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Holographic entanglement entropy of surface defects

Simon A. Gentle, Michael Gutperle and Chrysostomos Marasinou

Department of Physics and Astronomy

University of California, Los Angeles, CA 90095, USA

sgentle, gutperle, cmarasinou@physics.ucla.edu

Abstract

We calculate the holographic entanglement entropy in type IIB supergravity solu-

tions that are dual to half-BPS disorder-type surface defects inN = 4 Super Yang-Mills

theory. The entanglement entropy is calculated for a ball-shaped region bisected by a

surface defect. Using the bubbling supergravity solutions we also compute the expecta-

tion value of the defect operator. Combining our result with the previously-calculated

one-point function of the stress tensor in the presence of the defect, we adapt the

calculation of Lewkowycz and Maldacena [1] to obtain a second expression for the

entanglement entropy. Our two expressions agree up to an additional term, whose

possible origin and significance is discussed.
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1 Introduction

Entanglement entropy is an important quantity that measures the quantum entanglement

between different regions of a system. It furnishes an order parameter for phase transitions

and is central to the recent efforts to explore the relation between quantum entanglement

and geometry. The Ryu-Takayanagi proposal [3, 4] allows one to calculate entanglement

entropies in theories described by a holographic AdS/CFT dual.

The simplest setup for which entanglement entropy can be calculated is a spherical en-

tangling surface in the ground state of a given theory. In recent years many generalizations

have been studied both on the field theory side and via holography, including more gen-

eral entangling surfaces, time dependence, finite temperature and other systems not in their

ground state.

Of particular interest is the entanglement entropy in the presence of non-local operators.

Two types of non-local operator can be distinguished. Operators such as Wilson lines can

be expressed as operator insertions written in terms of the fundamental fields of the theory.

However, disorder-type operators cannot be written in this way and are instead characterized

by the singular behavior of the fundamental fields close to a defect. One example of the latter

is the ’t Hooft loop in gauge theories. Note that S-dualities often map defects of the two

types into each other [5].

The entanglement entropy for co-dimension one Janus-like defects and boundary CFTs

have been studied in [6, 7, 8, 9, 10, 11]. In [1] the entanglement entropy in the presence of

a (supersymmetric) Wilson line operator was calculated in four-dimensional N = 4 SU(N)

SYM theory as well as three-dimensional ABJM theories. In the holographically dual the-

ories the description of the Wilson line operator depends on the size of the representation:

for representations with Young tableau of order 1, N and N2 the Wilson line is described

by a fundamental string [12, 13], probe D-branes [14, 15, 16] and bubbling supergravity

solutions [17]1, respectively. In [20] the holographic entanglement entropy for the bubbling

supergravity solution was computed and exact agreement between the field theory and holo-

graphic calculations was found.

Surface operators have received much less attention. In the present paper we focus on

disorder-type surface defects in four-dimensional N = 4 SU(N) SYM theory constructed

in [21, 22] and their dual description as bubbling geometries of type IIB supergravity con-

structed in [23, 24]. For notational ease we will drop the qualifier ‘disorder-type’ and simply

call these ‘surface defects’.

The geometric setup of the surface defect is best visualized in R4. At fixed time the

1See [18, 19] for earlier work on bubbling solutions dual to Wilson lines.
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Figure 1: Geometry of the entangling region and surface defect in R4. The entangling region
A is a three-dimensional ball with a two-sphere boundary. The surface defect extends along
a spatial line and bisects the two-sphere.

entangling region A is a three-dimensional ball with a spherical boundary. The surface

defect Σ extends in one spatial direction (and time). We depict the setup in figure 1, with

one spatial and the time direction suppressed. Note that unlike the case of the Wilson line,

it is generic for the surface defect and the boundary of the entangling space to intersect. In

the text we also use different geometries, namely AdS3× S1 and S1×H3, which are related

to R4 by a coordinate change and Weyl rescaling.

The goal of this paper is to calculate the holographic entanglement entropy in the presence

of surface defects for N = 4 SYM and compare them to the result obtained by mapping the

entanglement entropy to a thermal entropy as in [25]. Here we calculate the expectation

values of the surface defect using holography and use the expectation value of the stress

tensor that was previously obtained in [2]. The methods used in this paper closely follow

those used in our previous paper [26] which addressed the same questions for Wilson surface

operators [27, 28, 29] in six-dimensional (2, 0) theory [30, 31] and their dual supergravity

solutions [32, 33].

The structure of this paper is as follows. In section 2 we review the field theory description

of half-BPS surface defects in N = 4 SYM theory. In section 3 we review the bubbling

supergravity solutions dual to these defects. In section 4 we calculate the entanglement

entropy for a spherical entangling region that intersects the surface defect. In section 5 we

calculate the expectation value of the surface defect by evaluating the on-shell supergravity

action on the bubbling solution and review the result for the one-point function of the

stress energy tensor in the presence of a surface defect. In section 6 the expectation values

are used to calculate the entanglement entropy following the method of Lewkowycz and

Maldacena [25] which we then compare with our holographic result. The two entanglement

entropies do not match completely and we discuss possible explanations for the mismatch in

section 7. Various technical details are presented in the appendices.
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2 Review of surface defects in N = 4 SYM

In this section we review the construction of half-BPS surface defects in N = 4 SYM theories

first obtained in [21] and studied in detail holographically in [2, 34].

The defects are supported on a two-dimensional surface Σ in R4. They are disorder-

type operators so, unlike Wilson line operators, cannot be written as an integral of the

fundamental gauge fields over Σ. Instead, they are characterized by singularities of the

gauge fields and/or scalar fields at the surface Σ as well as holonomies along cycles in the

space normal to the surface. Furthermore, we are interested in half-BPS defects that preserve

half the superconformal symmetry PSU(1, 2|2)× PSU(1, 2|2) inside PSU(2, 2|4). For such

superconformal defects it is possible to perform a Weyl transformation from R4 to AdS3×S1,

in which the surface Σ is mapped to the boundary of AdS3. This has two advantages: first,

the singularities of the fields along Σ are mapped to boundary behavior in AdS3 and second,

the AdS3 × S1 geometry appears naturally in the dual bubbling supergravity solutions that

we will review in section 3.

The half-BPS surface defect is characterized by the following data. The non-trivial

conditions on the gauge field and scalars break the SU(N) gauge group to the Levi subgroup

L =
∏M

i=1 U(Ni) with M factors. Near the boundary of AdS3 the gauge field has a non-

vanishing component along the U(1) coordinate, which we denote by ψ:

Aψ = diag {α11N1 , α21N2 , . . . , αM1NM
} with

M∑
i=1

Ni = N (2.1)

There are M theta angles for the M unbroken U(1) factors (see [34, 2] for details), which

can be parametrized by the matrix

η = diag {η11N1 , η21N2 , . . . , ηM1NM
} (2.2)

A complex scalar, which we can choose as Φ = φ5 + iφ6, has non-trivial behavior along the

S1:

Φ =
e−iψ√

2
diag {(β1 + iγ1)1N1 , (β2 + iγ2)1N2 , . . . , (βM + iγM)1NM

} (2.3)

To summarize, the surface defect is characterized by the set of M integers Ni and a set of

4M real parameters (αi, ηi, βi, γi) with i = 1, 2, . . . ,M .

We also cite the results for the expectation value of the surface defect and the one-point

function of the stress tensor calculated in [2] in order to compare them with the results of

our holographic calculations. In the semiclassical approximation the expectation value of

the surface operator is determined by evaluating the classical N = 4 SYM action on the field
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background. It was shown in [2] that this gives zero and hence

〈OΣ〉 = e−SY M |surface = 1 (2.4)

In addition, several one-point functions of local operators and Wilson line operators in the

presence of the surface defect were calculated in [2]. The only one which is relevant for the

present paper is the one-point function of the stress tensor, which takes the following form

due to AdS3 × S1 symmetry and the fact that the stress tensor is traceless:

〈Tµν〉Σ dxµ dxν = hΣ

(
ds2

AdS3
− 3 dψ2

)
(2.5)

The semiclassical value for the scaling weight hΣ is found by evaluating the stress tensor of

N = 4 SYM on the field background:

hΣ = − 2

3g2
YM

M∑
i=1

Ni(β
2
i + γ2

i ) (2.6)

3 Review of bubbling supergravity solutions

In [2, 34] it was proposed that the solution found in [23, 24] is the holographic dual of the

surface defect operator. The solution is constructed as a AdS3 × S3 × U(1) fibration over a

three-dimensional space with boundary parametrized by the coordinates y, x1, x2, where the

boundary is located at y = 0. The metric takes the form

ds2 = y

√
2f + 1

2f − 1
ds2

AdS3
+ y

√
2f − 1

2f + 1
ds2

S3 +
2y√

4f 2 − 1
(dχ+ V )2 +

√
4f 2 − 1

2y
ds2

X (3.1)

where the AdS3 metric is in Poincaré coordinates and the metric on the base is simply the

flat Euclidean metric:

ds2
AdS3

=
dt2 + dl2 + dz2

z2
and ds2

X = (dy2 + dx2
1 + dx2

2) (3.2)

The function f(y, x1, x2) satisfies a linear partial differential equation with M sources located

in the bulk of the base space X at y = yi, x = ~xi with i = 1, 2, . . . ,M :

∂2
1f + ∂2

2f + y∂y

(
∂yf

y

)
=

M∑
i=1

2πyi δ(y − yi) δ2(~x− ~xi) (3.3)

V is a one-form on X that can be obtained from f by solving

dV =
1

y
?3 df (3.4)
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Note that (3.4) only fixes V up to an exact form and the freedom to redefine V → V +dω will

be important to obtain a manifestly asymptotically AdS metric as detailed in appendix A.1.

The only other non-trivial field is the self-dual five-form field strength, which takes the form

F5 =− 1

4

(
d
[
y2 2f + 1

2f − 1
(dχ+ V )

]
− y3 ?3 d

[f + 1/2

y2

])
∧ ωAdS3

− 1

4

(
d
[
y2 2f − 1

2f + 1
(dχ+ V )

]
− y3 ?3 d

[f − 1/2

y2

])
∧ ωS3 (3.5)

where ?3 denotes the Hodge dual2 in the-three dimensional base space X with metric given

by (3.2).

This solution was first constructed in [24] as a double analytic continuation of the LLM

solution [23]. Indeed (3.1) becomes the LLM metric by continuing the U(1) fiber coordinate

to a time like coordinate and continuing AdS3 to S3. Note however that the boundary

condition on the function f is different: the AdS3 volume can never shrink to zero size in

a smooth solution so we must have f → 1
2

as y approaches the boundary of X. Hence for

the bubbling surface solution the coloring of the boundary determined by the regions where

limy→0 f = ±1
2

in the LLM solution gets replaced by the bulk sources in (3.3).

The supergravity solutions depend on 3M parameters, which are the M sources on the

right hand side of (3.3), located in X at yi, ~xi with i = 1, 2, . . . ,M . There is an overall

translation symmetry along ~x; this allows us to choose ‘center-of-mass’ coordinates, which

sets

~x(0) ≡
M∑
i=1

y2
i ~xi = 0 (3.6)

This choice will make the expressions considerably more compact. The general solution of

(3.3) for the function f is then given by

f =
1

2
+

M∑
i=1

fi (3.7)

with

fi = −1

2
+

(~x− ~xi)2 + y2 + y2
i

2
√

[(~x− ~xi)2 + y2 + y2
i ]

2 − 4y2y2
i

(3.8)

For such an f the solution of the differential equation (3.4) for the one-form V is given by

VI dx
I = −

M∑
i=1

∑
I,J

εIJ
(xJ − xiJ)[(~x− ~xi)2 + y2 − y2

i ]

2(~x− ~xi)2
√

[(~x− ~xi)2 + y2 + y2
i ]

2 − 4y2y2
i

dxI (3.9)

where the indices I, J run over x1, x2.

2The sign of the Hodge dual is fixed by ?3dy = dx1 ∧ dx2 and cyclic permutations of dy, dx1 and dx2.

7



In [2, 34] the parameters of the supergravity solution were identified with the parameters

of the gauge theory surface defect as follows:

1

2πl2s
(xi1 + ixi2) = βi + iγi,

y2
i

L4
=
Ni

N
(3.10)

where L denotes the radius of AdS5. The parameters αi and ηi are identified with periods

of the NSNS and RR two-form potentials on non-trivial two-cycles in the solutions. On the

supergravity side these periods carry only topological information since the three-form field

strengths of the two-form potentials vanish. As the calculations performed in section 4 and

5 depend only on the metric and the five-form, we conclude that all our calculations will be

independent of the periods and hence the parameters αi and ηi.

3.1 The vacuum solution

In order to develop intuition for the geometry it is useful to consider the AdS5×S5 vacuum

solution, which can be obtained by considering only one source, i.e. setting M = 1. Trans-

lation invariance allows one to set ~x1 = 0 and from (3.10) we can fix y1 = L since N1 = N .

To exhibit the AdS5 × S5 metric explicitly it is convenient to introduce new coordinates:

χ =
1

2
(ψ − φ)

y = L2
√
ρ2 + 1 cos θ

x1 = x
(0)
1 + L2ρ sin θ cos (ψ + φ)

x2 = x
(0)
2 + L2ρ sin θ sin (ψ + φ) (3.11)

where the range of the angular variables is given by θ ∈ [0, π/2], ψ ∈ [0, 2π], φ ∈ [0, 2π]. It is

straightforward to verify that for this choice the function f (3.7) and the one-form V (3.9)

for the vacuum solution take the following form

f =
1

2

ρ2 + cos2 θ + 1

ρ2 + sin2 θ
and V =

1

2

ρ2 − sin2 θ

ρ2 + sin2 θ
d(ψ + φ) (3.12)

where the gauge transformation can be set to zero, i.e. ω = 0. Using the expressions given

in (3.1) the metric can be calculated and gives

ds2 = L2

[(
ρ2 + 1

)
ds2

AdS3
+

dρ2

ρ2 + 1
+ ρ2 dψ2 + dθ2 + sin2 θ dφ2 + cos2 θ ds2

S3

]
(3.13)

which is indeed AdS5×S5. Note that the metric is written in a form for which the conformal

boundary is AdS3 × S1. In the following we will set the AdS radius L = 1 and restore it by

dimensional analysis when needed.
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3.2 Asymptotics and regularization of the bubbling solution

The integrals appearing later in the holographic entanglement entropy and the expectation

value calculations are divergent. Therefore, we need to regulate them introducing a cut-off.

In this section we map the general metric to a Fefferman-Graham (FG) form (3.19), we find

the FG coordinate map (A.6) and derive the cut-off surface (3.20) in terms of the FG UV

cut-off.

The fact that a general solution must be asymptotically AdS5× S5 implies the following

restriction on yi:
M∑
i=1

y2
i = 1 (3.14)

It is straightforward to see this considering the map to field theory parameters (3.10) and∑M
i=1Ni = N .

We will work in the coordinate system introduced in (3.11) and expand the general

solution at large ρ. As mentioned above, the one-form V is defined up to an exact form.

Thus, we use a gauge transformation to remove the Vρ component of this vector. This brings

the metric into a manifestly asymptotic form and makes it as compact as possible which is

convenient for our calculations. Fixing the gauge, ω becomes:

ω = −M − 1

2
α + sin θ

∞∑
n=1

V
(n+1)

1 (θ, α) cosα + V
(n+1)

2 (θ, α) sinα

nρn
(3.15)

where the V
(n+1)
I are the coefficients in a large ρ expansion of the functions given in (3.9).

The detailed procedure and the explicit form of ω are given in the appendix A.1.

The next step is to write the metric in terms of the {ρ, ψ, θ, φ} coordinates. We write it

as a deviation of the vacuum (3.13):

ds2 =
1

(ρ2 + 1)
(1 + Fρ) dρ

2 +
(
ρ2 + 1

)
(1 + F1) ds2

AdS3
+ ρ2 (1 + F2) dψ2

+ cos2 θ (1 + F3) ds2
S3 + (1 + F4) dθ2 + sin2 θ (1 + F5) dφ2

+ F6 dθ dψ + F7 dψ dφ+ F8 dθ dφ (3.16)

with the Fa being functions of {ρ, θ, α ≡ ψ + φ} expanded at large ρ. Specifically, Fρ, Fm ∼
O (ρ−2) for m ∈ {1, 2, . . . , 7} and F8 ∼ O (ρ−4). Only certain coefficients in the Fρ expansion

emerge in our calculations and their expressions are given in the appendix A.2. These coeffi-

cients are expressed in terms of dimensionless moments. We will mainly express quantities in

terms of these moments throughout the paper and therefore it is convenient to define them

in advance:

mabc ≡
M∑
i=1

yai x
b
i1x

c
i2 (3.17)
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Note that for the AdS5 × S5 vacuum only the following moments are non-zero:

m
(0)
k00 = 1 for k = 2, 4, 6, . . . (3.18)

A general bubbling solution, preserving the AdS3×S3×S1 isometry, can then be written

in the following Fefferman-Graham form:

ds2 =
1

u2

(
du2 + α1 ds

2
AdS3

+ α2 dψ̃
2
)

+ α3 ds
2
S3 + α4 dθ̃

2 + α5 dφ̃
2

+ α6 dθ̃ dψ̃ + α7 dψ̃ dφ̃+ α8 dθ̃ dφ̃ (3.19)

The condition that the metric must asymptote to AdS5 × S5 with AdS3 × S1 boundary

implies that the new coordinates u, ψ̃, θ̃, φ̃ and the αm (expressed as functions of ρ, ψ, θ, φ)

fall off as

u =
1

ρ
(1 + . . .) , ψ̃ = ψ + . . . , θ̃ = θ + . . . , φ̃ = φ+ . . .

α1 = 1 + . . . , α2 = 1 + . . . , α3 = cos2 θ (1 + . . .) , α4 = 1 + . . .

α5 = sin2 θ (1 + . . .) , α6 = . . . , α7 = . . . , α8 = . . .

The ellipses denote powers of ρ−1 whose coefficients are determined by equating (3.16) and

(3.19). The explicit coordinate map is given in (A.6).

The integrals in the entanglement entropy and expectation value calculations diverge at

large ρ. It is useful to express the coordinate map as a cut-off relation ρ = ρc(ε, ψ, θ, φ).

This is found by solving the first equation in (A.6) for ρ at the small u limit and identifying

u with the FG cut-off, u = ε. The outcome is:

ρc(ε, ψ, θ, φ) =
1

ε
+
F

(2)
ρ − 1

4
ε+

F
(3)
ρ

6
ε2 (3.20)

+
16
[
F

(4)
ρ − F (2)

ρ

(
F

(2)
ρ − 1

)]
−
(
∂θF

(2)
ρ

)2

−
(
∂φF

(2)
ρ

)2

csc2 θ

128
ε3 +O

(
ε4
)

Once we substitute for the coefficients of Fρ we find that this function can be written as

ρc(ε, θ, α) with α = ψ + φ.

4 Holographic entanglement entropy

The Ryu-Takayanagi prescription [3, 4] states that the entanglement entropy of a spatial

region A is given by the area of a co-dimension two minimal surface M in the bulk that is

anchored on the AdS5 × S5 boundary at ∂A:

SA =
Amin

4G
(10)
N

(4.1)
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Since we are dealing with static states of our CFT, this surface lies on a constant time slice.

If this surface is not unique, we choose the one whose area is minimal among all such surfaces

homologous to A.3

In the following section we derive the minimal surfaceM for a general bubbling solution

and show that its restriction to the boundary, which is a theory on AdS3 × S1, maps to a

two-sphere in the Weyl-related R4. We then evaluate its regulated area.

4.1 Minimal surface geometry

A bubbling geometry is a AdS3 × S3 × U(1) fibration over X. We consider a surface M at

constant t that fills the S3 and has profile z = z(l, χ, y, x1, x2), where z is the AdS3 radial

coordinate defined in section 3. The induced metric on M is

hαβ dx
α dxβ = y

√
2f + 1

2f − 1

1

z2

[
dl2 +

(
∂z

∂l
dl +

∂z

∂χ
dχ+

∂z

∂y
dy +

∂z

∂x1

dx1 +
∂z

∂x2

dx2

)2
]

+ y

√
2f − 1

2f + 1
ds2

S3 +
2y√

4f 2 − 1

[
dχ2 + 2VI dx

I dχ+
(
VI dx

I
)2
]

+

√
4f 2 − 1

2y

(
dy2 + dx2

1 + dx2
2

)
(4.2)

where α, β run over all coordinates except t and z. The area functional becomes

A(M) = Vol
(
S3
) ∫

dl dχ dy dx1 dx2

(
f − 1

2

)
y

z

{
1 +

(
∂z

∂l

)2

+
y2(

f − 1
2

)
z2

[(
∂z

∂y

)2

+

(
∂z

∂x1

− V1
∂z

∂χ

)2

+

(
∂z

∂x2

− V2
∂z

∂χ

)2

+

(
f + 1

2

) (
f − 1

2

)
y2

(
∂z

∂χ

)2
]} 1

2

(4.3)

The equation of motion that follows from this functional is very complicated, but can be

solved by

z(l, χ, y, x1, x2)2 + l2 = R2 (4.4)

This semicircle is a co-dimension two minimal surface in AdS3. Following [35, 9] one can

show that within this ansatz this is in fact the surface of minimal area.

The surface (4.4) is independent of the AdS5 radial coordinate. Thus, the boundary ∂A
of the entangling region on AdS3×S1 satisfies the same formula. To understand this better,

let us consider two coordinate charts on R4:

ds2
R4 = z2

(
dz2 + dt2 + dl2

z2
+ dψ2

)
= dt2 + dx2 + x2

(
dϑ2 + sin2 ϑ dψ2

)
(4.5)

3This minimal surface prescription was recently established on a firm footing by the analysis of [25].
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The map between these two charts is given by

z = x sinϑ, l = x cosϑ (4.6)

Thus, our entangling surface ∂A on the space AdS3 × S1 can be written as a two-sphere of

radius R on R4 (given by x = R) upon Weyl rescaling.

4.2 Evaluating the area integral

The minimal area can be written as follows:

Amin = Vol
(
S3
)

Vol
(
S1
) ∫

dl
R

R2 − l2 I (4.7)

where we have defined

I ≡
∫
X

dy dx1 dx2

(
f − 1

2

)
y (4.8)

with the function f given in (3.7). The area integral, and hence the entanglement entropy,

diverges. This is expected due to the infinite number of degrees of freedom localized near

the entangling surface and is present even in the vacuum. However, the intersection between

the entangling surface and the surface operator leads to an additional divergence. Our goal

is to extract the change in entanglement entropy in the presence of the surface operator,

which requires a careful treatment of these divergences.

We introduce two independent cut-offs, which we now argue is consistent with our field

theory living on AdS3 × S1. Firstly, the integral over X diverges due to the infinite volume

of AdS5. We regulate this with our Fefferman-Graham cut-off ε, which is a UV cut-off on

AdS3×S1. Secondly, after using (4.4) to rewrite the l integral as an integral over z, we find

a divergence at z = 0. This is the location of the surface operator and is at infinite proper

distance from other points in the AdS3. We therefore interpret this as an IR cut-off and

regulate at z = η.

It is instructive to focus first on the case with no surface operator present in order

to exhibit the divergence structure of these integrals most clearly. We begin by changing

coordinates via (3.11). Defining α ≡ ψ + φ and using the vacuum formula (3.12) for f we

find

I(0) =

∫ 2π

0

dα

∫ π/2

0

dθ cos3 θ sin θ

∫ ρ
(0)
c

0

dρ ρ (4.9)

We denote by ρ
(0)
c the Fefferman-Graham cut-off function (3.20) evaluated on the vacuum

moments (3.18). In this special case it truncates to just two terms and is in fact independent

of the angular coordinates: ρ
(0)
c = 1/ε − ε/4. Reinstating the overall factor of L8, the full
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result for the integral over X is then

I(0) = L8

(
π

4ε2
− π

8
+
πε2

64

)
(4.10)

Next we handle the integral over l. Recall that the minimal surface formula (4.4) describes

a semicircle for which z ∈ [0, R] and l ∈ [−R,R]. The l integral diverges at both limits;

rewriting via (4.4) as an integral over z, we regulate with a cut-off at z = η:∫ √R2−η2

−
√
R2−η2

dl
R

R2 − l2 = 2

∫ √R2−η2

0

dl
R

R2 − l2 = 2

∫ R

η

dz
R

z
√
R2 − z2

= 2 log

(
R +

√
R2 − η2

η

)
= 2 log

(
2R

η

)
− η2

2R2
+O

(
η4
)

(4.11)

To compute the entanglement entropy (4.1) we need the following relations between gravity

and gauge theory quantities

4G
(10)
N = (2π)7(4π)−1g2

sα
′4, L4 = 4πgsNα

′2 (4.12)

as well as the volume Vol (S3) = 2π2. Our final result for the divergent terms of the entan-

glement entropy in the absence of the surface operator is

S
(0)
A = N2

[
1

ε2
− 1

2
+O

(
ε2
)]

log

(
2R

η

)
(4.13)

This result looks very different to that for a spherical entangling surface on R4 with a

single Poincaré-invariant UV cut-off (see [3], for example). The reason is that the AdS5

boundary in the slicing (3.13) can be reached in two ways: z → 0 at fixed ρ (the location

of the surface defect) or ρ→∞ at fixed z (some point away from the defect). We therefore

need two cut-offs in this chart.4 For a field theory on AdS3×S1, the cut-off η can be viewed

as an IR cut-off that regulates the infinite volume of AdS3. As we will discuss in some detail

in section 6, from the point of view, of the surface defect η should be viewed as a UV cut-off.

Now let us evaluate the area integral in the presence of a surface operator. Our result

(4.11) for the integral over l is unchanged. Whilst it is possible to evaluate the integral for

I given in (4.8) for a general bubbling geometry after changing coordinates via (3.11), the

result is extremely lengthy and cumbersome to deal with. We found the following approach

to be much simpler.

For a general bubbling geometry, the integral (4.8) is actually a sum of integrals:

I =
M∑
i=1

Ii with Ii ≡
∫
X

dy dx1 dx2 yfi (4.14)

4This situation is also familiar from the S1 ×Hd−1 slicing of AdSd+1 — see figure 1 of [36], for example.
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where the fi are given in (3.8). We can perform a change of variables for each value of i

separately

x1 = yi x̄1 + xi1, x2 = yi x̄2 + xi2, y = yi ȳ (4.15)

after which the Ii integral becomes

Ii = y4
i

∫
X̄

dȳ dx̄1 dx̄2 ȳ fi with fi = −1

2
+

ȳ2 + x̄2
1 + x̄2

2 + 1

2
√

(ȳ2 + x̄2
1 + x̄2

2 + 1)
2 − 4ȳ2

(4.16)

Now fi takes the same form as for the vacuum configuration. With a further change of

variables the integral can be brought into the same form as (4.9):

Ii = y4
i

∫
dᾱ dθ̄ dρ̄ ρ̄ cos3 θ̄ sin θ̄ (4.17)

ȳ =
√
ρ̄2 + 1 cos θ̄, x̄1 = ρ̄ sin θ̄ cos ᾱ, x̄2 = ρ̄ sin θ̄ sin ᾱ (4.18)

All that remains is to impose the correct cut-off in the new variables ρ̄c(ε, θ̄, ᾱ) and then

sum up the results for each Ii.

As a side remark, it is interesting that we can express the general integral in the same

form as the vacuum. This is because the function f for the general solution is constructed

by superimposing terms that each have the same form as the vacuum solution. This simple

behavior is special to this system and we do not expect such a simplification to be possible

generically.

In order to find ρ̄c(ε, θ̄, ᾱ), our strategy is first to express the unbarred variables {ρ, θ, α}
in terms of the barred variables {ρ̄, θ̄, ᾱ} then to write the FG coordinate u as an asymptotic

series in large ρ̄. Solving this relation asymptotically for ρ̄ and setting u = ε we obtain the

following cut-off function:

ρ̄c(ε, θ̄, ᾱ) =
1

yi ε
− ri cos (ᾱ + βi) sin θ̄

yi
+

1

8yi

[
−1− 4r2

i − 2y2
i − 2(y2

i − 1) cos 2θ̄

− 2m220 − 2m202 +m400 + sin2 θ̄
(
3 + 2r2

i + 2r2
i cos (2ᾱ + 2βi)

+6m220 + 6m202 − 3m400 + 12m211 sin 2ᾱ + 6 (m220 −m202) cos 2ᾱ)] ε

+O
(
ε2
)

(4.19)

where we have defined xi1 = ri cos βi and xi2 = ri sin βi. The details on the derivation

of the cut-off function ρ̄c(ε, θ̄, ᾱ) are presented in appendix B. Since the coordinate change

(4.15) is simply a rescaling followed by a translation, we deduce the following ranges for the

integration variables in the Ii integral (4.17):

0 ≤ ρ̄ < ρ̄c(ε, θ̄, ᾱ), θ̄ ∈ [0, π/2], ᾱ ∈ [0, 2π] (4.20)
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We are now ready to evaluate Ii. We perform the ρ̄ integral first due to its variable limit.

It turns out that the moments drop out in the integration over the angular coordinates.

However, they do appear in the final result for I once we sum over i:

I =
M∑
i=1

Ii =
πL8

4ε2
+
πL8

24
[1− 4 (m220 +m202 +m400)] +O (ε) (4.21)

where we restored the overall factor of L8. As a leading order check we do indeed recover

the vacuum result (4.10) when evaluated on the vacuum moments (3.18). The holographic

entanglement entropy in the presence of a surface operator (4.1) is evaluated using the

minimal area via (4.7) in terms of the two regulated integrals (4.11) and (4.21). At the

end, gravity expressions are translated to gauge theory ones using (4.12). Putting all this

together, the result is

SA = N2

[
1

ε2
+

1− 4 (m220 +m202 +m400)

6
+O (ε)

]
log

(
2R

η

)
(4.22)

Subtracting the vacuum contribution from (4.22) and taking ε → 0 we arrive at our final

result for the change in entanglement entropy due to the presence of a surface operator:

∆SA =
2N2

3
(1−m220 −m202 −m400) log

(
2R

η

)
(4.23)

4.3 A 2D CFT interpretation

Let us make a few comments on the form of the result (4.23) for the change in the entangle-

ment entropy. Note immediately that it diverges as η → 0. This additional divergence was

anticipated due to the intersection between the entangling surface and the surface defect.

The intersection occurs at two points separated by an interval, so it seems natural for the

divergence to be logarithmic: our result takes the same form as the entanglement entropy

across an interval in the vacuum of a generic two dimensional CFT [37, 38].

Note that the field theory description of the surface operators in section 2 did not require

any additional 2D degrees of freedom localized at the surface defect. However, in the original

paper [21] an alternative construction of the surface defects by coupling a nonlinear sigma

model on Σ to the SYM fields was described. Such a sigma model could describe the 2D

CFT we are looking for in the infrared. This construction is based on an intersecting D3-

D3’ brane system that was first discussed in [39]. Alternatively the defect can be realized

by a probe D3-brane in AdS5 × S5 with an AdS3 × S1 worldvolume. Following Karch and

Randall [40] and letting holography ‘act twice’ makes it likely that a 2D CFT is described

by the modes on the probe brane.
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Consequently it seems possible that the coefficient of the logarithmic divergence in the

subtracted entanglement entropy to be equal to (one third of) the central charge of this

CFT [37]. We now provide evidence realizing this expectation. Recall that our metric (3.1)

takes the form

ds2 = L2
(
e2W ds2

AdS3
+ ds2

Z

)
(4.24)

We define an effective central charge via the Brown-Henneaux fomula [41]:

ceff =
3L

2G
(3)
N

(4.25)

where G
(3)
N is the three-dimensional Newton’s constant of the theory obtained by reducing

on the remaining directions in Z. To compute G
(3)
N we must take into account the non-trivial

warp factor in front of ds2
AdS3

:

1

16πG
(3)
N

=
1

16πG
(10)
N

∆

(∫
Z

d7x
√
gZ e

W

)
(4.26)

where in order to isolate the contribution from the surface operator we should subtract off

the vacuum answer. Substituting the metric (3.1) and reinstating the correct powers of L,

our result for the effective central charge via (4.25) is given by

ceff =
3

2G
(10)
N

Vol
(
S3
)

Vol
(
S1
)

∆I (4.27)

where I is the integral (4.8) appearing in the entanglement entropy. From the minimal area

prescription (4.1) and integral (4.7) we deduce that

∆SA =
ceff

3
log

(
2R

η

)
(4.28)

which is indeed the entanglement entropy across an interval of length 2R. Note that from

the point of view of the two dimensional CFT the cut-off η is an UV cut-off.

It follows from (4.27) and (4.23) that the central charge ceff scales like N2. This is to be

contrasted with the sigma model or probe brane construction mentioned above where one

would expect that central charge to scale like N0 or N1, respectively. This result makes sense

since the holographic supergravity solution is described by a fully back-reacted geometry in

which the number of probe branes scales like N , leading to a number of localized degrees of

freedom of order N2.

5 Holographic expectation values

This section is devoted to holographic expectation values of different observables. Specif-

ically, we calculate the expectation value of the surface defect OΣ at strong coupling and
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large N . Our result (5.18) is new and is expressed in terms of the moments we introduced in

(3.17). We also quote the result of [2] for the holographic one-point function of the stress ten-

sor in the presence of OΣ (5.21, 5.22). In section 6 we will make use of these two expectation

values in an attempt to relate them to the entanglement entropy computed in section 4.

5.1 〈OΣ〉 calculation

A holographic calculation for the expectation value of the surface operator relies on evaluat-

ing the on-shell ten-dimensional type IIB supergravity action on the bubbling supergravity

solution presented in section 3. The obstacle here is well-known: it is difficult to recon-

cile Poincaré invariance of the action with the self-duality condition of the five-form F5.

Different approaches to this problem have been introduced in the literature: Covariant La-

grangians were constructed with the introduction of an infinite number of auxiliary fields

[42, 43, 44, 45, 46, 47, 48], a single auxiliary field in a non-polynomial way [49, 50, 51, 52]

and most recently a construction with a free auxiliary four-form field [53]. Formalisms with

non-manifest Lorentz symmetry were also considered [54, 55, 56]. The solutions presented

in section 3 follow from the standard IIB action where the the self-duality constraint (5.2)

has to be imposed by hand and not derived from varying the action.

In the holographic approach, the expectation value of the surface operator is given by

the on-shell action I :

〈OΣ〉 = exp
[
−
(
I − I(0)

)]
(5.1)

where we subtract off the vacuum contribution I(0). The total action is a sum of a bulk term

and the Gibbons-Hawking term:

I = Ibulk + IGH (5.2)

Ibulk =
1

2κ2

[∫
d10x
√−g

(
R− 1

2

∂Mτ ∂
M τ̄

(Im τ)2

)
−
∫ (

1

2
MabH

a
3 ∧ ?Hb

3 + 4F5 ∧ ?F5 + εabC4 ∧Ha
3 ∧Hb

3

)]
(5.3)

IGH =
1

κ2

∫
d9x
√−γ K (5.4)

In our case the complex scalar τ field is constant and the three-forms Ha
3 vanish. The trace

of the equation of motion for the metric implies R = 0 and thus the bulk term reduces to

Ibulk = − 2

κ2

∫
F5 ∧ ?F5 (5.5)

To evaluate the bulk term we have to deal with the self-duality of F5 which when imposed

makes (5.5) vanish. In the following we employ a pragmatic method proposed in [57, 58].
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The prescription suggests to replace F5 by its electric part only and double the relevant term

in the action. The electric part of F5 is the component with a time-like leg. As argued in

[57, 58] this approach is consistent with Kaluza-Klein reduction and T-duality. It would be

interesting to use some of the alternative approaches to deal with the self-dual five-form.

This would however imply redoing the derivation of the BPS supergravity solutions in the

respective formalism, which is a somewhat daunting task.

Thus, instead of (5.5) we need to evaluate

Ibulk = − 4

κ2

∫
F el.

5 ∧ ?F el.
5 (5.6)

As the electric part F el.
5 is not self-dual , the integrand of (5.6) does not vanish in general. In

particular, since the time coordinate lies in the AdS3, the electric part of F5 in (3.5) consists

of the terms that have legs on AdS3. It follows from the self-duality of F5 that the Hodge

dual of F el.
5 is the magnetic piece of F5, which has legs in S3. Consequently we get

F el.
5 = −1

4

(
d
[
y2 2f + 1

2f − 1
(dχ+ V )

]
− y3 ?3 d

[f + 1/2

y2

])
∧ ωAdS3 (5.7)

?F el.
5 = −1

4

(
d
[
y2 2f − 1

2f + 1
(dχ+ V )

]
− y3 ?3 d

[f − 1/2

y2

])
∧ ωS3 (5.8)

Using the equation (3.4) for the one-form V we can write the integrand in (5.6) as

F el.
5 ∧ ?F el.

5 =− yf

2(1− 4f 2)2

[
1− 8f 2 + 16f 4 +

2y

f
(1− 4f 2)∂yf (5.9)

+ 4y2
(
(∂1f)2 + (∂2f)2 + (∂yf)2

) ]
ωAdS3 ∧ ωS3 ∧ dχ ∧ dx1 ∧ dx2 ∧ dy (5.10)

which can be rewritten in the following way:

F el.
5 ∧ ?F el.

5 =

(
−1

2
yf + ∂IuI +

y3

4(1− 4f 2)

[
∂2

1f + ∂2
2f + y∂y

(
∂yf

y

)])
× ωAdS3 ∧ ωS3 ∧ dχ ∧ dx1 ∧ dx2 ∧ dy (5.11)

where I labels coordinates which run over the base space X, I = {x1, x2, y} and

uI ≡ −
y3

4(1− 4f 2)
∂If (5.12)

Using the equation (3.3) for f , we can eliminate the final term in (5.11) since its denominator

diverges. This is because f diverges at the location of the sources yi, ~xi. Thus, the expression

for the integrand is given by

F el.
5 ∧ ?F el.

5 =

(
−1

2
yf + ∂IuI(x1, x2, y)

)
ωAdS3 ∧ ωS3 ∧ dχ ∧ dx1 ∧ dx2 ∧ dy (5.13)
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The first term appearing in (5.13) includes the holographic entanglement entropy integral

(4.8). The last term is a total derivative that can be integrated by applying Stoke’s theorem.

For the convenience of the reader and completeness we present the evaluation of the integrals

for the bulk term in the appendix E.1. The result found in (E.18) is as follows:5

Ibulk =
π

2κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
) [ 1

ε4
+

1

ε2
+

3

8
−m400 −F

]
(5.14)

where ε is the FG cut-off appearing in (3.20). The final term in the finite piece takes the

following form in terms of the moments:

F ≡ 3

32

[
1 + 4m220 + 4m202 − 2m400 + 10

(
m2

220 +m2
202

)
+24m2

211 − 4 (m220 +m202)m400 +m2
400 − 4m220m202

]
(5.15)

The computation of the Gibbons-Hawking term is performed in the appendix E.2. The

outcome (E.24) is given by

IGH =
π

2κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
)( 4

ε4
+

1

ε2

)
(5.16)

We note that the Gibbons-Hawking term does not depend on the moments and is hence

independent of the details of the bubbling solution. It is notable that in the analogous

calculation of the expectation value for the Wilson surface operator in six-dimensional (2, 0)

theories [26] the Gibbons-Hawking term is also independent of the moments.

5.2 Result and comments

Now we are ready to put all the pieces together to build the total on-shell action (5.2). Our

result is

I =
π

2κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
) [ 5

ε4
+

2

ε2
+

3

8
−m400 −F

]
(5.17)

Subtracting the vacuum contribution (which has m400 = 1), reinstating the overall factor

of L8 and converting to field theory quantities using (4.12) along with κ2 = 8πG
(10)
N , we

arrive at our final result for the expectation value:

log 〈OΣ〉 =
N2

(2π)2
(m400 − 1 + F) Vol (AdS3) Vol

(
S1
)

(5.18)

5F is identical to the expression 128∆Φ2,k∆Φ2,−k with k = −2, 0, 2 appearing in [2]. ∆Φ2,k are the
asymptotic coefficients in a spherical harmonic expansion. Details on this expansion and the relation of
∆Φ2,k to our moments can be found in appendix D.
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We should compare our holographic result for the expectation value with the semi-

classical field theory calculation given in [34]. There, the SYM action was evaluated on

AdS3 × S1 with the surface defect boundary conditions (2.1) and (2.3) imposed and it was

found that log 〈OΣ〉 = 0. A field theory interpretation of the holographic result (5.18) in

the weak coupling limit is not direct. This is since our result is evaluated using holography

and it is valid at strong coupling and large N . Even though the surface operator preserves

supersymmetry it is not clear that the holographic results can be trusted at weak coupling.

For completeness, however, we make use of the identifications (3.10) and (4.12) to express

the moments appearing in (5.18) in terms of field theory quantities:

m400 =
M∑
i=1

N2
i

N2
(5.19)

and

F
6144

=

[
1

2
− 1

2N2

M∑
i=1

N2
i +

4π2

g2
YMN

2

M∑
i=1

Ni

(
β2
i + γ2

i

)]2

+
24π4

g4
YMN

4

M∑
i=1

Ni (βi + iγi)
2
M∑
j=1

Nj (βj − iγj)2 (5.20)

The interpretation of F in the field theory is not clear at this point. One would expect

that this term should be a higher order correction to the semi-classical calculation of [34]

and it would be interesting to calculate quantum corrections to surface defect operators

systematically.

5.3 〈Tµν〉Σ
Here we present the stress-energy tensor 〈Tµν〉Σ result, evaluated in [2], which we use in the

next section. Conformal symmetry constrains the stress-energy tensor form in the presence

of the surface defect OΣ to (2.5):

〈Tµν〉Σ dxµdxν = hΣ

(
ds2

AdS3
− 3 dψ2

)
(5.21)

〈Tµν〉Σ is preserved and traceless, in line with the fact that Weyl anomaly vanishes for

AdS3 × S1.

The exact value of hΣ is calculated in [2] following the holographic renormalization

method performed in [59]. We give the dictionary of the result of [2] in terms of the moments

(3.17) in appendix D. The final result for hΣ then takes the following form

hΣ =
N2

2π2

[
1

16
− 1

3

(
m220 +m202 +

1−m400

2

)]
(5.22)
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6 Comparing entanglement entropies

Our main result in this paper is the subtracted entanglement entropy (4.23) calculated in

section 4. The geometric setup is easier to visualize in R4 where the spherical entangling

surface is a sphere. The setup on R4 is related to AdS3×S1 by a diffeomorphism and a Weyl

rescaling. We review the various coordinate systems and the geometry of the entangling

surface and surface defect in appendix C.

In fact, spherical entangling surfaces are special, since the corresponding modular Hamil-

tonian is (an integral of) a local operator. In [60], the authors used this fact to write the

entanglement entropy across a spherical entangling surface of radius R on R1,d−1 as a ther-

mal entropy on the hyperbolic spacetime R×Hd−1. The latter is conformally related to the

causal development of the entangling region on the original Minkowski spacetime.

In [1] this mapping of entanglement entropy to thermal entropy was applied to the cal-

culation of entanglement entropy in the presence of Wilson loops in N = 4 SYM theory

and ABJM theories. In particular, it was shown that the additional entanglement entropy

due to the presence of the Wilson loop can be calculated from the expectation value of the

Wilson loop and the one-point function of the stress tensor. The formula for the additional

entanglement entropy due to the presence of a Wilson loop is given by6

∆S = log〈W 〉 −
∫

S1×Hd−1

ddx
√
g∆〈Tττ 〉W (6.1)

where ∆〈Tττ 〉W denotes the subtracted (by the one-point function without the Wilson loop

inserted) time component of the stress tensor. The two expectation values in (6.1) are

calculated on the hyperbolic space S1×Hd−1, where the coordinate of the thermal circle S1

is denoted by τ ∼ τ + β with periodicity β = 2πR.

The formula (6.1) is valid for arbitary representations of the Wilson surface. If the

representation becomes very large, i.e. the associated Young tableaux have N2 boxes, the

backreaction on the dual supergravity solution cannot be neglected. This case was examined

in [20] by two of the present authors. There, the holographic entanglement entropy was

calculated using the bubbling supergravity solutions dual to half-BPS Wilson loops [17].

The expectation values reduce by localization to matrix model integrals [61]. Once matrix

model and supergravity solution data are appropriately identified, following [62, 63], it was

found that the holographic entanglement entropy exactly agrees with (6.1).

We are also studying a setup with a spherical entangling surface in a CFT, so it is

interesting to see whether the same formula (6.1) can be applied to our system. (Of course,

6Note that we use the opposite sign convention for the stress tensor from the one used in [1]. Specifically,
our convention makes use of the definition Tµν = 2√

g
δS
δgµν .
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the map to a thermal entropy [60] should still hold because the isometry in τ is unbroken.)

Here, the Wilson loop operator is replaced by a surface defect. To evaluate (6.1) we have to

calculate the values of 〈OΣ〉 and the stress tensor on S1 ×H3. In section 5 we determined

them on AdS3 × S1, so the first step is map these quantities to the hyperboloid.7

Our setup admits a simple description in R4. The three spaces are conformally related

as follows:

ds2
AdS3×S1 = z−2 ds2

R4 = Ω2 ds2
S1×H3 (6.2)

where the expressions for the 4D metrics (in the coordinate charts of interest) and the

conformal factor Ω are given in (C.1) and (C.3):

ds2
S1×H3 = dτ 2 +R2

(
dρ2 + sinh2 ρ

(
dϑ2 + sin2 ϑ dψ2

))
and Ω2 =

1

R2 sinh2 ρ sin2 ϑ
(6.3)

For convenience of the reader, further details on the coordinate maps and the description of

our setup in these charts is given in appendix C.

It was shown in [64] that even-dimensional surface observables suffer from a conformal

anomaly. In particular, the infinitesimal change in the expectation value ofOΣ is proportional

to a linear combination of integrals of the intrinsic and extrinsic curvatures of the surface,

whose precise expression is given in equation (2.9) of [2]. The coefficients in this combination

depend on the surface operator and the theory and are generically non-zero. However, the

curvature integrals all vanish in our setup of a planar surface at ∂AdS3 ⊂ AdS3 × S1, so

we conclude that 〈OΣ〉 is invariant under this conformal transformation. (Of course, the 4D

trace anomaly also vanishes on this space, as noted in section 5.3.)

The one-point function of the stress tensor (5.21) transforms in the usual way under a

conformal transformation in four dimensions; for example

〈T̃ττ 〉Σ = Ω−2

[(
∂t

∂τ

)2

〈Ttt〉Σ +

(
∂l

∂τ

)2

〈Tll〉Σ +

(
∂z

∂τ

)2

〈Tzz〉Σ
]

=
hΣ

R4 sinh4 ρ sin4 ϑ
(6.4)

where we used the coordinate map from AdS3 × S1 to the hyperboloid in (C.4). The full

result is traceless as expected since the trace anomaly vanishes on S1 ×H3:

〈T̃µν〉Σ dx̃µ dx̃ν =
hΣ

R4 sinh4 ρ sin4 ϑ

[
dτ 2 +R2

(
dρ2 + sinh2 ρ

(
dϑ2 − 3 sin2 ϑ dψ2

))]
(6.5)

7These are the same Euclidean geometry. However, we wish to map a theory quantized on the time t
in AdS3 to a theory quantized on the time τ , so we must perform a non-trivial conformal transformation.
Furthermore, the geometric location of the surface defect and the entangling surface is exchanged in the two
coordinate systems.
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Note that in even dimensions there is also an inhomogeneous term that generalizes the

Schwarzian derivative for the two-dimensional stress tensor. As pointed out in [60, 65] this

term does not depend on the state of the theory. Hence it will drop out of the vacuum

subtracted stress tensor component ∆〈T̃ττ 〉Σ in (6.1).

For reasons that will become clear later we write the volume factors in the expression of

the expectation value, (5.18), in integral form and change variables. The new variables are

the coordinates on the hyperboloid, {τ, ρ, ϑ, ψ}, which have one-to-one map with AdS3×S1

coordinates, {t, l, z, ψ}. The volume is written as

Vol
(
AdS3 × S1

)
=

∫
AdS3×S1

d4x
√
g =

∫
S1×H3

d4x̃Ω−2
√
g̃

=
β Vol (S1)

R

∫
dϑ

sin3 ϑ

∫
dρ

sinh2 ρ
(6.6)

where the integration over ψ and the thermal cycle have been performed. We omit the limits

of the integrals over ϑ and ρ to treat them later. Substituting this relation into (5.18) we

write the expectation value as

log 〈OΣ〉 = N2 (m400 − 1 + F)

∫
dϑ

sin3 ϑ

∫
dρ

sinh2 ρ
(6.7)

The third ingredient in (6.1) is (dropping tildes)∫
S1×H3

d4x
√
g∆〈Tττ 〉Σ = (2π)2 ∆hΣ

∫
dϑ

sin3 ϑ

∫
dρ

sinh2 ρ
(6.8)

where ∆hΣ is the vacuum subtracted value of (5.22).

We notice that both ingredients (6.7, 6.8) contain the same integrals. The integrals

diverge since the domain of integration is ϑ ∈ [0, π] and ρ ∈ [0,∞). To compute them we

introduce two independent cut-offs as follows:∫ π−η/R

η/R

dϑ

sin3 ϑ

∫ ∞
a

dρ

sinh2 ρ
=

[
R2

η2
+ log

(
2R

η

)
− 1

6
+O

(
η2
)](1

a
− 1 +O(a)

)
(6.9)

The cut-off η is identified with the homonymous cut-off introduced in the holographic en-

tanglement entropy calculation. The divergence comes from degrees of freedom close to the

entangling surface x = R. Therefore, for small z = η the first map in (C.4) sets the cut-off

values of ϑ to η/R and π − η/R (see figure 2). Since we are interested in the universal term

of (6.9) where a is absent, no identification for this cut-off is needed.

We are now ready to combine all the ingredients in (6.1) (with the Wilson loop replaced
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z = η
η/R η/R

-R R l

z

ϑ

x

Figure 2: Mapping the z = η cut-off to polar coordinates. The red semicircle is the entangling
surface while the location of OΣ is at z = 0. A uniform cut-off z = η close to the location of
OΣ is introduced. It is denoted with a dashed horizontal line. This limits integration over ϑ
between η/R and π − η/R.

by the surface defect). The right hand side is

log 〈OΣ〉 −
∫

S1×H3

ddx
√
g∆〈Tττ 〉Σ =

2N2

3

(
1−m220 −m202 −m400 −

3

2
F
)

log

(
2R

η

)

= ∆SA −N2F log

(
2R

η

)
(6.10)

We immediately notice that there is a discrepancy compared to (6.1). The mismatch amounts

to the second term in (6.10), which is proportional to F . The minimal relation (6.1), derived

in [1] for Wilson loops, does not work here. This mismatch and possible explanations for it

are discussed further in section 7.

7 Discussion

In this paper we studied two-dimensional planar surface defects in N = 4 SYM theory via

their dual supergravity bubbling description. First we computed the entanglement entropy

across a ball-shaped region bisected by a surface defect. In addition we calculated two other

holographic observables: the one-point function of the stress tensor and the expectation

value of the surface defect.

We attempted to combine these ingredients as a test of field theory expectations. After a

conformal transformation, our entanglement entropy should be equal to the thermal entropy

on a hyperbolic space. However, as discussed in section 6, a straightforward generalization

of the work of Lewkowycz and Maldacena for Wilson loops [1] did not work in our setup.

We now offer some possible reasons for why this is so.
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It could be that our cut-off prescription was too naive. However, whilst the sub-leading

universal term in (6.9) could receive corrections in a modification of this prescription, the

form of the mismatch (characterized by F in (6.10)) is very different to that of the other

terms, so this cannot be the whole story.

The two new elements in our setup compared to [1] were the conformal anomaly for even-

dimensional surface observables and the intersection between the entangling surface and the

defect. So one possibility is that either element should contribute an extra term to the

thermal entropy in addition to those we considered. The same two elements were present

in our previous calculations [26] for a Wilson surface in the six-dimensional (2, 0) theory.

Whilst we do not have a general closed-form expression for the expectation value of the

Wilson surface, a case-by-case check yields a similar mismatch. It would be very interesting

to pin this down in future work with a direct field theory replica trick calculation.

In order to compute the required thermal entropy, one must compute the free energy

in the presence of the defect, which involves taking a derivative with respect to the inverse

temperature β. This can be written as a derivative of the field theory Lagrangian with

respect to the metric, as utilized in [1]. It could be that we have missed a contribution to

the stress tensor localized at the defect. Whilst the origin of such a term is unclear, it would

contribute to the entanglement entropy, so its existence (or lack thereof) should be clear

from a replica trick calculation.

Another approach that may provide an understanding of the mismatch is to consider

the probe brane approximation, where the defect operator is realized as D3 branes with

an AdS3 × S1 worldvolume inside AdS5 × S5 and the backreaction is neglected or treated

perturbatively. The expectation value is known for both types of surface operator [2, 28]

and the entanglement entropy can be computed to leading order using the results of [36]

(see also [35, 66, 67]). It would be interesting to determine whether the mismatch we found

persists in this approximation.

The logarithmic divergence in the entanglement entropy in the vacuum of a 2D CFT is

universal: it depends only on the central charge. It is natural to ask whether the coefficient in

our subtracted result (4.23) is similarly universal. We computed an effective central charge

holographically in section 4.3 and found precise agreement with this coefficient. Indeed,

the same agreement is found for the holographic description of a Wilson surface in the

(2, 0) theory [26]. It would be very interesting to pursue this connection further and develop

a 2D CFT description for both types of surface operator.

25



Acknowledgements

We are delighted to thank Xi Dong, Matthew Headrick, Edgar Shaghoulian and Christoph

Uhlemann for useful discussions. This work was supported in part by National Science

Foundation grant PHY-13-13986. The work of MG was in part supported by a fellowship of

the Simons Foundation. MG thanks the Institute for Theoretical Physics, ETH Zürich, for
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A Fefferman-Graham coordinates

This section complements the discussion of the FG mapping procedure in section 3. We

describe the gauge choice for the one-form V and give the results of the FG coordinate map.

A.1 Gauge choice

As mentioned in section 3 we are interested to choose ω such that Vρ = 0. In particular, we

first need to expand the function

ω =
∞∑
n=0

ω(n)(θ, α)

ρn
(A.1)

where α = ψ + φ and demand that Vρ = 0 at each order in the ρ−1 expansion. This is a

gauge choice that kills all dρ dY cross terms with Y ∈ {ψ, θ, φ} in the asymptotic expansion

of the metric8.Then we fix ω(0) by demanding that the dθ dψ and dψ dφ cross terms vanish

at zeroth order for all M . Considering the expansion of the one-form (3.9) at large ρ:

VI =
∞∑
n=1

V
(n)
I (θ, α)

ρn
(A.2)

The result for ω is given in terms of V
(n)
I coefficients in (3.15). Substituting the explicit

expressions for the coefficients it can be written as

ω = −M − 1

2
α +

1

2 sin θ ρ

M∑
i=1

(xi2 cosα− xi1 sinα)

− 1

4 sin2 θ ρ2

M∑
i=1

[(
x2
i1 − x2

i2

)
sin 2α− 2xi1xi2 cos 2α

]
− 1

6 sin3 θ ρ3

M∑
i=1

[(
x3
i1 − 3xi1x

2
i2

)
sin 3α +

(
x3
i2 − 3x2

i1xi2
)

cos 3α
]

+
1

8ρ4

{
1

sin4 θ

M∑
i=1

[
4
(
x3
i1xi2 − xi1x3

i2

)
cos 4α−

(
x4
i1 − 6x2

i1x
2
i2 + x4

i2

)
sin 4α

]
+ sin2 θ

M∑
i=1

[
−8y2

i xi1xi2 cos 2α + 4
(
y2
i x

2
i1 − y2

i x
2
i2

)
sin 2α

]}
+O

(
ρ−5
)

(A.3)

This is the gauge choice which eliminates the Vρ component and brings the metric in a

manifestly asymptotically AdS5 × S5 form.

8Note that ds2X defined in (3.2) has no dρ dY cross terms.
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A.2 The coordinate map

In this subsection we give the results of the FG mapping. We express them in terms of the

expansion coefficients of the functions Fa appearing in (3.16). The coefficients relevant to

our calculation come from the expansion of Fρ:

Fρ =
∞∑
n=1

F
(n)
ρ (θ, α)

ρn
(A.4)

In what follows we express the relevant coefficients in terms of the moments:

4F (2)
ρ = (1− 3 cos 2θ) [1 + 2 (m220 +m202)−m400]

+ 12 [cos 2α (m220 −m202) + 2m211 sin 2α] sin2 θ

F (3)
ρ = 3 (sin θ − sin 3θ) [(m212 +m230 −m410) cosα + (m221 +m203 −m401) sinα]

+ 4 sin3 θ [(−3m212 +m230) cos 3α− (−3m221 +m203) sin 3α]

32F (4)
ρ = −4 cos4 θ + (5− 12 cos 2θ + 15 cos 4θ) (2m202 + 2m220 −m400)

− 16 (1 + 5 cos 2θ) sin2 θ sin 2α [3m211 + 8 (m213 +m231)− 12m411]

− 8 (1 + 5 cos 2θ) sin2 θ cos 2α [3 (m220 −m202) + 8 (m240 −m204) + 12 (m402 −m420)]

− 640 sin 4α sin4 θ (m213 −m231) + 24
(
3− 4 cos 2θ + 5 cos 4θ − 40 cos 4α sin4 θ

)
m222

+ 4
(
9− 12 cos 2θ + 15 cos 4θ + 40 cos 4α sin4 θ

)
(m204 +m240)

− 4 (3− 4 cos 2θ + 5 cos 4θ) [6 (m402 +m420)−m600]

−
(

12 sin2 θ [cos 2α (m202 −m220)− 2 sin 2α m211]

− (1− 3 cos 2θ) (2m202 + 2m220 −m400)
)2

(A.5)

The FG mapping, as described in section 3, gives the following results for the FG coor-

dinates:

u =
1

ρ

[
1 +

F
(2)
ρ − 1

4ρ2
+
F

(3)
ρ

6ρ3
+

16(F
(4)
ρ − F (2)

ρ + 1)− (∂θF
(2)
ρ )2 − (∂φF

(2)
ρ )2 csc2 θ

128ρ4
+O

(
ρ−5
)]

ψ̃ = ψ − ∂ψF
(2)
ρ

16ρ4
− ∂ψF

(3)
ρ

30ρ5
+O

(
ρ−6
)

θ̃ = θ − ∂θF
(2)
ρ

8ρ2
− ∂θF

(3)
ρ

18ρ3
+

1

256ρ4

[
−8∂θF

(4)
ρ + 3∂φF

(2)
ρ ∂θ∂φF

(2)
ρ csc2 θ

−(∂φF
(2)
ρ )2 cot θ csc2 θ + ∂θF

(2)
ρ

(
12− 4F (2)

ρ + 16F
(2)
4 + 3∂2

θF
(2)
ρ

)]
+O

(
ρ−5
)

φ̃ = φ− ∂φF
(2)
ρ

8 sin2 θ ρ2
− ∂φF

(3)
ρ

18 sin2 θ ρ3
+

1

256 sin2 θ ρ4

[
−8∂φF

(4)
ρ + 3∂θF

(2)
ρ ∂θ∂φF

(2)
ρ

+∂φF
(2)
ρ

(
12− 4F (2)

ρ + 16F
(2)
5 + 3∂2

φF
(2)
ρ csc2 θ − 4∂θF

(2)
ρ cot θ

)]
+O

(
ρ−5
)

(A.6)
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B Holographic entanglement entropy

In this section we present some details of the holographic entanglement entropy calculation

performed in section 4. To compute the integrals (4.14) involved in the area functional we

performed a change of variables (4.15) which brought the integrals to a form matching the

vacuum integrals (4.17). To set the limits of integration over ρ̄ we need to express the FG

cut-off in the new coordinates as ρ̄c(θ̄, ᾱ, ε).

The first step is to express {ρ, θ, α} coordinates in terms of {ρ̄, θ̄, ᾱ}. Combining (3.11,

4.15, 4.18) we can write the change of variables as√
ρ2 + 1 cos θ = yi

√
ρ̄2 + 1 cos θ̄

ρ sin θ cos(α) = yiρ̄ sin θ̄ cos ᾱ + r2
i cos2 βi

ρ sin θ sin(α) = yiρ̄ sin θ̄ sin ᾱ + r2
i sin2 βi (B.1)

where we have defined xi1 = ri cos βi and xi2 = ri sin βi. We begin with solving the first

equation in terms of ρ. Then, we combine the last two equations to eliminate α and we

substitute ρ. This gives an equation for sin θ in terms of the barred variables:

sin4 θ + A sin2 θ +B = 0 (B.2)

with

A = −1 + r2
i + 2ρ̄ ri yi cos (ᾱ− βi) sin θ̄ +

y2
i

(
1 + cos 2θ̄ + 2ρ̄2

)
2

B = −r2
i − 2ρ̄ ri yi cos (ᾱ− βi) sin θ̄ +

ρ̄2 y2
i

(
cos 2θ̄ − 1

)
2

(B.3)

Since θ ∈ [0, π/2] we choose the solution for which sin θ is real and positive. We get the rest

by plugging this solution into the equations (B.1) . Specifically, ρ is found by plugging sin θ

into the first equation while sin ᾱ and cos ᾱ are found using the other two equations. Since
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we only need the asymptotic behavior we give the results expanded at large ρ̄:

ρ2 = y2
i ρ̄

2 + 2riyi cos(ᾱ + βi) sin θ̄ρ̄+
1

2

(
y2
i + 2r2

i − 1 + (y2
i − 1) cos 2θ̄

)
+O

(
1

ρ̄

)
sin2 θ = sin2 θ̄ +

2ri cos(ᾱ + βi) cos2 θ̄ sin θ̄

yiρ̄

+
cos2 θ̄

(
1− y2

i + (y2
i + 2r2

i − 1) cos 2θ̄ − 4r2
i cos(2ᾱ + 2βi) sin2 θ̄

)
2y2

i ρ̄
2

+O

(
1

ρ̄3

)
sinα = sin ᾱ +

ri csc θ̄(cos βi − cos(ᾱ + βi) sin ᾱ)

yiρ̄

+
r2
i csc2 θ̄ (−4 cos βi cos(ᾱ + βi) + sin ᾱ + 3 cos(2ᾱ + 2βi) sin ᾱ)

4y2
i ρ̄

2
+O

(
1

ρ̄3

)
cosα = cos ᾱ− ri csc θ̄(cos βi + cos(2ᾱ + βi)− 2 sin βi)

2yiρ̄

+
r2
i csc2 θ̄ (−4 sin βi cos(ᾱ + βi) + cos ᾱ + 3 cos(2ᾱ + 2βi) cos ᾱ)

4y2
i ρ̄

2
+O

(
1

ρ̄3

)
(B.4)

To find the cut-off ρ̄c(θ̄, ᾱ, ε) we substitute (B.4) in the expression for the FG coordinate

u, which can be found in (A.6), to get u in terms of the barred coordinates.

u =
1

yiρ̄
− ri cos(ᾱ + βi) sin θ̄

y2
i ρ̄

2
− 1

8y3
i ρ̄

3

[
1 + 4r2

i + 2y2
i + 2(y2

i − 1) cos 2θ̄

+ 2m220 + 2m202 −m400 − 3 sin2 θ̄
(
1 + 2r2

i + 2r2
i cos(2ᾱ + 2βi)

+2m220 + 2m202 −m400 + 4 sin 2ᾱm211 + 2 cos 2ᾱ(m220 −m202))
]

+O

(
1

ρ̄4

)
(B.5)

Solving this asymptotically for ρ̄ and setting u = ε we find the cut-off surface in barred

coordinates.

ρ̄c(ε, θ̄, ᾱ) =
1

yiε
− ri cos(ᾱ + βi) sin θ̄

yi
+

1

8yi

[
− 1− 4r2

i − 2y2
i − 2(y2

i − 1) cos 2θ̄

− 2m220 − 2m202 +m400 + sin2 θ̄
(
3 + 2r2

i + 2r2
i cos(2ᾱ + 2βi)

+6m220 + 6m202 − 3m400 + 12 sin 2ᾱm211 + 6 cos 2ᾱ(m220 −m202))
]
ε+O

(
ε2
)

(B.6)

C Coordinate systems and maps

In this section we collect useful formulae for the various coordinate systems and their maps

along with information about our setup in these systems. In particular we relate AdS3 × S1

to S1×H3 with an intermediate transformation to R4. In the latter space the picture of our

setup becomes more clear (see figure 1).
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The metrics on the 4D Euclidean spaces we consider are the following:

AdS3 × S1 ds2
AdS3×S1 =

dt2 + dl2 + dz2

z2
+ dψ2

spherical ds2
R4 = dt2 + dx2 + x2

(
dϑ2 + sin2 ϑ dψ2

)
hyperboloid ds2

S1×H3 = dτ 2 +R2
(
dρ2 + sinh2 ρ

(
dϑ2 + sin2 ϑ dψ2

))
(C.1)

They are conformally related to each other as follows:

ds2
AdS3×S1 = z−2 ds2

R4 , ds2
R4 = Ω̄2 ds2

S1×H3 , ds2
AdS3×S1 = Ω2 ds2

S1×H3 (C.2)

where

Ω̄ = (cosh ρ+ cos(τ/R))−1 , Ω = (R sinh ρ sinϑ)−1 (C.3)

The coordinate maps corresponding to these three transformations are given by

AdS3 × S1 to spherical: l = x cosϑ, z = x sinϑ

spherical to hyperboloid: t = R Ω̄ sin(τ/R), x = R Ω̄ sinh ρ

AdS3 × S1 to hyperboloid: t = R Ω̄ sin(τ/R), l = R Ω̄ sinh ρ cosϑ, z = R Ω̄ sinh ρ sinϑ
(C.4)

where the last transformation comes from combining the first two.

For easy reference we quote the location Σ of the surface defect and the location ∂A of

the entangling surface in the various coordinate charts:

Σ ∂A
AdS3 × S1 fills t, fills l, z = 0 t = 0, l2 + z2 = R2

spherical fills t, fills x, ϑ = 0, π t = 0, x = R
hyperboloid fills τ, fills ρ, ϑ = 0, π ρ→∞

It can be seen, in all coordinate charts, that the surface defect intersects the entangling

surface exactly at two points.

D Asymptotic expansion comparison with [2]

For calculating holographic observables one has to expand the supergravity solution in an

asymptotic form. In this section we quote the way the asymptotic expansion was performed

in [2] and compare with ours.

Defining Φ = f/y the equation for f , (3.3), can be written as the six-dimensional Laplace

equation for Φ with SO(4) invariant sources. In [2] the authors write Φ as the vacuum part

and a deviation:

Φ = Φ(0) + ∆Φ (D.1)
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Then, they expand the deviation ∆Φ in SO(4)-invariant spherical harmonics. The coeffi-

cients of this expansion are denoted by ∆Φ∆,k, where ∆, k are eigenvalues characterizing the

spherical harmonics (for more details on the spherical harmonics see appendix A in [2]).

As an example, we quote their result for the one-point function of the stress tensor which

was found using holography:

〈Tµν〉Σ dxµdxν =
N2

2π2

(
1

16
− 1

12
√

3
∆Φ2,0

)(
ds2

AdS3
− 3 dψ2

)
(D.2)

One can see that this matches (5.21, 5.22), when a definition for ∆Φ2,0 is given in terms

of the moments. For completeness we give all the coefficients corresponding to spherical

harmonics with eigenvalue ∆ = 2 in terms of the moments:

∆Φ2,0 = 4
√

3

(
m220 +m202 +

1−m400

2

)
∆Φ2,±2 = 6e∓2iψ (m220 −m202 ± 2im211) (D.3)

E Holographic expectation value

In this appendix we compute the integrals involved in the expectation value of the surface

defect (5.1). Specifically, these are the bulk contribution given in (5.6) and the Gibbons-

Hawking term in (5.4).

E.1 Bulk term

Let us start with the evaluation of the bulk term. The method described in [57, 58] led us

to (5.11) the integrand of which we expressed as (5.13). We begin with carrying out the

integration over AdS3, S3 and S1, which is trivial. Then, the bulk term can be expressed in

terms of two integrals over the base space X:

Ibulk = − 4

κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
) [
−1

2
J1 + J2

]
(E.1)

where we have defined:

J1 =

∫
X

dx1 dx2 dy fy (E.2)

J2 =

∫
X

dx1 dx2 dy ∂IuI (E.3)

Making use of the integral (4.8) appearing in the entanglement entropy calculation we
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x1

x2

y

∂X2

∂X1 

Figure 3: The base space X boundary components: the blue wiggled dome noted as ∂X2

is the large ρ cut-off and the lowest flat surface noted as ∂X1 is the boundary at the x1, x2

plane.

can write

J1 =

∫
X

dx1 dx2 dy

[(
f − 1

2

)
y +

1

2
y

]
(E.4)

=
π

4ε2
+

π

24
[1− 4 (m220 +m202 +m400)] +

1

2

∫
X

dx1 dx2 dy y (E.5)

where we have dropped terms that vanish as ε → 0. The integral in the second line can be

evaluated directly by changing to {ρ, θ, α} coordinates (the relevant map is given in (3.11)):∫
X

dx1 dx2 dy y =

∫
dρ dθ dα ρ

(
ρ2 + sin2 θ

)
cos θ sin θ

=

∫ π/2

0

dθ

∫ 2π

0

dα
1

4
ρ2
(
ρ2 + 2 sin2 θ

)
cos θ sin θ

∣∣∣∣ρc(ε,θ,α)

0

=
π

4ε4
+

π

16ε2
(1 + 2m220 + 2m202 −m400) + Y1 (E.6)

where the term Y1 reads:

Y1 ≡
π

768
[−7 + 12m220 + 12m202 − 6m400

− 288
(
m2

220 +m2
202

)
+ 144m220m202 − 720m2

211 + 108 (m220 +m202)m400 − 27m2
400

+48 (m240 +m204) + 96 (m222 −m402 −m420) + 16m600] (E.7)

Next we evaluate J2 by turning it into an integral over the boundary of X. Switching to
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covariant notation in which gIJ is a metric on X we have

J2 =

∫
X

d3x
√
g∇I u

I (E.8)

=

∫
∂X

d2x
√
γ nI u

I (E.9)

where n is the outward-pointing unit normal vector and γ the induced metric on ∂X. This

surface consists of two components (see figure 3):

∂X1 =
{

(x1, x2, y)| y = 0, x2
1 + x2

2 ≤ ρc(ε, π/2, α)2
}

(E.10)

∂X2 = {(ρ, θ, α)| ρ = ρc(ε, θ, α), θ ∈ [0, π/2], α ∈ [0, 2π]} (E.11)

The contribution to J2 from ∂X1 vanishes. This can be easily seen by expanding (5.12)

for small y and take the y → 0 limit. For the remaining contribution we work in {ρ, θ, α}
coordinates. The metric on X is

ds2
X =

ρ2 + sin2 θ

ρ2 + 1
dρ2 +

(
ρ2 + sin2 θ

)
dθ2 + ρ2 sin2 θ dα2 (E.12)

The unit vector normal to the surface ρ − ρc(ε, θ, α) = 0 has the following components in

this chart:

nρ =
1

D , nθ = −∂θρc(ε, θ, α)

D , nα = −∂αρc(ε, θ, α)

D (E.13)

D ≡
√

[∂αρc(ε, θ, α)]2

ρ2 sin2 θ
+
ρ2 + 1 + [∂θρc(ε, θ, α)]2

ρ2 + sin2 θ
(E.14)

The induced metric and pullback components are given by

γab = gIJ e
I
a e

J
b with eIa =

 ∂θρc(ε, θ, α) ∂αρc(ε, θ, α)
1 0
0 1

 (E.15)

where a ∈ {θ, α}. We are now ready to evaluate J2:

J2 =

∫ π/2

0

dθ

∫ 2π

0

dα
√
γ

y3

4 (4f 2 − 1)
gIJ nI ∂Jf

= − π

16ε4
+

π

64ε2
(1 + 2m220 + 2m202 −m400) + Y2 (E.16)

where

Y2 ≡
π

3072
[−51− 100m220 − 100m202 + 50m400

+ 72
(
m2

220 +m2
202

)
+ 144m2

211 − 36 (m220 +m202)m400 + 9m2
400

+48 (m240 +m204) + 96 (m222 −m402 −m420) + 16m600] (E.17)
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Putting everything together we get

Ibulk =
π

2κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
) [ 1

ε4
+

1

ε2
+

3

8
−m400 +

2

π
(Y1 − 4Y2)

]
(E.18)

Plugging in the explicit expressions for Y1 and Y2 we notice that the moments of weight six

drop out. The result is given in (5.14, 5.15).

E.2 Gibbons-Hawking term

To compute the Gibbons-Hawking term (5.4) we use a similar method to that used in the

previous subsection for the total derivative on X, but now in the full ten-dimensional space-

time. The unit vector normal to the surface ρ− ρc(ε, θ, α) = 0 has the following non-trivial

components

nρ =
1

D
√

2y√
4f2−1

, nθ = −∂θρc(ε, θ, α)

D
√

2y√
4f2−1

, nα = −∂αρc(ε, θ, α)

D
√

2y√
4f2−1

(E.19)

where D is defined in (E.14). The induced metric and non-trivial pullback components are

given by

γab = gMN e
M
a eNb (E.20)

eρθ = ∂θρc(ε, θ, α), eρα = ∂αρc(ε, θ, α), eab = δab (E.21)

where now a runs over all coordinates except ρ. The extrinsic curvature can be computed

from the Lie derivative along n:

Kab =
1

2
(Ln g)MN e

M
a eNb (E.22)

=
1

2

(
nP ∂PgMN + gPN ∂Mn

P + gMP ∂Nn
P
)
eMa eNb (E.23)

and its trace is simply K ≡ γabKab (whose small ε expansion leads with order 4). The result

is

IGH =
π

2κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
)( 4

ε4
+

1

ε2

)
(E.24)

The moments appearing in the boundary integrand drop out when the integration over the

angles {θ, α} is performed.

Note that there is in principle a contribution from the other component of the boundary

at y = 0, but again this vanishes. Specifically, expanding the Gibbons-Hawking integrand

for small y we get
√
γ K = O (y2) which vanishes in the y → 0 limit.
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