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A B S T R A C T   

Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence 
cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. 
These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent 
oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, 
utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase path-
ways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, 
comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. 
With the advent of new technologies there is growing interest in identifying these different lipid mediators and 
characterising their roles in health and disease. This review brings together contributions from some of those at 
the forefront of research into lipid mediators, who provide brief introductions and summaries of current un-
derstanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered 
include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid 
desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving medi-
ators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.   

Abbreviations: ARA, Arachidonic acid; COX, cyclooxygenase; CYP, cytochrome P450 mixed function oxidase; DiHODE, dihydroxyoctadecadienoic acid; DiHOME, 
dihydroxyoctadecamonoenoic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; ELV, elovanoids; eLOX3, epidermis-type 
lipoxygenase 3; EDP, epoxydocosapentaenoic acid; EpETE, epoxyeicosatetraenoic acid; EET, epoxyeicosatrienoic acid; EpODEs, epoxyoctadecadienoic acid; EpOME, 
epoxyoctadecamonoenoic acid; FAHFA, fatty acid ester of hydroxy fatty acid; HpETE, hydroperoxyeicosatetraenoic acid; HDoHE, hydroxydocosahexaenoic acid; 
HEPE, hydroxyeicosapentaenoic acid; HETE, hydroxyeicosatetraenoic acid; HODE, hydroxyoctadecadienoic acid; HOTrEs, hydroxyoctadecatrienoic acid; LOX, lip-
oxygenase; MaR, maresin; NEO-PUFA, non-enzymatically oxidized PUFA; (N)PD, (neuro)protectin; OXLAM, oxidized linoleic acid metabolite; OGD, oxygen-glucose 
deprivation; PUFA, polyunsaturated fatty acid; Rv, resolvin; SASP, senescence-associated secretory phenotype; sEH, soluble epoxide hydrolase enzymes; SPM, 
specialized pro-resolving mediator; TAG-Est, triacylglycerol-estolides. 
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1. Introduction 

Historically, lipids have been associated with two basic functions, as 
structural components of membranes and a source of metabolic energy. 
A third function as signalling and regulatory “bioactive lipid” molecules 
has more recently emerged, where a change in the concentration of the 
lipid leads to alterations in cellular function. A wide variety of lipids 
have been shown to exhibit bioactive properties, including glycerolipid- 
derived molecules, such as phosphatidic acid, monoacylglycerols, lyso- 
phosphatidic acid, and platelet activating factor; the sphingolipids, 
such as ceramide, sphingosine, sphingosine-1-phosphate, ceramide-1- 
phosphate and lyso-sphingomyelin; and the endocannabinoids [1–4]. 
However, although the bioactive role of lipids has only recently been 
more widely appreciated, the field of bioactive lipids arguably began in 
1935 with the seminal work of Ulf Svante von Euler, who first identified 
the actions of substances that he would name “prostaglandins” [5]. 
Following the structural elucidation of prostaglandins in the early 1960s 
by Bergstrŏm, Samuelsson, and co-workers, the omega-6 poly-
unsaturated fatty acid (PUFA), arachidonic acid (ARA, 20:4n-6) was 
identified as the precursor of series 2 prostaglandins, and soon after 
dihomo-γ-linolenic acid (DGLA, 20:3n-6) and eicosapentaenoic acid 
(EPA, 20:5n-3) were shown to form series 1 and series 3 prostaglandins, 
respectively [6]. Since this early work vast repertoires of fatty acid- 
derived bioactive lipid mediators have been identified. 

Fatty acids undergo a wide variety of chemical modifications to 
greatly expand their functional repertoire and biological activities. The 
term “oxylipin” was introduced in 1991 to refer to fatty acid-derived 
oxygenated compounds produced by at least one mono- or dioxyge-
nase oxygenations [7], and is now used to encompasses a very wide 
variety of bioactive lipid mediators. Oxylipins can be formed either via 
enzymatic or nonenzymatic free-radical-catalyzed pathways. Three 
main enzymatic pathways involved in the production of oxylipins are; 1) 
cyclooxygenase (COX, prostaglandin endoperoxide synthase, prosta-
glandin H synthase) and subsequent synthases; 2) lipoxygenase (LOX); 
and 3) cytochrome P450 mixed function oxidase enzymes (CYP) [8], 
which are described in Section 2. Oxylipins derived from C18 PUFAs, 
such as linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3) 
are octadecanoids, whereas those derived from C20 fatty acids such as 
ARA, DGLA and EPA are eicosanoids, and the classical eicosanoids 
include the prostaglandins, thromboxanes, and leukotrienes. Docosa-
noids are derived from C22 fatty acids, such as adrenic acid (AdA, 22:4n- 
6), docosapentaenoic acids (DPAs, 22:5n-3 or 22:5n-6), and docosa-
hexaenoic acid (DHA, 22:6n-3) [4]. 

The focus of this review is on the more recently identified enzy-
matically and nonenzymatically derived oxylipins, and consequently 
does not discuss the classical eicosanoids. Readers interested in this 
topic are directed to a number of excellent reviews [9–11]. This review 
brings together contributions from those at the forefront of their 
respective fields and reviews current understanding of the structure and 
functions of the main classes of nonclassical oxylipins, with particular 
focus on those derived from omega-3 and omega-6 PUFAs. The review 
begins with an overview of enzyme systems responsible for oxylipin 
biosynthesis, and then details the biosynthesis of the long-chain omega- 
6 and omega-3 PUFAs and recent work investigating the role of fatty 
acid desaturase enzymes in this process, before moving to octadeca-
noids, particularly those derived from LA, the specialized pro-resolving 
mediators (SPMs) derived from EPA, DPAn-3 and DHA, elovanoids 
(ELVs) derived from very long-chain PUFAs, nonenzymatically derived 
oxylipins, and concludes with the fatty acid esters of hydroxy fatty acids 
(FAHFAs). 

2. Enzymatic oxylipin biosynthesis 

Enzymatic biosynthesis of oxylipins occurs via multistep processes 
involving a range of pathways, which are initiated by the initial de- 
esterification of the fatty acids from membrane phospholipids, 

catalysed by enzymes from the phospholipase A2 superfamily [12,13]. 
In the following section a brief overview of the role of the cyclo-
oxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) en-
zymes in the biosynthesis of oxylipins is presented. For more detailed 
coverage the following reviews provide excellent coverage of the topic 
[10,14–16]. 

2.1. Cyclooxygenase 

Cyclooxygenases (COXs) are heme-containing enzymes possessing 
both oxygenase and peroxidase activities. COX catalyses the initial 
oxygenation of non-esterified fatty acids to produce prostaglandin H 
(PGH), a short-lived intermediate, which is further metabolised into 
prostanoids, such as the prostaglandin D, E and F series (PGD, PGE, 
PGF), prostacyclins (PGI), thromboxanes, and hydroxy fatty acids [17]. 
Vertebrates have two principal COX isoforms: COX-1 and COX-2 [18]. 
COX-1 is constitutively expressed in nearly all tissues, although partic-
ularly in blood vessels, smooth muscle cells, interstitial cells, platelets, 
and mesothelial cells [19]. COX-2 is an inducible enzyme in most tissues 
in response to inflammatory stimuli; however, constitutive expression 
has been observed in blood vessels, brain, gastrointestinal tract, kidney, 
lung, and thymus [20]. COXs oxygenate a wide range of unsaturated 
fatty acids and fatty esters [21]. 

2.2. Lipoxygenase 

Lipoxygenases (LOXs) are a family of dioxygenases that catalyse the 
formation of hydroperoxyl fatty acids and their metabolites, such as 
leukotrienes, lipoxins, and the SPMs, including resolvins (Rvs), pro-
tectins (PDs) and maresins (MaRs) derived from various omega-3 PUFAs 
[4], which are described in detail in Section 4. 

There are six functional LOX genes in the human genome, which are 
expressed across a range of tissues [15]. LOXs were traditionally clas-
sified based on the position of the hydroxyl and hydroperoxy fatty acids 
they produce from ARA e.g., 5-LOX forms 5-hydroperoxy-eicosatetrae-
noic acid (5-HpETE), but not 5-hydroxyeicosatetraenoic acid (5- 
HETE), the latter being obtained through reduction of 5-HpETE by 
glutathione peroxidase. However, this nomenclature has limitations as 
the position varies according to different chain lengths of the substrates 
and some LOXs act at more than one position [11]. Furthermore, the 
most recently characterised LOX, epidermis-type lipoxygenase 3 
(eLOX3) is unconventional in that it has limited lipoxygenase activity, 
and therefore the addition of gene names in addition to the enzyme 
name has been suggested [15]. Lipoxins, Rvs, PDs, and MaRs are formed 
by combinations of LOX activities and sequential epoxygenase and hy-
drolase activities, which generate epoxyalcohols (hepoxilins) and 
epoxyketones (eoxins). Hepoxylins are formed from 12-HpETE and 
eoxins from 15-HpETE and hepoxilins are epoxyalcohols, and eoxins are 
14,15-analogs of leukotrienes [4]. 

A further class of metabolites generated from omega-3 PUFAs by LOX 
are the electrophilic fatty acid oxo-derivatives (EFOX), with 7-oxo- 
DHA,7-oxo-DPAn-3 and 5-oxo-EPA produced from DHA, DPAn-3 and 
EPA, respectively [22,23]. EFOXs display a wide range of anti- 
inflammatory actions, including acting as agonists nuclear receptors, 
such as the peroxisome proliferator-activated receptors (PPAR) and 
inhibiting cytokine production in activated macrophages [23]. 

2.3. Cytochrome P450 mixed function oxidase 

The third oxidative PUFA pathway involves the cytochrome P450 
mixed function oxidase (CYP) enzyme activity as monooxygenases and 
catalysing epoxidation, hydroxylation or allylic oxidation reactions, 
which metabolise PUFAs to lipid mediators with many diverse biological 
functions at both the systemic and cellular levels [24,25]. Regio- and 
stereoisomers of epoxyeicosatrienoic acids (EETs) and hydrox-
yeicosatetraenoic acids (HETEs) are produced from ARA, whereas those 
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derived from EPA include epoxyeicosatetraenoic acids (EpETEs) and 
hydroxyeicosapentaenoic acids (HEPEs), and epoxydocosapentaenoic 
acids (EDPs) and hydroxydocosahexaenoic acids (HDoHEs) from DHA 
[25]. EPA is the preferred substrate for the majority of CYP isoforms, 
with DHA and ARA metabolized at similar rates [25]. 

3. Omega-3 and Omega-6 PUFA Biosynthesis 

Since lipid mediators originate from PUFAs, this section will cover 
their in vivo synthetic pathways. The omega-3 and omega-6 families of 
PUFAs were first named by Ralph T. Holman [26], and the biosynthesis 
of their longer-chain versions, such as ARA and DHA, proceeds via a 
series of alternating position-specific desaturation (fatty acid desaturase 
genes, FADS1 and FADS2, located at 11q12–13.1) and elongation 
(elongase genes, ELOVL2 at 6p24.2 and ELOVL5 at 6p12.1) steps from 
LA and ALA, respectively, and are summarised in Fig. 1. In the following 
section J.T. Brenna describes the biosynthesis of PUFAs and the role of fatty 
acid desaturase enzymes (FADS). 

Fatty acids were likely the first metabolites that were routinely re-
ported as a panel of metabolites because of the early development of gas 
chromatography [27]. PUFA desaturation was presumed to be mediated 
by three desaturation enzymes known as the 6, 5, and 4 desaturases. 
However, because of the wide variety of similar structural fatty acids, 
the specificity of these enzyme activities awaited the widespread 
availability of molecular tools. In recent years we have investigated the 
structural specificity of the FADS genes using specialized tools.We used 
genetically transformed yeast or human cells, both devoid of 6-desatur-
ase activity, and a facile method for unambiguously determining double 
bond position without chemical standards [28,29] to investigate FADS1, 
FADS2, and FADS3 structural specificity. In our transformed human cell 
experiments, human MCF-7 cells were transformed to stably express 
FADS1, FADS2 or an empty vector to investigate the function of FADS1 
and FADS2 classical transcripts. In nearly all studies, all three cell lines 
were incubated with a single test fatty acid and the product measured.In 
this way we could be confident that findings of no activity in one enzyme 

vs. activity in the other was reflective of differential specificity. We have 
also discovered functions of alternatively spliced (nonclassical tran-
scripts), beyond the scope of this brief review [30]. 

FADS3 is not a PUFA desaturase.The fatty desaturase gene cluster on 
chromosome 11 arose by gene duplication, and consists of three similar 
genes:FADS1, FADS2, and FADS3 [31].Each consists of 12 exons and 11 
introns, with FADS1 and FADS2 arranged head-to-head upstream of 
FADS3.FADS 1 and FADS2 were identified as catalyzing Δ5-desaturation 
[32] and Δ6-desaturation [33], respectively, in early work.Because of its 
genetic similarity, FADS3 was assumed to have PUFA desaturase activ-
ity.However, extensive searches for its substrates led to only two func-
tions, one against a relatively rare fatty acid, and the other a global 
effect.FADS3 was identified as a “back-end” desaturase that catalyzed 
the conversion of vaccenic acid (11E-18:1) to the conjugated 11E,13Z- 
18:2 in the rat mammary gland [34].Vaccenic acid is the most abun-
dant trans fatty acid in cow's milk, though the diene product is below 
0.1% of fatty acids in rat milk.Alterations in the fatty acid profiles of 
brain tissue in FADS3 knockout mice was also reported [35].Recently, 
with the aid of FADS3-knockout mice, FADS3 was shown to be a Δ14- 
desaturase for the sphingoid base, yielding 4E,14Z-sphingodienine [36], 
apparently consistent with its role as a back-end desaturase.This pre-
cursor/product pair is readily detected in normal tissue, thus showing 
FADS3 in vivo is not a desaturase for PUFAs. Thus, FADS1 and FADS2 
appear to be responsible for all PUFA desaturation in mammals. 
Compared to their classical biochemical roles, the specificities of the 
classical transcripts are FADS1 and FADS2 are very different in their 
range of specificities and substrates, with FADS1 far more specific than 
FADS2. 

In mammalian systems, FADS1 and FADS2 activity toward a 
particular omega-6 PUFA always shows activity toward the n-3 struc-
tural analogue, and usually at a higher kinetic rate.That is, presence of a 
double bond at the n-3 position increases activity.As a shorthand we will 
refer to substrates as pairs. 

FADS1.FADS1 Δ5-desaturase activity appears to be entirely toward 
C20 PUFAs.The major activity is toward 20:3n-6/20:4n-3 to yield 20:4n- 

Fig. 1. Biosynthesis of omega-3 and omega-6 PUFAs. The biosynthesis of longer-chain omega-3 and omega-6 PUFAs proceeds via a series of alternating position- 
specific desaturation and elongation steps from ALA and LA, respectively. FADS1 and FADS2 appear responsible for all omega-3 and omega-6 PUFA desaturation 
in mammals, with FADS1 exhibiting Δ5-desaturase activity, and although FADS2 was originally identified as the Δ6-desaturase, it has subsequently been shown to 
also possess Δ4- and Δ8-desaturase activities. Octadecanoids are lipid mediators derived from C18 PUFAs, such as ALA or LA, eicosanoids are derived from C20 
PUFAs such as DGLA, ARA or EPA, and docosanoids are derived from C22 PUFAs such as DPAn-3, and DHA. See text for further details. 
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6 (ARA) and 20:5n-3 (EPA), respectively; in essential fatty acid defi-
ciency, FADS1 Δ5-desaturates 20:2n-9 to 20:3n-9 (Mead acid).When 6 
desaturase activity is absent, FADS1 Δ5-desaturates 20:2n-6 to 
5,11,14–20:3 (sciadonic acid), a structural analogue of ARA 
(5,8,11,14–20:4).Owing to the absence of the double bond at position 
8–9, sciadonic acid is not a substrate for synthesis of prostaglandins, 
leukotrienes, or thromboxanes. Sciadonic acid is found in MCF-7 human 
breast cancer cells [37], long known to have no Δ6-desaturase activity, 
as well as in vivo in human breast cancer biopsies [38].Cats naturally 
have very low Δ6-desaturase activity [39] and make 5,11,14–20:3, and 
possibly 7,11,14–20:3 via elongation of a Δ5-desaturated 11,14–18:2, as 
originally reported [40]. 

We reported evidence that FADS1 can insert a double bond at posi-
tion 7 to make a rare PUFA, 7,11–20:2 [41].FADS1 has no activity to-
ward normal or branched chain (iso, anteiso) saturated fatty acids [42]. 
Integrating the evidence for FADS1 function and genetics, FADS1 ap-
pears to function primarily to synthesize and regulate the levels of its 
immediate product, the key eicosanoid precursor fatty acid, ARA.In this 
respect, FADS1 might be accurately called “ARA synthase”. 

FADS2. FADS2 was originally identified as the Δ6-desaturase cata-
lyzing 18:2n-6/18:3n-3 conversion to 18:3n-6/18:4n-3.FADS2 was first 
identified as having Δ8-desaturase activity toward 20:2n-6/20:3n-3 to 
make 20:3n-6/20:4n-3 [43].Later, FADS2 was shown to have Δ4-desa-
turase activity toward 22:4n-6/22:5n-3 to yield 22:5n-6/22:6n-3 [44]. 
This activity is shown most clearly for 22:4n-6/22:5n-6 in pulse-chase 
experiments because of the low level of endogenous substrates.Synthe-
sis of DHA via this pathway was shown by similar pulse-chase methods 
as well as isotope labeling, consistent with Δ4-desatuase activity in 
many organisms [45].FADS2 was recently shown in an unambiguous 
manner to desaturate 24:4n-6/24:5n-3 to 24:5n-5/24:6n-3 [46]; this 
step is required in the Sprecher pathway of 22:5n-6/22:6n-3 synthesis. 

FADS2 has activity toward the saturated fatty acid 16:0 to make 
16:1n-10 (sapienic acid), the most abundant unsaturated fatty acid on 
human skin, but seldom reported in internal tissue.FADS2 has no 
detectable activity toward 14:0 or 18:0. Based on competition experi-
ments, we predicted that high levels of saturated fatty acids due to 
metabolic derangement would result in production of 16:1n-10 [47], 
recently confirmed in carcinoma [48,49].We recently followed up those 
experiments with saturated odd and branched chain fatty acids.Those 
studies show that FADS2 is active toward n-17:0, iso-16:0, iso-17:0, 
anteiso-17:0, iso-18:0 [42], inserting double bonds between carbons 6 
and 7 and yielding the series of monounsaturated odd and branched 
chain fatty acids in human sebum.All told, FADS2 is active toward at 
least 16 substrates and inserts double bonds in the 4, 6, and 8 positions, 
far more promiscuous than FADS1. 

4. Bioactive lipids mediators derived from PUFAs 

4.1. Octadecanoids 

There has been a large and rapid increase in the amount of LA 
consumed Worldwide, due to the agricultural shifts towards high-LA 
soybean and corn oils since the late 1930s [50]. Historic levels of LA 
intake ranged between 1 and 2% of daily calories pre-1930s, to the 
current situation where the average is greater than 7%, and LA is now 
the most highly consumed PUFA in Western diet [50]. LA has been 
shown to be the precursor to oxylipins, called oxidized LA metabolites, 
(OXLAMs), which have been linked to a range of pathological conditions 
[51]. Consequently, LA-derived octadecanoids are quantitatively the 
major class of oxylipins present in tissues and blood; however, compared 
to some of the other classes there is much less known about their 
functions [11], although early investigations indicated that in familiar 
Mediterranean fever, C18 oxygenated compounds were identified and 
elevated [52]. In the following section F. da Costa Souza, P. Lein, and A. 
Taha provide an overview of the structure and functions of octadecanoids, 
with particular focus on the LA-derived OXLAMs. 

In 1929, George Burr and Mildred Burr settled a long-standing 
debate at the time on the essentiality of dietary fats [53]. They 
conclusively established that LA, along with ALA, are nutritionally 
essential [54]. In humans, LA is needed at 1–2% daily energy to main-
tain optimal growth and skin barrier integrity [55], whereas ALA is 
needed at 0.2–0.5% energy, also to maintain the skin barrier as well as 
brain function [56,57]. It is becoming increasingly recognized that the 
biological effects of LA and ALA are mediated through their oxidized 
lipid mediator products. This section will focus on LA because it is highly 
abundant in the diet and because its lipid-mediated roles in vivo remain 
understudied. 

For many decades, LA's presumed biological role was as a substrate 
for the synthesis of ARA via elongase and desaturase enzymes. ARA itself 
is not nutritionally essential but serves key biological roles in vivo 
through its enzymatically-derived oxidized metabolites, including 
prostaglandin E2, an immune modulator [58], and prostaglandin F2- 
alpha, which regulates blood flow [59]. 

Research in the 1980s provided evidence that LA is not only a pre-
cursor to ARA, but also to bioactive lipid autacoids known as OXLAMs. 
OXLAMs can be formed via auto-oxidation or COX [60,61], LOX 
[62,63], CYP [64], 15-Hydroxyprostaglandin Dehydrogenase [65] and 
soluble epoxide hydrolase (sEH) enzymes [66–68]. Notably, these are 
the same enzymes used to oxidize ALA and other PUFAs into bioactive 
lipid mediators. LOX and COX catalyze the addition of a hydroxy group 
to LA or ALA, while 15-PGDH converts hydroxylated LA or ALA into 
fatty acid ketones. CYPs produce epoxidized fatty acids that can be 
converted into diols by sEH. Examples of OXLAMs include LOX-derived 
9- and 13-hydroxyoctadecadienoic acids (HODEs), their ketone metab-
olites, 9- and 13-oxo-octadecadienoic acids, as well CYP-derived epox-
yoctadecamonoenoic acids (EpOMEs), and sEH-derived 
dihydroxyoctadecamonoenoic acids (DiHOMEs). Similarly, ALA oxida-
tion through the same enzymatic machinery yields hydroxyoctadeca-
trienoic acids (HOTrEs), epoxyoctadecadienoic acid (EpODEs) and 
dihydroxyoctadecadienoic acid (DiHODEs). Some ALA-derived oxy-
lipins may have anti-inflammatory effects in vitro (e.g., 13-HOTrE) [69], 
yet the role and tissue distribution of several ALA metabolites remains 
unknown due to the lack of analytical standards. 

The long-standing question in the field is whether OXLAMs are 
bioactive. Early studies in the 1950s showed that chicks fed a diet 
containing LA without added vitamin E developed encephalomalacia 
and ataxia [70–72]. It was realized that the absence of vitamin E in the 
diet promoted the nonenzymatic oxidation of LA into OXLAMs. Adding 
purified OXLAMs to the diet induced similar pathological and behav-
ioural symptoms in chicks, suggesting a direct influence of OXLAMs on 
brain function [73,74]. Additional studies by Hammock and colleagues 
showed that sEH-derived linoleate diols (known as leukotoxin diols) are 
cytotoxic and promote inflammation in rats and mice [75,76]. Other 
studies showed that OXLAMs are involved in lowering pain thresholds 
by binding TRPV-1 receptors [77], and in maintaining skin barrier 
integrity [78]. An early study also identified 13-HODE, a LOX-derived 
OXLAM, functioned as a chemorepellent to platelet adhesion in endo-
thelial cells [79]. Collectively, the evidence suggests that OXLAMs are 
bioactive in vivo and in vitro. 

Our group has been interested in knowing whether OXLAMs are 
present and bioactive in the brain, where they have been rarely studied. 
Despite being a major part of the diet [50], LA is not found in appre-
ciable levels in the brain (<2% of total fatty acids) because it is mostly 
(~60%) beta-oxidized upon entry [80]. Thus, we questioned whether a 
portion of the LA that enters the brain is converted into OXLAMs, having 
established that OXLAMs are unlikely to cross the blood brain barrier in 
adult rats [81]. 

Our experiments showed that brain LA serves as a precursor to 
OXLAMs, but the extent of conversion depends on life stage. In adult 
rats, OXLAMs constitute 7% of detected oxylipins in the brain, and this 
value increases as dietary LA increases, suggesting that brain OXLAM 
concentrations are dependent on dietary LA levels [82]. Hence, more LA 
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in the diet means more LA entering the brain and more OXLAMs syn-
thesized there. In young rat pups (0–1 day old males and females), we 
unexpectedly found that OXLAMs constituted 50% of brain oxylipins. 
We do not yet know whether the higher brain OXLAM composition 
observed in younger rats originates from diet (which contains OXLAMs) 
or conversion of dietary LA entering the brain into OXLAMs. 

Our studies led us to further investigate the role of OXLAMs in the 
adult and developing rat brain. We found that in adults, OXLAMs are 
produced during global ischemia, similar to AA-derived prostanoids 
(and other eicosanoids), raising the possibility that they might be 
involved in the response to ischemic brain injury [83,84]. They also 
increase somatic pre-pulse facilitation, suggesting their involvement in 
neurotransmission [84]. In young pups, OXLAMs such as 13-HODE were 
shown to increase axonal outgrowth in primary rat cortical neurons 
derived from 0 to 1 day old male pups, providing evidence of their 
involvement in neuronal morphogenesis in early life [85]. 

Overall, the evidence to date shows that OXLAMs are bioactive lipid 
mediators involved in regulating pain thresholds, inflammation, 
response to ischemic brain injury, neurotransmission and neuronal 
morphogenesis. However, many scientific gaps remain with respect to 
their newly identified roles in the brain. Specifically, what are the 
mechanisms mediating their effects in the brain? If brain OXLAM 
composition is dependent on dietary LA levels (at least in adult rats), 
what does this mean in terms of benefit or harm to the brain, given that 
dietary LA levels have increased by more than three-fold over the past 
century? At what stage of life (e.g., development versus aging) are these 
OXLAMs beneficial (or harmful) to the brain? Answering these questions 
will help calibrate dietary LA to levels that optimize brain function 
during development, adulthood and aging. The Burrs discovered that LA 
is essential at 1–2% energy; the question is what may be optimal beyond 
this level of dietary intake? 

4.2. n-3 PUFA derived specialized pro-resolving mediators (SPMs) and 
Receptors 

In the following sections N. Chiang and C.N. Serhan provide a brief 
overview of the current status of EPA- and DHA-derived SPMs and their 
biological functions in inflammation-resolution. This followed by J. Dalli 
providing an overview of SPMs derived from DPAn-3. For ARA-derived lip-
oxins biosynthesis and functions, please see earlier in-depth reviews [86–89]. 

4.2.1. Resolution phase mediators in inflammation 
Resolution of inflammation is an active biosynthetic process that 

connects the first response of the innate immune system to biosynthesis 
of the SPMs including Rvs, PDs and MaRs, as well as novel cys-SPMs 
[90]. The first resolvin biosynthesized from EPA was isolated and re-
ported along with functional elucidation in 2000 using a systems 
approach with inflammatory exudates [91]. As of today, four potent 
bioactive resolvins produced from EPA (E-series resolvins) have been 
elucidated [92]. The DHA-derived resolvins were elucidated next and 
reported in [93,94]. The D-series resolvins and protectins bio-
synthesized from DHA were initially demonstrated to reduce inflam-
mation (peritonitis), neuronal inflammation (microglial cells), and 
counter-regulate cytokines and chemokines to promote resolution of 
inflammation. Next, we systematically determined the stereochemical 
assignments of each of the potent bioactive SPMs, including protectins 
[95], and their aspirin-triggered epimers [96], and next reported the 
discovery and biosynthesis of the maresins from infiltrating macro-
phages [97]. Today in PubMed.gov with “resolvin” as the search term 
there are more than 1400 publications reporting the potent anti- 
inflammatory and pro-resolving actions as well as productions of the 
resolvins, protectins, and maresins in many disease models from in-
vestigators worldwide that confirm and extend the potent endogenous 
functions of SPMs and their potential in novel therapeutics as agonists of 
resolution of inflammation originally described for each SPM [98–100]. 
An early consensus report helped to define and underscored the 

potential of this new field of resolution with impact in modern medicine 
and surgery [101]. The emergence of new concepts and novel mediators 
within the resolution terrain that activate endogenous resolution pro-
grams and promote tissue regeneration have given rise to the new fields 
of resolution pharmacology and physiology. For readers interested in 
further details in in-depth reviews, please see [102–107]. 

4.2.2. SPMs in human tissues and dysregulation in diseases 
Mass spectrometry-based profiling approaches for the resolution 

metabolome have documented the temporal production of SPMs in 
humans (Table 1A) and preclinical animal systems, demonstrating in 
vivo the lipid mediator class switch. For example, human vagus nerves 
produce SPMs, e.g., RvE1, NPD1/PD1, MaR1, upon electrical stimula-
tion [108] suggesting that this vagus-SPM circuits contribute to a new 
proresolving vagal reflex. Several clinical trials demonstrate omega-3 
PUFA or marine oil supplementation increase SPM in vivo [109] 
(Table 1B). SPM biosynthesis is impaired in several diseases, including 
tuberculous meningitis [110], multiple sclerosis [111], and osteoar-
thritis [112], as well as in bronchoalveolar lavages [113], serum [114] 
and plasma [115] from COVID-19 patients. Thus, impaired endogenous 
resolution pathways may contribute to the pathogenesis of these 
diseases. 

4.2.3. SPM functions and receptors 
Each SPM demonstrates potent stereoselective actions (pico- to low 

nanomolar concentrations) via activation of specific G protein-coupled 
receptors (GPCR) on phagocytes and additional select cell types (Fig. 2). 

Resolvins: Resolution phase interaction products. 
E-series resolvins: RvE1 was the first identified pro-resolving 

molecule derived from EPA [91]. RvE1 via its receptor ERV1/ 
ChemR23 (Kd ~11 nM) stimulates intracellular signals such as phos-
phorylation of S6 kinase (0.1–100 nM) (Fig. 2; reviewed in [116]). 
RvD1, in vivo, controls vascular inflammation, protecting against 
atherosclerosis by modifying oxidized LDL uptake and enhancing 
macrophage phagocytosis [117]. In aortic valve stenosis, targeted 
deletion of ChemR23 in mice heightens disease progression [118]. Of 
interest, an agonist antibody to the RvE1 receptor confirms that acti-
vation of the endogenous resolution mechanisms can control both 
inflammation and cancer burdens in mouse models in vivo [119]. 

D-series resolvins: RvDs are biosynthesized from DHA; they are 
potent immunoresolvents active in the picomolar to low nanomolar 
concentrations [93,94]. RvD1 binds and activates human DRV1/GPR32 
(Kd ~0.2 nM) to stimulate macrophage phagocytosis and efferocytosis 
(0.1–100 nM) (Fig. 2; reviewed in [101]). Some of the most exciting and 
unexpected findings at the time were the novel actions of RvD2. RvD2 
(0.01–10 ng/mouse) limits PMN infiltration in acute inflammation and 
controls bacterial sepsis via its receptor DRV2/GPR18 in mice (Fig. 2, 
and review [98]). RvD2 binds and activates human recombinant re-
ceptor DRV2/GPR18 (Kd ~10 nM) to stimulate macrophage phagocy-
tosis and efferocytosis (0.01–10 nM). In human sepsis, survivors had a 
higher percentage of GPR18-positive peripheral blood neutrophils 
compared to non-survivors, suggesting that DRV2/GPR18 expression 
levels are associated with disease severity [120]. In a more recent study, 
both DRV1 and DRV2 receptor expression were found to be higher on 
leukocytes from septic patients; both RvD1 and RvD2 partially reverse 
sepsis-induced leukocyte activation, and stimulate phagolysosome for-
mation [121]. RvD2 suppresses tumor growth and enhances clearance of 
tumor cell debris, while DRV2/GPR18-deficient mice display defective 
tumor clearance [122]. In addition, RvDs are tissue/organ protective; 
RvD2 promotes keratinocyte repair in DRV2-dependent manner [123] 
and stimulates muscle regeneration [124], as well as limits tissue ne-
crosis in burn wound [125]. RvD4 reduces thrombus burden and de-
creases the release of neutrophil extracellular traps (NETs), i.e. NETosis, 
a critical component for thrombosis development [126]. These new 
roles of selective RvDs suggest that SPMs could provide an effective 
strategy in controlling thrombo-inflammatory disease. RvD5 and 
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RvD1controls E. coli and S aureus infection, by controlling phagocytosis 
and bacterial killing as well as inflammation arising from collateral 
tissue damage; together these lower the antibiotic requirements for 
bacterial clearance [127]. Of interest, RvD5 is the first SPM that shows 
sex dimorphism in pain regulation, inhibiting pain in male, but not fe-
male mice [128]. 

Protectins: Protectin D1/Neuroprotectin D1 (PD1/NPD1) is also 
biosynthesized from DHA via 15-LOX-initiated mechanism in several 
human cell types, murine exudates, and brain tissues [94]. In addition, 
PD1 is present in human exhaled breath condensates, and its levels are 
lower in subjects with asthma exacerbations [129]. DHA is converted via 
15-LOX to the 16S, 17S-epoxide intermediate, confirmed by epoxide 
trapping experiments. This epoxide intermediate is further converted to 
PD1 via enzymatic hydrolysis [95]. The elicited bioactivity of this 
mediator in human retinal pigment epithelial cells led to coining its 
name as Neuroprotectin D1 (NPD1) [130]. This was strongly supported 
by the demonstration of its formation in the human brain and its se-
lective decrease in memory areas of the brains of Alzheimer's patients 
and in experimental Alzheimer's disease models [131,132], as well as in 
experimental ischemic stroke [133]. The complete stereochemical as-
signments [95] enabled the demonstration of its potent actions on 
human PMN [1–100 nM] and acute inflammation in vivo [0.01–100 ng/ 
mouse] as well as in many disease systems, confirmed and extended by 
many other investigators worldwide. Hence, while produced and func-
tions in neural systems, the prefix (neuro)protectin D1 was introduced 
[130], and in the immune system, it is PD1 [134]. PD1/NPD1 displays 

potent neuroprotective actions in brain, retina and central nervous 
system, e.g. protecting from ischemic stroke, retina degenerative disease 
(for a recent review, see [99]) and traumatic brain injury [135]. NPD1/ 
PD1 activates recombinant and macrophage GPR37 [EC50 ~ 26 nM]. 
Mice lacking this NPD1/PD1 receptor display defects in macrophage 
phagocytic activity with delayed resolution of inflammatory pain [136]. 
PD1's protective actions in multiple models of infections and sepsis are 
diminished in these Gpr37 receptor KO mice [137]. PDX is a positional 
isomer of PD1, biosynthesized via two sequential lipoxygenations [95]. 
PDx [0.1–10 μM] inhibits platelet activation [138], improves insulin 
sensitivity [139] and atherosclerosis [140] in type-2 diabetes. Both PDx 
and PD1 at equal amount suppress replication of influenza virus 
[141,142] (Fig. 3).A receptor for PDx remains to be identified. It is likely 
that PD1 and PDx have some overlapping yet distinct actions on select 
target cells. 

Maresins: The macrophage mediators in resolving inflammation. 
MaR1 was first identified in self-resolving inflammatory exudates 

and with human macrophages (MΦ) [97] via 12-LOX-initiated mecha-
nisms [143]. The complete stereochemistry of MaR1 was established, its 
total organic synthesis was achieved and confirmed by several inde-
pendent teams (reviewed in [99]). MaR1 is pro-regenerative, pro-repair 
and neuroprotective in a wide range of tissues and organs across phyla 
(reviewed in [116]). MaR1 activates LGR6 (leucine-rich repeat- 
containing G protein–coupled receptor 6), a cell surface G protein- 
coupled receptor [EC50 ~ 1 nM] and stimulates key proresolving func-
tions of phagocytes in a LGR6-dependent manner [0.01–10 nM] [144]. 

Table 1 
Endogenous SPMs in human tissues: mass spectrometric identification  

(A) SPMs in vivo without intentional supplementation* 

Tissue/organ SPMs Reference Country 

Plasma 18-HEPE, 17-HDHA, RvE2, RvD1 17R-RvD1 and RvD2 (breast surgery) 
MaR1, RvD2, RvD4, RvD5 (adolescents) (2–4 pg/mL), 17-HDHA (~110 pg/mL), 18-HEPE (~30 pg/ 
mL) 

[303]  

[304] 

Australia  

Switzerland, 
Canada 

Stenotic aortic valves RvE1, RvD3 (~500–3500 pg/g tissue) [118] Sweden 
Sputum (cystic fibrosis) RvD1 [~200 pg/mL (~0.5 nM)] [305] Italy 
SARS-CoV-2 infection RvE3, RvD1–4, PD1 (serum) 

(BAL) LXA4, RvDs (~0.1–1.0 nM) 
[114] 
[113] 

USA 
Canada 

Knee replacement surgery RvD2, RvE2 [306] Australia 
Gingival tissue RvE3, RvD1, MaR1 [307] USA 
Nonobstructive coronary artery 

disease 
(WARRIOR) trial 

RvD1, RvD3, RvD5, RvE1, MaR1 (~5–40 pg/mL), 
RvD2 ~ 1 ng/mL 

[308] USA 

Chronic rhinosinusitis RvD1, RvD2, LXA4 [309] USA 
Carotid disease (serum) RvD1 (~80–150 pM) [310] USA 
Bariatric surgery RvD1 (5–8 pg/mL), RvD3 (0.6–2.4 pg/mL), RvD4 (0–240 pg/mL), PD1 (0–67 pg/mL) [311] USA   

(B) Omega-3 PUFA supplementation increases SPMs** 

Diseases/conditions Doses and regimens SPMs that are increased by 
supplementation 

Reference Country 

Chronic kidney disease 
(plasma) 

n-3 PUFA; 
4 g/day; 8 wks 

RvE1, RvE2, RvE3, RvD5 [312] Australia 

In pregnancy on offspring 
(Plasma) 

n-3 PUFA ethyl esters with DHA (56.0%) and EPA (27.7%); 
3.7 g/day; from 20 wks gestation until delivery 

18-HEPE, 17-HDHA [313] Australia 

Peripheral artery disease (PAD) in 
OMEGA-PAD II trial 
(plasma) 

n-3 PUFA; 325 mg EPA and 225 mg DHA per capsule; 
4.4 g (4 capsules)/day; 3 months 

RvE3, LXA5 [314] USA 

Major depressive disorder 
(plasma) 

EPA 1, 2, and 4 g/d vs placebo; 12-week randomized trial 18-HEPE RvE3 [315] USA 

Postmenopausal women with chronic 
inflammation 
(plasma) 

EPA and DHA; 3 g/day; 
two phases of 10-week supplementation, separated by a 10-week 
washout. 

14-HDHA, 17-HDHA 
RvD5n-3 DPA 

MaR1n-3 DPA 

[316] USA 

Coronary artery disease EPA and DHA, 3.36 g daily RvE1, MaR1, 18-HEPE [317] USA 
Pregnant women 

(Umbilical cord blood) 
EPA rich fish oil (1060 mg EPA plus 274 mg DHA), or DHA rich fish oil 
(900 mg DHA plus 180 mg EPA) 

17-HDHA, 
14-HDHA 

[318] USA  

* Panel A reports publications in the period of 2017–2021 that confirm and extend original findings [98]. 
* Panel B reports publications in the period of 2017–2021 that confirm and extend original findings [319,320]. 
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In addition, MaR1 inhibit smooth muscle cell activation and attenuate 
murine abdominal aortic aneurysm via LGR6 signaling [145]. Further, 
LGR6 is necessary for normal osteogenesis, demonstrated using LGR6- 
deficient mice, and MaR1 activates LGR6 signaling in osteoblasts 
[146]. With liver macrophages, MaR1 can also activate ROR-α (retinoic 
acid-related orphan receptor α), a nuclear receptor that might be rele-
vant in liver pathology [147]. These findings highlight the cell-type 
specific and receptor-dependent actions of MaR1. 

Cys-SPMs: Three series of peptide-lipid conjugated SPMs, i.e., mar-
esin conjugates in tissue regeneration (MCTRs), protectin conjugates in 
tissue regeneration (PCTRs) and resolvin conjugates in tissue regener-
ation (RCTRs), are collectively coined cysteinyl-SPMs (cys-SPMs) 
([148]; reviewed in [149]). Each series contains three bioactive mem-
bers that display potent pro-regenerative and pro-repair actions, 
including stimulating regeneration of freshwater planaria and promot-
ing tissue repair in acute lung injury [148,150]. Using RNA-sequencing 
of regenerating planaria, we identified cys-SPM-regulated pathways in 

planaria regeneration, including NF-κB pathways, and an ortholog of 
human TRAF3. In human macrophages and mouse infections, cys-SPM 
regulate the TRAF3/IL-10 axis in enhancing phagocyte functions in 
resolution [151]. In addition, PCTR1 uniquely enhances human kerati-
nocyte migration, and promotes bacterial clearance in mouse skin 
wound [152]. These model systems give clear evidence for potent ac-
tions and structure-function relationships of Cys-SPMs. In vivo human 
results for Cys-SPM actions remain to be identified. Thus, the organ- 
protective actions of cys-SPMs are evolutionarily conserved across 
phyla, from primordial lower-phylum species such as planaria to mice 
and humans. 

SPMs control infectious inflammation and the innate immune system. 
SPMs exhibit potent host-protective actions in bacterial, parasitic and 
viral infections [90,98,153] (Fig. 3). For example, RvE1 controls herpes 
simplex virus (HSV)-induced murine ocular inflammation [154]. PD1 
and PDx suppress influenza virus replication [141,142]. In bacterial and 
viral coinfection pneumonia in mice, the aspirin-triggered 17R-epimer 

Fig. 2. Illustration of resolution metabolome: SPM biosynthesis, receptors and functions. 
Precursors EPA and DHA are converted via biosynthetic enzymes to SPMs, which in turn activate their specific receptors to stimulate pro-resolving innate immune 
functions. Each SPM demonstrates stereoselective activation of its cognate GPCR on select cell types, leading to intracellular signals, pathways and pro-resolving 
functions The affinities of SPMs for their respective recombinant GPCRs (i.e., Kd or EC50 values) are consistent with their bioactive concentration ranges, e.g. 
macrophage phagocytosis (picomolar to low nanomolar) in vitro and dose ranges (picograms to low nanograms) in vivo.The in vivo functions of these SPM receptors 
were demonstrated using transgenic and/or knock-out mice, as well as specific blockage of the receptor, e.g., siRNA, antibodies or receptor antagonists (see text and 
recent reviews [98,116] for details). 
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of RvD1 (AT-RvD1) enhances clearance of pneumococci in the lungs 
[155]. With human macrophage from cystic fibrosis patients, RvD1 and 
RvD2 (10 nM) reduce SARS-CoV-2 induced inflammatory response 
[156]. In light of COVID-19 pathologies with hyperinflammation of the 
respiratory and cardiovascular systems as well as coagulopathies 

[157–159], the anti-inflammatory, pro-resolving, microbial clearing, 
anti-thrombotic and organ-protective actions of SPMs may be useful in 
controlling disease severity in SARS-CoV-2 infections and perhaps long- 
term COVID-19 symptoms (reviewed in [98]). 

In summation, the structural elucidation, complete stereochemical 

Fig. 3. SPM actions in viral infections. See text for details.  

Fig. 4. Illustration of the omega-3 DPA derived SPM families and the biological activities exerted on immune and stromal cells. For details of the stereochemistry of 
the structures of these SPMs please see [162]. 
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determinations and identification of specific receptors for each SPM 
enable confirmation of their potent actions in controlling inflammatory 
response, promoting resolution and tissue repair. Endogenous SPMs 
present in human tissues are within both their bioactive concentration 
ranges and affinities for cognate receptors (c.f. Table 1 and Fig. 3). Re-
sults from these studies opened an opportunity path for interrogating 
SPM in resolution physiology and pharmacology. 

4.3. DPAn-3 is precursor to novel bioactive mediators 

A less well studied omega-3 PUFA that forms part of many organs 
and tissues is DPAn-3 [160]. Genome wide association studies uncov-
ered links between single nucleotide polymorphisms in the gene 
encoding for the fatty acid elongase 2 (ELOVL2) and increased plasma 
DPAn-3 levels [161]. Several studies suggested a role for this essential 
fatty acid in the regulation of inflammation [160]. We recently queried 
whether the ability of this fatty acid to regulate inflammation was at 
least in part due to its conversion to novel bioactive mediators. Structure 
elucidation studies demonstrated that in inflammatory exudates and in 
the circulation DPAn-3 is converted to bioactive mediators [162]. These 
novel autacoids exert potent leukocyte directed activities to limit tissue 
damage by governing cellular recruitment to the site of inflammation 
and counter regulating the production of pro-inflammatory mediators 
(Fig. 4). Given that the biosynthetic pathways leading to the formation 
of these novel molecules are shared with the DHA and EPA derived SPM, 
these novel bioactive mediators were assigned to the Rv, PD and MaR 
families [162,163]. 

4.3.1. DPAn-3-derived SPM in the regulation of acute inflammation 
Endogenous formation of these bioactive mediators is reported both 

during homeostasis and active inflammation. Lipid mediator profiling of 
plasma lipid mediator concentrations in healthy volunteers uncovered a 
diurnal regulation in the production of DPAn-3-derived D-series resol-
vins (RvDn-3 DPA) [164]. The peak in the production of these mediators is 
coincident with an increase in plasma plasminogen activator inhibitor-1, 
a serine protease inhibitor that functions as the principal inhibitor of 
tissue plasminogen activator and urokinase, and the activation of 
circulating platelets and phagocytes thereby increasing the risk of 
thrombosis [165]. Intriguingly we observed that RvDn-3 DPA, when 
added to blood from healthy volunteer's ex vivo, downregulated the 
expression of adhesion molecules on circulating phagocytes and the 
formation of phagocyte-platelet heterotypic aggregates. This vasculo- 
protective role of RvDn-3 DPA was supported by observations made in 
patients with cardiovascular disease, where both the diurnal regulation 
and the production of these mediators are reduced [164]. These changes 
were linked with increased peripheral blood phagocyte and platelet 
activation. Ex vivo incubation of these mediators with peripheral blood 
from patients with cardiovascular disease downregulated both platelet 
and phagocyte activation. Notably, RvDn-3 DPA display different po-
tencies at regulating peripheral blood phagocyte and platelet activation, 
with RvD5n-3 DPA exhibiting the greatest ability to regulate these bio-
logical processes [164]. Recent studies indicate that the biological ac-
tivities elicited by RvD5n-3 DPA on phagocytes are mediated by the 
orphan receptor GPR101 [166]. This receptor is expressed on human 
and mouse neutrophils, monocytes and macrophages and is activated by 
RvD5n-3 DPA at nM – pM concentrations. 

The biological activities of RvD5n-3 DPA are not limited to the 
vasculature. Investigations into mechanisms that contribute to the 
exacerbation of arthritic inflammation by the pathobiont Porphyromonas 
gingivals highlight a decrease in the concentrations of this mediator in 
the intestines of arthritic mice [167]. This decrease was linked with a 
disruption in intestinal barrier function, facilitating barrier breach and 
the consequent exacerbation of joint disease by Porphyromonas gingivalis 
[167]. Notably, administration of this mediator restores both barrier 
function and reduces arthritic inflammation. Zhou and colleagues 
recently described role for RvD5n-3 DPA in experimental sepsis, whereby 

they observed that soluble fibrinogen-like protein 2 regulates the pro-
duction of RvD5n-3 DPA during experimental sepsis [168]. RvD5n-3 DPA is 
also suggested to mediate the pro-resolving activities of the anti- 
coagulant dabigatran [169]. 

Assessment of mechanisms that become activated early on during 
self-limited inflammation to fine tune phagocyte responses uncovered a 
novel family of autacoids produced in the circulation during interaction 
between vascular endothelial cells and neutrophils [163]. These medi-
ators, termed 13-series resolvins, limit neutrophil trafficking to the site 
of infection, promote the uptake and killing of bacteria by phagocytes 
and the uptake of apoptotic cells by macrophages. These autacoids also 
counter regulate the production of pro-inflammatory eicosanoids, 
including leukotriene B4 and prostaglandins. They also downregulate 
the expression of caspase-1 and its pro-inflammatory product 
interleukin-1b in macrophages. Intriguingly the production of these 
immunomodulatory autacoids is upregulated by statins, with atorvas-
tatin and pravastatin displaying the greatest propensity to increase the 
production of these mediators via the nitrosylation of COX2, which in-
creases the catalytic activity of this enzyme [163,170]. This mechanism 
was found to be relevant in reducing inflammation during both infec-
tious and sterile inflammation, suggesting that 13-series resolvins may 
be useful predictive functional biomarkers in evaluating the efficacy of 
statins at limiting inflammation [163,170]. 

Inflammation is now recognized to play a role in the pathophysi-
ology of epilepsy. Lipid mediator profiling analysis of murine hippo-
campi obtained from mice during experimental epilepsy identified a role 
for the n-3 protectin D1 (PD1n-3 DPA) in limiting disease severity [171]. 
Indeed, this mediator was found to be upregulated in epileptic mice. 
When mice were treated with PD1n-3 DPA using a therapeutic paradigm, 
disease severity, including the expression of pro-inflammatory cytokines 
and the frequency and duration of epileptic seizures, was significantly 
reduced [171]. Furthermore, recent studies demonstrate that PD1n-3 DPA 
is also able to increase the inhibitory drive onto the perisomatic region 
of the pyramidal neurons thereby limiting neuronal excitability [172]. 

4.3.2. DPAn-3-derived SPM orchestrate leukocyte differentiation 
In addition, to orchestrating host immune responses, DPAn-3 derived 

SPMs play a role in leukocyte differentiation. RvD5n-3 DPA was recently 
found to contribute to Treg differentiation from naive CD4+ T-cells. 
Temporal evaluation of lipid mediator profiles produced by differenti-
ating T-cells revealed that this autacoid was upregulated during the 
early stages of Treg differentiation. Furthermore, incubation of naive T- 
cells with RvD5n-3 DPA rescued the functional responses of Tregs differ-
entiated in the presence of an ALOX15 inhibitor [173]. The DPAn-3- 
derived protectins (PDn-3 DPA), namely PD1n-3 DPA and PD2n-3 DPA, were 
recently observed to coordinate monocyte-to-macrophage differentia-
tion. Whereby, incubation of monocytes deficient in ALOX15 activity, 
the initiating enzyme in the PDn-3 DPA biosynthetic pathway, with PD1n-3 

DPA or the PDn-3 DPA biosynthetic intermediate 16S, 17S-epoxy-PDn-3 DPA 
rectified monocyte-derived macrophage phenotype and their ability to 
uptake apoptotic cells [174]. 

4.3.3. Upregulation of DPAn-3-derived SPM using dietary supplementation 
in humans 

Studies evaluating approaches to upregulate endogenous SPM pro-
duction demonstrate that the endogenous production of DPAn-3 derived 
SPM can be modulated following essential fatty acid supplementation. 
For example, Markworth and colleagues found that supplementation of 
healthy volunteers with DPAn-3 significantly increases RvD5n-3 DPA 
[175]. This modulation of DPAn-3 derived SPM was also observed when 
healthy volunteers and patients with peripheral artery disease were 
administered an enriched marine oil supplement [176,177]. Intriguingly 
these changes, together with the upregulation of SPM from the DHA and 
EPA metabolomes, were linked with a regulation of peripheral blood 
phagocyte function [176,177]. Thus, results from these studies suggest 
that functional modulation of SPM via essential fatty acid 
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supplementation may be linked with decreased circulating phagocyte 
activation and potentially a downregulation of inflammation. 

4.4. Elovanoids 

In the following section N.G. Bazan details the discovery of the elovanoids 
(ELVs) and identification of their mechanisms of action. 

The significance of polyunsaturated fatty acids (PUFAs) has evolved 
from the broad concepts of providing membrane structural plasticity 
and fluidity for proteins diffusion and rotation to a diverse universe of 
functions. For example, DHA is necessary for sight, and when adminis-
tered, is beneficial in x-linked retinitis pigmentosa and other neurode-
generative diseases [178]. DHA from the diet is packaged by the liver 
and targeted to the central nervous system (CNS), where it achieves the 
highest concentration in photoreceptors and synaptic membranes [179]. 

PUFAs, precursors of lipid mediators and components of membrane 
lipids, comprise a new multidisciplinary field at the boundary of 
biophysics, chemical biology, and molecular physiology. Thus, at least 
two important issues have emerged: the gene that encodes the enzyme 
that elongates PUFAs to chain length ≥ 28 carbons (ELOVL4) is critically 
important for cell function, and their products are precursors of the new 
family of lipid mediators, the elovanoids (ELVs). 

4.4.1. ELOVL4 
ELOVL4 catalyzes the rate-limiting condensation reaction for the 

synthesis of very long chain -saturated fatty acids (VLC-SFAs) and VLC- 
PUFAs (chain length ≥ 28 carbons) [180]. This enzyme is expressed in 
brain neurons, photoreceptor cells, skin, testes, and meibomian glands 
[180]. In the skin, VLC-SFAs are components of sphingolipids, and these 
VLC-SFAs are necessary as a skin-permeability barrier [181]. ELOVL4 is 
selectively expressed in neurons and is evolutionarily conserved [182]. 
In photoreceptor cells, VLC-PUFAs are in phosphatidylcholines (PC) of 
the outer segment membranes, tightly bound to rhodopsin [183]. 

Mutation, loss, or downregulation of ELOVL4 is linked to retinal 
degeneration. Studies of a large familial group with retinal degeneration 
revealed an autosomal dominant macular dystrophy phenotype which 
results from a 5-bp deletion, causing Stargardt-like macular dystrophy 
[184,185], and an STGD3 mouse Elovl4 mutation produces a C32-C36 

PC deficiency [186], leading to the suggestion that loss or reduced 
VLC-PUFAs may cause loss of photoreceptors or functional perturbations 
[187], highlighting the importance of these molecules in the retina. 
Therefore, because of the inability to take up and incorporate DHA and 
the absence of VLC-PUFAs in the degenerating adiponectin receptor 1 
(AdipoR1)− /− mouse retina, the synthesis of these molecules must rely 
on the presence of DHA. The occurrence of central geographic atrophy 
(CGA) and neovascular age-related macular degeneration (AMD) was 
found to be 30% less likely with high omega-3 LC-PUFA (e.g., DHA) 
intake [188], emphasizing the importance of maintaining adequate di-
etary amounts of DHA for retinal homeostasis. 

Neuron-specific ELOVL4 is expressed in the CNS, including in hip-
pocampal neurons of the dentate gyrus (DG) subgranular layer, a locus 
for medial temporal lobe epilepsy. Mutations in ELOVL4 lead to 
impaired neural development, mental retardation, neuronal dysfunc-
tion, hyperexcitability, and seizures [189]. 

4.4.2. Elovanoids are a new class of bioactive lipids synthesized from C32 
or C34 FA precursors 

In 2017, elovanoids (ELVs) were discovered and named [190–192]. 
This new class of endogenous lipid mediators is distinct from the widely 
known lipid mediators produced from PUFAs with C20 and C22, such as 
the classical eicosanoids and SPMs. ELV-N32 and ELV-N34 are stereo-
specific di-hydroxylated derivatives of 32:6n-3 or 34:6n-3 (Fig. 5), 
respectively, made by the elongase ELOVL4 (elongation of VLC-FAs-4), 
which converts C26-derived FAs from EPA or DHA to VLC-PUFAs, ≥C28. 
These PUFAs are mainly esterified at the C1 (sn-1) position of PC that 
has DHA in the C2 (sn-2) position, and upon the appropriate stimulus (e. 
g., uncompensated oxidative stress), are released by phospholipase A1 
(PLA1) and/or PLA2 for the formation of ELVs, NPD1, or other doco-
sanoids (Fig. 6). Here, I describe key events in the discovery of ELVs and 
highlight some of their functions. 

4.4.3. The discovery of Elovanoids 
In short, the discovery of ELVs was the product of curiosity, resulting 

in a driven jump of knowledge, not an incremental finding. In 2015, we 
reported that AdipoR1 genetic deletion leads to a shutting off of the 
uptake and retention of DHA that produced a cell-selective DHA 

Fig. 5. Eicosanoids, docosanoids, and elovanoids. PLAs that release ARA, EPA, DHA, or VLC-PUFAs are depicted at the top. Synthesis of mediators and receptors 
involved are illustrated. The outcome is modulation of inflammatory responses and homeostasis. AD, Alzheimer's disease; AMD, age-related macular degeneration; 
VLC-PUFA, very long-chain PUFA. Reproduced, with permission from the Journal of Lipid Research [178]. 
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lipidome-specific impairment in retinal pigment epithelium (RPE) cells 
and PRC function followed by PRC degeneration [193]. Unexpectedly, a 
molecular species of PC containing both VLC-PUFAs and DHA was 
depleted in the knockouts (KOs). Since this PC molecular species closely 
interacts with rhodopsin [194], one possibility for the PRC degeneration 
phenotype of the AdipoR1 KO was that its absence triggered PRC 
demise. An alternative hypothesis was that there was a shortage of some 
biologically active mediator derived from VLC-PUFAs. 

To begin testing this hypothesis, we explored and found that the free 
VLC-PUFAs pool size was depleted in the RPE of the AdipoR1 KOs. 
Initially, our thinking was that this observation was expected because, as 
our lab had defined earlier, the recycling of DHA between these two cells 

takes place to retain/conserve DHA; we had called this the “short loop of 
recycling” [195–197]. Thus, the idea came from a separate, very 
different, biologically active derivative formed in the RPE cells from 
VLC-PUFA precursors. LC-MS/MS of wildtype (WT) and not in KO 
revealed in the RPE peaks that were not free VLC-PUFAs. Our initial 
marker was the absence of those peaks in our KO. When we collected 
them from extracts of several WT RPEs, we found initial UV evidence of 
hydroxylated VLC-PUFAs, and when we added them to RPE cells chal-
lenged by uncompensated oxidative stress (H2O2 plus TNF-α), cell sur-
vival was elicited. Since this happened preceding retinal degeneration, 
we speculated that they might play a role in the survival of RPE and PRC, 
therefore sustaining sight. 

Fig. 6. Genetic ablation of adiponectin receptor 1 leads to depletion of VLC-PUFAs and its derivatives in retina. A: Dietary DHA, or DHA derived from dietary 18:3n3, 
is supplied by the liver and taken by the Adiponectin Receptor 1 (AdipoR1), followed by elongation in the inner segment of photoreceptor cell (PRC) by Elongation of 
Very Long chain fatty acids-4 (ELOVL4) to VLC-PUFA and incorporation into PC molecular species, which contains DHA at sn-2. During daily PRC outer segment 
renewal, these PC molecular species interact with rhodopsin and, after shedding of the PRC tips and phagocytosis, become part of retinal pigment epithelium (RPE) 
cells. Uncompensated oxidative stress (UOS) or other disruptors of homeostasis trigger the release of VLC-PUFAs. 32:6n-3 and 34:6n-3 are depicted generating 
hydroperoxyl forms, and then elovanoid (ELV)-N32 or ELV-N34, respectively. B: The pool size of free 32:6n-3 in retinas of AdipoR1 KO mice (red) is decreased as 
compared with that in wild type (WT) (blue). Insert (1) shows ELV-N32 in KO (red) and WT (blue); insert (2) shows monohydroxy 32:6n3, the stable derivative of the 
hydroperoxyl precursor of ELV-N32, in WT (blue) and lack of detectable signal in the KO (red). C: Similarly, the pool size of free 34:6n-3 in retinas of AdipoR1 KO 
mice (red) is decreased as compared with that in WT (blue). Insert (1) shows ELV-N32 in KO (red) and WT (blue); insert (2) shows mono-hydroxy 34:6n-3, the stable 
derivative of the hydroperoxyl precursor of ELV-N34, in WT (blue) and lack of detectable signal in the KO (red). D: RPE cells sustain PRC functional integrity (left); 
right, the ablation of AdipoR1 switches off DHA availability, and PRC degeneration ensues. Reproduced, with permission, from Scientific Reports [190]. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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We fully characterized these novel lipids and defined the complete 
structures and stereochemistry of the novel elovanoids, ELV-N32 
(derived from 32:6n3) and ELV-N34 (derived from 34:6n3), the com-
plete R/S configuration, and the Z/E geometry of the double bonds as 
generated in retinal cells and neurons (Fig. 6) [190,191]. In 2019, we 
disclosed that ELVs sustain RPE and PRC integrity when confronted by 
injury via arresting the expression of senescence programs and other 
genes [198]. 

These findings are different from other endogenous prohomeostatic 
and neuroprotective mechanisms because they involve a phospholipid 
molecular species that is endowed with acyl chains with two different 
PUFA precursors of bioactive lipids. This unusual signaling encodes two 
PUFA-derived lipid mediators, the precursors of which are stored in 
specific PC molecular species. Whereas DHA, which is the first-described 
PUFA precursor of NPD1 [130,133,199], is located at the sn-2 position 
of the phospholipids, the VLC-PUFAs are located at the sn-1 position and 
are subject to alternatively or concomitantly regulated pathways 
(Fig. 6). Therefore, the findings revealed here feature a different signal 
bifurcation prohomeostatic and neuroprotective mechanism that aims to 
sustain neural cell integrity. Because there are fatty acids longer than 
34:6n-3 and products of other ELOVL enzymes, we anticipate that other 
ELVs might also be endogenously made to regulate cell function. 

4.4.4. Elovanoids are neuroprotective in experimental ischemic stroke 
We demonstrated that ELV-N32 or ELV-N34, when applied to 

cerebral-cortical mixed neuronal cells or hippocampal mixed neuronal 
cells in culture, can overcome the damaging effects of uncompensated 
oxidative stress or NMDA-induced neuronal excitotoxicity. Most of the 
strokes are ischemic in nature [200], and deprivation of oxygen and 
glucose leads to a cascade of events involving mitochondrial damage, 
which ultimately leads to neuronal death. Therefore, the in vitro oxygen- 
glucose deprivation (OGD) model provides an opportunity for teasing 
out the cellular events and putative underlying neuroprotective 
signaling pathways in which ELVs participate. We showed that both 
ELV-N32 and ELV-N34 elicit neuroprotection and overcome neuronal 
cytotoxicity. We also showed that the 34C omega-3 VLC-PUFA (C34:6n- 
3) precursor of ELVs, when applied at a dose of 250 nM after 2 h of 
reoxygenation phase following 90 min of OGD insult, could provide 
neuroprotection to cerebral-cortical neurons. In conclusion, the endog-
enously generated ELVs (ELV-N32 or ELV-N34) ameliorated neuronal 
injury induced by several stressors, such as NMDA receptor activation, 
uncompensated oxidative stress, or OGD in cerebral-cortical mixed 
neuronal and hippocampal mixed neuronal cultures. 

Next, we showed that ELV treatments delivered at 1 h after 2 h of 
experimental ischemic stroke improved neurological recovery 
throughout the 7-day survival period. We also used magnetic resonance 
imaging (MRI), a highly sensitive tool for the detection of changes in 
water content and diffusion, both of which characterize acute ischemic 
stroke [201]. The rapid induction of brain edema following focal 
ischemia is the leading cause of morbidity and death after stroke [202]. 
Maximum protection was detected in the cortex (the penumbral area) 
and also in the subcortical area. Histopathology revealed smaller in-
farcts in cortical and subcortical areas with less pancellular damage, 
denser eosinophilic areas, and shrunken neurons along the infarct 
margin, all of which were detected in ELV-treated rats. 

Cerebral ischemia initiates a complex cascade of cellular, molecular, 
and metabolic events that lead to irreversible brain damage [203]. Dead 
neurons and injured tissue are scavenged by activated resident microglia 
and/or macrophages that invade the injured tissue from the blood-
stream. Surviving astrocytes and activated microglia in the penumbra 
may facilitate restoration of neuronal integrity by producing growth 
factors, cytokines, and extracellular matrix molecules involved in repair 
mechanisms [204]. Our results demonstrated that ELV treatment 
increased the number of NeuN-positive neurons and GFAP-positive 
reactive astrocytes and the SMI-71-positive blood vessel density in the 
cortex [191]. Blood vessel integrity facilitates neurogenesis and 

synaptogenesis, which, in turn, contribute to improved functional re-
covery. We showed here that the newly identified ELVs protected neu-
rons undergoing OGD or NMDA receptor-mediated excitotoxicity. 
Moreover, ELVs attenuated infarct volumes, rescued the ischemic core 
and penumbra, diminished NVU damage, and promoted cell survival 
accompanied by neurological/behavioral recovery. It is reasonable to 
propose that novel ELV therapies have the potential to treat focal 
ischemic stroke and other conditions that engage inflammatory/ho-
meostatic disruptions. 

4.4.5. Mechanism of action of Elovanoids 
In so far as the mechanism of action, ELVs target the expression of 

protective proteins and behaves as senolytic (Fig. 7). ELVs counteracted 
the cytotoxicity of OAβ subretinally administered in WT mice leading to 
RPE tight junction disruptions followed by PRC cell death. Our data 
show that OAβ activates a senescence program reflected by enhanced 
gene expression of Cdkn2a, Mmp1a, Trp53, Cdkn1a, Cdkn1b, Il-6, and 
senescence-associated secretory phenotype (SASP) secretome, followed 
by RPE and PRC demise (Fig. 7), and that ELV-N32 and ELV-N34 blunt 
these events and elicit protection to both cells. P16INK4a protein 
abundance is also targeted. The RPE cell is terminally differentiated and 
originated from the neuroepithelium. In this connection, senescent 
neurons in aged mice and models of Alzheimer's disease [205] and as-
trocytes [206] also express senescence and develop secretory SASP that 
fuels neuroinflammation in nearby cells [207]. This is likely the case in 
our study reported in 2019 [198], where neighboring cells may be tar-
geted by SASP neurotoxic actions, inducing photoreceptor paracrine 
senescence. Therefore, SASP from RPE cells may be autocrine and 
paracrine, altering the homeostasis of the interphotoreceptor matrix 
microenvironment (Fig. 7), as a consequence and creating an inflam-
matory milieu that contributes to loss of function associated with aging, 
age-related pathologies [208], Alzheimer's disease, and likely AMD. 
Furthermore, ELVs restore expression of ECM remodeling matrix met-
alloproteinases altered by OAβ treatment, pointing to an additional 
disturbance in the interphotoreceptor matrix. The inflammation set in 
motion may be a low-grade, sterile, chronic proinflammatory condition 
similar to inflammaging that is also linked to senescence of the immune 
system [208,209]. In addition, ELVs counteracted OAβ-induced 
expression of genes engaged in AMD and autophagy. It remains to be 
defined whether the ELVs targeted events on gene transcription (Fig. 7) 
to inform novel unifying regulatory mechanisms to sustain health span 
during aging and neurodegenerative diseases [208,210]. Several forms 
of retinal degenerative diseases, including retinitis pigmentosa and 
other inherited retinal degenerations, may underlie these mechanisms, 
and ELVs might halt the onset or slow down disease progression. 
Although further research is needed, our results, overall, show the po-
tential of ELVs as a possible therapeutic avenue of exploration for 
neurodegenerative diseases. 

5. Non-enzymatically oxidised-PUFAs (NEO-PUFAs) 

In the following section T. Durand and J.-M. Galano describe the 
biosynthesis, structures and activities of nonenzymatically derived PUFAs 
(NEO-PUFAs). 

5.1. Lipid peroxidation 

Lipid peroxidation (LPO) is a degenerative process implicated in the 
pathogenesis of diseases and/or involved in the resolving process of 
diseases by the production of signaling molecules or lipid mediators. It is 
also a very common process in the plant kingdom and invertebrates, 
which is outside of the scope of this review, and interested readers 
should refer to the following recent review [211]. 

The process of nonenzymatic peroxidation of PUFAs, which is 
exacerbated under oxidative stress (OS) conditions, produces a myriad 
of oxidized compounds, some structurally similar to the oxylipins 
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(racemic PGF2α) or structurally unique (as not represented in the enzy-
matic process; i.e., isofurans or isomeric series of prostaglandins, the 
isoprostanes). We have recently tentatively abbreviated them as NEO- 
PUFAs, i.e., nonenzymatic oxygenated PUFAs to differentiate them 
from the enzymatically-derived oxylipins [212]. The NEO-PUFAs are 
part of the redox-lipidome, and while they have been investigated as 
biomarkers of diseases (the most frequently investigated are the iso-
prostanoids) [213], they are however rarely considered biologically 
relevant molecules [214]. 

5.2. Mechanisms of formation of cyclic NEO-PUFAs 

The free radical nonenzymatic oxidation of PUFAs has been studied 
for more than 70 years in biology and medicine, in parallel with the 
study of oxidative stress. At the beginning of the 1990s it became evident 
that limitations were inherent in the exploration of OS and LPO in vivo 
[215]; however, a seminal paper appeared with the potential of solving 
these limitations. Morrow and co-workers showed that mass spectrom-
etry could detect and quantify prostaglandin-like compounds in vivo in 

plasma and tissues, and these compounds were named Isoprostanes 
(IsoP) [216]. They pinpointed that a nonenzymatically driven biosyn-
thetic process led to the generation of compounds structurally similar to 
the enzymatically-derived prostaglandins, but with a much greater di-
versity of isomers, for example, compared to the single enzymaticaly 
derived prostaglandin (PGF2α) from ARA, there are four different types 
of IsoPs. Not long afterwards, the isoprostanes were shown to be ubiq-
uitous in human fluids and tissues and fairly easy to quantify, which led 
to them becoming the long-sought after gold standard biomarker of 
oxidative status of free radical injuries in humans [217]. 

Many other NEO-PUFAs have subsequently been identified, some 
similar to their enzymatic version (albeit racemic and with the full set of 
potential isomers), like the isolevuglandin, isotromboxane, but also a 
novel structure was discovered which is unique to nonenzymatic 
biosynthesis, the isofuranes. 

Fig. 8 shows the formation of IsoPs from ARA (for simplicity only one 
the four possible series of IsoPs is shown), which starts with H-atom 
abstraction at the 13th position of the ARA ester. Unlike the enzymatic 
process of oxylipin formation, the free radical chain process occurs to 

Fig. 7. ELVs effect on oligomeric amyloid-β (OAβ)-induced RPE and PRC damage. A: OAβ induces a senescence gene program and disrupts RPE tight junctions. OAβ 
penetrates the retina, causing PRC cell death in our in vivo WT mice study, as reflected in less outer nuclear layer (ONL) nuclei (Fig. 5 from [198]). OAβ activates the 
senescence-associated secretome (SASP) that contributes to perturbing the interphotoreceptor matrix (IPM), triggering inflammaging in PRC and also likely in 
Mueller glia, which limits the IPM. Therefore, senescence paracrine expression takes place. ELVs restore RPE morphology and PRC integrity. B: OAβ induces 
expression of senescence, autophagy, matrix metalloproteinases, and age-related macular degeneration (AMD)-related genes in the RPE and apoptosis genes in retina 
in addition to p16INK4a protein abundance. ELVs downregulated the OAβ-gene inductions and p16INK4a protein abundance. Pathways for the ELV synthesis are 
outlined. ELV, elovanoid; PRC, photoreceptor cell; RPE, retinal pigment epithelium. Reproduced, with permission, from the Proceedings of the National Academy of 
Sciences of the United States [198]. 
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membrane-bounded PUFAs. All that is required to make cyclic NEO- 
PUFAs is a PUFA with at least three double-bonds separated by a 
methylene group. 

The initial step in the free radical chain peroxidation process starts 
by an initiation step, that is the initial formation of a free radical (like the 
hydroxyl radical (HO●) one of the oxygen center radicals overproduced 
under oxidative stress conditions), which will abstract a H atom from a 
PUFA at the origin of the pentadienyl radical A (Fig. 8) [218]. Then only, 
the radical chain process can produce hydroperoxides (hydro-
peroxyeicosatetraenoic acids; HPETEs) via O2 addition and hydro-
peroxyl radicals and (B). The propagation can be maintained 
indefinitely in theory until termination step mechanisms. However, 
other propagation mechanisms are also in competition, like a peroxyl 
radical cyclisation (via a 5-exo trig process) to give 1,2-dioxolanylalkyl 
radicals (C), which has several subsequent mechanistic fates, and two of 
them lead to cyclic NEO-PUFAs [219], which are detailed below. 

The first one starts with a second 5-exo trig cyclization onto the 
conjugate diene leading after oxygen trapping and H atom abstraction to 
IsoP substructure G2t-IsoP. Of particular interest here are the production 
of epimers of prostaglandins, as the lipid lateral chains generated can be 
of 1,2-cis configuration or 1,2-trans configuration (only the 1,2-cis 
configuration is represented in Fig. 8), and the cis or trans configuration 
can be anti or syn to the always fixed 1,3-cis diol (because of endoper-
oxide production)). A perfect match with PGF2α is also produced via this 
mechanism (albeit racemic), and Morrow and co-workers highlighted 
the issues with PGF2α quantification in urine [220]. This makes four 
different isomers for the four consecutive centers, plus the epimeric 
center at the allylic position, so a total of eight possible stereoisomers for 
one single series (hence the sheer complexity of NEO-PUFAs compared 
to enzymatically derived oxylipins). Another fate of C (Fig. 8) is by 1,3- 

SHi followed by a 3-exo trig cyclization to give rise to diepoxy hydro-
peroxides after O2 trapping and H atom abstraction [221]. 

G2-IsoP is partially reduced into H2-IsoP and its complete reduction 
affords the F-type of isoprostane [216]. Partial reductions depending on 
the tissues and/or pathophysiological conditions can make keto- 
hydroxy IsoPs (Fig. 8, blue structures) E2-IsoP or D2-IsoP [222] (it has 
been showed that E and D-IsoP can be epimerized into their corre-
sponding prostaglandins under physiological conditions) [223]. Dehy-
dration of membrane bound E2- and D2-IsoPs is also feasible in 
physiological conditions and cyclopentenone A2 and J2 were described 
as very reactive intermediates [224]. They also tend to deoxygenate 
further into deoxy-J2-IsoP to even more reactive biomolecules [225]. 
Interestingly deoxy-A2-IsoP has not thus far been reported in the liter-
ature; however, based on the mechanism identified all the series of J2- 
IsoP it suggests deoxy-A2-IsoPs must exist. 

Another partial reduction can lead to a thromboxane substructure, 
and while A2-IsoTX could not be detected; B2-IsoTx was found in CCl4 
induced injury of rats. In vitro oxidation of ARA initiated by Fe/ADP/ 
ascorbate also led to B2-IsoTx [226]. The epoxy-IsoPs can only be 
explained by the unique rearrangement-elimination sequence of 15-D2- 
hydroperoxides or 15-E2-hydroperoxides (not represented here), which 
originate from endoperoxide G2-IsoPs [227]. Such 14,15-epoxy-15-D2- 
IsoP as described can also further dehydrate to 14,15-epoxy-15-J2-IsoP 
[228]. Another cyclic NEO-PUFAs unique from the nonenzymatic 
autooxidation of lipids are the isofuranes (IsoF) [229], which are best 
described biosynthetically from diepoxy hydroperoxides [219]. Such 
bisepoxides can react with water to ring open one of the epoxides, and 
the resulting hydroxyl group will then attack the remaining epoxide to 
form the furan cycle. Two types of IsoF were named as alkenyl-IsoF and 
enediol-IsoF depending of the nature of the side chains. The final stage of 

Fig. 8. Mechanism of the free radical chain process leading to cyclic NEO-PUFAs. (Only one H-atom abstraction is shown for clarity, as well as stereoisomers, and 
ARA was chosen as the PUFA). See text for details. 
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biosynthesis is the release of the oxidized PUFAs from the membrane, 
which occurs via the action of phospholipase A2. 

5.3. Biological relevance of cyclic NEO-PUFAs 

Since the 1990's 15-F2t-IsoP and other derivatives have been 
commonly used as the best available standard for measuring the extent 
of lipid peroxidation in most tissue fluids. However, these cyclic NEO- 
PUFAs are also relevant to human pathologies, due to their harmful or 
beneficial actions produced via their activities at prostanoid and rya-
nodine receptors. 

The initial report by Morrow and co-workers identified levels of 15- 
F2t-IsoP in plasma were one or two orders of magnitude higher than 
PGF2, and 15-F2t-IsoP was an extremely potent renal vasoconstrictor in 
the low nM range [216]. Since then, investigations have revealed its 
vasoconstrictive effects in many vascular beds (heart, liver, lung, kid-
ney, smooth muscle, retina) via the thromboxane receptor (TP) [230]. 
15-F2t-IsoP can also modulate platelet activity via the same receptor 
[231]. 15-E2t-IsoP is also a vasoconstrictor via the TP and the dichotomy 
of PGF2α vs PGE2 (vasoconstrictor vs. vasodilator) was not observed 
[232]. 15-E2t-IsoP is also a ligand of E-series of prostaglandin receptors 
(EP) [233], and bronchoconstrictor in lung. Bendorf and co-workers 
further showed that 15-F2t-IsoP, 15-E2t-IsoP and 15-A2t-IsoP inhibited 
the VEGF-induced migration and tube formation of endothelial cells, 
and that altogether inhibit angiogenesis via activation of the TBXA2R 
[234]. 15-J2-IsoP was found to have inflammatory response by inhibit-
ing via the peroxisome proliferator-activated receptor gamma (PPARγ) 
activation and induce RAW264.7 cell apoptosis in a PPARγ-independent 
manner [235]. 15-A2-IsoP another cyclopentenone ARA derivative dis-
plays anti-inflammatory effects by the inhibition of NF-κB pathway in 
lipopolysaccharide (LPS)-induced macrophages and human gestational 
tissues [236]. The overall picture of these cyclopentenone metabolites is 
currently unclear, as recently highlighted for their prostaglandin 
equivalents, and is probably much dependent on their structures [237]. 
For example, 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3- 
phosphocholine, (PEIPC) in OxPAC (oxidized 1-palmitoyl-2-arach-
idonoyl-syn-glycero-3-phosphocholine) was shown to regulate over 80% 
of the 1000 genes regulated by OxPAC in human aortic endothelial cells 
(HAEC), and their non-esterified epoxy-IsoPs possess similar functions 
on genes showing a dual and opposing bioactivity in inflammation, 
depending on their concentration or their substructures [237,238]. 

There is little information available for EPA cyclic NEO-PUFAs in the 
literature, partially due to a lack of commercial standards. Synthetically 
available 5-F3t-IsoP was found to behave in a similar manner to other F2- 
IsoPs in modulating the release of neurotransmitters in isolated bovine 
retina via prostanoid receptors [239], while cyclopentenone 15-A3t-IsoP 
had anti-inflammatory effects on LPS-stimulated macrophages, via the 
inhibition of NF-κB pathways, and inhibitory effect on the formation of 
foam cells, a major step in the pathogenesis of atherosclerosis [240]. 

DHA cyclic NEO-PUFAs have been investigated to a greater extent 
than the EPA derivatives, as there has been a greater focus on neuro-
prostane synthesis. 14-A4-NeuroP is a potent anti-inflammatory medi-
ator, inhibiting NF-κB activation in LPS-induced macrophages [241], 
Majkova et al., showed that A4/J4-NeuroPs down-regulated PCB77- 
induced monocyte chemo-attractant protein-1 expression and nuclear 
factor erythroid 2-related factor 2 (Nrf2) activation in primary pulmo-
nary endothelial cells [242], and Gladine and co-workers showed that 
both 4-(RS)-4-F4t-NeuroP and 14-A4t-NeuroP displayed anti- 
inflammatory activities, similar to the protectins in human macro-
phages. These results can parallel the study that F4-Neuroprostanes as 
the best oxylipin-NEO PUFA predictor of atherosclerosis in atheroscle-
rosis prone mice, which received increasing doses of DHA [243]. One 
particular focus of our group is the biological relevance of 4-(RS)-4-F4t- 
NeuroP and its unique ability to protect the ryanodine receptors in vitro 
and in vivo, where potent antiarrhythmic properties have been shown 
via this mechanism of action [244]. Recently, F4-NeuroPs showed a 

biological activity in sperm function and was able to induce capacitation 
via increasing AMPK phosphorylation, and its role at ryanodine re-
ceptors is currently being explored [245]. Finally, Lee and co-workers 
showed that 4-(RS)-4-F4t-NeuroP can cross the blood brain barrier into 
rat brain tissue and alter brain omega-3 and omega-6 PUFA profiles, 
where anti-inflammatory and pro-resolvin lipid biomarkers were 
significantly elevated [246]. Furthermore, 4-F4t-NeuroP treatment to 
human neuroblastoma cells and rat primary neuronal cells consistently 
elevated HO-1 mRNA expression, suggesting that native 4-F4t-NeuroP 
has a regulatory role in neurons for cell survival [247]. 

Cyclic NEO-PUFAs and particularly the IsoPs have been detected and 
quantified from the most important PUFAs. Their biosynthesis is well 
known, their quantification is straightforward, and their biological 
relevance should grant them a place next to the well-known mediators of 
diseases. However, it took three decades for the field of classical eicos-
anoids and other oxylipins to begin to be recognized clinically. A recent 
paper provides the way forward to raise awareness of the oxylipins and 
NEO-PUFAs in clinical settings [246]. 

6. Fatty acid esters of hydroxy fatty acids 

In the following section L. Balas presents and overview of the recently 
identified family of branched fatty acids, the fatty acid esters of hydroxy fatty 
acids (FAHFAs). 

In contrast to PUFAs, saturated fatty acids are generally thought to be 
deleterious to health, promoting cardiovascular diseases, obesity, and 
type 2 diabetes. Thus, the paradoxical and striking discovery of endog-
enous saturated anti-diabetic acyloxy fatty acids, called fatty acid esters 
of hydroxy fatty acids (FAHFAs) [248] triggered a strong revival of in-
terest in these lipids. Structurally, these lipokines are characterized by a 
branched ester linkage between a fatty acid (FA) and a hydroxy-fatty 
acid (HFA). Nowadays, the term “branched” is often omitted, although 
it is an important aspect. A brief overview is presented below, including 
non-branched isomers and functionalized polar head derivatives. 

6.1. Branched FAHFAs 

Hundreds of structures with saturated, monounsaturated, or PUFA 
chains, including regio-isomers with the ester linkage at position C5 or 
C7 to C13 and their (R)- and (S)-epimers have been identified [248,249]. 
Although present in some natural products (see below), the 3-series does 
appear to be part of this anti-diabetic lipid family. 

Branched FAHFAs are endogenously produced in insects [250], and 
mammals, such as rodents [248,251], caribou and moose [252], and 
humans [251,253]. In humans, white adipose tissue (WAT) represents 
the major site of FAHFA synthesis [248,253–255], although they are 
also found in blood [256,257] and other tissues, such as the liver 
[248,258], kidneys [248,258,259], large intestine [260], pancreas 
[248], lungs [258], thymus [258], and heart [258], albeit to a lesser 
extent. Branched FAHFAs are also naturally occurring substances found 
in microalgae [261], breast milk [262] and foods, such as cereals, fruits, 
vegetables, oils, eggs and meat [251,263–265]. Quantities are rather 
low, ranging from 45 to 320 ng/g of fresh food. To date, no information 
has been reported about their absorption and bioavailability. 

Since their discovery, only a few research groups have begun to 
investigate their biosynthetic pathways, and roles in health and diseases, 
and of the hundreds of possible FAHFA structures very few have been 
studied thus far. For example, little is known about the biosynthesis of 
saturated hydroxylated fatty acids [249], although Kuda and co-workers 
reported in 2018 that 9-hydroxylated stearic acid is produced from (per) 
oxidized membrane phospholipids [266]; however, the regioselectivity 
of hydroxylation/peroxidation on some carbon atoms of the fatty acid 
chain (positions 5,7, 9, 10, 11, 12, 13 mainly) has yet to be explained. 
The advent of synthetic standards should facilitate research, and their 
preparation has been summarized in a recent comprehensive review 
[267]. 
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It is possible that FAHFAs do not all have the same properties nor the 
same intensities in their effects. The palmitic acid hydroxy stearic acid 
(PAHSA) family is currently the most studied, showing significant 
enhancement of glucose tolerance, glucagon-like peptide 1 secretion and 
insulin sensitivity in obese insulin-resistant mice with reduction of the 
adipose tissue inflammation [248,249,268,269]. PAHSA concentrations 
inversely correlate with insulin resistance and the propensity to develop 

diabetes. 9-PAHPA (palmitic acid esterified to 9-hydroxy palmitic acid) 
and 9-OAHPA (oleic acid esterified to 9-hydroxy palmitic acid) increase 
insulin sensitivity in obese and healthy mice and they both increase 
basal metabolism [270,271]. Effects of human blood 9-PAHSA and 9- 
OAHSA suggest a protection against cardiovascular diseases [256]. In 
both mice [251,272] and humans [257], polyunsaturated FAHFAs exert 
powerful anti-inflammatory properties, stronger than the fully saturated 

Fig. 9. Examples of Fatty acid esters of hydroxy fatty acids (FAHFAs) and derivatives. See text for details.  
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compounds. The beneficial effects of branched FAHFAs, namely 
involvement in metabolic disorders and diabetes, inflammation, 
browning of WAT, potential antioxidant and anti-cancer properties and 
the current knowledge on their biosynthesis and metabolism are sum-
marized in recent reviews [249,273]. In addition, recent investigations 
have shown noticeable decreases in FAHFA levels in plasma of patients 
suffering from acute coronary syndrome or acute ischemic stroke [257], 
and increasing levels with the severity of lupus nephritis [270] in murine 
models. 

6.2. The 2-FAHFA series 

Levels of anti-inflammatory 2-FAHFAs with very short FA chains 
(C2-C5) increase in the colon of influenza infected mice compared to 
healthy controls [274]. 

6.3. Non-branched FAHFAs (omega-FAHFAs) 

Mainly studied in meibonian glands and tear film of human and mice 
eyes [275,276], these omega-FAHFAs are also present in equine amni-
otic fluid [277], mice skin [278], vernix caseosa [279], and equine 
sperm [280]. With their long or very-long (C16 to C38 atoms) chains and 
their carboxylated acid group, these amphiphilic lipids (ca. 4% total 
lipid) promote tear film stability and prevent drying of the ocular surface 
[276,281,282]. Cholesteryl esters of omega-FAHFAs have also been re-
ported [279]. 

6.4. Functionalized polar head FAHFA derivatives 

6.4.1. Triacylglycerol-estolides (TAG-Est) 
In vivo esterification of FAHFAs with diacylglycerol produces TAG- 

Est that serves as reservoirs of FAHFAs. In mice, the fine-tuned TAG- 
Est metabolism (liberating free FAs or free FAHFAs) regulates the anti- 
diabetic signaling lipid profiles [254,283,284]. In oat, a digalacto-
syldiacylglycerol containing 15-LAHLA in place of a FA chain has been 
reported [285]. 

6.4.2. Amino acid-containing FAHFAs 
Several amino acid-containing acyloxyacyl lipids have been re-

ported. Structurally (Fig. 9), they are composed of a 3-FAHFA bound to 
the amine group of an amino acid(lysine [286], glycine [287], ornithine 
[288,289], di- and tri-methylated ornithine [290]) or dipeptide such as 
in flavolipin (a serine-glycine polar head and a omega-1 methyl group on 
both fatty chains)[267] or cerilipin [286,291]. 

They are essentially found in the outer membranes of Gram-negative 
bacteria and also in some Gram-positive bacteria. In 2010, Geiger 
published a review dedicated to these amino-acid lipids [292]. More 
recently, an anti-bacterial activity against Streptococcus agalactiae and a 
cytotoxic effect against the A2058 human melanoma cell lines were 
observed with flavolipin [293].In addition, serine dipeptide lipids pro-
duced by oral and intestinal Bacteroidetes bacteria are consistently 
recovered in lipid extracts of carotid arteries, suggesting their implica-
tion in the pathogenesis of TLR2-dependent atherosclerosis through 
flavolipin deposition and metabolism in artery walls [294]. Interest-
ingly, flavolipin may be a potential biomarker of multiple sclerosis (MS), 
as it is expressed at significantly lower levels in the serum of MS patients 
compared with both healthy individuals and Alzheimer's disease pa-
tients [295]. 

7. General conclusions 

Enzymatic and nonenzymatic oxidation of PUFAs produces vast 
repertoires of PUFA-specific oxylipins with widespread cellular and 
physiological functions. In this review researchers at the forefront of 
their respective fields have provided overviews of the biosynthesis, 
structures and functions of the main classes of nonclassical oxylipins, 

including the recently identified FAHFAs, which are derived from 
saturated, monounsaturated and PUFAs. Due to the central role of 
PUFAs as precursors to many of these lipid mediators, recent advances in 
our understanding of the role of FADS in PUFA biosynthesis have also 
been discussed. 

The overarching aim of this review is to show both the diversity of 
the most recently identified enzymatically and nonenzymatically- 
derived oxylipins, and also their roles in regulating cellular functions 
in health and disease. This review has provided insights into the dis-
coveries of many new oxylipins, which have vastly extended the 
repertoire of fatty acid-derived bioactive lipid mediators beyond the 
classical eicosanoids. It has also highlighted many areas where our 
increased understanding of their activities may hold significant thera-
peutic potential. For example, in the area of SPMs, the identification of 
their anti-inflammatory, pro-resolving, microbial clearing, anti- 
thrombotic and organ-protective actions may be useful in controlling 
SARS-CoV-2 infection disease severity, and even long-term COVID-19 
symptoms. 

This review has presented a wide range of oxylipins, and shown there 
are potential overlapping, but also opposing actions between these 
diverse classes of lipid mediators, and a more integrated approach to 
investigating the oxylipidome and the interplay between the different 
oxylipins in regulating cellular functions may prove important in un-
derstanding their role in health and disease, and in the development of 
new therapies. An example of this was shown in the eye, where VLC- 
PUFAs are located at the sn-1 position and DHA the sn-2 position of 
retinal photoreceptor cell PC. Here, alternatively or concomitantly 
regulated pathways may lead to the dual formation of both ELVs and N 
(PD)1; however, the interplay between these oxylipins and how the 
different regulatory pathways are coordinated remains to be fully 
elucidated. 

By far the greatest diversity of oxylipins is produced nonenzymati-
cally, but as discussed above, their role and relative importance in 
regulating cellular functions is not well understood. There are however 
precedents for nonenzymatically-derived oxylipins regulating cellular 
responses, for example, in the activation of detoxification systems in 
plants [296], and ferroptosis, where phospholipid peroxidation products 
drive non-apoptotic cell death via an iron-dependent regulated process 
[297,298]. Dysregulation of ferroptosis has been implicated in a wide 
range of conditions, including cancer, neurodegeneration, tissue injury, 
inflammation, and infection [299], and as such, a greater understanding 
of the role of NEO-PUFAs in regulating cellular processes, such as fer-
roptosis, may hold great potential for the development of novel 
treatments. 

For these reasons researchers may need to cross traditional research 
boundaries, and consider the wider diversity of classes of oxylipins and 
their inter-relationships when investigating their roles and activities to 
better understand the therapeutic potential of modifying the levels of 
specific oxylipins. To date few studies have examined the whole range of 
PUFA-derived oxylipins, as this analysis is complicated by a lack of 
commercial standards and the wide range of physiological concentra-
tions of the different oxylipins; however, recent developments in lip-
idomics and mass spectrometry may make this type of analysis more 
feasible in the future. 

There are however a number of important aspects of oxylipin 
metabolism that remain to be understood. For example, although the 
biosynthesis and activities of the different oxylipins is beginning to be 
characterised, there is still much to learn about the kinetics of their 
formation and turnover, which has been called “fluxolipidomics” [300]. 
There is also still much to be learned about more fundamental aspects, 
such as whether there are differences in the levels of the different oxy-
lipins between males and females, and the effects of age are also not well 
characterised. 

Further important questions relate to how responsive the different 
families of oxylipins are to dietary modifications. There have been very 
dramatic changes in both the quality and quantity of dietary fat, 
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predominantly driven by the Agricultural and Industrial Revolutions, 
and culminating in the current situation where the Western diet has low 
levels of omega-3 PUFAs and high levels of LA, saturated fatty acids, and 
trans fatty acids, and has seen the omega-6 PUFA/omega-3 PUFA ratio 
change from around 1–2:1 to 10–20:1 [301]. As has been seen above, 
increased dietary LA intake can led to detrimental increases in the level 
of OXLAMs, and although these octadecanoids are found at higher levels 
in tissues and blood than oxylipins derived from any other PUFA [11], 
they are among the least researched and the consequences of these 
changes on human health need more extensive investigation. Similarly, 
although EPA, DPAn-3 and DHA-derived SPMs have been shown to be 
responsive to omega-3 PUFA supplementation, and these changes may 
be linked to decreases in inflammation, the exact relationship between 
increased intakes of EPA, DPAn-3 and DHA and increases in specific 
SPMs, and also ELVs, requires further research to help us progress to 
more precision medicine [302]. 

In summary, this review has provided insights into current under-
standing of the biosynthesis of omega-3 and omega-6 PUFAs, and the 
biosynthesis, structures, and functions of nonclassical oxylipins; how-
ever, further work will undoubtedly lead to the discovery of many new 
oxylipins, and also increase our understanding of their regulation and 
actions in health and disease. This review has also highlighted some of 
the challenges that need to be overcome in order for this research to 
produce clinical benefits in the diagnosis, prognosis, and treatment of 
diseases. These challenges include the need for a wider range of 
analytical standards, the lack of understanding of oxylipin kinetics and 
normal biological variations, and the need for greater methodological 
standardisation between laboratories to increase consistency in analysis 
of the whole range of oxylipins. These and other challenges to clinical 
translation have been discussed in the insightful review by Gladine and 
Fedorova [246]. This complex field holds significant clinical potential, 
and in this review we have provided an overview of some of the breadth 
and diversity of the different classes of oxylipins, and their importance 
in health and disease. 
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