
UCLA
UCLA Previously Published Works

Title
Drosophila Smad2 Opposes Mad Signaling during Wing Vein Development

Permalink
https://escholarship.org/uc/item/4jc931m4

Journal
PLOS ONE, 5(4)

ISSN
1932-6203

Authors
Sander, Veronika
Eivers, Edward
Choi, Renee H
et al.

Publication Date
2010

DOI
10.1371/journal.pone.0010383
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4jc931m4
https://escholarship.org/uc/item/4jc931m4#author
https://escholarship.org
http://www.cdlib.org/


Drosophila Smad2 Opposes Mad Signaling during Wing
Vein Development
Veronika Sander, Edward Eivers, Renee H. Choi, Edward M. De Robertis*

Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America

Abstract

In the vertebrates, the BMP/Smad1 and TGF-b/Smad2 signaling pathways execute antagonistic functions in different
contexts of development. The differentiation of specific structures results from the balance between these two pathways.
For example, the gastrula organizer/node of the vertebrates requires a region of low Smad1 and high Smad2 signaling. In
Drosophila, Mad regulates tissue determination and growth in the wing, but the function of dSmad2 in wing patterning is
largely unknown. In this study, we used an RNAi loss-of-function approach to investigate dSmad2 signaling during wing
development. RNAi-mediated knockdown of dSmad2 caused formation of extra vein tissue, with phenotypes similar to
those seen in Dpp/Mad gain-of-function. Clonal analyses revealed that the normal function of dSmad2 is to inhibit the
response of wing intervein cells to the extracellular Dpp morphogen gradient that specifies vein formation, as measured by
expression of the activated phospho-Mad protein. The effect of dSmad2 depletion in promoting vein differentiation was
dependent on Medea, the co-factor shared by Mad and dSmad2. Furthermore, double RNAi experiments showed that Mad
is epistatic to dSmad2. In other words, depletion of Smad2 had no effect in Mad-deficient wings. Our results demonstrate a
novel role for dSmad2 in opposing Mad-mediated vein formation in the wing. We propose that the main function of
dActivin/dSmad2 in Drosophila wing development is to antagonize Dpp/Mad signaling. Possible molecular mechanisms for
the opposition between dSmad2 and Mad signaling are discussed.
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Introduction

Signaling by the transforming growth factor-b (TGF-b)

superfamily of ligands is important for proliferation, differentia-

tion, and cell fate determination during embryonic development

and tissue homeostasis in the adult. This group of ligands can be

divided into two broad signaling families, the Bone Morphogenetic

Protein (BMP) and the TGF-b/Activin pathways. Their signal

transduction pathways are highly conserved in animal species, and

homologues of most components have been described from

nematodes to humans. A group of transcription factors known as

R-Smads (Receptor-Smads) transduce the intracellular signal of

each pathway.

In the vertebrates, the BMP pathway signals through Smad1/5/

8, while Smad2/3 relay signals of the TGF-b/Activin pathway [1].

BMP ligands bind to and activate BMP receptors (BMPR, type I

and II), causing Smad1/5/8 phosphorylation at its two C-terminal

serines (SVS). Phosphorylated Smad1cter then binds to Smad4 (co-

Smad) and this complex translocates and accumulates in the

nucleus, activating BMP-responsive genes. The pSmad1cter signal

is fine-tuned by a number of inhibitory phosphorylations at

Mitogen Activated Protein Kinase (MAPK) and Glycogen

Synthase Kinase 3 (GSK3) sites in the linker/middle domain of

the protein. Linker phosphorylation results in the rapid termina-

tion of the BMP/Smad1 signal by a process of polyubiquitination

followed by proteasomal degradation in the centrosomal region of

the cell [2–8]. The reverse effect is mediated by PP2A (Protein

Phosphatase 2A), which has been shown to be the first stimulatory

phosphatase of the BMP pathway. PP2A preferentially dephos-

phorylates the Smad1 linker region, leading to prolonged BMP

signaling [9]. In Drosophila, BMP signaling is mediated by the

secreted ligands Decapentaplegic (Dpp), Screw (Scw) and Glass

bottom boat (Gbb), the type I receptors Thickveins (Tkv) and

Saxophone (Sax), the type II receptors Punt and Wishful thinking

(Wit) the Smad1/5/8 homolog Mothers against Dpp (Mad), and

the Smad4 homolog Medea [10–12].

TGF-b/Activin signals are transduced in a similar fashion as the

BMP branch, via binding to type I and II receptors, C-terminal

phosphorylation of Smad2/3 (at SMS or SVS sites), followed by

complex formation with Smad4 and transcriptional activation of

target genes in the nucleus [1]. Several studies have addressed the

function of the Activin pathway in Drosophila [13–18]. The secreted

ligands Drosophila Activin (dAct) and Dawdle (Daw) have been

shown to signal through the type I receptor Baboon (Babo)

[13,18]. dSmad2 was first described by Henderson and Andrew

and named Smox, for Smad on chromosome X [19]. Sequence

alignments revealed high similarity of dSmad2 to vertebrate

Smad2 and Smad3. Functionally, it appears that dSmad2 is more

similar to Smad3, due to the lack of a 30 amino acids insertion in

the MH1 domain present in some isoforms of vertebrate Smad2

that prevent binding to DNA [11,13,14]. It should be noted that

the dAct/dSmad2 signal transduction pathway shares three

components with the Dpp/Mad branch: the type II receptors

Punt and Wit, and the co-Smad Medea [14,17].
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In several situations during embryonic development, Smad1

and Smad2 signals have been shown to function antagonistically.

For example, in the Xenopus gastrula two morphogens have been

identified: BMP4 and TGF-b/Nodal. These growth factors

establish a bidirectional antagonistic embryonic field, which is

interpreted by intracellular Smad1 and Smad2 signals [20]. The

antagonism takes place at different levels. Extracellularly, Nodal/

Smad2 induce the transcription of anti-BMPs, such as Chordin

and Noggin, which inhibit BMP4 by binding to it [21].

Intracellularly, Smad1 inhibits activation of Smad2 transcriptional

targets, and Smad2 activation inhibits Smad1 target genes [20,22–

25]. In this way, mutually exclusive regions of high Smad1 or

Smad2 signaling are established on opposite sides of the early

embryo. At the level of tissue-specific Smad-induced transcription

factors, this antagonism is illustrated by the opposing functions of

the homeobox genes Vent1/2, induced by Smad1 on the ventral

side, and Goosecoid, a target gene of Smad2 on the dorsal side,

during mesoderm patterning and self-regulation of the early frog

embryo [26]. Another example of the importance of the

antagonism between Smad1 and Smad2 was recently reported

by Yamamoto and co-workers [27]. The authors demonstrated

that development of the distal visceral endoderm, which

determines the orientation of the anterior-posterior axis in the

mouse, requires the formation of a region where Smad2 signaling

is high and Smad1 is absent.

The Drosophila wing provides an excellent model system to study

intercellular signal regulation [28]. Dpp/Mad promotes vein

differentiation during larval and pupal stages of development

[29,30], as well as wing growth [31–34]. Loss-of-function

mutations at the ligand, receptor or transcription factor level of

the Dpp signaling pathway have been shown to be required for

vein formation and wing growth. Conversely, overexpression of

Dpp, activated Tkv receptor or degradation-resistant Mad caused

increased vein formation [6,12,35].

The role of dSmad2 in wing development is much less

understood in Drosophila. It has been reported that dSmad2 may

play a modest role in the proliferation of wing cells, without

affecting patterning and gene expression [13,17]. These studies

were performed by overexpression of activated dSmad2 (phospho-

mimicking mutations of the C-terminal serines, dSmad2-DMD)

[17], or, in a more indirect approach, using a constitutively-active

and mutant version of Babo receptor [13]. As for dSmad2

mutations, there is only one dSmad2/Smox allele available, a

missense mutation that has not been studied in the wing [15].

The present study was initiated to determine the role of dSmad2

during wing development through a loss-of-function approach

Figure 1. dSmad2 RNAi induces vein tissue differentiation. (A) Control wing showing the location of the longitudinal veins 2–5 (L2–L5);
anterior crossvein (ACV); posterior crossvein (PCV). (B) dSmad2 RNAi driven by MS1096-Gal4 leads ectopic vein tissue formation in the vicinity of L5
(arrows). (C) A similar phenotype is observed in flies overexpressing Mad. (E) Overexpression of the dSmad2 homologue human Smad3 results in a
partial loss of L4 and L5; an identical phenotype is seen in some Dpp partial loss-of-function mutants [48]. (F) human Smad3 rescues the dSmad2 RNAi
phenotype (arrows), demonstrating dSmad2 RNAi specifically depletes dSmad2.
doi:10.1371/journal.pone.0010383.g001

dSmad2 Opposes Mad Signaling
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using the powerful RNAi technology that has recently become

available [36,37]. To our surprise, we found that dSmad2 serves

mainly to oppose signaling through Mad in the developing wing.

Depletion of dSmad2 in wing imaginal discs caused increased vein

tissue development. This was the opposite of Mad knockdown,

which inhibited vein formation. Analysis of dSmad2 RNAi clones

revealed an increase in nuclear phospho-Mad levels in pupal wings

during vein formation. In double RNAi depletion experiments,

Mad was epistatic to dSmad2, showing that the dSmad2 loss-of-

function phenotypes arose through increased Mad activity. We

discuss possible molecular mechanisms that might explain the

inhibitory effect of dSmad2 on Mad.

Results

RNAi-mediated knockdown of dSmad2 increases vein
formation in Drosophila wings

We investigated the function of dSmad2 in Drosophila wing

development using UAS/RNAi transgenic flies from the Vienna

Drosophila RNAi Center. Driving UAS-dSmad2 RNAi ubiquitously

in the wing blade using the MS1096-Gal4 driver resulted in

increased vein tissue formation along longitudinal vein 5 (L5), when

compared to an adult wild-type wing (compare Figure 1A to 1B).

This phenotype was similar to the overexpression of UAS-Mad wild-

type (Figure 1C). The dSmad2 RNAi used in most of this study

targeted a 400 bp nucleotide fragment corresponding to the linker

domain and part of the MH2 region of dSmad2 (GD14609, Figure

S1A in Supporting Information). A second independent RNAi line

targeting the MH1 domain of dSmad2 (KK105687, Figure S1A) was

driven under the same conditions, and also caused ectopic vein tissue

along L5 (Figure S1A). The increase in vein tissue caused by dSmad2

RNAi was rescued to wild-type levels by co-expression of a human

SMAD3 transgene (compare Figure 1B to 1F). Taken together, these

findings indicate that the function of endogenous dSmad2 is to

negatively regulate vein formation in the Drosophila wing.

Another indication that dSmad2 knockdown causes elevated

Mad signaling was the appearance of ectopic sensory bristles in

wing blade intervein tissues (Figure S2). Ectopic bristles are also

observed when hyperactive Mad mutants are overexpressed in the

fly wing [6]. We next investigated further the hypothesis that loss

of dSmad2 phenocopies an increase in Dpp/Mad signaling.

dSmad2 knockdown phenocopies Dpp overexpression in
the wing disc

Analysis of third instar wing imaginal discs overexpressing UAS-

Dpp (driven by Scalloped-Gal4), dSmad2 RNAi or Mad RNAi

revealed further phenotypic similarities between dSmad2 loss-of-

function and Mad gain-of-function. Overexpression of Dpp (which

activates Mad) or depletion of dSmad2 resulted in overgrowth of

wing imaginal discs when compared to wild-type discs (Figure 2A–

2C) [12]. Depletion of the Mad transcription factor using RNAi

[6] caused inhibition of wing imaginal disc growth (Figure 2D).

Overgrowth of wing discs by dSmad2 RNAi was prominent when

driven by scalloped-Gal4, but weaker when driven by MS1096-

Gal4; this may be explained by spatiotemporal differences in

driver expression. The results indicate that while Dpp/Mad

signaling promotes wing imaginal disc growth, endogenous

dSmad2 signaling has the opposite effect.

dSmad2 RNAi causes transformation of intervein into
vein tissue

Increased size of the third instar wing imaginal disc does not

necessarily generate enlarged adult wings. Mature vein cells are

smaller and more densely packed than intervein cells, in addition

to secreting more pigmented cuticle [29,38]. In a situation in

which more vein cells relative to intervein cells were differentiated,

without increasing overall cell proliferation, the final size of the

adult wing would be decreased. In addition, other processes such

as blisters due to imperfect alignment of the two wing surfaces or

increased apoptosis could contribute to a decrease in wing size. In

case of dSmad2 knockdown (driven by MS1096-Gal4), we

observed a smaller adult wing size accompanied by moderately

increased vein formation at room temperature (Figure S1E). These

effects became more severe when the flies were grown at a higher

temperature (29uC) (Figure 3B). dSmad2-depleted wings were

much smaller than control wings at this temperature, and

displayed significantly wider L3 and L5 veins (compare

Figure 3A to 3B). The smaller size and higher cell density of

vein cells (each wing cell is marked by a single trichome) compared

to neighboring intervein cells [29] is readily seen at higher

magnifications (insets in Figure 3A’–3C’’).

We compared the dSmad2 RNAi phenotype to gain-of-

function of Dpp in the adult wing. Despite the massive

overgrowth of the wing imaginal disc by overexpressing UAS-

Dpp (Figure 2B), at 20uC (flies do not eclose at higher

temperatures) the resulting adult wings were found to be

significantly smaller than wild-type (Figure 3C). This size

difference is explained by the transformation of the larger

intervein cells into much smaller vein cells and higher cell density

(Figure 3C’ and 3C’’). The similarity of the phenotypes of

dSmad2 loss-of-function and Dpp/Mad gain-of-function in

imaginal discs (Figure 2) and in adult wings (Figure 3) suggested

Figure 2. Knockdown of dSmad2 resembles Dpp overexpres-
sion in the wing disc. (A) Control imaginal wing disc at third instar
stage, expressing Scalloped (Sd)-Gal4 throughout larval development of
the wing. (B) Overexpression of Dpp causes overgrowth of the wing
blade region of the disc. (C) dSmad2 RNAi phenocopies Dpp
overexpression, expanding the wing blade region. (D) Conversely,
downregulation of the Dpp pathway by Mad RNAi reduces the size of
the wing disc.
doi:10.1371/journal.pone.0010383.g002

dSmad2 Opposes Mad Signaling
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that an antagonism exists between the dSmad2 and Mad

signaling pathways during Drosophila wing differentiation.

dSmad2 RNAi clones have increased Madcter

phosphorylation in vein tissue
We next investigated the mechanism of the proposed antago-

nism between dSmad2 and Mad by clonal analysis. A Drosophila

strain was constructed, in which dSmad2 RNAi flp-out clones

were marked by GFP in pupal wings and by yellow (y+) bristles in

adult wings [39]. Activation of Mad signaling was followed by

immunostaining with anti-phospho-Madcter antibody [40,41] on

pupal wings. C-terminal phosphorylation of Mad marking Dpp

pathway activity becomes visible around 22 hrs after puparium

formation (APF) in the crossveins, and soon after in the

longitudinal veins [41]. Figure 4A shows pMadcter staining at

25 hrs APF in a wild-type pupal wing. Large clones of dSmad2

RNAi were obtained by a 1 hr heat-shock (37uC) 24 hrs after egg

laying (AEL) (Figure 4B’, clones labeled by GFP).

We observed ectopic vein formation in dSmad2 RNAi clones

predominantly in the posterior wing compartment (Figure 4B and

4B’). Importantly, regions of increased pMadcter were observed

(arrowheads in Figure 4B and 4D). These were not uniform

throughout the clone, but instead appeared to correspond to

regions of ectopic vein formation, for they displayed nuclear

staining for pMadcter at comparable levels to those of endogenous

pMad along L5 (arrows in Figure 4A–4D). The simplest

interpretation is that knockdown of dSmad2 causes increased

Mad signaling by making dSmad2-depleted cells more sensitive to

endogenous Dpp signals [38], although other mechanisms remain

possible. Although GFP-positive clones were distributed evenly

over the whole wing, we found ectopic vein formation primarily in

the posterior wing compartment near L5 and, in fewer cases, near

the anterior margin (Figure 4G and 4G’). These regional effects

may be due to the graded activity of endogenous pMadcter, which

is normally lower far from the source of Dpp in the anterior-

posterior compartment boundary [34,42].

The increase in Mad signaling presumably explains the ectopic

vein phenotypes seen in dSmad2 RNAi clones in adult wings

(Figure 4E–4G). Although the clones are no longer visible with

GFP in the adult wing blade, the region of the clones could still be

identified in the anterior compartment by yellow bristles along the

wing margin. Figure 4E shows a clone in the anterior margin

marked by yellow bristles, with a nearby ectopic longitudinal vein

originating between the anterior margin and L2 (arrow). In

Figure 3. dSmad2 depletion leads to transformation of intervein into vein tissue. (A) Wild-type wing retains normal size and vein
patterning when grown at 29uC. A’ and A’’ insets show higher magnification of L3 and L5 regions to illustrate the size differences between vein and
intervein cells, each of which have a single hair (trichome) (B) Driving dSmad2 RNAi with MS1096-Gal4 at 29uC results in small wings due to increase in
vein tissue mostly near L3 (B’) and L5 (B’’). (C) Dpp-overexpressing flies display a similar wing phenotype to dSmad2 RNAi, although stronger. High
levels of Dpp/Mad lead to an overproduction of vein, resulting in wings of reduced size that are composed entirely of vein tissue (C’ and C’’). Flies
overexpressing Dpp in the wing only survive to adult stages when grown at low temperature (20uC).
doi:10.1371/journal.pone.0010383.g003

dSmad2 Opposes Mad Signaling
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addition to ectopic veins, increased growth of intervein tissue in

the vicinity of the extra vein was also observed (Figure 4G,

arrowhead). These growths are indicative of ectopic wing

formation, which can be caused by increased Dpp signaling

[32,34]. Taken together, the studies in clones suggest that dSmad2

RNAi causes excessive vein formation by increasing pMadcter

signaling.

dSmad2 requires Medea for its inhibitory effect on vein
formation

The loss-of-function studies described above indicate that

dSmad2 opposes Mad signaling during vein differentiation in the

fly wing. The mechanism for this opposition, however, remains

unclear. Both Mad and dSmad2 form a complex with the co-

Smad Medea before binding to DNA and activating target gene

expression [13,43,44]. To test whether Medea is required for the

inhibitory effect of dSmad2 on vein formation, we analyzed the

phenotype of depleting both genes in a combinational RNAi

knockdown approach. We used the UAS-Medea RNAi construct

KK106767 that targets nucleotides 1434 to 1883. Driving Medea

RNAi alone in the wing blade resulted in smaller wings with great

losses of vein tissue (Figure 5B). The residual vein tissue fails to

reach the distal margin, although the five normal veins can stil be

recognized. A second Medea RNAi construct had similar effects

(not shown). Depletion of dSmad2 results in increased venation

(Figure 1B). Simultaneous depletion of dSmad2 and Medea caused

vein tissue loss and a further reduction in size (Figure 5C). This

result indicates that Medea is required for the increased vein

formation caused by knockdown of dSmad2. The further

reduction of wing size when dSmad2 is depleted in combination

with Medea is also of interest, because it takes place in the almost

complete absence of vein tissue (Figure 5B and 5C). Thus, this

decrease in size cannot be explained by changes in the ratio of

intervein/vein cells, and suggests that dSmad2 also has a growth-

promoting function in the wing, which is independent of its effects

on Mad/Medea signaling.

Mad is epistatic to dSmad2
To further investigate the epistatic relationship between

dSmad2 and Mad in wing development, we compared single

RNAi phenotypes for both genes to the double depletion situation.

The UAS-Mad RNAi construct used targeted the N-terminal

domain (nucleotides 226 to 807) [6]. As described above, dSmad2

RNAi driven in the wing blade formed extra vein tissue around L5

(Figure 6B). RNAi-mediated depletion of Mad resulted in the

complete loss of veins and a strong reduction of the size of the wing

blade (Figure 6C). The exact same phenotype was obtained in the

double dSmad2;Mad RNAi cross, indicating that Mad is epistatic

Figure 4. pMad is expressed in ectopic veins induced within dSmad2 RNAi clones. (A) Pupal wing 25 hrs after puparium formation (APF)
stained with pMadcter antibody. Nuclear pMad staining is visible in the crossveins and longitudinal veins, most prominently at the distal tips. (B and B’)
dSmad2 RNAi clone marked with GFP induced an ectopic pMadcter expressing vein (arrowhead) posterior to L5 (arrow). (C–D’) Similar result shown in
an independent experiment. Note the outgrowth of the wing surrounding the ectopic vein (arrowhead in D). (E) dSmad2 clone marked by yellow (y+)
in anterior margin bristles induced the formation of an ectopic vein between the anterior margin and L2. (F) Ectopic vein induced by dSmad2 clone in
the posterior compartment (arrow). (G) dSmad2 clone inducing ectopic vein (arrow in G’) and intervein tissue (arrowhead in G’).
doi:10.1371/journal.pone.0010383.g004

dSmad2 Opposes Mad Signaling
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to dSmad2 (Figure 6D). Moreover, Mad was required for the

overgrowth in wing disc tissue caused by Drosophila Smad2 RNAi

using the sd-Gal4 driver (Figure 6E–6H). We conclude that the

effects of dSmad2 depletion on adult wing vein formation and

larval wing disc size require Mad function.

Discussion

We investigated the role of dSmad2 in Drosophila wing

development. Using RNAi lines, which specifically target and

knockdown dSmad2, Mad and Medea, we found a novel role of

dSmad2 in suppressing vein formation in a Mad/Medea-

dependent way. Depletion of dSmad2 generated Mad gain-of-

function phenotypes, and Mad was required for these dSmad2

loss-of-function phenotypes. We conclude that dSmad2 functions

in wing development to inhibit Dpp/Mad signaling.

dSmad2 opposes Mad in wing vein formation
When dSmad2 RNAi was driven throughout the wing blade, it

caused an increase of vein tissue (Figure 1B). This phenotype

resembles elevated Dpp/Mad signaling, which is known to

promote vein differentiation in the wing [45–47]. Misexpression

of activators of the pathway, such as Dpp, constitutively-active Tkv

receptor, and wild-type or stabilized Mad all induce increased vein

tissue to varying degrees [6,35]. The opposite phenotype is seen in

loss-of-function situations of the Dpp/Mad pathway. For example,

both Medea RNAi and Mad RNAi cause loss of vein tissue

(Figures 5B and 6C) [6]. Overexpression of hSMAD3, the

vertebrate Smad most similar to dSmad2, precisely phenocopies

the partial (adult viable) dpps6/dpphr4 loss-of-function phenotype,

which displays truncations in L4 and L5 (compare Figure 1E to

Figure 4 in [48]). In addition to Dpp/Mad, other signaling

pathways are important in vein development in Drosophila. For

example, EGF/MAPK, Notch and Hedgehog signaling are

important in wing patterning, and disc growth requires Wg

signaling and JAK/STAT activity [38].

We found that low dSmad2 signaling and high Dpp/Mad

signaling result in similar wing vein phenotypes, indicating that

dSmad2 antagonizes Mad in wing tissue determination. The

increase in vein tissue upon dSmad2 knockdown is typically

manifested around L5 in the posterior compartment of the wing

(Figure 3B). Loss of vein tissue in hSMAD3-expressing wings

occurs in the distal parts of L5 and, to a lesser extent, L4. These

site-specific effects on vein formation might be a consequence of

the expression of endogenous Dpp in a stripe along the anterior-

posterior border in the imaginal disc. Dpp phosphorylates Mad,

which forms a gradient that is highest near the source of Dpp, and

low at the lateral areas of the wing disc. The pMad gradient is

steeper in the posterior compartment [42]. Since L5 originates in

the steeper posterior half in an area of low pMad, this region may

be particularly susceptible to changes in cell sensitivity to the Dpp

morphogen gradient.

Clonal analysis supported a role of endogenous dSmad2 in

inhibiting Mad-mediated vein formation. dSmad2 RNAi clones

showed higher levels of nuclear pMadcter in ectopic vein-like

regions of the pupal wing (Figure 4). Not all cells in the dSmad2

RNAi clones had higher pMadcter phosphorylation. Veins and

crossveins are induced by the flow of Dpp/Gbb morphogens in the

developing wing field [30,38]. In addition to the formation of

ectopic vein tissue, some dSmad2 RNAi clones on the posterior

margin caused wing outgrowths (Figure 4G). This effect is most

likely due to increased cellular sensitivity to Dpp/Mad signaling,

for it is reminiscent of Dpp clones that act as long-range wing

organizers, inducing wing outgrowths and duplications [31–34].

Mad is required for dSmad2 vein phenotypes
Epistasis experiments were performed using Drosophila lines

expressing single or double RNAi transgenes in order to study the

cross-regulation between dSmad2, Mad and Medea. Mad RNAi

depletion caused complete loss of veins and a strong reduction in

wing size. The exact same phenotype was obtained in the double

Mad;dSmad2 knockdown (Figure 6). Similarly, the effects of

Drosophila Smad2 knockdown on wing disc growth also required

Mad (Figure 6E–6H). This shows that dSmad2 requires Mad in

order to cause its principal phenotypes in wing development.

Wing pattern specification by Mad requires Medea [49]. RNAi-

mediated knockdown of Medea caused a similar phenotype to that

of Mad depletion, but was weaker. This may be due to a partial

loss-of-function effect of the two Medea RNAi constructs tested in

this study, or to Medea-independent functions of Mad. Medea

loss-of-function mutations have been described to cause weaker

phenotypes than Mad mutants [11,43,44]. When dSmad2 and

Medea were depleted simultaneously, we found that Medea was

required for vein induction by dSmad2 RNAi (Figure 5). We

conclude from these epistatic experiments that both Mad and

Figure 5. Medea is required for the effects of dSmad2 on vein
formation. (A and B) Medea RNAi causes marked reduction of veins in
the distal part of the wing. (C) Simultaneous depletion of Medea and
dSmad2 affects vein formation in a similar way as knockdown of Medea
alone. Note that the wing blade is smaller. The remaining wing veins are
numbered.
doi:10.1371/journal.pone.0010383.g005

dSmad2 Opposes Mad Signaling
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Medea, which normally bind to each other, are required for the

dSmad2 knockdown vein phenotypes.

How does dSmad2 oppose Mad?
Figure 7A summarizes our findings on the function of dSmad2

in repressing vein formation in the Drosophila wing. In this diagram,

both, pMad and pdSmad2 require Medea to form a trimeric

complex. In a normal situation, pMad/Medea promotes vein

formation and wing growth, while pdSmad2/Medea heterotrimers

would act as inhibitors that fine-tune venation and growth.

One possible molecular explanation for the inhibitory effect of

dSmad2 on Mad signaling is the competition for Medea, as

depicted in Figure 7B. If Medea were a rate-limiting factor shared

by the Mad and dSmad2 pathways, the knockdown of dSmad2

would free Medea to form complexes predominantly with

pMadcter, transducing a stronger Mad signal that manifests itself

by extra vein formation. The vertebrate homolog of Medea,

Smad4, has been proposed to act as the rate-limiting step between

Smad1 and Smad2 signal transduction in Xenopus embryos [20].

One reason for the limited availability of Medea may be the

known instability of this protein. Recent work from the Piccolo

group has demonstrated a cycle of monoubiquitination and

deubiquitination of Smad4. Ubiquitinated Smad4 cannot interact

with R-Smads in a trimeric complex, rendering signal transduction

inactive. Subsequent deubiquitination reactivates Smad4 and

makes it accessible for complex formation [50]. This cycle is

essential for TGF-b signaling, since phosphorylated R-Smads are

unable to signal in the absence of the deubiquinase FAM/USP9x

(Fat facets in mouse/Ubiquitin-specific peptidase 9, X-linked). The

Drosophila homolog of FAM, Fat Facets [51], was shown to have

pro-Dpp activity when overexpressed in the Drosophila wing,

suggesting that the regulation of Medea/Smad4 levels is critical

and is conserved between flies and vertebrates.

An additional possibility is that Smad1/Mad and dSmad2

might compete for the type II receptors Punt or Wit which are

common to both pathways. Evidence for ActR2 as the limiting

factor in the switch between TGF-b/Nodal and BMP signaling

has been recently obtained by Yamamoto and co-workers [27]

Figure 6. Mad is epistatic to dSmad2. (A and B) MS1096-Gal4 driving dSmad2 RNAi causes an increase of vein tissue in L5. (C) Depletion of Mad
by RNAi results in small wings lacking veins. (D) Mad;dSmad2 double RNAi wings show identical phenotypes to Mad depletion alone – complete loss
of veins and a small wing blade – showing that Mad is epistatic to dSmad2. (E) Wild type third instar wing imaginal disc. (F) Wing discs become
enlarged when dSmad2 is depleted using RNAi driven by sd-Gal4. (G) Mad depletion reduces wing disc size. (H) Mad is required for the enlargement
of wing discs caused by dSmad2 depletion, compare panels F and H.
doi:10.1371/journal.pone.0010383.g006
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during formation of distal visceral endoderm in the mouse

embryo.

An alternative molecular mechanism, depicted in Figure 7C, is

based on the ability of TGF-b receptors to phosphorylate both

Smad2 and Smad1. Mixed Smad1/Smad2/Smad4 trimeric

complexes have been shown in many normal and transformed

cell lines of epithelial and endothelial origin [52–55]. In Drosophila

S2 cells, dActivin and Baboon can induce the phosphorylation of

Mad in addition to that of dSmad2 [17]. Smad1 phosphorylation

by TGF-b receptor requires a combination of Smad1- and

Smad2-specific type I TGF-b receptors in addition to the type II

receptor, a higher ligand concentration, and starts later than that

of Smad2/3 [55].

Several studies have reported different, in some cases, opposing

transcriptional responses to activation of the canonical TGF-b/

Smad2 pathway versus the alternative TGF-b/Smad1/Smad2

signal in normal and cancer cells [53–55]. In the model in

Figure 7C, if dAct/Babo phosphorylated Mad in addition to

dSmad2 in the developing wing, mixed trimeric complexes of

pMad/pdSmad2/Medea might repress vein formation, hence

opposing the vein-promoting function of Dpp/Mad. The ratios

between ‘‘canonical’’ and ‘‘mixed’’ Smad complexes could fine-

tune vein specification in the wing. Other potential mechanisms

could be envisaged as well.

In conclusion, the present study in the Drosophila wing has

revealed that an important function of dSmad2 in wing

development is to antagonize Mad/Dpp signaling during vein

formation. The molecular mechanism of this unexpected inhib-

itory activity of dSmad2 is as yet unknown, and several

hypothetical possibilities have been discussed. Whether signaling

in the opposite direction - an inhibitory effect of Mad on dSmad2

signaling – occurs in Drosophila remains to be investigated. In the

vertebrates, there is much evidence showing that the opposition

between the BMP and TGF-b pathways is mutual

[20,26,27], suggesting that this could be a promising area for

future research.

Materials and Methods

Drosophila Transgenic Constructs
The dSmad2 RNAi strain used in most of this study

(Transformant ID 14609) was obtained from the Vienna Drosophila

RNAi Center (VDRC). It originates from the ‘‘GD’’ P-element

library of UAS-RNAi constructs cloned into pMF3, a modification

of the pUAST vector [36]. This dSmad2 RNAi is targeted against

nucleotides 652–1049 of the dSmad2 coding sequence, which

corresponds to parts of both the linker region and the MH2 domain

of dSmad2, and was inserted on chromosome 3. A second dSmad2

RNAi strain (Transformant ID 105687, targeted against nucleotides

149–559) from the ‘‘KK’’ phiC31 library, inserted on chromosome

2, was used as a specificity control. Baboon RNAi flies were also

obtained from Vienna (Transformant ID 3825, targeting 171

nucleotides), inserted in chromosome 3. The main Medea RNAi

strain used was: Transformant ID 106767 from the VDRC KK

library, inserted on chromosome 2 and targeted against nucleotides

1434–1883. An independent Medea RNAi line (Transformant ID

19688 from the GD library, inserted on chromosome 3 and targeted

against nucleotides 258–551) was used as a specificity control and

caused identical phenotypes (data not shown). The Mad RNAi

Figure 7. Hypothetical mechanisms for the opposing effects of
dSmad2 on wing vein formation. (A) The Dpp signal is transduced
by the receptors Thickveins and Punt that activate Mad via C-terminal
phosphorylation. A heterotrimeric complex consisting of pMad and
Medea is formed. This complex is translocated into the nucleus to
initiate target gene expression for vein formation and wing growth. The
Drosophila Activin (dAct) signal is transduced by the receptors Baboon
and Punt; dSmad2 is phosphorylated and associates with Medea
forming a heterotrimer. In the present study, we describe an inhibitory
effect of dSmad2 signaling on vein formation that is mediated by an as
yet unknown molecular mechanism. (B) The competition for Medea
model places Medea as the limiting factor between Mad and dSmad2
signaling pathways. The phosphorylated transcription factors compete
for association with rate-limiting amounts of Medea. Thus, when the
level of dSmad2 is experimentally lowered, the Dpp/Mad branch
receives an excess of Medea with which it can form heterotrimeric
complexes. This leads to an elevated Mad/Medea response, which is
manifested in the formation of extra vein tissue. (C) The mixed pMad/
pdSmad2 complexes model is based on the finding by Gesualdi and
Haerry [17] that the type I receptor Baboon is able to phosphorylate C-
terminal serines of both dSmad2 and Mad. Mixed complexes composed
of pMad, pdSmad2 and Medea may be responsible for inhibiting Mad-

mediated vein formation. In parallel, the canonical pdSmad2/Medea
complex could contribute to wing growth [17] or be involved in other
unknown processes.
doi:10.1371/journal.pone.0010383.g007
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strain used here was generated as described by Eivers et al. [6]. Full-

length N-terminal Myc-tagged hSMAD3 (kind gift from Elizabeth

Robertson) was first cloned into the Xenopus expression vector

pCS2+ using BamHI and XhoI restriction sites and then subcloned

into the pUAST vector [56] using NotI and XhoI sites, and stable

transgenic fly lines were generated by the Bestgene company (Chino

Hills, CA.).

Fly Strains
Single RNAi strains used were: 1) yw;Bl/CyO;dSmad2 RNAi/

TM6b, 2) yw;Medea RNAi/CyO;TM2/TM6b, 3) yw;Mad

RNAi/CyO;TM2/TM6b. The hSMAD3 wild-type strain used

was yw;hSMAD3/Bl;TM2/TM6b. Mad wild-type was yw;Mad/

CyO;TM2/TM6b [6]. The Strain for the RNAi rescue experi-

ment was: yw;hSMAD3/CyO;dSmad2 RNAi/TM6b. Strains for

epistasis experiments were yw;Mad RNAi/Bl;dSmad2 RNAi/

TM6b, and yw;Medea RNAi/CyO;dSmad2 RNAi/TM6b. Gal4

drivers (Bloomington stock number in parentheses) were as

follows: MS1096-Gal4 (#8696), Scalloped-Gal4 (#8609), and

A9-Gal4. Another strain used in this study was UAS-Dpp (#1486).

Flies were grown at 25uC unless stated differently.

Clonal Analysis
For random ‘‘flp-out’’ clones [39] we crossed females of the

genotype yw;Act.y+.Gal4;UAS-GFP (kind gift of K. Pappu) to

the following males: ywhsflp;dSmad2 RNAi/dSmad2 RNAi.

Single heat shocks were administered to embryos 24 hrs after

egg laying for 60 min at 37uC. After heat-shock, larvae were

grown at 25uC for recovery and further development.

Wing Disc Preparation
Wing discs were dissected from third instar larvae in cold 0.02%

Triton X-100 PBS (PBST) solution. Discs were fixed in 4%

formaldehyde for 30 minutes on ice, rinsed in PBST, and placed in

DAPI-containing Vectashield (Vector) before mounting on glass

slides.

Pupal Wing Preparation and Immunostaining
In general, paupal wing stainings followed the procedures described

in the supplementary methods of Yan et al. [41]. Briefly, late third

instar larvae were selected and left to develop for 25 hrs after

puparium formation (APF) at 25uC. Pupae were dissected out of the

puparium case, fixed in 4% formaldehyde in PBS (either overnight at

4uC or 1 hr at room temperature), and rinsed three times in 0.3%

PBST. Pupal wings were dissected from the pupae in PBST, and wing

cuticles manually removed with care. The rest of the protocol was

carried out as described above for wing disc immunostainings, using

0.2% BSA in 0.3% PBST for blocking and antibody dilutions.

Antibodies used were anti-pMadcter (1:200, generous gift from C.-H.

Heldin), followed by goat anti-rabbit Cy3-conjugated secondary

antibody (1:1000, Jackson Labs). Wing discs and pupal wings were

photographed using a Zeiss Axio Imager.Z1 microscope equipped

with Zeiss ApoTome oscillating grating in the epifluorescence beam,

which significantly reduces out of focus stray light.

Mounting of Adult Wings
Wings were removed from female adult flies and dehydrated in

100% ethanol for 5 mins. The wings were placed on a microscope

slide, and ethanol allowed to evaporate. A small drop of Canada

balsam was dropped onto the wing and a glass coverslip placed on

top. Preparations were flattened at 60uC with a 10 g weight on

top. Wings were photographed with a Zeiss Axiophot microscope

using a Leica DC500 or a Zeiss AxioCam HRc camera. In

general, 10–20 images at different focal planes were integrated

using the AxioVision 4.8 Zeiss software.

Supporting Information

Figure S1 Two non-overlapping dSmad2 RNAi strains cause

extra vein formation and smaller wings. (A) Schematic represen-

tation of the domain structure of dSmad2 indicating the location

of the two VDRC dSmad2 RNAi strains (MH, Mad Homology).

(B) RT-PCR of dSmad2 depleted third instar imaginal wing discs

showing a 70% decrease in mRNA expression compared to

controls. dSmad2 RNAi was driven using scalloped-Gal4; this

experiment shows that dSmad2 is an effective loss-of-function

reagent. (C and D) dSmad2 RNAi KK105687, driven with

MS1096-Gal4 throughout the wing blade, leads to ectopic vein

formation near L5 and smaller wings (compare to Figure 1B). (E

and F) Overlays of dSmad2 RNAi driven wings compared to wild-

type wings. Both dSmad2 RNAi strains reduce the size of the wing

blade. The two independent dSmad2 RNAi strains obtained from

VDRC produce similar phenotypes in the wing: ectopic vein

formation and a moderate decrease in wing size.

Found at: doi:10.1371/journal.pone.0010383.s001 (3.75 MB TIF)

Figure S2 dSmad2 RNAi leads to formation of ectopic bristles

on the wing blade. (A–C) dSmad2 RNAi (GD14609 line)

expressed throughout the wing blade using the A9-Gal4 driver

causes formation of ectopic sensory bristles (arrows) in the anterior

and distal portion of the wing blade at 29uC. (D–F) The

KK105687 dSmad2 RNAi line driven by MS1096-Gal4 leads to

similar ectopic bristle formation when grown at 25uC. In most

cases, a sensory bristle is formed at the end of an extra vein that

branches from the distal part of L2. Sensory bristle formation in

the anterior wing margin requires Wingless (Wg) signaling [57],

and generation of ectopic sensory bristles on the wing blade is seen

in clones of activated Wg, such as Shaggy (Sgg; zeste white 3, zw3;

Glycogen Synthase Kinase 3, GSK3) null clones [58]. In a recent

study on Wg signal integration at the level of Mad, it was shown

that overexpression of Mad mutants with phosphorylation-

resistant GSK3 sites in the linker region of the protein (or ‘‘Mad

GSK3 Mutants’’) resulted in hyperactive forms of Mad that caused

ectopic bristle formation, mimicking activation of Wg signaling.

Conversely, Mad knockdown by RNAi phenocopied Wg loss-of-

functions. It was concluded that the Wg-like phenotypes achieved

by Mad loss- or gain-of-function are mediated through the Wg-

regulated phosphorylation of Mad by GSK3 in the linker region

[6]. Based on these observations, we propose that depletion of

dSmad2 by RNAi causes elevated Mad signaling, comparable to

that attained by Mad GSK3 mutant overexpression. All wings

were from female flies except for E and F. The frequency of the

ectopic bristle phenotype was higher in male flies due to the higher

expression of MS1096-Gal4 in males.

Found at: doi:10.1371/journal.pone.0010383.s002 (3.16 MB TIF)
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Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol
Cell 25: 441–454.

3. Fuentealba LC, Eivers E, Ikeda A, Hurtado C, Kuroda H, et al. (2007)
Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/

Smad1 signal. Cell 131: 980–993.

4. Fuentealba LC, Eivers E, Geissert D, Taelman V, De Robertis EM (2008)
Asymmetric mitosis: Unequal segregation of proteins destined for degradation.

PNAS 105: 7732–7737.
5. Eivers E, Fuentealba LC, De Robertis EM (2008) Integrating positional

information at the level of Smad1/5/8. Curr Opin Genet Dev 18: 304–310.

6. Eivers E, Fuentealba LC, Sander V, Clemens JC, Hartnett L, et al. (2009) Mad
is required for wingless signaling in wing development and segment patterning in

Drosophila. PLoS ONE 4(8): e6543.
7. Alarcón C, Zaromytidou AI, Xi Q, Gao S, Yu J, et al. (2009) Nuclear CDKs

drive Smad transcriptional activation and turnover in BMP and TGF-beta

pathways. Cell 139: 757–769.
8. Eivers E, Demagny H, De Robertis EM (2009) Integration of BMP and Wnt

signaling via vertebrate Smad1/5/8 and Drosophila Mad. Cytokine Growth
Factor Rev 20: 357–365.

9. Bengtsson L, Schwappacher R, Roth M, Boergermann JH, Hassel S, et al.
(2009) PP2A regulates BMP signalling by interacting with BMP receptor

complexes and by dephosphorylating both the C-terminus and the linker region

of Smad1. J Cell Sci 122: 1248–1257.
10. Attisano L, Wrana JL (1998) Mads and Smads in TGFb signaling. Curr Opin

Cell Biol 10: 188–194.
11. Raftery LA, Sutherland DJ (1999) TGF-b signal transduction in Drosophila

development: From Mad to Smads. Dev Biol 210: 251–268.

12. Affolter M, Basler K (2007) The decapentaplegic morphogen gradient: from
pattern formation to growth regulation. Nat Rev Genet 8: 663–674.

13. Brummel T, Abdollah S, Haerry TE, Shimell MJ, Merriam J, et al. (1999) The
Drosophila Activin receptor Baboon signals through dSmad2 and controls cell

proliferation but not patterning during larval development. Genes & Dev 13:
98–111.

14. Zheng X, Wang J, Haerry TE, Wu A Y-H, Martin J, et al. (2003) TGF-b
signaling activates steroid hormone receptor expression during neural remod-
eling in the Drosophila brain. Cell 112: 303–315.

15. Zheng X, Zugates CT, Lu Z, Shi L, Bai J, et al. (2006) Baboon/dSmad2 TGF-b
signaling is required during late larval stage for development of adult-specific

neurons. EMBO J 25: 615–627.

16. Bickel D, Shah R, Gesualdi SC, Haerry TE (2008) Drosophila Follistatin
exhibits unique structural modifications and interacts with several TGF- b family

members. Mech Dev 125: 117–129.
17. Zhu CC, Bonne J, Jensen PA, Hanna S, Podmenski L, et al. (2008) Drosophila

Activin-b and Activin-like product Dawdle function redundantly to regulate
proliferation in the larval brain. Development 135: 513–521.

18. Jensen PA, Zheng X, Lee T, O’Connor M (2009) The Drosophila Activin-like

ligand Dawdle signals preferentially through one isoform of the Type-I receptor
Baboon. Mech Dev 126: 950–957.

19. Henderson KD, Andrew DJ (1998) Identification of a novel Drosophila SMAD on
the X chromosome. Biochem Biophys Res Commun 252: 195–201.

20. Candia AF, Watabe T, Hawley SHB, Onichtchouk D, Zhang Y, et al. (1997)

Cellular interpretation of multiple TGF-b signals: intracellular antagonism
between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Develop-

ment 124: 4467–4480.
21. DeRobertis EM (2009) Spemann’s organizer and the self-regulation of

embryonic fields. Mech Dev 126: 925–941.

22. Karaulanov E, Knochel W, Niehrs C (2004) Transcriptional regulation of BMP4
synexpression in transgenic Xenopus. EMBO J 23: 844–856.

23. Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, et al. (1996)
The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling

dorsoventral patterning of Xenopus mesoderm. Development 122: 3045–3053.
24. Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in

Xenopus: Inhibition of ventral signals by direct binding of Chordin to BMP-4.

Cell 86: 589–598.
25. Reversade B, De Robertis EM (2006) Regulation of ADMP and BMP2/4/7 at

opposite embryonic poles generates a self-regulating morphogenetic field. Cell
123: 1147–1160.

26. Sander V, Reversade B, De Robertis EM (2007) The opposing homeobox genes

Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J 26: 2955–2965.
27. Yamamoto M, Beppu H, Takaoka K, Meno C, Li E, et al. (2009) Antagonism

between Smad1 and Smad2 signaling determines the site of distal visceral
endoderm formation in the mouse embryo. J Cell Biol 184: 323–334.

28. Garcia-Bellido A (2009) The cellular and genetic bases of organ size and shape in
Drosophila. Int J Dev Biol 53: 1291–1303.

29. De Celis JF (2003) Pattern formation in the Drosophila wing: the development of

the veins. BioEssays 25: 443–451.

30. Ralston A, Blair SS (2005) Long-range Dpp signaling is regulated to restrict

BMP signaling to a crossvein competent zone. Dev Biol 280: 187–200.
31. Capdevila J, Guerrero I (1994) Targeted expression of the signaling molecule

decapentaplegic induces pattern duplications and growth alterations in Drosophila

wings. EMBO J 13: 4459–4468.

32. Zecca M, Basler K, Struhl G (1995) Sequential organizing activities of engrailed,
hedgehog and decapentaplegic in the Drosophila wing. Development 121:

2265–2278.

33. Nellen D, Burke R, Struhl G, Basler K (1996) Direct and long-range action of a
DPP morphogen gradient. Cell 85: 357–368.

34. Martin-Castellanos C, Edgar BA (2002) A characterization of the effects of Dpp
signaling on cell growth and proliferation in the Drosophila wing. Development

129: 1003–1013.

35. Sotillos S, De Celis JF (2005) Interactions between the Notch, EGFR, and
Decapentaplegic signaling pathways regulate vein differentiation during

Drosophila pupal wing development. Dev Dyn 232: 738–752.
36. Dietzl G, Chen D, Schnorrer F, Su K-C, Fellner M, et al. (2007) A genome-wide

transgenic RNAi library for conditional gene inactivation in Drosophila. Nature

448: 151–156.
37. Lee YS, Carthew R (2003) Making a betterRNAi vector for Drosophila: Use of

Intron Spacers. Methods 4: 322–329.
38. Blair SS (2007) Wing vein patterning in Drosophila and the analysis of

intercellular signaling. Annu Rev Cell Dev Biol 23: 293–319.
39. Struhl G, Basler K (1993) Organizing activity of wingless protein in Drosophila.

Cell 72: 527–540.

40. Persson U, Izumi H, Souchelnytskyi S, Itoh S, Grimsby S, et al. (1998) The L45
loop in type I receptors for TGF-beta family members is a critical determinant in

specifying Smad isoform activation. FEBS Lett 434: 83–87.
41. Yan S-J, Zartman JJ, Zhang M, Scott A, Shvartsman SY, et al. (2009) Bistability

coordinates activation of the EGFR and DPP pathways in Drosophila vein

differentiation. Mol Syst Biol 5: 278.
42. Tanimoto H, Itoh S, ten Dijke P, Tabata T (2000) Hedgehog creates a gradient

of DPP activity in Drosophila wing imaginal discs. Mol Cell 5: 59–71.
43. Wisotzkey RG, Mehra A, Sutherland DJ, Dobens LL, Liu X, et al. (1998) Medea

is a Drosophila Smad4 homolog that is differentially required to potentiate DPP
responses. Development 125: 1433–1445.

44. Das P, Maduzia LL, Wang H, Finelli AL, Cho S-H, et al. (1998) The Drosophila

gene Medea demonstrates the requirement for different classes of Smads in dpp

signaling. Development 125: 1519–1528.

45. Yu K, Srinivasan S, Shimmi O, Biehs B, Rashka KE, et al. (2000) Processing of
the Drosophila Sog protein creates a novel BMP inhibitory activity. Development

127: 2143–2154.

46. Takaesu NT, Herbig E, Zhitomersky D, O’Connor MB, Newfeld SJ (2005)
DNA-binding domain mutations in SMAD genes yield dominant-negative

proteins or a neomorphic protein that can activate WG target genes in Drosophila.
Development 132: 4883–4894.

47. Sotillos S, De Celis JF (2006) Regulation of decapentaplegic expression during
Drosophila wing vein pupal development. Mech Dev 123: 241–251.

48. Nicholls RE, Gelbart WM (1998) Identification of chromosomal regions

involved in decapentaplegic function in Drosophila. Genetics 149: 203–215.
49. Hudson JB, Podos SD, Keith K, Simpson SL, Ferguson EL (1998) The Drosophila

Medea gene is required downstream of dpp and encodes a functional homolog of
human Smad4. Development 125: 1407–1420.

50. Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, et al. (2009)

FAM/USP9x, a deubiquitinating enzyme essential for TGFb signaling, controls
Smad4 monoubiquitination. Cell 136: 123–135.

51. Wood SA, Pascoe WS, Ru K, Yamada T, Hirchenhain J, et al. (1997) Cloning
and expression analysis of a novel mouse gene with sequence similarity to the

Drosophila fat facets gene. Mech Dev 63: 29–38.

52. Goumans M-J, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, et al. (2002)
Balancing the activation state of the endothelium via two distinct TGF-b type I

receptors. EMBO J 21: 1743–1753.
53. Goumans M-J, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, et al. (2003)

Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFb/
ALK5 signaling. Mol Cell 12: 817–828.

54. Bharanthy S, Xie W, Yingling JM, Reiss M (2008) Cancer-associated

Transforming Growth Factor b Type II Receptor gene mutant causes activation
of Bone Morphogenic Protein-Smads and invasive phenotype. Cancer Res 68:

1656–1666.
55. Daly AC, Randall RA, Hill CS (2008) Transforming growth factor beta-induced

Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor

complexes and is essential for anchorage-independent growth. Mol Cell Biol 28:
6889–6902.

56. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering
cell fates and generating dominant phenotypes. Development 118: 401–405.

57. Couso JP, Bishop SA, Martinez Arias A (1994) The wingless signaling pathway
and the patterning of the wing margin in Drosophila. Development 120: 621–636.

58. Blair SS (1992) Shaggy (zeste-white 3) and the formation of supernumerary bristle

precursors in the developing wing blade of Drosophila. Dev Biol 152: 263–278.

dSmad2 Opposes Mad Signaling

PLoS ONE | www.plosone.org 10 April 2010 | Volume 5 | Issue 4 | e10383




