothing splines in Sect. 3. The choice of regularization parameter and
estimation of uncertainty are discussed in Sects. 4 and 5. The model is first demonstrated
on synthetic data in Sect. 6 and then applied to our global dataset of weather station data in
Sect. 7. We discuss further model improvements and conclude in Sect. 8.

2. DATA

Temperature and dew point data are from the Global Summary of the Day (GSOD)
database provided by the National Oceanic and Atmospheric Administration Climatic Data
Center, which collates meteorological measurements from weather stations worldwide. Data
are typically collected on an hourly or three-hourly basis, and measurements are averaged
to create daily values within the GSOD database. We exclude any daily averages that rely on
fewer than four values (where four observations would be associated with six-hourly data).

We restrict the analysis to 1973 to near-present (2018) because the dataset is most com-
plete after 1973. As is common with weather data, stations in the GSOD database often have
missing values. Data from a given station are only used if it has at least 80% coverage over
80% of years and has data during both the first and last three years of the period 1973-2018.
Station locations that pass these criteria are not distributed equally worldwide (Fig. 1): Sta-
tions are relatively sparse outside of the USA and midlatitude Eurasia. Globally, stations
tend to be denser in regions with higher population density with the major exceptions of
equatorial Africa and much of the Indian subcontinent.

The focus of our analysis is on the warm season. We define the warm season on a station-
by-station basis as the 60 consecutive days that are, across years, on average hottest at that
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Figure2. Three examples for warm season temperature—dew point relationships. In Skagen, Denmark, the climate
is humid and maritime, so dew point tends to increase with increasing temperature. In Taipei, Taiwan, moisture
becomes limited relative to the very high summer temperatures beyond approximately 26 °C, leading to a near-
zero correlation of temperature and dew point during the warm season. Finally, at San Angelo Regional Airport
in Texas, the summer climate is influenced by the North American monsoon, leading to a negative relationship.
The one-to-one line is shown as a gray dot-dashed line and indicates the physical constraint that dew point cannot
exceed temperature.

station, thereby allowing us to perform our analysis in a consistent manner globally Figure
S1.

As discussed in the prior section, the relationship between warm season temperature
and dew point is complex and exhibits substantial spatial variability. Three representative
examples are shown in Fig. 2. In the first, from a weather station in Skagen, a coastal city in
Denmark, temperature and dew point are positively correlated throughout the warm season,
and it is not uncommon for the dew point to approach the dry-bulb temperature value; this
is, however, less common on very warm days, indicating an important nonlinearity in the
relationship for high dew point quantiles that is less evident at lower quantiles. The second
example is from a weather station in Taipei, Taiwan, where there is almost no systematic
relationship between temperature and dew point; when temperatures exceed about 26 °C,
moisture is limited and dew point does not tend to increase. Finally, the third example is
from central Texas, which is characterized by a monsoonal climate in which the atmospheric
circulation can bring cool, moist air from the Gulf of Mexico, or warm, dry air from the
interior continent, leading to a negative relationship between temperature and dew point.

3. METHODOLOGY

In order to flexibly model the dependence of dew point on temperature, as well as dis-
tributional changes in dew point, we develop a semiparametric model based on quantile
smoothing splines and estimate the model parameters enforcing the constraint that quantile
functions cannot cross. After first providing a brief overview of quantile regression, we
describe the model, its interpretation and our estimation procedure.

Quantile regression is a nonparametric modeling tool originally introduced by Koenker
and Bassett (1978). Rather than modeling the mean of a distribution as in ordinary linear
regression, quantile regression provides a model for the rth quantile conditional on a set
of covariates. In its basic formulation, the conditional quantiles g, are estimated through
minimizing
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> e (i — qr (%)) (1)
i=1

where p; is the ‘check function’, p;(#) = u(r — I(u < 0)), the y;’s are the data being
modeled as a function of the covariates, Xx;, and ¢, (-) is a generic function (in many cases
chosen to be linear).

Given the dependence of dew point on temperature, as well as the expectation that the
conditional distribution of dew point given temperature may be changing as the planet
warms, we propose to model a given quantile of dew point, g (#) on day ¢, as,

g () = Bo,c + B1.:G' (1) + 50, (T (1)) + G ()51, (T (1)) 2)

where T (¢) is the local temperature measured at the same station as the dew point and G’ (¢)
is the smoothed global mean temperature anomaly (GMTA) based on the Berkeley Earth
Surface Temperature dataset (Rohde et al. 2013). Anomalies in GMTA are calculated by
removing the mean value across the available data, but neither G’ (¢) nor T (¢) is detrended.
To calculate the smoothed GMTA, we apply a low-pass filter to the raw GMTA data using
a third-order Butterworth filter with a cutoff frequency of 1/10 years, although the results
are largely insensitive to the choice of similar filters (Figure S3). We use G’(¢) rather than
time itself as a proxy for the magnitude of anthropogenic influence on the climate to allow
for nonlinear time trends (e.g., Smith et al. 2015), although we note that for the time period
considered here, G'(¢) is dominated by a positive, largely linear trend (Figure S3). For a
given local temperature, the dependence of the dew point quantiles on GMTA is specified as
linear; this approximation is expected to hold over the period of study due to the relatively
small trends compared to internal variability. Due to this linear dependence, as well as the
smooth nature of G’(¢), the conditional quantiles of dew point evolve smoothly over time.
Although both local temperature and the smoothed GMTA are generally increasing over
time, the two are only weakly co-linear due to the large amount of variability at a local scale
that is unrelated to global temperature increases; the correlation between the two time series
has a median value of 0.14 and a 95% range of —0.09 to 0.41 across stations. The minimal
co-linearity may lead to small increases in our standard errors, but will not bias our results.
The functions sk ., k € {0, 1} are estimated via regularized noncrossing quantile smoothing
splines, discussed below.

Each term in Eq. (2) summarizes different contributions to changes in dew point dis-
tributions. The term so - (7'(¢)) captures the dependence of the dew point distribution on
local temperature when the GMTA is zero. The term G'(#)s1, . (T (¢)) then characterizes the
difference between the dew point-temperature relationship at the given GMTA value versus
when GMTA is zero, therefore capturing time-varying changes in the dependence of dew
point on temperature. The combined term s (T (¢)) 4+ B ¢ is the change in g, fora 1°C
increase in GMTA, when the local temperature is equal to 7' (¢). Our analysis of the fitted
model parameters in Sect. 7 will focus on the relative contributions of these terms.

Since the dependence of dew point on temperature varies widely as a function of local
climatic conditions, it is difficult to prespecify a parametric form for the functions sy ;.
Instead, the sy are modeled as regularized quantile smoothing splines (Koenker et al. 1994).
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The formulation of quantile smoothing splines in Koenker et al. (1994) adds a penalty on
the total variation of the first derivative of g (-) in the loss function of Eq. (1); the minimizer
of this penalized loss function is a linear spline with knots at each data value, which are
the 7'(¢) values in our application. The penalty term provides a trade-off between fit to the
data and overall smoothness of the spline; we penalize based on the total variation of the
derivative of each sy ; independently. Thus, we minimize for each quantile,

n—1 n—1

n
> o (yi - qr(ti)> +2h0e ) Idjeo ]+ Are Yy Idjer | 3)

i=1 j=1 j=1

where the df/. ’s are the second derivative operator, d’j = (0,...,0, h;l, —(h;il +
h;] ), h]]lrl, 0,...,0),and hj = T;11 —T; is the first difference of the ordered temperature
values. All vectors are denoted in boldface. The ay . are the values of the fitted splines
sk.r at each knot (recalling that there is a knot at each value of temperature), which also
correspond to the weights on each knot (see “Appendix”). The fully fit model for quantile t
is thus described by a parameter vector 8 = [Bo.r, B1,7, @0z, &1,-] of lengthm = 2 4 2n.
The constants A ; are tuning parameters that control the smoothness of the resulting fitted
splines. A small value of A will encourage a noisier function with smaller residuals, whereas
a larger value of A will encourage a smoother function with larger residuals. In practice,
when we apply our model to the representative example locations shown in Fig. 2, we find
that the location of the active knots and the slope of the spline fits are effectively unchanged
when using a single value of the regularization parameter rather than allowing for separate
selection of the regularization parameter for each spline. As such, we reduce the parameter
space for the model fit to a single A, = Ao, = A1 ; for each quantile.

Quantile regression models with a small number of data points and/or multiple covariates
tend to suffer from the ‘embarrassing’ problem of quantile crossing (He 1997), in which, for
some values of the covariates, a lower quantile crosses a higher one, leading to the implication
that the, e.g., 90th percentile of a distribution is greater than the 95th. To avoid this issue, it
is necessary to place additional constraints on the model. We take a stepwise approach (Liu
and Wu 2009) that begins with fitting the median quantile and then sequentially estimates
the outer quantiles with the constraint that any / 4+ 1 quantile cannot be smaller (and that
any [ — 1 quantile cannot be larger) than the /th quantile. Recalling that our application
has the physical constraint that dew point cannot exceed temperature, we additionally add
a noncrossing constraint for all quantiles that the estimated conditional quantile for dew
point must be less than or equal to local temperature on the same day. The model is fit
for quantiles spanning the 5th to 95th percentile in steps of five percent. The focus of our
study is on the behavior of the outermost quantiles, although they are linked to the near-
median quantiles via the noncrossing constraint. While the stepwise approach does lead to a
dependence of the quantile fits on the choice and ordering of quantiles, we employ it rather
than a synchronous estimate of all quantiles (e.g., Bondell et al. 2010) because, for the size
of our dataset, the total number of parameters becomes computationally untenable (over
500,000 for 19 quantiles).
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The fully constrained model can be solved by standard linear programming methods and
is shown in matrix form in “Appendix.” For a given value of t and )., the estimated model
coefficients 0, are solved for using an interior point method. We use the open-source solver
ECOS (Domabhidi et al. 2013) as implemented in the Python package CVXPY (Diamond and
Boyd 2016). With approximately 3000 data points per station, the solver typically converges
in 2—6 seconds on a single vCPU with an Intel Skylake processor and 3.75G memory, with
the slower convergence rates occurring at the more extremal quantiles and for larger values
of the regularization parameter ..

4. CHOICE OF REGULARIZATION PARAMETER

So far, we have not answered the question of how to choose the regularization parameters,
Ar. Lacking prior knowledge about how regularization needs may vary across space and
quantile, we take the empirical approach of selecting a best-fit A, value separately for
each station and quantile through minimizing the high-dimensional Bayesian information
criterion (BIC, Lee et al. 2014). The use of a high-dimensional BIC, rather than a standard
version, is necessary for our case because the number of potential parameters diverges with
sample size. As shown by Lee et al. (2014) and also found in our own preliminary model-
fitting process, this results in the standard BIC being too liberal for quantile regression,
leading to an overly noisy fit of the data. The high-dimensional BIC, BICH, for each quantile-
station pair is calculated as

logn
2n

Hyov 1¢ A
BIC (8>—log(n§pr(yl qf(rl>))+|8| Cn. 4)

The set S contains the d indices of the relevant predictors for a candidate model, such that
|S| = d.Inour case, this is the total number of ‘active knots’, or knots where the slope of the
fitted spline changes including both end points, for both splines, plus an additional two for
the intercept and linear term. The addition of the multiplier C, is the relevant modification
from ordinary to high-dimensional BIC. There is not an established choice for the form of
C,, beyond that it is constrained so that, as n — oo, (1) C,, — oo and (2) C, lo% — 0.
Following the suggestion of Lee et al. (2014), we find that setting C,, = log m,,, where m,
is the total number of model parameters (including nonactive knots) given a sample of size
n, works well for our application based on simulations with synthetic datasets (Sect. 6). The
‘likelihood’ (first) term in BICH(S) is calculated as if the data values were independent;
despite this, we find Eq. (4) to be a reasonable mechanism for choosing A, based on visual
inspection and synthetic simulations. We return to uncertainty quantification under temporal
dependence in Sect. 5.

In order to identify the optimal value of A for each spline fit, we first discretize A, into
10 values in log space between 0.1 and 10. After identifying the two values of A, that span
the minimum in BICH, we further discretize between them in order to gain a more precise
estimate. Performing this procedure, which tests 20 A, values across the 19 quantiles that
span the 5th to 95th percentiles takes 16—17 min on a single vCPU.
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S. UNCERTAINTY ESTIMATION

Interpretation of the magnitude and even sign of trends in climate data is complicated
by the large influence of internal variability. Fitting our model to the data as measured
provides information about how the observed set of temperatures and dew points have
changed over time, and with respect to increasing GMT. However, a different realization
of internal climate variability given the same historical forcings would have resulted in a
different set of observed data (e.g., Rind 1999; Deser et al. 2012; McKinnon and Deser
2018). To quantify the range of model fits possible if we had sampled a different sequence
of internal variability, we propose to employ a nonparametric block bootstrap that retains
the within-season correlation in the data through using a block size of one year.

Our approach uses case resampling, wherein each variable is resampled for a given
yearly block. The inter-variable and within-season temporal correlation structure is retained
since all three variables—GMTA, temperature, and dew point—are resampled as a block. In
sampling designs where some of the predictor variables can be thought of as fixed (as with the
GMTA trend in our setting), the case bootstrap will tend to produce conservative uncertainty
estimates (He 2017); however, a residual bootstrap is not applicable here because the outer
quantile functions are estimated in a stepwise fashion. It is possible that other resampling-
based methods may be adapted to assess uncertainty, such as the generalized bootstrap and
the Markov chain marginal bootstrap, as summarized in He (2017). However, we have chosen
case resampling due to its simplicity combined with its success in simulations (Figure S6).

Our block bootstrapping approach proceeds as follows:

1. For a given station, fit Eq. (2) using the original data with the methodology described
in Sect. 3 and the value of 1, identified in Sect. 4 for each quantile, 7.

2. Resample full years of the original temperature, dew point, and GMTA data with
replacement.

3. Fit Eq. (2) to the resampled data using the same values of A, as in Step 1.

4. Repeat steps 2 and 3 Npoor = 1000 times to estimate the uncertainty on all parameters.

The efficacy of this approach is demonstrated using synthetic simulations in the following
section, by comparing our bootstrap intervals to those estimated from repeatedly generating
synthetic data from the same generative process.

6. APPLICATION TO SYNTHETIC DATA

Before applying our proposed methodology to the GSOD station data, we test it on
four synthetic examples in order to illustrate the properties of the proposed estimation and
uncertainty quantification procedure. The parameters for the synthetic data are consistent
with a typical midlatitude weather station, and the differences across cases are designed to
represent different types of changes in dew point and its relationship to temperature under
warming global temperatures.
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6.1. CASE 1

Perhaps the simplest model for changes in dew point distributions is one that depends
entirely on local temperature. In this case, the dew point-temperature relationship remains
the same as GMT increases (i.e., f1,r and 51 . are zero), but the distribution of dew point
does change because the upper tail of local temperature is increasingly being sampled. In
this case, given knowledge of the dew point dependence on temperature and the trends in
temperature, it is possible to predict trends in the quantiles of dew point.

The synthetic data for this case are created through the following process:

1. Create a linearly increasing time series of daily GMTA, ranging from —0.5 to 0.5°C
over 50 years.

2. Create an autocorrelated time series of daily temperature as 7'(f) = u(t) + €(t)
where (a) () = 15°C+2G'(¢) (the scaling with G’ (¢) represents the fact that land
typically warms faster than the global mean temperature), and (b) €(¢) is a Gaussian
AR(1) time series with autocorrelation coefficient p = 0.7 and overall standard
deviation 2 °C (i.e., innovation standard deviation equal to 2,/1 — p* ~ 1.52).

3. Calculate dew point temperature as 7 (t) — A(t), where A(t) is the dew point depres-
sion (temperature minus dew point) and A(f) ~ Gamma(4, 0.047 (¢)), with the
second argument being the scale parameter in our parameterization.

4. Subselect the first 60 days from each year to represent the ‘warm season.’

The autocorrelation coefficient for this and all cases is chosen to reflect the median value
across weather stations in our dataset, but we also perform our synthetic model fits using
an autocorrelation coefficient of p = 0.95, which is the maximum found across all stations.
The synthetic model fits and uncertainties are largely unchanged (Figure S4).

In Fig. 3a, we compare the true conditional quantiles (gray lines) to the median (black
lines) and spread (shading, pointwise 95% range) of the estimated conditional 5th, 50th, and
95th quantiles based on fits to 1000 realizations of the underlying generative process. The
quantiles conditional on the GMTA being at the 25th (75th) percentile are shown as dashed
(solid) lines; in this case, with no dependence on GMTA, they overlap entirely. The spread
of the fitted splines increases at high and low temperatures because the data are more sparse,
as well as for lower quantiles, which are further removed from the constraint that dew point
cannot exceed temperature. Importantly, the fitted quantiles are essentially unbiased and do
not show a dependence on GMTA, as expected.

6.2. CASE 2

Case 2 is created with the same philosophy as Case 1, but allowing for a nonlinear
dependence of dew point on temperature. The synthetic data are created with a process
analogous to Case 1, except that A(z) ~ Gamma(s§, 0.0027 (1)), providing curvature in
the quantiles.

The fitted model is successful at capturing the nonlinear behavior through addition of
more active knots. The fits are again largely unbiased and do not show a dependence on
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(a) Case 1 (b) Case 2

-~ True quantile (GMTA = Q,)
—— True quantile (GMTA = Qs)
-~ Model fit (GMTA = Q1)
—— Model fit (GMTA = Qs)

. Data sample (GMTA < Q3)

o Data sample (GMTA > Qs)
Pointwise 95% range

Dewpoint (* C)

(c) Case 3 (d) Case 4
20 -

Dewpoint (*C)

Local temperature (*C) Local temperature (°C)

Figure 3. Four examples demonstrating model fit for synthetic data. See text for description of cases. In all panels,
one realization of temperature and dew point data from the generative process is shown; the open dots indicate data
when the GMTA is in the lower quartile, whereas the gray dots indicate that GMTA is in the upper quartile. The
gray shading shows the 95% pointwise spread across the 500 fitted conditional quantiles. The median conditional
on GMTA being at the 25th (75th) percentile is shown as a black dashed (solid) line. The true conditional quantiles
for the 25th (75th) percentile of GMTA are shown in gray dashed (solid) lines. The one-to-one line is shown as a
gray dot-dashed line and indicates the physical constraint that dew point cannot exceed temperature .

GMTA, although we note some evidence that the curvature in the 5th quantile may be slightly
underestimated by the model. Variance in the conditional quantile fits again increases with
decreased density of data at high and low temperatures, and low quantiles.

6.3. CASE 3

Another end member case would occur when increases in GMTA lead to moisture lim-
itations at a given location, but there are no changes in local temperature. In other words,
the temperature distribution is unchanged as GMTA increases, but the dew point decreases.

The synthetic data are created through the following process:

1. Create a linearly increasing time series of daily GMTA, ranging from —0.5°C to
0.5°C over 50 years.

2. Create an autocorrelated time series of daily temperature as T (t) = o + €(¢) where
o = 15°C, and €(r) is a Gaussian AR(1) time series with autocorrelation coefficient
p = 0.7 and overall standard deviation 2°C (as in Case 1).

3. Calculate dew point temperature as T (1) — A(t), where A(¢) ~ Gamma(5(G' (1) +
1),2).

4. Subselect the first 60 days from each year to represent the ‘warm season.’
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In this case, the slope of the true conditional quantiles does not change with GMTA, but
the difference between temperature and dew point for a given temperature increases with
GMTA. Now that we have introduced a dependence on GMTA for the true quantiles, the
fits conditional on the 25th (dashed) and 75th (solid) percentile of GMTA no longer overlap
and effectively capture the dependence on GMTA.

6.4. CASE 4

Finally, we have the case where moisture limitations increase with increasing GMTA, as
in Case 3, but only at high temperatures due to, e.g., desiccation of the land surface.

The synthetic data are created in an analogous way to Case 3, but with A(f) ~
Gamma(4, 0.5(G’(t) +0.5)T55(¢) + 1), where T75(¢) is the difference between T (¢) and its
75th percentile if T (¢) is in the upper quartile, and otherwise zero.

Due to the large changes in the temperature—dew point relationship in only a subset of the
dataset, we see the greatest differences between the fitted and true conditional quantiles in
this example. Nevertheless, the biases are small compared to the trends and the 95% range.
The variance in the estimator is also the largest among the case studies, but shifts in the
temperature—dew point relationship would still typically be detectable given the magnitude
of the changes in this simulation.

6.5. PARAMETER UNCERTAINTY

In our subsequent observational analysis, we do not have access to an underlying gener-
ative process. Thus, as discussed in Sect. 5, we propose to use a block bootstrap to estimate
uncertainty in our parameters. Here, we test this approach by comparing uncertainty inter-
vals estimated using the bootstrap procedure to those calculated above from generating new
datasets. In particular, for each synthetic case study, we generate a single realization from
the associated generative process, perform our block bootstrap procedure 1000 times, and
then compare the simulation-based intervals to the bootstrap-based intervals.

Estimation of conditional quantiles can fail when data are bootstrapped because the data
distribution is no longer smooth, leading to objective functions that are not differentiable
(Machado and Silva 2005; Rhines et al. 2015). To address this issue, we add a small amount
of ‘jitter’ that is uniformly distributed around zero with a half-width of 0.005°C to the
bootstrapped datasets. A similar issue arises in our analysis of the observations, but because
all data are rounded to 0.1 °F. In that case, we increase the half width to 0.05 °F, or 0.03 °C,
to account for the uncertainty in the true value.

As discussed above, the case bootstrap is likely to lead to conservative uncertainty esti-
mates because one of our covariates, GMTA, can be viewed as fixed. In contrast, since
we are using a block size of one season in order to retain within-season autocorrelation,
we only have 50 synthetic ‘years’ from which to sample from; if this number of years is
insufficient to sample the true variability in the process, the bootstrap would underestimate
the uncertainty in the parameters.

In general, we find that the conservative nature of the case bootstrap dominates, and
the bootstrapped confidence intervals are larger than the intervals estimated from sampling
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from the underlying generative process. We find a median (mean) overestimation of the
width of the 95% pointwise intervals by 11% (13%), although there is substantial variability
across case, dew point quantile, and temperature value (Figure S6), with lower quantiles
more likely to show under- rather than overestimation of the 95% interval.

7. APPLICATION TO WEATHER STATION DATA

We now turn our attention to the daily warm season temperature and dew point data that
motivated our methodology. We first analyze the three stations of Fig. 2 in order to provide
intuition for the model parameters. Due to the high-dimensional nature of the model, we then
focus on a small set of summary statistics to examine across all 2416 stations worldwide.

7.1. INDIVIDUAL STATION ANALYSIS

During the warm season in Skagen, Denmark (Fig. 4a), the model captures the apparent
increase in dew point with temperature as well as an inflection point around 17 °C where dew
point increases more slowly with temperature. In the upper half of the temperature distribu-
tion, the conditional quantiles exhibit minimal dependence on the GMTA, as indicated by
comparing the black dashed and solid lines, which show the fitted quantiles conditional on
GMTA being at the 25th (—0.22 °C) and 75th (0.21 °C) percentile, respectively. Thus, dew
point trends are largely connected to trends in local temperature. In the remaining analysis,
we primarily focus on dew point trends conditional on high temperatures, as measured by
the 95th percentile, since impacts of humidity tend to be greatest at high temperatures in
the warm season.

We now quantitatively assess the contribution to changes in dew point of the terms
linearly dependent on GMTA, B1 1 + 51, (T (¢)), versus the term capturing the dew point
dependence on local temperature for a GMTA of zero, so - (T (¢)). The change in dew point
due to the GMTA terms is calculated by subtracting the fit conditioned on a GMTA being at
the 25th percentile from it being at the 75th percentile, with local temperature fixed at the
95th percentile over the full period. The change in dew point due to the local temperature
term is calculated as the difference between the value of sy , at the 95th percentile of local
temperature in the first versus second half of the record. The uncertainty in the two terms
is shown as the analog of one standard error (68%) range across the bootstrap samples,
although we calculate it as the difference between the 84th and 16th percentiles of the
bootstrap distribution because of the asymmetry present in many of the intervals. We focus
on the 68% range for the observational analysis because uncertainty due to internal variability
remains large compared to the signal of trends in dew point since 1973. As expected from our
visual inspection of the spline fits, the changes in dew point conditional on the 95th percentile
of temperature are largely explained by trends in local temperature, with the contributions
linearly related to GMTA summing to near-zero (Fig. 4b). Furthermore, changes in dew
point on hot days are relatively consistent across quantiles, with the dew point during hot,
dry days increasing at the same rate as that during hot, humid days. While not the focus of
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Figure 4. Model fits to the same warm season data shown in Fig. 2. The left column is analogous to the scatter plots
for the synthetic data in Fig. 3: The open dots indicate data when the GMTA is in the lower quartile, whereas the
gray dots indicate that GMTA is in the upper quartile. The spline fit conditional on GMTA being at the 25th (75th)
percentile is shown as a black dashed (solid) line; splines fits are only shown spanning the range of temperature
for the lower (upper) quartile of GMTA. The one-to-one line is shown as a gray dot-dashed line and indicates
the physical constraint that dew point cannot exceed temperature. The black vertical line is the 95th percentile
of temperature over the full record, whereas the dashed (solid) gray lines are the 95th percentiles from the lower
(upper) 50% of GMTA. The middle column shows the empirical contribution of the two types of model terms to
changes in dew point between the first and second half of the record, conditional on temperature being at the 95th
percentile; vertical bars span the 16th-84th percentile range estimated through bootstrapping. The right column
shows a smoothed version, as well as the total change, calculated through projection onto the first six Legendre
polynomials. The legend in the right column also applies to the middle column, where it is omitted for clarity.

this analysis, the spline fits do indicate changes in the temperature—dew point relationship for
low quantiles of temperature, with dew points decreasing for a given value of temperature.

In contrast, both Taipei, Taiwan (Fig. 4d) and San Angelo, Texas (Fig. 4g) exhibit more
complex behavior. In Taipei, because dew point does not exhibit a dependence on temper-
ature at temperatures over approximately 26 °C, changes in local temperature alone cannot
explain changes in dew point (if such changes exist). At low quantiles of dew point, there is
evidence of drying with increasing GMTA, but the changes at high quantiles of dew point are
minimal. Finally, the underlying relationship between temperature and dew point is negative
in San Angelo, so increasing local temperature generally leads to decreases in dew point,
while the sensitivity to GMT switches from negative for low dew point quantiles to slightly
positive at high quantiles.

Because there is no cross-quantile smoothness constraint enforced during the fitting
process, yet we expect relatively smooth behavior across quantiles, we perform a final
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post-processing step to smooth the quantile fits through projecting them onto the first six
Legendre polynomials (Fig. 4c, f, i). The Legendre polynomials are a natural basis for
smooth one-dimensional functions (Gibson et al. 1992; McKinnon et al. 2016).

7.2. LARGE-SCALE SPATIAL PATTERNS: HOT, DRY DAYS

Having analyzed three stations, we would like to zoom out and understand the large-
scale spatial patterns associated with trends in dew point, as well as the relative contribution
from each model term. To do so, we summarize the fits at each station with two sets of
values: the change in the Sth and 95th percentiles of dew point conditional on the 95th
percentile in temperature. In other words, we inspect the changes in dew point on the
hottest/driest days and hottest/most humid days. The contributions to the changes in dew
point are calculated in the manner described in Sect. 7.1, and the values presented are from
the smoothed quantile fits (i.e., the leftmost and rightmost points for each line in Fig. 4c,
f, 1). The spread in parameter values that could occur due to different sampling of internal
variability is calculated separately for each station using case resampling; however, unlike
the results presented for the three example stations, we only calculate 200 bootstrap samples
for each station due to the computational demands of our model and the large number of
stations. Through resampling our 1000 bootstrap samples calculated for our three station
examples in Fig. 4, we estimate that this results in a median underestimation of width of our
confidence intervals of 2% (varying by case and percentile level, with 95% range of 14%
under-estimation to 10% overestimation). We assess significance against the null hypothesis
of no trend in dew point for each component of the model: the trends dependent on changes
in GMTA, versus those dependent on local temperature. To do so, we estimate a two-sided p
value as 2 min[Pr(é * < 0), Pr(é * > 0)], where é * is the bootstrap estimate of the parameter
of interest. This corresponds to inverting the bootstrap percentile interval, i.e., if the 1 — «
interval has zero as an endpoint, then the p value is «. In order to account for multiple
hypothesis testing across our stations, quantiles, and model terms, we then limit the false
discovery rate (Benjamini and Hochberg 1995) to 0.1 for our assessment of significance,
which is associated with a local significance cutoff at approximately the 0.01 level.

Since 1973, hot, dry days have generally gotten more humid in the tropics and high
latitudes, and slightly drier in the already dry subtropics (Fig. Se). This pattern is evident in
both the component of the trends that are linearly dependent on changes in GMTA (Fig. 5¢),
and those that are a function of changing local temperature (Fig. 5a).

The majority of the spatial structure in dew point trends emerges due to changes in the
dependence of dew point on temperature with increasing GMTA (like synthetic cases 3
and 4). There are some regions for which trends in dew point are driven by trends in local
temperature (like synthetic cases 1 and 2), without a change in their relationship, particularly
around Finland, as well as cases where the two types of changes have effects of opposite
signs, particularly on the coasts around the Mediterranean Sea.

There is a weak, negative relationship on a station-by-station basis between warm season
average dew point depression (temperature minus dew point, shown in Figure S2), and
trends in the dew point on hot, dry days (shown in Fig. Se, Pearson’s correlation coefficient
of —0.2), indicating that moisture trends on hot, dry days are, to a limited extent, enforcing
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Figure 5. Changes in dew point on hot, dry (left) and hot, humid (right) days. a, b The change in dew point that
can be explained by increasing local temperatures with no change in GMTA. ¢, d The change in dew point due to
a change in the temperature—dew point relationship as a function of GMTA. e, f The sum of the two contributions,
illustrating total change in dew point. Changes in dew point for each component identified as significant through
limiting the false discovery rate to 0.1 are shown as circles, otherwise they are shown as plus signs.

climatological patterns. This ‘drier get drier’ effect is clear in regions like the Interior
Western United States, the Iberian Peninsula, and interior Australia. However, there are
notable deviations such as the substantial drying in eastern China and the southeastern
United States, regions that are climatologically humid.

7.3. LARGE-SCALE SPATIAL PATTERNS: HOT, HUMID DAYS

The latitudinal pattern of trends in hot, humid days is similar to that for hot, dry days,
with the tropics and high latitudes showing the greatest increases, although the trends in
the subtropics are more likely to be slightly positive than negative (Fig. 5f). Analogous to
trends in the 5th percentile, most of the spatial structure emerges due to changes in the
temperature—dew point relationship (Fig. 5d) rather than sampling warmer temperatures
with the same underlying relationship (Fig. 5b). The magnitude of the overall trends tend
to be muted compared to those for the Sth percentile in dew point, in part because the upper
quantiles of dew point are additionally constrained by not exceeding local temperature.
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Some of the regions of greatest moistening are Finland and the Baltic states, where we
do see a dominant contribution from changes in local temperature, and the northern Great
Plains in the USA, where the trends are largely related to increases in GMTA. It is difficult to
discern large-scale patterns in regions with sparse measurements, but the meridional pattern
of moistening in the tropics and higher latitudes does appear evident in eastern Siberia,
western Africa, western Australia, and Patagonia, with contributions primarily from changes
in GMTA.

Drying of the most hot, humid days may help ameliorate some of the human health
impacts of warming, especially in places that are climatologically humid. There is some
evidence of this in western Europe, where recent heat waves have typically been dry; how-
ever, because drier soils typically have allowed for hotter (if drier) heat waves (Miralles
et al. 2014; Whan et al. 2015), the extent to which drying reduces negative impacts is not
immediately clear.

8. SUMMARY AND DISCUSSION

Some of the greatest impacts of climate change may be felt through the interaction of
two or more variables, such as temperature and humidity. It is thus imperative to develop
flexible statistical methods to better describe the observed nature of these relationships, with
particular interest in the probability of joint, or compound, extremes.

Here, we have proposed to model the relationship between dew point, local temper-
ature, and GMTA using nonparametric quantile smoothing splines. Through noncrossing
constraints, we also encode the physical property that dew point cannot exceed local temper-
ature. The method is tested using synthetic examples that isolate different types of changes
in dew point-temperature relationships and appears to perform well except perhaps for an
extreme case of large changes at high percentiles of temperature (Case Study 4). We also test
and employ a nonparametric block bootstrap to quantify the uncertainty in our parameter
estimates related to random sampling.

The application of our model to a near-global dataset of daily temperature and dew point
over land provides important insights into changes in humidity on the hottest days. With
the exception of small regions of western Eurasia, trends in low and high dew points on
hot days appear to largely reflect changes in the temperature—dew point relationship, rather
than simply following changes in local temperature. This further underscores the need for
additional work developing models to describe changes in their relationship, since we may
not be able to make proper predictions for future dew points using trends in local temperature
alone.

There are a number of avenues for promising future work. First, our current approach
does not take advantage of the spatial correlation structure that is inherent in climate data.
This has at least two important implications. One is that there is a likely unrealistic lack
of spatial smoothness in parameter estimates in some geographic locations (Fig. 5), and
we are unable to provide parameter estimates for unobserved locations. Prior work using
quantile regression has addressed this challenge through, e.g., fitting a spatial model to the
parameter estimates estimated at each data location (Reich et al. 2011). Spatial information
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has also been incorporated to ensure spatial smoothness in the underlying quantile function
through the use of spatial basis functions (Franco-Villoria et al. 2019) or the application of a
spatially correlated errors model (Lum and Gelfand 2012). Each of these approaches involves
borrowing strength from nearby spatial locations and allows for inferences about locations
where data are unavailable. However, it is not straightforward to apply these methods to our
application for a number of reasons. First, the problem is high-dimensional with over 2000
station locations and thousands of parameters estimated at each station (although we note
the latter could be reduced through summarizing the location of the active knots and slope
of the intervening linear spline), leading to computational challenges. Second, the spatial
covariance structure is likely to be nonstationary and anisotropic due to factors including
continental geometry, the prevailing wind directions, and topography, so would itself require
acomplex model. Finally, we note that the extreme sparseness of data in some regions would
limit the usefulness of interpolated parameter estimates, which will be highly variable. The
second important implication is that, because the underlying data are themselves spatially
correlated, the uncertainty in our parameter estimates should also exhibit spatial correlation.
This is also a challenging problem to fully account for in the multivariate case with complex
spatial covariance, but might be partially addressed without a full spatial model through
performing our bootstrap resampling such that the full spatial domain is resampled in the
same way in each iteration. These implications are best explored on a regional scale with a
smaller dataset and will be investigated in future work.

As a second avenue for future work, it may be possible to enforce additional structure on
the regularization parameter, A. Recall that the regularization parameter controls the relative
importance of the residuals versus the smoothness of the fitted quantiles in the minimization.
Stations with greater variability in dew point will tend to have larger residuals from the
fitted quantiles, so a larger regularization parameter will be required to produce the same
smoothness in the conditional quantiles. Indeed, we find that the fitted values of A across
stations show a positive relationship to the magnitude of both temperature and dew point
variability (Figure S5). Rather than selecting the value of X for each station-quantile pair
through minimizing an information criterion, as we do here, one could enforce a dependence
on dew point variability. Interestingly, we do not find meaningful structure in the values of
A as a function of quantile, and some exploratory data analysis indicates that using the same
A at all quantiles for a given station has minimal impact on the result.

Finally, while analysis of the observations provides us with key information about current
trends, they cannot alone inform expected future changes. For this application, it is advanta-
geous to turn to climate models and their future projections. However, climate models typi-
cally exhibit biases in their variability, including the covariability between temperature and
humidity (Schoof et al. 2019). To produce better calibrated bivariate simulations of projected
temperature and dew point, it may be possible to combine the observed temperature—dew
point relationships from this study with climate model-based estimates of changes in their
relationship.

Our understanding and modeling of compound climate extremes remains nascent. The
model proposed here provides a tool with which to parse changes in the temperature—dew
point relationship from trends in dew point that can be directly explained by increasing
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temperatures. Similar approaches may be advantageous for other sets of variables with
strong underlying covariance, such as temperature and air quality.

9. DATA AND CODE AVAILABILITY

GSOD weather station data are publicly available at https://www 1.ncdc.noaa.gov/pub/
data/gsod/. Code is publicly available at https://github.com/karenamckinnon/humidity_
variability.
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A. MATRIX FORM OF NONCROSSING QUANTILE
SMOOTHING SPLINES

In order to solve for the parameters in our regularized quantile smoothing splines model
with noncrossing constraints, we write it in standard form as follows:

mincTzs.t.
Az=0b 5
Gz<h

and describe each term in this optimization problem below.

Throughout this appendix, bold face implies a two-dimensional matrix, whereas normal
script indicates a vector or, in the case of T and A, a constant. Note that this stands in contrast
to the main text, where vectors are bolded, in order to more clearly indicate the relevant
matrix operations.

The parameter vector z and cost vector ¢ are,

7= [9+ 0~ et e utum v" v_]
(6)
c= |:0m Om 1y =71y Aly—1 Ay Al Aﬂln—l:l >

where the m model parameters are contained in 6 and the remaining components of z are the
values of the residuals (¢’s) and the second derivatives of the o (1’s) and «; values (v’s),
which are the fitted splines at each knot. The superscripts + and — denote the magnitude of
the positive and negative components, respectively, such that, e.g., # = 6T — 0. The cost
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vector contains the minimization of Eq. (3), with no penalty on the values of 6, a quantile-
weighted penalty on the residuals, and the A-weighted penalty on the second derivatives of
the splines.

The equality term, Az = b, is written as,

X —X 1n><n _lnxn 0n><(n—1) 0n><(n—l) 0n><(n—l) 0n><(n—l)
A= D0 _DO 0n><n 0n><n _1n><(n—l) 1n><(n—l) 0n><(n—l) 0n><(n—l)
Dl _Dl 0n><n 0n><n 0n><(n—l) 0n><(n—1) _lnx(n—l) 1n><(n—1) (7)

b= [y 0,1 On—l] 7T

where the matrix X is the design matrix for Eq. (2), the Dy, are the second derivative operators
for the spline coefficients, ok, and the length (dimensions) of the vectors (matrices) of zeros
and ones are indicated by the subscripts. Thus, the first row of A contains the constraint that
the data minus the conditional quantile fit equals the residuals. The second and third rows
define that the second derivate of the spline coefficients equal u and v, respectively.

Finally, all noncrossing constraints, as well as the standard constraint that all are in the
inequality term, Gz < h. Define ¢ = 2m + 2n 4+ 4 x (n — 1) as the length of z. Then, for
the median quantile, T = 0.5,

G — _lcxc
XX 0n><n 0n><n 0n><(n—1) 0n><(n—l) 0n><(n—l) 0n><(n—1) (8)

h=[o.7].

where T is the vector of sorted local temperatures. The first row of G constrains all parameter
values in z to be positive, whereas the second row ensures that the conditional quantile of
dew point does not exceed temperature.

For quantile levels above the median, 7; = 0.5 + §;, where §; is positive and increas-
ing, define ¢ as the best fit conditional quantile for the 7;_; quantile. Then the inequality
constraint is slightly modified to:

_lcxc
G = X X 0n><n 0n><n 0n><(n—l) 0n><(n—l) 0n><(n—l) Onx(n—l)
-X X 0n><n 0n><n 0n><(n—l) 0n><(n—l) 0n><(n—l) Onx(n—l) (9)

h:[OCT—q],

where the last row in G is the noncrossing constraint for consecutive quantiles.

Finally, for quantile levels below the median, t; = 0.5 + §;, where §; is negative and
decreasing, define g as the best fit conditional quantile for the 7;_; quantile. In this case,
we can remove the constraint that the conditional dew point quantile is less than the local
temperature because it will already be contained within the noncrossing constraint. Thus,
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the inequality constraint is:

G — _lcxc
X -X 0n><n 0n><n 0n><(n—l) 0n><(n—1) 0nx(n—l) 0n><(n—l) (10)

h:[Ocq]
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