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Abstract

The ontogeny of the human immune system was studied by analyzing fetal and adult tissues for the presence of various

lymphocytes populations and activation/maturation markers. CD95 (fas) was expressed in hematopoietic tissues during the final

stages of development of monocytes, granulocytes, NK cells and T cells, but to a much lesser extent on B cells. In the periphery,

CD95 expression declined on granulocytes and NK cells. CD95 was expressed at a higher level on CD45RAþ peripheral T-cells

in the fetus than in the adult. Contrary to the belief that most fetal T-cells are naı̈ve or resting, a notable number of CD45ROþ T-

cells were observed as well as an unique CD952CD45ROþ population. Activation markers CD25, CD122, CD69 and CD80

were also present on fetal T-cells. These findings indicate that in the initial weeks following thymic maturation, a high

frequency of T-cells is activated in the periphery of the fetus.

q 2003 Published by Elsevier Science Ltd.
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1. Introduction

The human fetus is protected from most

pathogens within the sterile environment of the

uterus. Nonetheless, the cellular immune system

begins its development early in gestation around

the end of the first trimester. Reports suggest that T

cells can be found in liver and peripheral blood as

early as 7 and 9 weeks’ gestation, respectively,

although their overall numbers are very low [1,2].

Intrathymic CD3þ T-cells can be readily identified

at the 8th week of gestation [3,4] although the fetal
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thymus is not anatomically completely mature

until the 15th week of gestation [5]. Around this

time, single positive (SP) CD4þCD82CD3þ and

CD42CD8þCD3þ T cells begin to accumulate

more rapidly in the periphery [4]. The purpose

for the early development of lymphocytes is not

known but may simply reflect the necessity for T-

lymphopoiesis to keep pace with overall fetal

development to assure the generation and proper

selection of sufficient numbers of lymphocytes

before birth. Moreover, the early development of

T cells may also serve to protect the fetus from in

utero infections or engraftment by maternal lym-

phocytes. Determining the functional capacity of

fetal lymphocytes is key to defining a role for these

cells in fetal immunity.

A limited number of studies have addressed the

functional development of T cells from pre-term

fetuses. Proliferation in response to allostimulation

has been observed from fetal liver T-cells as young as

9 weeks’ gestation [1,6–8]. However, cultured fetal

T-cells showed some defects in cytotoxic responses

which could be reversed by prestimulation with

cytokine [7,9]. More on the functional capacity of

fetal T-cells has been learned from analyses of T cells

obtained from umbilical cord blood (UCB) at the

time of birth. The T-cell repertoire appears fully

formed at birth yet the repertoire appears to be

composed of primarily naı̈ve T-cells [10]. Whereas

CD45ROþCD45RA2 memory T-cells are common

in adult blood, UCB is primarily composed of

CD45RO2CD45RAþ naive T-cells [11–15]. Other

cell-surface markers important in the functioning of T

cells, such as CD3 and CD28, are expressed at similar

levels to adult cells, but signaling through these

proteins is attenuated in UCB T-cells. Neonatal T-

cells failed to increase CD25, CD154 and CD178 (Fas

ligand) expression when stimulated through CD3 and

CD28 [16]. Reduced proliferative responses of

allostimulated UCB T-cells have also been noted

[11,17–19]. Cord blood T-cells also have greatly

reduced perforin expression [20]. Together with the

observations of reduced CD178 expression, these

findings suggest a reduced cytolytic capacity of

neonatal T-cells similar to the findings on midgesta-

tion T-cells. Thus, despite T-lymphopoiesis beginning

early in fetal life, some attenuation of T-cell function

appears to occur in addition to the naı̈veté of the fetal

immune system.

CD95 (fas) is an important regulator of homeosta-

sis of the immune system. CD95 is expressed on some

T cells and to varying degrees on all other leukocyte

lineages. Its expression is increased with T-cell

activation and CD95 expression is highest on

CD45ROþ T-cells [21]. Triggering of programmed

cell death by CD95 activation, through interaction

with CD178, leads to clearance of activated T-cells

and thereby limits immune responses [22,23]. Neo-

natal T-cells express less CD95 than their adult

counterparts [21,24]. Expression of CD95 is also low

to negative on SP thymic cells from midgestation

thymic tissues, although CD95 is expressed on

immature T-cell progenitors [25]. Moreover, the

expression of CD95 on T cells has been shown to

increase with age up to 75 years, after which

expression decreases somewhat [26]. These data

suggest that CD95 expression increases with the

maturation of the immune system. In this regard it is

worth noting that CD95 expression can increase more

rapidly in children infected by the human immuno-

deficiency virus [24].

In this study, it was our aim to gain a better

understanding of the functional maturity of the fetal

immune system by analyzing the expression of

various cell surface markers on fetal T-cells as well

as on other leukocyte populations. Expression of

CD95 was analyzed on leukocytes harvested from

peripheral blood, spleen, liver and bone marrow of

midgestation fetuses and compared to CD95

expression on cells harvested from neonatal and

adult tissues. Furthermore, various cell-surface mar-

kers, associated with activation, were analyzed on

fetal, neonatal and adult T-cells. Our results suggest a

higher level of T-cell activation in utero than would be

predicted from previous studies of UCB T-cells.

2. Materials and methods

2.1. Isolation of human leukocytes from adult,

neonatal and fetal tissues

Human tissues were obtained and studied under the

approval of the Committee on Human Research at our

institute. Male and female adult peripheral blood was
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obtained from healthy volunteers ranging in age from

24 to 61 years. Neonatal UCB and fetal hematopoietic

tissues were obtained with consent of the women prior

to delivery or elective abortion. Neonatal blood (birth

at 33 weeks’ gestation to term) and some fetal tissues

were obtained at our institute. Additional fetal tissues

were obtained from Advanced Bioscience Resources

Inc. (Alameda, CA). Fetal tissues were harvested

shortly following the abortion and were transported to

the laboratory in sterile containers held on ice.

Experiments on adult bone marrow were performed

at Ingenex, Inc. (Menlo Park, CA) in compliance with

regulations issued by the state and federal govern-

ments. Fetal tissues ranged in gestational age from 15

to 24 weeks, as determined by the foot length of the

fetus. Each experiment was performed on cells

obtained from an individual specimen; tissues from

different specimens were not pooled for analyses.

Adult peripheral blood was obtained by venipunc-

ture. Approximately 7 ml of blood was drawn into a

vacutainer tube containing ethylene diamine tetra-

acetic acid (EDTA). The blood was diluted to a total

volume of 50 ml in PBS/BSA washing buffer

consisting of phosphate buffered saline (PBS) con-

taining 0.3% fraction-V ethanol-extracted bovine

serum albumin (BSA) (Roche Applied Science,

Indianapolis, IN) and 50 mg/ml gentamicin sulfate

(Life Technologies, Grand Island, NY). The cells

were pelleted by centrifugation and erythrocytes were

depleted by chemical lyses using ACK lyses buffer,

pH 7.2–7.4, consisting of 0.15 M NH4Cl, 1.0 mM

KHCO3 and 0.1 mM Na2 EDTA (Sigma Chemical

Company, St Louis, MO). The cells were pelleted by a

7-min centrifugation approximately 1 min after the

addition of the ACK lyses buffer. If lysis of the

erythrocytes was incomplete, the procedure was

repeated. Otherwise the cells were washed once in

PBS/BSA and suspended in blocking buffer consisting

of PBS with 5% normal mouse serum (Gemini Bio-

Products, Inc., Woodland, CA) and 0.01% NaN3.

Alternatively, peripheral blood mononuclear cells

(PBMC) were prepared by centrifugation of the

blood at 600 £ g for 25 min on a layer of 1.077 g/ml

LymphoPrep (Life Technologies). The light-density

cells were harvested and washed twice before being

suspended in blocking buffer for staining.

PBMC were isolated from neonatal UCB

by immunomagnetic bead depletion of CD235aþ

erythrocytes, performed as previously described for

fetal liver cells [27], and density separation using

1.077 g/ml Nycoprep (Life Technologies). The iso-

lation of light-density neonatal blood cells was

performed in an analogous fashion to the procedure

described for the adult PBMC. In some cases, freshly

prepared PBMC from UCB were frozen in autologous

plasma with 10% dimethyl sulfoxide (Sigma Chemi-

cal Co.) and were thawed shortly before phenotypic

analysis.

Fetal blood leukocytes were harvested from

umbilical cords, placental vessels and/or hearts

obtained from elective abortions. Blood was har-

vested from the cords after first washing the cords

with PBS/BSA and then resecting (0.5 cm) the ends

with scissors. The washed cords were placed in on a

clean culture dish and were cut in 2 cm pieces. Fifteen

to forty millilitres of PBS/BSA were injected with a

28-gage insulin syringe (Becton Dickinson & Co.,

Franklin Lakes, NJ) into the three cord vessels to rinse

the blood out of the vessels through the fresh cut

surface. In some initial experiments, fetal UCB was

squeezed out through the fresh cut end using forceps.

Blood samples were filtered using 70 m nylon-mesh

cell strainers (BD Biosciences, San Jose, CA) as

needed to remove clots or large cellular debris. For

some fetal specimens fetal blood was obtained from

the placenta by direct venopuncture of surface vessels

near the placenta–umbilical cord junction. Placental

blood was drawn into a syringe containing heparin.

Fetal hearts were collected with the pericardial sack.

The surface was cleaned with PBS/BSA to remove

any contaminating maternal cells. The pericardial

sack was then removed and the ends of the great

vessels resected. In a clean dish, the heart was cut

open from the great vessels down to the apex and the

blood was rinsed out of the great vessels and chambers

with PBS/BSA. Erythrocytes were depleted by

chemical lysis using ACK lysis buffer or immuno-

magnetic bead depletion of CD235aþ cells [27,28].

For some analyses of lymphocytes only, fetal PBMC

were prepared using LymphoPrep as described above.

Blood cells were washed and suspended in blocking

buffer for staining.

Splenocytes were isolated by crushing the spleen

with a glass pestle through a wire mesh cell strainer

(Sigma Chemical Company) and rinsed with washing

buffer. The cell suspension was passed through a 70 m

DCI 619—21/4/2003—14:08—SUREKHA—68383 – MODEL 3

M.O. Muench et al. / Developmental and Comparative Immunology xx (0000) xxx–xxx 3

ARTICLE IN PRESS

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288



UNCORRECTED P
ROOF

nylon-mesh cell strainer and pelleted by centrifu-

gation. Erythrocytes were depleted by chemical lysis

using ACK lysis buffer or immunomagnetic bead

depletion of CD235aþ cells [27]. Alternatively, light-

density splenocytes, depleted of erythrocytes and

granulocytes, were isolated by centrifugation using

LymphoPrep as described above. After either method,

splenocytes were washed and suspended in blocking

buffer for staining.

Fetal thymocytes were prepared for analysis by

passage of the thymus through a cell strainer as

described for the spleen samples. In order to remove

erythrocytes and cellular debris, light-density thymo-

cytes were harvested after centrifugation over a layer

of 1.077 g/ml Nycoprep, as described above for the

adult blood samples.

Light-density CD235a2 fetal liver cells and fetal

bone marrow cells were prepared by immunomag-

netic-bead depletion and centrifugation over a layer of

1.077 g/ml Nycoprep as previously described [27].

2.2. Monoclonal antibodies

Fluorescein isothiocyanate (FITC), phycoerythrin

(PE), allophycocyanin (APC) and peridinin chloro-

phyll (PerCP) labeled mAbs were purchased from BD

Biosciences/BD PharMingen (www.bdbiosciences.

com) recognizing the following antigens: CD3-FITC

(SK7), CD8-FITC (SK1), CD10-FITC (W8E7),

CD14-FITC (MFP9), CD15-FITC (MMA), CD19-

FITC (4G7 or SJ25C1), CD-19-PerCP (SJ25C1),

CD45RA-APC (HI100), CD45RO-APC (UCHL1),

CD45RO-PE (UCHL1), CD95-PE (DX2), CD122-PE

(TU27), mouse IgG1-FITC, mouse IgG2a-FITC and

mouse IgM-FITC. Anti-CD56-FITC and anti-CD56-

PE (C5.9) were purchased from Exalpha Corporation

(Boston, MA). Labeled antibodies recognizing CD4-

tricolor (TC) (S3.5), CD14-FITC (TÜK4), CD15-

FITC (V1MC6), CD25-PE (CD25-3G10), CD45-PE

(HI30), mouse IgG1-FITC, mouse IgG1-PE, mouse

IgG2a-PE, mouse IgG2b-FITC and mouse IgM-FITC

were purchased from Caltag (Burlingame, CA).

Conjugated mAb were also purchased from Beck-

man-Coulter (Miami, FL) recognizing the following

antigens: CD3-phycoerythrin-cyanine 5 (PC5)

(UCHT-1), CD14-PC5 (RM052), CD16-PC5 (3G8),

CD45-PC5 (J33), CD45RA-FITC (ALB11),

CD45RO-FITC (UCHL1), CD56-PC5 (N901),

CD69-PC5 (TP1.55.3), CD80-PE (MAB104),

CD127-PE (R34.34) and mouse IgG1-PC5. Mono-

clonal antibodies labeled with PE recognizing T-cell

receptor (TCR) a/b (BMA031) and TCR g/d

(5A6.E9) were obtained from Endogen (Woburn,

MA). A FITC-conjugated mAb against TCR a/b was

obtained from T Cell Diagnostics, Inc. (Cambridge,

MA). A kit containing a panel of FITC-, PE- and a

mixture of FITC- and PE-conjugated mAb recogniz-

ing different TCR Vb chains was purchased from

Beckman-Coulter and was used according to the

manufacturers recommendations.

2.3. Flow cytometric analysis of cell surface markers

Approximately 2 £ 105 cells suspended in up to

200 ml blocking buffer were incubated in 96-well

Costar V-bottom Plate (Corning Inc., Corning, NY)

with saturating amounts of mAbs on ice for at least

30 min. Cells were washed twice with 250 ml

PBS/BSA containing 0.01% NaN3 (Sigma Chemical

Co.). The washed cells were suspended in PBS/BSA

containing 0.01% NaN3 and 2 mg/ml propidium

iodide (PI), purchased from Sigma Chemical Co. PI

was used to mark dead cells, so that they could be

excluded from the analysis. PI was omitted in 3-color

analyses using PC5 or PerCP labeled mAbs. Flow

cytometric analysis was performed using either a

FACScan or a FACSCalibur flow cytometer (BD

Biosciences). Analyses of results were performed

using CellQuest software (BD Biosciences).

2.4. Data presentation and statistical analysis

The median results of multiple measurements done

on individual tissue samples are reported to reduce the

effects of outliers. Box plots are used to present the

data, which show the 10th (lower bar), 25th (box

bottom), 50th (median-bar in box), 75th (box top) and

90th (upper bar) percentiles. Circles in the box plots

indicate outlying data points below the 10th and above

the 90th percentiles. The significance of differences

observed between fetal and adult cells was determined

using an unpaired Student’s t-test. Results were

considered significant when P # 0:05:
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3. Results

3.1. Analysis of CD95 expression on fetal

and adult leukocytes

Expression of CD95 was analyzed by flow

cytometry on leukocyte populations found in fetal

(blood, spleen, liver and bone marrow) and adult

(blood and bone marrow) tissues. The gestational ages

of the fetal samples ranged from 15 to 24 weeks.

CD95 was expressed on at least some cells of each of

the lineages analyzed in both fetal and adult tissues.

Most circulating CD14þ monocytes expressed CD95

at high levels (Fig. 1). In adult blood, a median 97.1%

of monocytes expressed CD95. Likewise, a median

93.7% of fetal blood and 83.2% of fetal splenic

monocytes showed CD95 expression (Fig. 2A). The

levels of CD95 expressed on fetal and adult

peripheral-blood monocytes also did not differ (Fig.

2B), although the fetal splenic monocytes had reduced

levels of CD95 ðP ¼ 0:053Þ: However, the reduced

levels of CD95 in the spleen appeared to be the result

of increased background staining, with non-specific

isotype-matched control antibody, rather than reduced

CD95 expression (data not shown). The expression of

CD95 on the immature CD14þ monocytes developing

in hematopoietic tissues was also analyzed. Both in

the fetal and adult bone-marrows, CD95 expression

was apparent on cells expressing low and high levels

of CD14 indicating that CD95 is already expressed at

the time of CD14 acquisition (Fig. 3).

Few fetal CD15þ granulocytes expressed CD95

(Fig. 1). In adult blood, a median 86.0% of

granulocytes expressed CD95, but only 22.0% of

fetal blood and 21.1% of fetal splenic granulocytes

expressed CD95 (Fig. 2A). The decreased expression

of CD95 in fetal tissues was significant compared to

Fig. 1. Expression of CD95 by fetal and adult leukocytes.

Representative data from analyses of fetal and adult peripheral-

blood leukocytes are shown. The fetal leukocytes had a gestation

age of 19 weeks. Adult peripheral blood was obtained from a 36

year old male. The five subsets of leukocytes were defined by the

expression of their specific cell-surface antigen, as shown, as well as

by their characteristic light-scatter profiles (not shown). CD14þ

monocytes as well as the 3 lymphocyte populations were defined as

cells with a low to moderate forward-light scatter and a low side-

light scatter. CD15þ granulocytes were defined as cells with a high

side-light scatter. Additionally, 3-color analyses further enabled the

CD19þ B cell population to be defined by their lack of CD14

expression (not shown), which helped to reduce non-specific

background staining. CD56þ NK cells were also defined by their

lack of CD3 expression (not shown). Quadrants were drawn based

on controls stained with mouse IgG1-PE, instead of CD95-PE, such

that background staining was #2.2% for the 2 myeloid populations

and #0.9% for the 3 lymphoid populations.
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adult granulocytes ðP # 0:025Þ: The levels of CD95

expression on CD15þ granulocytes was also signifi-

cantly lower in the fetal spleen ðP ¼ 0:006Þ; but did

not differ between fetal and adult blood (Fig. 2B).

CD95 expression appeared on those granulocytes with

lower levels of CD15 expression as exemplified in

Fig. 1. Furthermore, immature granulocytes in the

fetal and adult bone-marrows uniformly expressed

CD95 (Fig. 3). The immature CD95þCD15low

granulocytes were also enriched in the light-density

fractions of fetal liver and neonatal UCB (data not

shown), indicating that CD95 expression is a feature

of young granulocytes that is decreased with matu-

ration and increased CD15 expression.

The frequency of CD95 expression was decreased

on CD19þ B cells from fetal blood compared to adult

blood ðP ¼ 0:005Þ (Fig. 2A). Although the level of

CD95 expression was also decreased on fetal blood B-

cells this difference was not significant (Fig. 2B).

CD95 expression on fetal splenic B-cells did not differ

significantly from adult B-cells. The overall modest

levels of CD95 expressed on peripheral B-cells were

also observed on B cells in the fetal and adult bone-

marrows (Fig. 3). These results indicate a lack of

CD95 expression on most immature B-cells and their

immediate progenitors.

Both the frequency and levels of CD95 expression

on CD56þCD32 NK-cells was comparable between

fetal and adult cells (Fig. 1). CD95 was expressed on a

median 56.9–79.8% of fetal and adult NK cells

(Fig. 2A). Immature NK cells, expressing low levels of

CD56, found in the fetal liver and adult bone marrow

expressed CD95 (Fig. 3). Thus, unlike the B cells,

CD95 expression is a feature of maturing NK cells.

3.2. Expression of CD95 on fetal and adult T cells

A similar frequency of fetal and adult CD3þ T-

cells expressed CD95 (Figs. 1 and 2). However, the

levels of CD95 expression on fetal blood and splenic

T-cells were less than half those on adult T-cells ðP #

0:003Þ (Fig. 2B). In general, fetal T-cells consisted of

a predominant population of cells that expressed low

levels of CD95 and a small subpopulation of T cells

that expressed higher levels of CD95 (Fig. 1). Adult

T-cells, in contrast, tended to be polarized into two

subsets consisting of either CD95þ or CD952 cells.

The frequency and intensity of CD95 expressed by

adult CD4þ T cells were previously shown by

Miyawaki et al. to be higher than for CD8þ T cells

[21]. Our analysis of adult T-cells confirmed these

findings. On the contrary, analyses of fetal blood and

splenic T-cells did not indicate any significant

difference in the frequency of CD95 expression by

CD4þ and CD8þ T-cells (data not shown). However,

the intensity of CD95 expressed by fetal CD4þ T-cells

was modestly higher than by fetal CD8þ T-cells. The

signal to noise (S/N) ratio for CD95 expression was

28% and 68% higher for CD4þ T-cells than for CD8þ

T-cells from blood and spleen, respectively (data not

shown). These differences did not reach significance

by paired analysis (P ¼ 0:071 for blood and 0.137 for

Fig. 2. Box plots of the frequency and intensity of CD95 expression

on fetal and adult leukocytes. Leukocyte populations were defined

by their phenotypic properties as described in Fig. 1. Box plots are

shown of the percent of cells expressing CD95 (A) and the signal to

noise (S/N) ratio for CD95 expression (B). The numbers ðnÞ of

tissue samples analyzed are indicated at the bottom of the box plots.
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spleen). For comparison, the S/N ratio for CD95

expression on adult CD4þ T-cells was 125% higher

than on CD8þ T-cells.

Three-color analyses of CD3, CD4 and CD8

expression were performed on fetal blood and spleen

samples ranging in age from 16 to 24 weeks’

gestation. Although there were no significant differ-

ences in the ratio of CD4 to CD8 SP T-cells between

fetal and adult samples, the younger fetal specimens

had a lower ratio than older fetal specimens (data not

shown). In three fetal samples younger than 19 weeks’

gestation the CD4/CD8 ratio ranged from 0.46 to 1.8.

In samples between 19 and 24 weeks had ratios that

ranged from 2.0 to 2.7, comparable to ratios observed

from adult blood.

The tendency towards higher CD95 expression on

CD4þ T-cells was also observed on SP T-cells in the

fetal thymus (Fig. 4A). Fetal thymi of 15, 19 and 22

weeks’ gestation were analyzed and CD95 was found

to be on 1.9-fold more CD4 SP thymocytes than on

CD8 SP thymocytes (P ¼ 0:057; paired comparison).

Low expression of CD95 was also observed on DP

thymocytes. Double negative (DN) thymocytes were

up to 83.5% CD95þ ðn ¼ 3Þ: DN thymocytes include

CD32 T-cell progenitors, CD3þ immature T-cells and

cells of various other lineages. Nonetheless, the

majority of CD95 expression in the fetal thymus

was on cells expressing high levels of CD3 as seen in

Fig. 4B. To determine whether CD95 is expressed by

T cells shortly before emigration from the thymus we

analyzed CD3þCD45RAþ and CD3þCD45RO2 thy-

mocytes [29–31]. There was CD95 expression on

both of these overlapping subpopulations of thymo-

cytes, indicating that CD95 is expressed at low levels

on T cells that emerge from the thymus.

3.3. Expression of CD45 isoforms by fetal

and adult T cells

The high frequency of CD95 expression on fetal T

cells was unexpected considering published findings

indicating low expression of this protein on neonatal T

Fig. 3. Expression of CD95 on immature monocytes, granulocytes,

B cells and NK cells. Fetal bone marrow, or fetal liver (right

column) and adult bone marrow (left column) were analyzed for the

expression of CD95 and the indicated leukocyte markers. All tissues

were enriched for immature leukocytes by isolation of light-density

CD235a2 cells. Additionally, the leukocyte populations of interests

were enriched for display by gating on their respective characteristic

light-scatter profiles as described in Fig. 1. Quadrants were drawn

based on controls, such that background staining in the upper right

quadrant was #2.4% for the 2 myeloid populations and #1.1% for

the 3 lymphoid populations.
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cells. Since CD95 expression on adult T cells is

predominantly on CD45ROþ T cells [21], we

examined the expression of CD45RA and CD45RO

on fetal, neonatal and adult T cells (Figs. 5 and 6A).

Previous findings have indicated a higher frequency of

CD45ROþCD45RA2 T-cells in the fetus than the in

the neonate [32], thus possibly accounting for the

higher rate of CD95 expression in the fetus.

The CD45ROþCD45RA2 subset represented a

median of 11.3% and 15.5% of T cells in the

fetal blood and spleen, respectively, which was

significantly higher than the median 1.5% in UCB

obtained from full term newborns (P ¼ 0:031 for

blood and ,0.001 for spleen) (Fig. 6A). Although, the

frequency of fetal CD45ROþCD45RA2 T-cells was

reduced compared to the adult (P ¼ 0:046 for blood

and 0.072 for spleen) (Fig. 6A). Both fetal blood and

spleen also had significantly reduced numbers of

CD45ROþCD45RAþ T-cells compared to adults,

whereas CD45RO2CD45RAþ T-cells were more

prevalent in the fetus than in the adult ðP # 0:028Þ

(Fig. 6A). The majority of T cells in UCB were

Fig. 4. Expression of CD95 during T-cell development in the fetal thymus. Expression of CD95 on DN, DP and SP thymocytes is shown in (A).

Co-expression of CD3 and CD95 as well as the level of CD95 expression on CD3þCD45RAþ and CD3þCD45RO2 thymocytes is shown in (B).

Representative results are shown from a 15 weeks’ gestation thymus.
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CD45ROþCD45RAþ (P ¼ 0:033 versus adult blood),

whereas the CD45RO2CD45RAþ subpopulation was

similarly represented in UCB compared to adult

blood. Thus, the naive CD45RO2CD45RAþ T-cell

subset is enriched in the fetus, but a notable number of

CD45ROþCD45RA2 T-cells are present in the fetal

circulation, more so than at the time of birth.

CD95 expression was detected on both CD45RAþ

and CD45ROþ fetal T-cells, but differences between

fetal and adult T cells were apparent (Figs. 5 and 6B).

The median frequency of fetal CD45RAþ T-cells

that expressed CD95 was 62.0% in the blood

and 85.4% in the spleen (Fig. 6B). The median

frequencies of CD95 expression on adult and neonatal

CD45RAþ T-cells were significantly lower at 45.1%

and 37.1%, respectively (P ¼ 0:012 for both com-

parisons). Most adult CD45ROþ T-cells expressed

CD95 (median 89.1%), as previously described [21].

However, CD95 expression was reduced on

CD45ROþ T-cells from fetal blood (median 59.7%),

fetal spleen (median 72.8%) and UCB (median

54.9%). These differences in CD95 expression

compared to adult CD45ROþ T-cells were significant

ðP # 0:009Þ: Moreover, examination of the pattern of

CD95 expression on fetal T-cells revealed a subpopu-

lation of CD45ROþCD45RA2 T-cells that was

Fig. 5. Expression of CD45RA, CD45RO and CD95 by fetal, neonatal and adult T-cells. 3-color analyses were performed by staining blood cells

with CD3-PC5 and the indicated mAbs. Events shown are gated on CD3þ cells with low forward- and side-light scatters. The gestational ages of

the fetal blood samples where 20 weeks for the top dot plot and 16 weeks for the lower two dot plots. The single UCB sample was obtained from

a full-term delivery (approximately 40 weeks’ gestation). Adult blood was obtained from a 29 year individual (top dot plot) and 37 year

individual (middle and bottom dot plots). Numbers represent the percentage of events in the corresponding quadrants. The fetal

CD952CD45ROþ/CD952CD45RA2 T-cell population is highlighted by rectangular regions.
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CD952 (Fig. 5, boxed regions). These cells were

best defined by their lack of CD45RA staining rather

than their expression of CD45RO. This is because

many CD45ROþ cells can also express CD45RA,

whereas all CD45RA2 cells are CD45ROþ. The

CD952CD45ROþCD45RA2 T-cell population was

not present to any appreciable degree in either term

UCB or adult peripheral blood.

3.4. Cytokine receptors and activation markers

expression by fetal and adult T-cells

The expression of CD95 and CD45RO by fetal T-

cells suggests the possibility that a sizable proportion

of fetal T-cells have undergone activation. To support

this hypothesis, we analyzed the expression of various

cytokine receptors and other cell-surface markers

associated with T-cell growth and activation (Table 1).

Components of the IL-2 receptor complex were

analyzed, which indicated that CD25 was expressed

on a similar portion of fetal T-cells as on adult T-cells.

In contrast, CD25 was significantly reduced on

neonatal T-cells, particularly on the CD45ROþ

subset. CD122 was expressed on a significantly

higher number of fetal T-cells than on either neonatal

or adult T-cells. The a-chain subunit of the IL-7

receptor, CD127, was widely expressed on T-cells

from all sources, but was significantly reduced on the

CD45ROþ subset of fetal T-cells. T cells in UCB

expressed higher levels of CD127 compared to fetal or

adult T-cells. CD132, the common g-chain subunit of

the IL-2, IL-4, IL-7, IL-9 and IL-15 receptors, was

Fig. 6. Expression of CD45 subtypes and CD95 by fetal, neonatal

and adult T cells. The percentages of CD45ROþCD45RA2,

CD45ROþCD45RAþ and CD45RO2CD45RAþ T-cells in fetal

tissues, UCB and adult blood are shown in (A). The percentages of

CD45RAþCD3þ and CD45ROþCD3þ T cells that expressed CD95

are shown in (B). The numbers ðnÞ of tissue samples analyzed are

indicated at the bottom of the box plots.

Table 1

Expression of cytokine receptors and various activation markers on fetal, neonatal and adult CD3þ T-cells

Marker Total CD3þ T-cells Adult CD45ROþCD3þ

T-cells

Adult CD45RO2CD3þ

T-cells

Neonatal Adult

Fetal Neonatal Fetal Neonatal Fetal

CD25 11.0a 3.4b 14.8 17.7 5.4b 22.2 3.8 2.6 3.4

CD122 14.3a,b 0.4 1.9 16.2a,b 0.7 2.2 11.5a,b 0.3b 2.0

CD127 77.8a 97.5b 84.3 67.5a,b 82.4 84.8 84.3a 100b 80.6

CD132 99.6 95.3b 100 92.5 96.3 98.4 100a 96.5 100

CD56 9.9 4.3 9.7 8.2 5.7 11.5 9.6 3.7 6.2

CD69 21.0b 12.5 10.7 ND ND ND ND ND ND

CD80 3.7 0 0.3 5.2 0 0.6 0.6 0 0

TCR a/b 80.2a 97.6b 82.6 ND ND ND ND ND ND

TCR g/d 17.3a,b 2.9b 8.2 ND ND ND ND ND ND

Light-density cells isolated from fetal spleens and PBMC isolated from UCB and adult blood were analyzed for the expression of CD3,

CD45RO and the indicated marker. T cells were defined by their expression of CD3 and by a low forward- and side-light scatter profile. Values

represent the median level of expression observed on five fetal, four neonatal and six adult samples. ND ¼ Not determined.
a P # 0:05 versus neonatal T-cells.
b P # 0:05 versus adult T-cells.
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expressed on nearly all T-cells at any stage of

ontogeny. The markers CD69 and CD80 are

expressed on T cells that have become activated

[33–35]. The frequency of fetal T-cells expressing

these markers was higher than in the adult or neonate.

CD56, which is expressed by a subpopulation of

cytotoxic T-cells [36], was expressed at similar levels

in the fetus and adult, but was approximately half as

abundant in the neonate. A significantly greater

frequency of fetal T-cells were found to express g/d

chains of the T-cell receptor.

3.5. Repertoire of TCR Vb chain expression by fetal

T-cells and thymocytes

The TCR Vb chain repertoire expressed by fetal T-

cells was studied to determine the diversity of TCR

expression in the emerging immune system. Vb chain

expression was analyzed on splenic CD3þ cells

ranging in age from 16 to 24 weeks’ gestation

(Fig. 7A). A diverse repertoire was observed with

the mean percent expression of each Vb chain falling

within the range of expression observed on adult

specimens, as reported by the manufacturer of the test

reagents. Moreover, two subsets of fetal splenic T-

cells, CD45RA2 (CD45ROþ) and CD45RAþ, were

examined and both displayed diversity in Vb chain

expression similar to as described above, except for

the following differences: The CD45RA2 subset had

a higher representation of Vb11 (P , 0:05; n ¼ 3)

and Vb5.1 ðP ¼ 0:075Þ and lower representation of

Vb14, Vb16 and Vb21.3 (P , 0:05; n ¼ 3). The

possibility that the CD45RA2 T-cells in the spleen are

thymocytes that have not gained CD45RA expression

before exiting the thymus was examined by compar-

ing the expression of Vb chains on splenic and thymic

Fig. 7. Expression of TCR Vb chains by fetal splenic T-cells and thymocytes. TCR Vb chain expression was analyzed by 4-color flow

cytometry. T cells were identified by their expression of high levels of CD3 and by their low light scatter profile. Vb chain expression was

analyzed from a cohort of 6 spleens ranging in gestation age from 16 to 24 weeks (A). Two of these spleens, of 19 and 22 weeks’ gestation, were

analyzed for Vb chain expression on T-cells subdivided based on the expression of CD45RA (B). Thymocytes from these same fetal specimens

were also analyzed and were gated using the same region as used to define the corresponding splenic CD3þCD45RA2 population. Results are

presented as the mean ^ SE.
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CD45RA2CD3þ cells (Fig. 7B). Besides wide-

ranging similarity and some non-significant dissim-

ilarities, there were notable significant differences

between the thymic and splenic T-cells. Mainly, a

lower representation of Vb 1, Vb 3, Vb 5.2 and Vb

13.6 (P # 0:05; n ¼ 2) was observed on the splenic T-

cells. These differences indicate that the splenic

CD45RA2 T-cells are not an exact match to the

corresponding thymic population.

4. Discussion

The maturity of the human fetal immune system

was analyzed from the perspective of CD95

expression as well as a number of additional cell-

surface markers associated with T-cell activation and

growth (Fig. 8). Most knowledge regarding fetal T-

cells has come from the analyses of neonatal T-cells

obtained from UCB. Studies have shown neonatal T-

cells to be comprised of primarily CD45RAþ naive/

resting T-cells [11–15] that express low levels of the

activation marker CD95 [21,24]. In contrast, our

examination of midgestation fetal tissues indicates

that the frequency of T cells that express CD95 in

these tissues is comparable to that of adult T-cells.

However, the levels of CD95 expression are reduced

on fetal T-cells. Although fetal T-cells were pre-

dominantly CD45RO2CD45RAþ T-cells,

CD45ROþCD45RA2 T-cells were present in the

blood of midgestation fetuses, more so than at full

term. Furthermore, a number of cell-surface markers

associated with T-cell activation, were also observed

on fetal T-cells at levels similar or higher than in the

adult. These data indicate a, heretofore, unappreciated

level of activation of peripheral T-cells circulating in

the immediate weeks following thymic development

in the human fetus.

Byrne et al. have reported a higher frequency

of CD45ROþCD45RA2 T-cells in the midgestation

fetus compared to full-term neonates [32]. Our findings

confirm this observation and extend them by

describing a subset of CD45ROþCD45RA2 T-cells

in the fetus that lacks CD95 expression (Fig. 8).

We are unaware of any previous description of a

CD952CD45ROþCD45RA2 subpopulation of T

cells, and we did not observe this population in post-

natal blood. Nearly all adult CD45ROþCD45RA2 T-

cells are known to express CD95 at high levels [21].

Indeed, the higher frequency of CD45ROþCD45RA2

T-cells in adults is a contributing factor to

the higher levels of CD95 expression

observed on adult versus fetal T-cells. The role of the

CD952CD45ROþCD45RA2 T-cell subset in

the developing immune system is presently unclear.

The expression of CD45RO by these cells suggests that

they may have been previously activated. Although

there are some reports that suggest exposure of the

fetus to external antigens can occur [37], the

prevalence of the CD45ROþ population of T cells

could mean that these cells are being exposed to and

subsequently responding to autologous antigens. We

speculate that a developmentally early wave of

activation of autoreactive T-cells may be an important

step in the establishment of suppressor T-cell

populations and peripheral tolerance. Indeed, the

decreased expression of CD95 on these cells would

be counter to the hypothetical removal of fetal

autoreactive T-cells by a CD95-mediated apoptotic

mechanism [32]. However, the loss of CD95

expression may still be associated with the removal

Fig. 8. Proposed expression of CD95 on human hematopoietic cells

throughout ontogeny. The expression of CD95 at various stages of

hematopoiesis (CD34þ cells, black triangle), maturation and

activation is indicated by shading. Black circles represent relatively

high levels of CD95 expression, gray circles represent intermediate

expression and open circles represent a lack of CD95 expression.

Filled circles indicate that most cells of the indicated population

express CD95, whereas semi-circles represent CD95 expression by

a subpopulation of cells. The schema was developed from the data

presented in this study as well as previously published reports [25,

27,50–53].
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of these cells since there is evidence that signaling

through CD95 may support T-cell growth rather than

apoptosis in some circumstances [38,39].

A broader analysis of T-cell markers further

supports our conclusion that the midgestation fetus

contains a notable number of activated T-cells.

Although a previous study failed to identify any

CD56þ natural cytotoxic T-cells in the fetus [40], we

observed a similar number of CD56þ T-cells in the

fetus as in the adult. About 17% of fetal T-cells

expressed the g/d TCR which was higher than in the

neonate and adult, consistent with previous findings

[41]. CD69, an activation antigen expressed early in

T-cell activation [33], was expressed at nearly twice

the frequency on fetal T-cells as on neonatal and adult

T-cells. CD80 is a stimulatory molecule for T cells

expressed by various leukocytes, which can be

expressed on some T cells during the later phase of

activation [34,35]. CD80 was expressed on fetal T-

cells, in particular CD45ROþ T cells, also at a higher

frequency than in the neonate and adult. T-cell

activation also results in upregulation of the a and b

subunits of the IL-2 receptor, CD25 and CD122,

respectively. Both components of the IL-2 receptor

were found on fetal T-cells, with a notably higher

number of CD122þ T-cells in the fetus compared to

the adult. Very little CD25 and CD122 expression was

observed on neonatal T-cells. The expression of CD25

and CD122 by fetal T-cells suggests these cells may

be activated, although it is possible that some of these

cells represent CD4þ suppressor/regulatory T-cells

[42]. This regulatory subset of T cells has been

described in UCB and is characterized in part by

CD25 and CD122 expression [43]. IL-7 plays a

critical role in the maintenance of the naı̈ve T-cell

pool through interaction with its receptor, CD127/

CD132 [44]. After T-cell activation, CD127

expression is lost and, as such, is another indication

that T cells have been stimulated [45]. We observed

CD1272 T-cells in both the fetus as well as in the

adult, although most T cells in both cases express

CD127. Indeed, there was a higher portion of

CD45ROþ T-cells that lacked CD127 expression in

the fetus than in the adult. Moreover, CD127 was

notably higher on neonatal T-cells compared to both

fetal and adult T-cells. In total, these findings are

consistent with a higher level of T-cell activation in

the midgestation fetus than at term.

The abundant expression of CD95 by peripheral T-

cells in the fetus prompted us to analyze the

expression of CD95 on developing T-cells in the

thymus (Fig. 8). CD95 expression in the fetal thymus

was predominantly found on T-cells that had already

begun to express high levels of CD3, although the

majority of DP and SP T-cells did not express CD95.

Most DN thymocytes expressed CD95. Our findings

are consistent with those of Jenkins et al. who

observed CD95 expression on T-cell progenitors,

but found very little expression on mature CD3þ SP

thymocytes. These investigators also demonstrated

that the thymic cells are resistant to CD95-mediated

apoptosis [25]. We wished to further elucidate the

degree of CD95 expression on mature thymic T-cells

set to enter the circulation. Most developing T-cells in

the thymus express CD45RO, which is expressed in

an inverse relationship to CD45RA. Before exiting the

thymus, T cells are known to down-regulate CD45RO

expression and become CD45RAþ [29–31]. Exam-

ination of CD95 expression on thymic CD45RO2 and

CD45RAþ T-cells indicated that most T cells entering

the periphery are CD95þ, consistent with the

expression of CD95 observed on peripheral

CD45RAþ T-cells. Since adult CD45RAþ T-cells,

which are less likely to be recent thymic emigrants,

expressed less CD95 it is likely that CD95 expression

is reduced on naı̈ve T-cells with time spent in the

circulation.

There at least two additional potential expla-

nations, besides (auto)antigen-specific activation, for

the presence of T-cells in the fetal circulation with an

activated phenotype. One possibility is that the

markers associated with activation are expressed

because of T-cell growth, associated with rapid

expansion of the peripheral pool of T cells, rather

than specific activation by antigen. Another possi-

bility is that the CD45ROþ T-cells in the fetal

circulation are recent thymic emigrants that emerged

from the thymus before changing to the CD45RAþ

phenotype. In attempt to distinguish these possibili-

ties, the Vb chain repertoire was analyzed on fetal T-

cells. A diverse repertoire, comparable to that of

adults, was observed as early a 16 weeks gestation. It

is worth mention that methods more sensitive to minor

sequence differences have shown reduced diversity

within the Vb chain families of late-gestation fetal

and some neonatal blood samples [46,47], which
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presumably is true for early mid-gestation T-cells as

well. Our results also demonstrated diversity within

the CD45RA2 (CD45ROþ) subset of fetal T-cells

indicating that this subset is not derived from the

activation and expansion of one or a few T-cell clones.

Differences in Vb chain expression between splenic

and thymic CD45RA2 T-cells suggest that the splenic

cells are not recent emigrants from the thymus,

although further experiments are required to bolster

this conclusion. There were also some differences in

Vb chain expression between splenic CD45RA2 and

CD45RAþ T-cells, which may indicate selective

expansion of T cell clones. However, further study

is required to distinguish the possible reasons for the

expression of activation markers on fetal T-cells.

We further examined if CD95 expression can be

viewed as a marker of activation or maturation for

leukocyte lineages other than T-cells (Fig. 8). CD95

was expressed on immature cells of all lineages and

was down-regulated with maturation, except in the

case of monocytes which expressed CD95 even in the

sterile fetal environment. In contrast, granulocytes

reduced their expression of CD95 after entering the

circulation. Likewise, CD95 expression was

decreased or lost on NK cells in the circulation,

possibly due to a lack of growth or activation

stimulus, although increased CD95 expression is

correlated with in vitro activation of NK cells [48,

49]. B cells expressed less CD95 than most other

lineages during their development in the fetal or adult

bone-marrow. Most CD19þ and CD10þ cells in

hematopoietic tissues did not express CD95 and

expression on circulating fetal B-cells was low and

decreased compared to the adult. Miyawaki et al. first

described similar results for UCB and adult peripheral

blood B-cells [21]. CD95 expression on B cells

correlates with increased functional differentiation

and is, thus, likely low on fetal B-cells owing to their

lack of stimulation and hormonal suppression. These

findings show a diverse and variable expression of

CD95 in the development of hematopoietic cells,

indicating that CD95 expression alone is not a reliable

marker of maturational status or activation.

Continued research into the development and

functional status of the human fetal immune system

should lead to new insights into the steps required in

the development of the immune system and

the establishment of peripheral tolerance towards

autologous antigens. These insights may lead to better

therapies for immune compromised patients and

transplant patients. Efforts at fetal gene or cellular

therapy would also benefit greatly from a clearer

understanding of the functional capacity of the

immune system at various stages of development.
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