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A Graph-based Framework for Multiple Change-point Detection

Abstract

We study the problem of multiple change-point detection in high-dimensional data and non-

Euclidean data with graph-based statistics. With the emergence of more complex data with multiple

change-points, traditional change-point detection methods for low-dimensional data are not suitable

anymore. We first propose a nonparametric multiple change-point detection framework using graph-

based statistics. The framework is a two-step procedure. In the first step, we combine generalized

edge count scan statistics with wild binary segmentation or seeded binary segmentation to search

for a pool of candidate change-points. We then prune the candidate change-points through a

novel goodness-of-fit statistic in the second step. Numerical studies show that this new framework

outperforms existing methods under a wide range of settings. The resulting change-points can

further be arranged hierarchically based on the goodness-of-fit statistic.

Next, to further improve the detection accuracy under frequent changes scenarios and pure

mean or covariance changes scenarios, we incorporate max-type edge-count scan statistics in the

first step. In the second step, a new goodness-of-fit statistic built on max-type two-sample test

statistics with a stepwise algorithm is used for model selection.

Furthermore, we consider an important application of multiple change-point detection on Neu-

ropixels data. Neuropixels is a new tool in neuroscience allowing the recording of brain neuronal

activities in high resolution for a long period of time. The large size of Neuropixels data and its

non-stationarity make it challenging for statistical analysis. We propose a nonparametric method

for detecting multiple change-point for this type of data. Change-point analysis can be served as

a preliminary step for further statistical modeling. The proposed method combines max-type edge

count scan statistics and wild binary segmentation to search for change-points in parallel, greatly

reducing the computation time required for long sequences. The method is demonstrated by an

application to Neuropixels data recorded from an awake mouse in nine brain regions for 20 minutes.
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CHAPTER 1

Introduction

1.1. Multiple Change-point Detection Problem and Literature Review

Change-point analysis is a long-established statistical topic and has received much attention in

this century. In the era of big data, data are often of high dimension and complexity. For exam-

ple, in bioinformatics, finding common DNA copy number variants in hundreds of samples from

high-throughput sequencing data is of scientific interest (Jiang et al. 2015, Zhang et al. 2010). In as-

trophysics, experts discover the presence of galaxies using thousands of images obtained by integral

field spectrograph (Enikeeva & Harchaoui 2019). There is also a need for finding abrupt changes

in dynamic networks, such as email communication pattern changes and brain state transitions

(Braun et al. 2021, Dong et al. 2020, Peel & Clauset 2015).

Consider a sequence of independent observations {yi : i = 1, . . . , n}, indexed by time or some

other meaningful orderings, such that

(1.1) yi ∼ Fj , τj + 1 ≤ i ≤ τj+1, j = 0, . . . ,m,

where 0 = τ0 < τ1 < · · · < τm+1 = n, and Fj ’s are arbitrary unknown probability measures,

satisfying Fj ̸= Fj+1. The parameters τ = {τ1, . . . , τm} are the change-points of the process. Our

goal is to estimate m and τ .

The earlier works of change-point detection focus on univariate data under parametric models.

Cumulative sum statistics (CUSUM) is a widely used method for univariate data. It is equivalent

to likelihood ratio statistics under Gaussian assumption. Later, more work focused on the scenario

with multiple change-point for univariate data. Yao (1988) proposed a BIC-type statistic and

showed its consistency for bounded number of change-points. Many greedy algorithms also play an

important role in this field, including binary segmentation, circular binary segmentation, and wild

binary segmentation (WBS) (Fryzlewicz 2014, Olshen et al. 2004, Vostrikova 1981).
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Most existing works for multiple change-point detection with multivariate observations are

based on parametric models. For example, Zhang et al. (2010) and Enikeeva & Harchaoui (2019)

considered ℓ2 aggregation of CUSUM. Cho & Fryzlewicz (2015) developed a truncated CUSUM

combined with binary segmentation to tackle the sparsity in high dimensional data. Wang &

Samworth (2016) studied a projected CUSUM procedure also under a sparse high dimensional

setting. Lavielle & Teyssiere (2006) introduced a set of methods based on penalized Gaussian

log-likelihood to detect changes in covariance structure. Wang et al. (2018) improved Pearson’s

Chi-squared test for multinomial data, and added a penalty term to allow for multiple change-point

selection.

In recent years, more nonparametric methods have been developed to avoid model misspecifi-

cation in parametric methods. For example, Matteson & James (2014) proposed E-Divisive that

combined Euclidean-based divergence measure and divisive algorithm. Harchaoui et al. (2008) and

Arlot et al. (2019) used kernel-based statistics to measure the discrepancy between segments (KCpA

and KCP). Another framework for multivariate and non-Euclidean data is the graph-based method

proposed by Chen & Zhang (2015). For the first time, it gives an analytic p-value approximation for

a nonparametric framework that can be applied to data in an arbitrary dimension or non-Euclidean

data, facilitating its application to large data sets. Chu & Chen (2019) improved the graph-based

method by introducing new graph-based statistics that perform well under a wider range of alter-

natives. However, unlike E-Divisive and KCP, the existing graph-based methods focused on the

single change-point and the changed interval alternatives.

1.2. Contribution of the Dissertation

My doctoral research aims to address these challenges with a non-parametric framework built

on graph-based statistics and greedy algorithms. In Chapter 2, we develop a reliable way of finding

multiple change-points utilizing graph-based statistics for modern data. In particular, we first adopt

the idea of WBS (Fryzlewicz 2014) or seeded binary segmentation (SBS) (Kovács et al. 2020) to

find a pool of candidate change-points. We then propose a pseudo-BIC criterion for change-point

selection. Simulation shows that this new framework has superb performance compared to other
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state-of-the-art methods under a variety of settings. The new approach is illustrated by analyzing

a snippet of Neuropixels dataset where multiple types of changes are found.

Then, in Chapter 3, we further improve the framework by incorporating max-type graph-based

statistics to better deal with more frequent changes. Max-type statistics are more sensitive to pure

mean and covariance changes than generalized statistics (Chu & Chen 2019). In addition, max-type

scan statistic has a more accurate p-value approximation, making it also more suitable for frequent

changes. We present a goodness-of-fit statistic based on max-type two sample test statistics. The

efficacy of this approach is demonstrated through various simulation experiments.

In Chapter 4, the main focus is on fast multiple change-point detection in long sequence, espe-

cially for Neuropixels data. Neuropixels is a complementary metal-oxide semi-conductor (CMOS)

probe utilized for continuously recording neural activities in the brain (Jun et al. 2017). Neuropix-

els recordings can last for minutes to hours with hundreds or thousands of neurons. In addition,

Neuropixels recordings are highly noisy and may involve a lot of distributional change. All these

properties make the analysis of Neuropixels data challenging. However, there has been limited

work in this area. In order to address these issues, we propose a new framework built on max-type

edge-count statistics and a parallel WBS algorithm. The new algorithm detects change-points in

parallel, greatly reducing the time complexity of the traditional WBS algorithm. We apply this new

framework to real Neuropixels data recorded across nine brain regions in an awake mouse lasting

for about 20 minutes.

Finally, we conclude the dissertation with summary of contributions and a discussion of future

directions in Chapter 5.
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CHAPTER 2

A Nonparametric Framework for Detecting Multiple

Change-point in Modern Data

2.1. Notations and Graph-based Single Change-point Detection

We first introduce some notations. Consider the scenario of detecting a single change point on

{yi : a ≤ i ≤ b}, i.e., testing the null hypothesis H
[a,b]
0 : yi ∼ F0, i = a, . . . , b against the alternative

H
[a,b]
1 : exists a ≤ τ < b, yi ∼ F0 for a ≤ i ≤ τ and yi ∼ F1 otherwise. When the null hypothesis

H
[a,b]
0 is true, the permutation null distribution that places 1/(b−a+1)! probability on each of the

(b−a+1)! permutations of {yi : a ≤ i ≤ b} can be used as a surrogate for the true null distribution.

Let G[a,b] be the similarity graph on {yi : a ≤ i ≤ b}. The graph G[a,b] is an unweighted

undirected acyclic graph within which edges are constructed based on a distance measure defined

on the sample space up to a criterion. Some examples of G[a,b] include k -minimum spanning tree (k -

MST) and k -nearest neighbor graph (k -NNG) (see Chen & Zhang (2015, 2013) for more discussions

on choices of the similarity graph). We use G[a,b] to denote both the graph and the set of edges in

the graph when its vertex set is implicitly obvious. Let R
[a,b]
1 (t) be the number of edges connecting

observations within [a, t], and R
[a,b]
2 (t) be the number of edges that connect observations within

[t+ 1, b]. The generalized edge-count scan statistic proposed in Chu & Chen (2019) is defined as:

(2.1) max
n
[a,b]
le ≤t≤n

[a,b]
ri

S[a,b](t),

where

S[a,b](t) =

 R
[a,b]
1 (t)−E

[
R

[a,b]
1 (t)

]
R

[a,b]
2 (t)−E

[
R

[a,b]
2 (t)

]
⊤ [

Σ[a,b](t)
]−1

 R
[a,b]
1 (t)−E

[
R

[a,b]
1 (t)

]
R

[a,b]
2 (t)−E

[
R

[a,b]
2 (t)

]
 ,
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with Σ[a,b](t) = Var

[(
R

[a,b]
1 (t), R

[a,b]
2 (t)

)⊤]
. The expectation and variance are defined under the

permutation null distribution. Here, n
[a,b]
le and n

[a,b]
ri are pre-specified endpoints for the scan. In the

following, we use ⌈a+0.1(b− a+1)⌉ and ⌊b− 0.1(b− a+1)⌋ as default choices for n[a,b]
le and n

[a,b]
ri ,

respectively, where ⌈ · ⌉ is the ceiling function, and ⌊ · ⌋ is the floor function. We will focus on the

generalized edge-count statistic in this paper as it considers a useful pattern for high-dimensional

data and works well for a wide range of alternatives (Chen & Friedman 2017). Chu & Chen (2019)

also provided an analytic p-value approximation for the test statistics (2.1), and we denote it by

p̂({yi : a ≤ i ≤ b}) in the following.

2.2. Step 1: Candidate Change-point Search

We adapt the idea of WBS to construct the pool of candidate change-points. The pseudocodes

are provided in Algorithm 1 (g.WBS). Let α be the pre-specified significance level and MinLen be

the minimum length of generated intervals. The number of randomly generated intervals is L.

Algorithm 1 Change-points search by graph-based WBS

function g.WBS(a, b, τ̃ , α, L, MinLen)
if b− a+ 1 < MinLen then
STOP
end if
if L ≥ (b− a−MinLen + 2)(b− a−MinLen + 3)/2 then

L← (b− a−MinLen + 2)(b− a−MinLen + 3)/2
Draw all intervals [al, bl] ⊆ [a, b], l = 1, . . . , L, s.t. bl − al + 1 ≥ MinLen

else
Draw random intervals [al, bl] ⊆ [a, b], l = 1, . . . , L, s.t. bl − al + 1 ≥ MinLen
Add [a0, b0] = [a, b] to the set of intervals

end if
l′ ← argminl∈{0,...,L} p̂({yi : al ≤ i ≤ bl})
t̂← argmax

n
[al′ ,bl′ ]
le ≤t≤n

[al′ ,bl′ ]
ri

S[al′ ,bl′ ](t)

if p̂({yi : al′ ≤ i ≤ bl′}) < α (or S[al′ ,bl′ ](t̂) > ζn) then
Add t̂ to the set τ̃ .
g.WBS(a, t̂, τ̃ , α, L, MinLen)
g.WBS(t̂+ 1, b, τ̃ , α, L, MinLen)

else
STOP
end if

end function
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The function g.WBS can be applied recursively to find candidate change-points. It starts by

applying the generalized edge-count statistic to L randomly generated intervals. If the smallest

p-value is less than the significance level α (or the largest statistic value is greater than pre-

specified threshold ζn) , we add the corresponding detected change-point into τ̃ and continue by

applying the function to the subsegments. All potential intervals will be scanned if the subsequence

{yi : a ≤ i ≤ b} is too short to draw L different intervals longer than MinLen. g.WBS combines

advantages of WBS (Fryzlewicz 2014) andWBS2 (Fryzlewicz 2020) by choosing intervals adaptively.

Intervals in traditional WBS are generally too long and are likely to span multiple change-points,

causing power loss. The recursive drawing in g.WBS gradually narrows the search and generates

shorter intervals which are more likely to cover single change-point.

SBS is also applicable for multiple change-point detection. Following the recommendation in

Kovács et al. (2020), the collection of seeded intervals used in g.SBS is

Iγ =

⌊logγ MinLen−1
n

+1⌋⋃
k=1

2⌈( 1
γ
)k−1⌉−1⋃
j=1

{[
⌊(j − 1)sk⌋, ⌈(j − 1)sk + nγk−1⌉

]}
,

where sk = n(1− γk−1)/(2⌈1/γk−1⌉ − 2) and decay parameter γ =
√
0.5.

Algorithm 2 Change-points search by graph-based SBS

function g.SBS(a, b, τ̃ , α, Iγ , MinLen)
if b− a+ 1 < MinLen then
STOP
end if
Ma,b ← set of indices l ∈ Iγ such that [al, bl] ⊆ [a, b]
Ma,b ←Ma,b ∪ {0}, where [a0, b0] = [a, b]
l′ ← argminl∈Ma,b

p̂({yi : al ≤ i ≤ bl})
t̂← argmax

n
[al′ ,bl′ ]
le ≤t≤n

[al′ ,bl′ ]
ri

S[al′ ,bl′ ](t)

if p̂({yi : al′ ≤ i ≤ bl′}) < α (or S[al′ ,bl′ ](t̂) > ζn) then
Add t̂ to the set τ̃
g.SBS(a, t̂, τ̃ , α, Iγ , MinLen)

g.SBS(t̂+ 1, b, τ̃ , α, Iγ , MinLen)
else
STOP
end if

end function
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In the first step, we aim to find all potential change-points, so it is tolerable to have some falsely

detected change-points. Generally, larger values of α, γ, and L would bring in more candidate

change-points, but also result in a longer computation time. Investigators can set those parameters

according to their needs. The default value of L and α are 100 and 0.01, respectively. The value of

MinLen affects the power of detecting frequent changes. The functions g.WBS and g.SBS could

detect change-points that are at least MinLen/2 apart from each other. We set MinLen to be 10

as the default choice, which is usually enough even for cases with frequent changes.

We have no intention to compare the two methods in detail since they are both reliable in

general. One may choose between them according to their needs and understandings. From our

experience, when change-points are sparse and evenly distributed, g.SBS has similar power and

faster speed compared with g.WBS. However, when there are more frequent change-points, g.WBS

performs better, as it scans on more intervals when subsequences {yi : a ≤ i ≤ b} are short.

Next we present the consistency of estimated change-points τ̃ returned by g.WBS. We will

show that both the number and relative positions of detected change-points are consistent when

n → ∞ under certain conditions of the change-points. Throughout the paper, it is only assumed

that Fj ’s are continuous multivariate distributions. Consider two sequences un and vn. Write

un ≲ vn if there exists c > 0 and n0 ∈ N+ not depending on n such that un ≤ cvn, for all n > n0.

Also, if we have vn ≲ un at the same time as un ≲ vn, then write un ≍ vn or un = O(vn). Besides,

un ≺ vn or un = o(vn) means that limn→∞ un/vn = 0. Let T [al,bl](u) = limn→∞ S[al,bl](nu)/(bl−al),
ωj = limn→∞ τj/n, ω̃j = limn→∞ τ̃j/n, ω = {ω1, . . . , ωm}, and ω̃ =

{
ω̃1, . . . , ω̃|τ̃ |

}
, where | · | is the

cardinality of a set.

Theorem 2.2.1. Assume there are a fixed number of change-points {τj}mj=1 and distributions

{Fj}mj=0 that are continuous multivariate distributions with density functions fj satisfying fj ̸= fj+1

for all j’s. The spacing between contiguous change-points τj+1 − τj ≍ n. Assume the similarity

graph is k-MST based on the Euclidean distance, where k ≍ 1. If ζn ≍ n1/2, and L ≻ 1 in g.WBS,

and for each generated interval [al, bl] in g.WBS,

(2.2) sup

u∈
[

n
[al,bl]
le
n

,
n
[al,bl]
ri
n

]
∣∣∣∣∣S[al,bl](nu)

bl − al
− T [al,bl](u)

∣∣∣∣∣ p→ 0,

7



then for all ϵ > 0,

P (|ω̃| = |ω|)→ 1,

P
(
∀ωj ∈ ω, ∃ ω̃j′ ∈ ω̃, |ω̃j′ − ωj | < ϵ

)
→ 1,

as n→∞.

The theorem is proved by a two step procedure. First we use the trick of extremum estimator

to prove the singe change-point consistency. Next we generalize the consistency to multiple change-

points scenario. The details of the proof is given in Supplement A.1.

Remark 2.2.1. In the proof of Theorem 2.2.1, we showed that there exists some function c(n),

when c(n) ≺ ζn ≺ n, the consistency is also achieved. The c(n) could be numerically simulated by

max
l∈{1...,L}

max
u∈{ 1

n
,...,1}

[
Z∗
l,diff(u)

]2
+
[
Z∗
l,w(u)

]2
,

where Z∗
l,diff(u) and Z∗

l,w(u) are independent Gaussian process defined in Theorem 4.1 and 4.3 in

Chu and Chen (2019). Some simulation results are shown in Table 2.1. For general purpose of

approximating ζn in g.WBS, ζn ≍ n1/2 would suffice. A moderate order of ζn can guarantee the

consistency theoretically and has enough power empirically.

Table 2.1. Simulated average maxl∈{1...,L}maxu∈{1/n,...,1}[Z
∗
l,diff(u)]

2 + [Z∗
l,w(u)]

2

and corresponding standard deviations (in parenthesis) with 1000 replications.

n
50 100 500 1000 3000

L

1 6.81 (2.75) 7.51 (2.83) 8.54 (2.93) 8.99 (2.86) 9.41 (3.07)
50 15.41 (2.67) 16.18 (2.66) 17.51 (2.83) 17.88 (2.83) 18.75 (2.99)
100 16.97 (2.77) 17.73 (2.78) 19.09 (2.85) 19.57 (3.04) 19.93 (2.84)
200 18.46 (2.66) 19.18 (2.60) 20.52 (2.77) 20.93 (2.75) 21.32 (2.63)

Remark 2.2.2. Condition (2.2) requires uniform convergence of S[al,bl](nu)/(bl−al) towards its
limit. This is necessary to ensure the maximizer of S[al,bl](nu) is close to the maximizer of its limit.

We checked the convergence through numerical studies in Supplement A.2, and the convergence is

satisfactory when n > 1000.
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2.3. Step 2: Candidates Pruning with a Goodness-of-fit Statistic

To improve finite sample performance, especially to reduce false discoveries, we use a goodness-

of-fit statistic for candidate change-points pruning.

Let τ̃ = {τ̃1, . . . , τ̃m̃} denotes the set of cadidate change-points found in step 1, where 1 ≤ τ̃1 <

· · · < τ̃m̃ ≤ n− 1, and m̃ = |τ̃ |. We define a set η̃ on top of τ̃ :

η̃ = {η̃0, . . . , η̃m̃} =


{0, n} if m̃ = 1,

{0, ⌈ τ̃1+τ̃2
2 ⌉, . . . , ⌈

τ̃m̃−1+τ̃m̃
2 ⌉, n} if m̃ ≥ 2.

We then define an adjacent sum goodness-of-fit statistic in the following way:

AS(τ̃ ) =

m̃∑
j=1

S[η̃j−1+1,η̃j ](τ̃j).

Each term in AS(τ̃ ) is a local two-sample test statistic measuring credibility of a candidate change-

point τ̃j . The subsample used in S[η̃j−1+1,η̃j ](τ̃j) starts from the middle point of τ̃j and τ̃j−1 and

ends at the middle point of τ̃j and τ̃j+1. If τ̃j is a true change-point, it will lead to a relatively large

S[η̃j−1+1,η̃j ](τ̃j). While if τ̃j is not a change-point, we would expect S[η̃j−1+1,η̃j ](τ̃j) to be relatively

small.

We illustrate how AS(τ̃ ) works through a toy example: a normally distributed sequence with

n = 400 and τ = {90, 230, 320}. In a simulation run, candidate change-points derived from step 1

are τ̃ 4 = {90, 229, 320, 377}, with a falsely detected change-point 377. Now, AS(τ̃ 4) = 141.30 and

4 local statistics are shown in Figure 2.1 (a). When τ̃ contains false discoveries, S[η̃j−1+1,η̃j ](τ̃j)’s

on falsely detected τ̃j ’s are usually small, as they are calculated on homogeneous subsequences

(S[350,400](377) in Figure 2.1 (a)). In addition, the existence of falsely detected τ̃j ’s decreases

the values of S[η̃j−2+1,η̃j−1](τ̃j−1) (S[276,349](320) in Figure 2.1 (a)) and S[η̃j+1,η̃j+1](τ̃j+1) as the

observations in [η̃j−1 + 1, η̃j ] are seized by τ̃j . When τ̃ is close to true change-points, AS(τ̃ )

tends to be maximized (Figure 2.1 (b)). When τ̃ misses true change-points, AS(τ̃ ) would lose the

portions contributed by those left-out true change-points. Also, those left-out true change-points

might affect the remaining τ̃j ’s in τ̃ as some corresponding intervals could contain more than two
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S[1,160](90) S[161,275](229) S[276,349](320) S[350,400](377)= + ++

Distribution

141.30 = 87.32 30.22 22.92 0.84+++

S[1,160](90) S[161,275](229) S[276,400](320)= + +

146.94 = 87.32 30.22 29.40+ +

S[1,205](90) S [206,400](320)= +
99.61 = 72.86 26.75+

S[1,400](90)=

27.08 = 27.08

t

τ̃ 3

τ̃ 2

τ̃ 1

AS (τ̃ 4)

AS (τ̃ 3)

AS (τ̃ 2)

AS (τ̃ 1)

τ̃ 4

N100(0,
6
2 )

N100(0.6 , )

(a)

(b)

(c)

(d)

θ

0 320 400

77302392209

23090

02392209

90

90

320

Figure 2.1. AS(τ̃ ) on four possible change-points sets τ̃ . Parameters of the dis-
tributions: θ is a vector with the first 20 elements all ones and the rest zeros, and
Σjk = 0.3|j−k| for 1 ≤ j, k ≤ 100. In (a), τ̃ 4 overfits the data. In (b), τ̃ 3 is close
to the true τ , and AS(τ̃ ) is maximized. In (c) and (d), underestimated m̃ lead to
small adjacent sum values.

segments, causing S[η̃j−1+1,η̃j ](τ̃j)’s on true change-points to decrease. (S[206,400](320) in Figure 2.1

(c)).

Under the null that there is no change-point in the entire sequence, AS(τ̃ ) has good asymptotic

properties. Let G
[a,b]
i be a subgraph of G[a,b] containing all edges that connect to node yi, and |G[a,b]

i |
be the degree of node yi in G[a,b]. Let node

G
[a,b]
i

be the set of nodes connected by G
[a,b]
i excluding

node i, N
[a,b]
sq be the number of squares in the graph G[a,b], d̃

[a,b]
i =

∣∣∣G[a,b]
i

∣∣∣ − 2|G[a,b]|/(b − a + 1),

and VG[a,b] =
∑b

i=a

∣∣∣G[a,b]
i

∣∣∣2 − 4(|G[a,b]|)2/(b− a+ 1), where |G[a,b]| is the number of edges in G[a,b].
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Theorem 2.3.1. Under the null hypothesis that there is no change-point in the sequence, for

mutually disjoint intervals [aj , bj ] and tj ∈ [aj , bj ], j = 1, . . . ,m, when

bj∑
i=aj

|G[aj ,bj ]
i |2 = o(|G[aj ,bj ]| 32 ),

bj∑
i=aj

|d̃[aj ,bj ]i |3 = o(V
3
2

G[aj,bj ]
),

bj∑
i=aj

(d̃
[aj ,bj ]
i )3 = o(V

G[aj,bj ]

√
|G[aj ,bj ]|), N

[aj ,bj ]
sq = o(|G[aj ,bj ]|2),

bj∑
i=aj

k ̸=l∑
k,l∈ node

G
[aj,bj ]

i

d̃
[aj ,bj ]
k d̃

[aj ,bj ]
l = o

(
|G[aj ,bj ]|V

G[aj,bj ]

)

as bj − aj → ∞, and tj/(bj − aj) → uj, 0 < uj < 1 holds for each j under the permutation null

distribution where the observations in each interval [aj , bj ] are permuted within the interval, we

have
m∑
j=1

S[aj ,bj ](tj)
d→ χ2

2m.

Theorem 2.3.1 is a natural extension of Theorem 2.1 of Zhu & Chen (2021). The conditions on

the graphs look complicated, but are not hard to satisfy. For example, for k−MST constructed on

multivariate data, the conditions always hold for k = O(nβ), β < 0.5 (Zhu & Chen 2021). These

conditions are sufficient conditions. In practice, we found the conclusion holds for even denser

graphs.

With the results in Theorem 2.3.1, we could adopt model selection techniques to prune candidate

change-points. Let Fj ’s in (1.1) be univariate Gaussian distributions with unknown means and a

known variance 1, and Mm be the Gaussian model with m change-points. Correspondingly, M0 is

the Gaussian model with no change-point. It is obvious that (see for example Zhang (2005)):

(2.3) 2 log
P(y1, . . . ,yn |Mm)

P(y1, . . . ,yn |M0)
∼ χ2

m

under the universal null M0. The corresponding BIC in selecting change-points is

(2.4) 2 log
P(y1, . . . ,yn |Mm)

P(y1, . . . ,yn |M0)
−m log n.

11



The null distribution of (2.3) and the asymptotic distribution of AS(τ̃ ) are both chi-square, but

with different degrees of freedom. Hence, we propose a pseudo-BIC for our framework:

(2.5) pseudo-BIC(τ̃ ) = AS(τ̃ )− 2m̃ log n.

The penalty term used in (2.5) is two times that in (2.4), which is consistent with the degrees of

freedom. We find the added penalty term could alleviate overfitting generally (See Figure 2.2 for

an example).

S[1,131](87) S[132,201](175) S[202,274](227) S[275,400](320)= + ++
Distribution130.88 = 82.01 19.69 19.93 9.25+++

S[1,157](87) S[158,274](227) S[275,400](320)= + +

126.46 = 82.01 19.69 24.76+ +

t

τ̃ 3

AS (τ̃ 4)

AS (τ̃ 3)

τ̃ 4

N100(0,
6
2 )

N100(0.6 , )

(a)

(b)
θ

S[1,131](87) S[132,201](175) S[202,274](227) S[275,400](320)= + ++
82.94 = 82.01 19.69 19.93 9.25+++

S[1,157](87) S[158,274](227) S[275,400](320)= + +

90.51 = 82.01 19.69 24.76+ +

pseudo-BIC(τ̃ 4)

pseudo-BIC(τ̃ 3)

8 log(400)−
− 47.93

6 log(400)−
− 35.95

0 100 200 300 400

300 343202001

300100 202

Figure 2.2. Comparison between AS(τ̃ ) and pseudo-BIC(τ̃ ) on two possi-
ble change-points sets τ̃ 4 and τ̃ 3. Here, pseudo-BIC(τ̃ 3) is greater than
pseudo-BIC(τ̃ 4), while AS(τ̃ 3) is less than AS(τ̃ 4).

After conducting extensive numerical studies, we notice a drawback of the adjacent sum in that

each two-sample test statistic uses only half of the information of subsequences. This might cause

power loss if homogeneous subsequences are short or signal is relatively weak. Especially, it might

result in loss of true change-points. For example, in Figure 2.3, pseudo-BIC(τ̃ 2) is almost equal

to pseudo-BIC(τ̃ 3) while τ̃ 2 misses the true change-point 200. We hence adopt a more aggressive

quantity by defining the following expanded adjacent sum statistic

eAS(τ̃ ) =
m̃∑
j=1

S[τ̃j−1+1,τ̃j+1](τ̃j),

where τ̃0 = 0 and τ̃m̃+1 = n. This expanded version uses two times the information in each

summand compared to the non-overlapped AS(τ̃ ). When τ̃ is close to the true change-points τ ,

12



eAS(τ̃ ) will be greater than AS(τ̃ ) (Figure 2.3 (a2)). On the other hand, when τ̃ misses some

true change-points, S[τ̃j−1+1,τ̃j+1](τ̃j) is more likely to cross true change-points and results in a

smaller value (Figure 2.3 (b2)). The corresponding pseudo-BIC is also updated to the expanded

pseudo-BIC:

(2.6) ep-BIC(τ̃ ) = eAS(τ̃ )− cm̃ log n.

Due to the local dependency between S[τ̃j−1+1,τ̃j+1](τ̃j)’s resulted from overlapping regions, it is

challenging to give an appropriate c analytically. We did some simulation studies (Supplement

A.4) and found c = 2 is still a good choice, so this is set as the default value.

Distribution

S[1,150](100) S[151,250](200) S[251,400](300)= + +
84.64 = 56.69 29.88 34.03+ +

S[1,200](100) S[201,400](300)= +
84.12 = 57.94 50.14+

t

τ̃ 3

τ̃ 2

N100(0,
6
2 )

N100(0.6 , )

(a1)

(b1)

0 100 200 300 400

θ

100 300

100 200 300

pseudo-BIC (τ̃ 3)

pseudo-BIC (τ̃ 2)

6 log(400)−
− 35.95

4 log(400)−
− 23.97

S[1,200](100) S[101,300](200) S[201,400](300)= + +
137.57 = 57.94 65.44 50.14+ +

S[1,300](100) S[101,400](300)= +
4.44 = 19.52 8.90+

τ̃ 3

τ̃ 2

(a2)

(b2)

100 300

100 200 300

ep-BIC (τ̃ 3)

ep-BIC (τ̃ 2)

6 log(400)−
− 35.95

4 log(400)−
− 23.97

Figure 2.3. Comparison between pseudo-BIC(τ̃ ) and ep-BIC(τ̃ ). By using more
information in each generalized edge-count statistic, ep-BIC is more likely to choose
the correct model.

Given the set τ̃ of candidate change-points and the goodness-of-fit statistic ep-BIC(τ̃ ), the

pruning of the change-points becomes a model selection problem. We use backward elimination to

fastly get the final set of pruned change-points τ̂ as shown in Algorithm 5 (g.BE). g.BE returns a

sequence of ep-BIC(τ̃ l), and the τ̃ l with the largest ep-BIC value is chosen as τ̂ . Note that g.BE
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stops until there is no change-point. Together with the change-point dendrogram proposed in the

following (Section 2.5), the sequence of ep-BIC(τ̃ l) provides investigators an ordered list of the

change-points.

Remark 2.3.1. Given the nature of model selection, one may consider all subset approach,

i.e., evaluating all possible subsets of τ̃ and choose the one with the best fit. This can be easily

done when |τ̃ | is small. However, all subset approach can be computationally inhibitive in real

applications where hundreds or thousands of change-points exist.

Algorithm 3 Backward elimination with ep-BIC

function g.BE(τ̃ )
l← m̃
τ̃ l ← τ̃
while |τ̃ l| ≥ 1 do

Tl = collection of change-points set τ̃ l\{τ̃ lj}, where τ̃ lj ∈ τ̃ l, j = 1, . . . , l

τ̃ l−1 ← argmaxt∈Tlep-BIC(t)
l← l − 1

end while
m̂← argmax0≤l≤m̃ep-BIC(τ̃ l)

τ̂ ← τ̃ m̂

return τ̂
end function

2.4. Graph Choice

Now we explore the choices of similarity graphs used in the two steps and their impact. From

earlier works on graph-based tests (Chen et al. 2018, Chen & Friedman 2017, Chen & Zhang 2013,

Friedman & Rafsky 1979), k-MST is a recommended choice. However, the choice of k is unsettled.

Chen & Friedman (2017), Chen & Zhang (2015), Chu & Chen (2019), Friedman & Rafsky (1979)

showed that, for k = O(1), larger k’s are preferred. Zhu & Chen (2021) further showed that k of

a higher order than O(1) could even result in a higher power. We next discuss the choice of k for

the two steps separately.

In step 1, power is the main factor. By design, it can have some false discoveries. Without any

prior knowledge about a sequence, it is intuitive to choose k depending on n. A k-MST built on

G[al,bl] contains k(bl − al) edges, while the information contained in the distance matrix is of order
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O((bl− al)
2). We consider k = (bl− al)

λ, 0 < λ < 1, and compare the detection power for different

λ’s under various simulation settings. Specifically, i.i.d. sequences with a change-point τ = n/2 were

generated from three distribution pairs. The ⌊nλ⌋-MST was constructed based on the Euclidean

distance. If p̂({yi : 1 ≤ i ≤ n}) < 0.01 and argmaxtS
[1,n](t) ∈ [τ − 0.05n, τ + 0.05n], we deem it a

successful detection. Detection power is defined as the proportion of successful detections. From

Figure 2.4, when λ = 0.5, graph-based method shows adequate detection power, though the optimal

λ varies between 0.3 to 0.7. Therefore, min(30, ⌊√bl − al⌋)-MST is used as the default similarity

graph in Algorithm 1 and 2. The upper bound 30 is set merely for computational consideration for

very long sequences.

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
λ

0.00

0.25

0.50

0.75

1.00

dimension 20 100 500

0.00

0.25

0.50

0.75

1.00

po
we

r

(a)

(b)

(c)

n=20 n=50 n=100 n=200

0.00

0.25

0.50

0.75

1.00

Figure 2.4. Estimated detection power (from 5,000 replicates) for singe change-
point detection based on the ⌊nλ⌋-MST. Three distribution pairs are (a): (Nd(0,Σ),
Nd(

20√
dn
1,Σ)), (b): (Nd(0,Σ), Nd(

15√
dn
1, (1 + 3

2
√
n
)Σ)), and (c): (t3,d(0, I),

t3,d(
12√
n log d

1, I)), where Σjk = 0.3|j−k| and I is the identity matrix. Here, specific

alternatives are chosen so that the detection power is moderate to be comparable
across different λ’s.
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For step 2, however, comparability of ep-BIC(τ̃ ) on different τ̃ ’s is more essential. Setting k to

be a function of τ̃j+1 − τ̃j−1 might lead to incomparable S[τ̃j−1+1,τ̃j+1](τ̃j)’s between long and short

subsequences. Even when a signal is strong for a short subsequence, a small k may yield small

S[τ̃j−1+1,τ̃j+1](τ̃j). On the contrary, for a long sequence with a weak signal, a large k may yield

large statistic values, making ep-BIC prefer over-simplified models. To avoid this imbalance while

keeping fine test performance, a constant k−MST, like the 5-MST, is preferred. Given that 5-MST

can not be built on very short intervals, we set the default choice to be min(5, ⌊
√

τ̃j+1 − τ̃j−1⌋)-MST

for step 2.

2.5. Result Visualization

Given estimated change-points τ̂ , remaining questions are whether these change-points are of

scientific interest and what the relationship among those subsegments is. We provide a visualization

tool to explore the hierarchical structure of detected change-points naturally resulted from g.BE.

In each step of g.BE, a suspicious change-point is removed, which is equivalent to merging two

neighboring subsequences. So we build a change-point dendrogram with the height evaluated by

negative ep-BIC (Figure 2.5). The bottom of this dendrogram is τ̂ and the top is the last merged

change-point.

The tree structure of a change-point dendrogram depicts the relationship between estimated

change-points and their relative importance. If, for example, removing a change-point results in

minimal change in height, that change-point should be considered less important or even doubtful.

In contrary, a change-point that leads to a considerable ep-BIC lose is locally more important.

Change-points close to the root of the dendrogram are usually globally important. These change-

points are removed at the end of backward elimination, which shows their importance in maintaining

a high ep-BIC. In other words, these change-points cuts the inhomogeneous sequence into roughly

homogeneous segments in a best effort with a fixed (small) number of change-points.

One advantage of this hierarchical representation is that cutting the tree at a certain height

gives a partitioning clustering at a corresponding level. This provides researchers with the freedom

of choosing different scales of study. Often when dealing with complex data, it’s more important

to grasp key changes than all of them. If so, one can cut the tree close to the top to get the
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top-level structure of the data. This is especially helpful when the data sequence is long and full

of change-points.
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Figure 2.5. A change-point dendrogram constructed on a simulated dataset con-
taining 7 change-points, τ = {25, 50, 75, 100, 200, 300, 400}. Among those detected
change-points, 380 is a falsely detected one. The dendrogram shows that 380 is
suspicious as adding 380 increases little in ep-BIC.

2.6. Performance Analysis

In this section, we examine the performance of the proposed approach against two state-of-the-

art nonparametric multivariate multiple change-point detection methods: E-Divisive (Matteson &

James 2014) and KCP (Arlot et al. 2019) implemented by the R package ecp (James & Matteson

2015). Throughout the simulation, we use the default choice of parameters and similarity graphs

for the proposed approach. For the E-Divisive approach, we set the minimum cluster size to

⌊min(τj+1 − τj)/2⌋ and all other parameters to be default. For KCP, the maximum number of

change-point is set to 2m.

Three methods are tested under five settings, with dimensions d = 20, 50, 100, 500, and 1000

for Setting 1-4. The number of truly and falsely detected change-points are reported in Table 2.2

and 2.3, respectively. Location and scale parameters (δ, σ) are chosen for each value of d so that

most methods have moderate power to be comparable. Define Σjk = 0.3|j−k|, θ be a d−length
vector with the first d/5 entries equal to 1 and all others equal to 0, and Ja, bK be the set of integers

between a and b. The following models are used to generate the data.

• Setting 1: yi ∼ Nd(0,Σ) if i ∈ J1, 50K ∪ J101, 150K ∪ J201, 250K; yi ∼ Nd(δθ, σΣ) if

i ∈ J51, 100K ∪ J151, 200K ∪ J251, 300K.
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• Setting 2: yi ∼ t3,d(0, I) if i ∈ J1, 40K ∪ J91, 145K ∪ J191, 255K; yi ∼ t3,d(δθ,Σ) if i ∈
J41, 90K ∪ J146, 190K ∪ J256, 300K.

• Setting 3: yi ∼ Nd(0, I) if i ∈ J1, 55K ∪ J91, 140K ∪ J196, 255K; yi ∼ Nd(0, σΣ) if i ∈
J56, 90K ∪ J141, 195K ∪ J256, 300K.

• Setting 4: yi ∼ t3,d(0, I) if i ∈ J1, 50K; yi ∼ Nd(7θ/ log(d),Σ) if i ∈ J51, 65K; yi ∼
Nd(4θ/ log(d),Σ) if i ∈ J111, 135K; yi ∼ Expd(1)−1 if i ∈ J136, 180K; yi ∼ Nd(3θ/ log(d), I)

if i ∈ J181, 230K.

• Setting 5: A sequence of n = 240 random networks are generated from the configuration

model. To be specific, all nodes in a random graph have degree 2 if i ∈ J1, 30K∪ J71, 115K∪
J151, 205K, otherwise the first 4 nodes have degree 4 and the others have degree 2. Let yi

Table 2.2. Average number of detected true change-points based on 1,000 repli-
cates and corresponding standard deviations (in parenthesis). The largest value
under each setting is in bold.

Setting 1

d 20 50 100 500 1000
(δ, σ) (0.6, 1.85) (0.45, 1.75) (0.37, 1.55) (0.1, 1.4) (0.05, 1.35)
New (g.WBS) 3.70 (0.99) 4.29 (0.79) 4.39 (0.73) 4.91 (0.34) 4.97 (0.19)
New (g.SBS) 3.75 (0.96) 4.14 (0.86) 4.21 (0.80) 4.74 (0.50) 4.91 (0.28)
E-Divisive 2.81 (1.35) 3.83 (1.01) 3.88 (1.02) 3.66 (1.17) 4.00 (1.00)
KCP 3.01 (1.83) 4.03 (1.46) 3.99 (1.43) 3.80 (1.75) 3.90 (1.71)

Setting 2

d 20 50 100 500 1000
δ 1.1 0.85 0.76 0.64 0.6
New (g.WBS) 4.05 (0.88) 4.25 (0.80) 4.33 (0.80) 4.38 (0.81) 4.12 (0.93)
New (g.SBS) 4.05 (0.87) 4.22 (0.83) 4.36 (0.78) 4.59 (0.61) 4.54 (0.67)
E-Divisive 3.86 (1.00) 3.43 (1.54) 2.78 (1.97) 0.82 (1.58) 0.41 (1.10)
KCP 0.79 (1.53) 0.66 (1.28) 0.57 (1.08) 0.63 (0.98) 0.50 (0.89)

Setting 3

d 20 50 100 500 1000
σ 1.9 1.65 1.45 1.2 1.15
New (g.WBS) 3.58 (1.00) 3.99 (0.93) 4.04 (0.92) 4.22 (0.84) 4.27 (0.82)
New (g.SBS) 3.56 (1.04) 3.96 (0.93) 3.90 (0.94) 4.09 (0.87) 4.14 (0.87)
E-Divisive 0.64 (0.93) 0.81 (1.07) 0.27 (0.54) 0.10 (0.35) 0.04 (0.20)
KCP 3.03 (1.59) 2.65 (1.85) 1.29 (1.57) 1.34 (0.98) 1.00 (0.81)

Setting 4

d 20 50 100 500 1000
New (g.WBS) 4.66 (0.54) 4.55 (0.65) 4.57 (0.62) 4.70 (0.59) 4.54 (0.83)
New (g.SBS) 4.54 (0.62) 4.41 (0.74) 4.41 (0.73) 4.54 (0.67) 4.38 (0.86)
E-Divisive 4.61 (0.62) 4.26 (0.88) 3.83 (1.02) 2.74 (0.87) 2.37 (0.86)
KCP 3.06 (2.08) 1.89 (1.85) 1.87 (1.70) 1.35 (1.19) 1.23 (1.10)

Setting 5

number of nodes 20 30 50 75 100
New (g.WBS) 4.84 (0.40) 4.90 (0.32) 4.93 (0.26) 4.93 (0.25) 4.95 (0.22)
New (g.SBS) 4.87 (0.35) 4.92 (0.28) 4.95 (0.22) 4.96 (0.18) 4.96 (0.21)
E-Divisive 4.78 (0.45) 3.73 (1.39) 0.87 (1.25) 0.23 (0.60) 0.10 (0.35)
KCP 3.27 (2.21) 4.14 (0.88) 2.78 (1.21) 1.92 (1.11) 1.56 (0.95)
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be the vectorized adjacency matrix of the i-th network so that E-Divisive and KCP are

directly applicable, while our method does not need such embedding.

Table 2.3. Average number of falsely detected change-points based on 1,000 repli-
cates and corresponding standard deviations (in parenthesis). The smallest value
under each setting is in bold.

Setting 1

d 20 50 100 500 1000
(δ, σ) (0.6, 1.85) (0.45, 1.75) (0.37, 1.55) (0.1, 1.4) (0.05, 1.35)
New (g.WBS) 1.80 (1.25) 1.46 (1.14) 1.41 (1.08) 0.99 (0.98) 0.90 (0.97)
New (g.SBS) 1.39 (1.04) 1.07 (0.97) 1.09 (0.94) 0.72 (0.83) 0.43 (0.61)
E-Divisive 1.52 (1.10) 1.14 (0.97) 1.11 (0.98) 1.15 (1.01) 0.96 (0.93)
KCP 2.74 (2.73) 3.82 (2.54) 5.00 (1.83) 4.62 (2.09) 4.63 (2.00)

Setting 2

d 20 50 100 500 1000
δ 1.1 0.85 0.76 0.64 0.6
New (g.WBS) 1.02 (0.96) 0.82 (0.87) 0.75 (0.93) 0.99 (1.40) 1.64 (2.07)
New (g.SBS) 0.98 (0.90) 0.80 (0.84) 0.66 (0.79) 0.50 (0.73) 0.73 (1.16)
E-Divisive 1.11 (0.94) 0.92 (0.95) 0.58 (0.77) 0.27 (0.62) 0.23 (0.59)
KCP 1.39 (2.69) 2.00 (3.37) 2.36 (3.72) 3.59 (4.23) 3.53 (4.33)

Setting 3

d 20 50 100 500 1000
σ 1.9 1.65 1.45 1.2 1.15
New (g.WBS) 1.93 (1.23) 1.71 (1.18) 1.64 (1.20) 1.61 (1.19) 1.51 (1.13)
New (g.SBS) 1.60 (1.07) 1.30 (1.03) 1.34 (1.04) 1.21 (0.98) 1.18 (0.98)
E-Divisive 0.70 (0.96) 0.82 (1.04) 0.45 (0.78) 0.23 (0.57) 0.15 (0.46)
KCP 5.08 (2.67) 4.49 (2.97) 3.55 (3.76) 8.57 (1.00) 8.90 (0.84)

Setting 4

d 20 50 100 500 1000
New (g.WBS) 0.36 (0.57) 0.46 (0.68) 0.48 (0.68) 1.10 (1.10) 1.70 (1.35)
New (g.SBS) 0.46 (0.64) 0.59 (0.74) 0.62 (0.75) 0.80 (0.91) 1.16 (1.02)
E-Divisive 1.38 (0.58) 1.34 (0.59) 1.33 (0.57) 1.40 (0.63) 1.47 (0.65)
KCP 2.25 (2.07) 1.78 (1.78) 1.99 (2.06) 2.69 (2.98) 2.88 (3.12)

Setting 5

number of nodes 20 30 50 75 100
New (g.WBS) 1.09 (0.95) 1.11 (0.98) 0.94 (0.90) 0.79 (0.85) 0.69 (0.79)
New (g.SBS) 0.77 (0.83) 0.76 (0.79) 0.64 (0.73) 0.52 (0.67) 0.52 (0.66)
E-Divisive 0.25 (0.52) 0.85 (0.90) 0.55 (0.90) 0.27 (0.60) 0.16 (0.46)
KCP 3.67 (2.48) 5.86 (0.88) 7.21 (1.21) 8.06 (1.11) 8.42 (0.95)

From Table 2.2 and 2.3, we see that the new method performs the best among these nonpara-

metric methods under most simulation settings – its power is higher than the other two methods,

and its false discoveries are on the lower end. For cases where E-Divisive has a lower false discovery

than the new method, the power of E-Divisive is very low. Among the two implementations of the

new method, g.SBS-based version has similar power and marginally better FDR compared to the

g.WBS-based version. E-Divisive and KCP show comparable power under normal settings or low

dimensions, but their performance quickly fail under high dimension, covariance matrix change or

non-Gaussian data. For KCP, it can have much more falsely detected change-points than correctly
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detected ones (e.g. Setting 3, especially at d = 500 and 1000). These results show effectiveness and

robustness of the new method compared to E-Divisive and KCP.

2.7. Real Data Analysis

We illustrate the new approach on the Neuropixels data that record the activity of neurons in

the brain of an awake mouse during spontaneous behaviors (Steinmetz et al. 2019). The original

data recorded the position and times of neural firings through eight Neuropixels probes. For

illustration, we use the spike data for d = 176 neurons in caudate-putamen during the first three

minutes. Probes detected spikes in a small area of the brain that may cover more than one neuron.

Here, we call this area neuron for simplicity. The three minutes recording was discretized into

n = 5400 intervals of 1/30 second. Then yij represents the number of spikes recorded during time

interval i for neuron j. Given the lack of parametric model for such complex neural data, our

proposed approach would be an appropriate choice for initial analysis. We use both g.WBS-based

and g.SBS-based versions to analyze the sequence, with α = 0.001 to control local type I error and

L = 200 to ensure enough coverage for long sequences. The detected change-points are plotted by

dendrograms in Figure 2.6 and 2.7.
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Figure 2.6. The change-point dendrogram of the Neuropixels recordings found by
the g.WBS-based approach. For better visualization, the height of nodes are set to
be at least the height of their children. The change-points in τ̃ 9 are in bold.

For the g.WBS-based version, in step 1, there are 258 candidate change-points detected, and

131 of them are kept after step 2, indicating frequent pattern changes in neural activities. For

the g.SBS-based version, the two numbers are 181 and 98, respectively. Among those final 98
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Figure 2.7. The change-point dendrogram of the Neuropixels recordings found by
the g.SBS-based approach.

change-points in the g.SBS-based version, 73 of them are within 2 observations from the final

change-points found by the g.WBS-based version. The top level structure of the two versions are

also very similar. The top 9 change-points in the g.WBS-based and g.SBS-based dendrograms

are {416, 661, 885, 1656, 1662, 2244, 2249, 3047, 3057} and {416, 661, 883, 1657, 1662, 2244, 2249,
3047, 3057}, respectively (They are in red in Figure 2.6 and 2.7).

Figure 2.8 plots some typical change-point patterns that might be of scientific interests. We

call the first pattern single hyperactive neuron, where a neuron suddenly becomes hyperactive for

a short time interval. The hyperactivity can happen and disappear quickly and unexpectedly. An

example is the 78th neuron for t = 2245 to 2249 (Figure 2.8 (a)). The second interesting pattern is

overall intensity change. This pattern is commonly seen in the data, like Figure 2.8 (b), where most

neurons are more (or less) active after the detected change-point. After an overall intensity change,

the status can last for a long time until the next change-point. The third one is correlation pattern

change. This sometimes can happen together with overall intensity change, but sometimes not. In

Figure 2.8 (c), the overall intensity barely changes after the change-point. If we use the overall

number of spikes and perform the Mann-Whitney test, the p-value is 0.777. Nonetheless, if we

calculate the correlation matrix of the five most active neurons before and after the change-point,

we see that several neurons become more strongly correlated after the change-point (Figure 2.9).
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Figure 2.8. Neuropixel recordings (each row corresponds to one neuron) and de-
tected change-points. Vertical lines indicate positions of detected change-points. In
(a), the 78th neuron is hyperactive for t = 2245, . . . , 2249. In (b), most neurons are
more active after t = 4288. In (c), the covariance pattern changes after t = 4484.
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Figure 2.9. Correlation matrix of the five most active neurons before and after
the change-point 4484. Indices of those neurons are also presented. The left panel
shows the correlation matrix from t = 4450 to 4484, and the right panel shows that
from t = 4485 to 4502.
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CHAPTER 3

An Improved Framework Dealing with More Frequent Changes

3.1. Limitation on Generalized Edge-count Scan Statistics

Generalized edge-count scan statistics play a central role in the framework proposed in Chapter

2. It provide a powerful and reliable way to find change-point locally. However, generalized edge-

count scan statistics have some drawbacks that could potentially harm the detection power and

detection accuracy. In the following, we elaborate these limitations and explain the reason of

causing them.

Generalized edge-count scan statistics could be written in the following form:

S[a,b](t) =
[
Z [a,b]
w (t)

]2
+
[
Z

[a,b]
diff (t)

]2
,

where Z
[a,b]
w (t) is weighted edge-count scan statistic and Z

[a,b]
diff (t) is difference edge-count scan statis-

tic. Both two are graph-based edge-count scan statistics. Z
[a,b]
w (t) is sensitive to mean changes and

Z
[a,b]
diff (t) is sensitive to covariance changes. In the following, we use S(t), Zw(t), and Zdiff(t) to

represent these statistics when the detection interval is not specified. For more detail about these

statistics, we refer to Chen et al. (2018), Chu & Chen (2019)

One of the most important steps in Algorithm 1 and Algorithm 2 is giving approximated p-

value of generalized edge-count scan statistics on subintervals. The p-value approximation uses

the method of Chu & Chen (2019). They proved that under permutation null distribution and

some mild conditions, Zdiff([nu]) and Zw([nu]) converge to independent Gaussian processes in fi-

nite dimensional distributions {Z∗
diff(u) : 0 < u < 1} and {Z∗

w(u) : 0 < u < 1}, where [x] is used to

denote the largest integer that is no larger than x. Then, they approximate the tail probabilities

by Woodroofe’s method (Woodroofe 1976, 1978). However, as pointed out by Chu & Chen (2019),

analytical approximations deviate if the minimum window length decreases because the conver-

gence to normal process becomes slow. The skewness of weighted edge-count scan statistics Zw(t)
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and difference edge-count scan statistics Zdiff(t) depend on the relative position of the change-

point, affecting the analytic p−value approximation. This problem is even more severe under high

dimension.

In this Chapter, we incorporate max-type edge-count scan statistics and max-type two-sample

test statistics in the WBS and backward elimination framework. This generalization could further

improve the detection accuracy when there are more frequent changes or the alternatives are mostly

pure mean and covariance changes.

3.2. Max-type Edge-count Scan Statistics

Consider the task of detecting single change-point on {yi : a ≤ i ≤ b} using max-type edge-

count scan statistics. In the following, we use the same notation as in Chapter 2. The weighted

and difference edge-count statistic are

R[a,b]
w (t) =

t− 1

n− 2
R

[a,b]
1 (t) +

n− t− 1

n− 2
R

[a,b]
2 (t),

R
[a,b]
diff (t) = R

[a,b]
1 (t)−R

[a,b]
2 (t).

The standardized versions of the two are

Z [a,b]
w (t) =

R
[a,b]
w (t)−E[R

[a,b]
w (t)]√

Var[R
[a,b]
w (t)]

,

Z
[a,b]
diff (t) =

R
[a,b]
diff (t)−E[R

[a,b]
diff (t)]√

Var[R
[a,b]
diff (t)]

.

Max-type edge-count scan statistic is defined as:

(3.1) max
n
[a,b]
le ≤t≤n

[a,b]
ri

M [a,b](t),

where

(3.2) M [a,b](t) = max(|Z [a,b]
diff (t)|, Z [a,b]

w (t)).

We set n
[a,b]
le and n

[a,b]
ri as pre-specified endpoints, whose default settings are ⌈a + 0.1(b − a + 1)⌉

and ⌊b− 0.1(b− a+ 1)⌋, where ⌈ · ⌉ is the ceiling function, and ⌊ · ⌋ is the floor function.
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By design, Z
[a,b]
w (t) is sensitive to mean vector change and Z

[a,b]
diff (t) is sensitive to covariance

matrix change especially under high dimension. Since M(t) takes the maximum value of both

Z
[a,b]
w (t) and Z

[a,b]
diff (t), it exhibits high sensitivity to both types of changes. An advantageous feature

of graph-based edge-count scan statistics is their ability to effectively control the type-I error rate,

making it a powerful tool for high-dimensional change-point detection (Chu & Chen 2019). In the

following, we denote the p-value of max
n
[a,b]
le ≤t≤n

[a,b]
ri

M [a,b](t) by p̂
[a,b]
M .

Max-type statistics can provide more accurate p-value approximation by skewness correction.

Chu & Chen (2019) adopt a skewness correction approach similar to Chen & Zhang (2015). The

degree of correction applied varies depending on the level of skewness at value of t. By incorporating

skewness corrected p̂
[a,b]
M , WBS algorithm could detect candidate change-points more accurately

than generalized edge-count scan statistics.

3.3. Change-point Detection and Selection with Max-type Statistics

The new framework we proposed consists of a two-step procedure. First, we use a WBS

with max-type edge-count scan statistics to search for candidate change-points. Subsequently,

a goodness-of-fit statistic based on the maximum-type statistic is introduced. It is utilized for

change-point selection.

Let α be the pre-specified significance level and MinLen be the minimum length of generated

intervals, and L as the number of randomly generated intervals. The function m.WBS is defined

in Algorithm 4.

m.WBS outputs a pool of candidate change-points τ̃ = {τ̃1, . . . , τ̃m̃}. To further improve the

detection accuracy and understand their inner relationship, a new goodness-of-fit statistic using

max-type statistics is desired. However, different from pseudo-BIC (2.5) and ep-BIC (2.6) that are

justified by theoretical derivation, max-type two-sample test statistic does not follow chi-squared

distribution due to its unique maximum structure.

We mimic extended pseudo BIC (2.6) and proposed a max-type version goodness-of-fit statistic

called max-type extended pseudo BIC:

(3.3) mep-BIC(τ̃ ) =

m̃∑
j=1

[
M [τ̃j−1+1,τ̃j+1](τ̃j)

]2
− cm̃ log n.
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Algorithm 4 Max-type graph-based WBS

function m.WBS(a, b, τ̃ , α, L, MinLen)
if b− a+ 1 < MinLen then
STOP
end if
if L ≥ (b− a−MinLen + 2)(b− a−MinLen + 3)/2 then

L← (b− a−MinLen + 2)(b− a−MinLen + 3)/2
Draw all intervals [al, bl] ⊆ [a, b], l = 1, . . . , L, s.t. bl − al + 1 ≥ MinLen

else
Randomly draw intervals [al, bl] ⊆ [a, b], l = 1, . . . , L, s.t. bl − al + 1 ≥ MinLen
Add [a0, b0] = [a, b] to the set of intervals

end if
l′ ← argminl∈{0,...,l} p̂

[al,bl]
M

t̂← argmax
n
[al′ ,bl′ ]
le ≤t≤n

[al′ ,bl′ ]
ri

M [al′ ,bl′ ](t)

if p̂
[a′l,b

′
l]

M < α then

Add t̂ to the set τ̃ .
m.WBS(a, t̂, τ̃ , α, L, MinLen)
m.WBS(t̂+ 1, b, τ̃ , α, L, MinLen)

else
STOP

end if
end function

For notation simplicity, we let τ̃0 = 0 and τ̃m̃+1 = n. Similar to the searching step, max-type edge-

count statistic is used. Each two-sample test statistic is squared in (3.3). Recall that [Z
[a,b]
w (t)]2

and [Z
[a,b]
diff (t)]2 are independently χ2

1 distributed. By taking the square, the order of each squared

max-type statistic in (3.3) is between χ2
1 and χ2

2. For this reason, mep-BIC share a similar intrinsic

structure with ep-BIC. We determine the penalty term using a data driven method later. mep-BIC

favors pure mean or covariance change-points than ep-BIC.

The mep-BIC achieves a favorable trade-off between mitigating overfitting and underfitting.

In the situation of overfitting, mep-BIC(τ̃ ) is relatively small under the effect of false change-

points. Values of M [τ̃j−1+1,τ̃j+1](τ̃j)’s calculated on homogeneous subsequences are relatively small

due to the nature of two-sample test statistics. If those falsely detected change-points are removed,

M [τ̃j−1+1,τ̃j+1](τ̃j)’s calculated on the genuine change-points will increase by a significant margin,

surpassing the value of the discarded ones. In the case of underfitting, a single M [τ̃j−1+1,τ̃j+1](τ̃j)

can cross multiple homogenous subsequences, leading to small statistic value.
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We used a data-driven way to determine an appropriate choice of the penalty parameter c.

Numbers of average true discoveries and false discoveries are reported under 4 different settings:

(1) yi ∼ Nd(0, I) if i ∈ [1, 30] ∪ [61, 90] ∪ [121, 150]; yi ∼ Nd(
6

5 log (d)1, I) if i ∈ [31, 60] ∪
[91, 120] ∪ [151, 180].

(2) yi ∼ Nd(0, I) if i ∈ [1, 30] ∪ [61, 90] ∪ [121, 150]; yi ∼ Nd(0, (1 + 7
4
√
d
)I) if i ∈ [31, 60] ∪

[91, 120] ∪ [151, 180].

(3) yi ∼ t3,d(0,Σ) if i ∈ [1, 50] ∪ [101, 150] ∪ [201, 250]; yi ∼ t3,d(
7

4 log (d)1,Σ) if i ∈ [51, 100] ∪
[151, 200] ∪ [251, 300], where Σjk = 0.5|j−k|

(4) yi ∼ Nd(0,Σ) if i ∈ [1, 40] ∪ [81, 120] ∪ [161, 200]; yi ∼ Nd(
6

5 log (d)1, (1 + 3
2
√
d
)I) if i ∈

[41, 80] ∪ [121, 160] ∪ [201, 240], where Σjk = 0.5|j−k|.

Any τ̃j that is within a range of two observations from a true change-point is considered a true

discovery, while those outside of that range is considered a false discovery. The result is shown in

Figure 3.1. It is conceivable that power decreases dramatically after c = 2 to 4, while false positive

rate decreases steadily over four different settings. We also notice that the power is relatively stable

when c is small, showing the robustness of the method. Taking into account the above points, c = 2

is adopted as the default choice for mep-BIC.

Next, we employ a backward elimination algorithm with mep-BIC to conduct model selection

(Algorithm 5). In each step of m.BE, one candidate change-point is removed until there is J

Algorithm 5 Backward elimination with mep-BIC

procedure m.BE(τ̃ , J)
l← m̃
τ̃ l ← τ̃
while |τ̃ l| ≥ J do

Tl := collection of change-points set τ̃ l\{τ̃ lj}, where τ̃ lj ∈ τ̃ l, j = 1, . . . , l

τ̃ l−1 ← argmaxt∈Tlmep-BIC(t)
l← l − 1

end while
m̂← argmaxlmep-BIC(τ̃ l)

τ̂ ← τ̃ m̂

return τ̂
end procedure

change-points left. The final estimated change-points τ̂ are those give the largest mep-BIC value.
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Figure 3.1. Average number of true and false discoveries over different penalty
choice c under four settings.

Ideally, J should be set to 1 to enlarge the searching space. But if prior information is available, J

can be set to a larger number to save computational resources. Change-point dendrogram can serve

as a tool to understand the hierarchical structure of homogeneous subsequences. In the process

of m.BE, neighboring change-points are merged. In combination with mep-BIC, these tools are

ideal ingredients for constructing a dendrogram when J = 1. In a dendrogram, change-points or

subsequences close to the root are considered more important in maintaining the high-level structure

of the data. Researchers may segment the dendrogram by selecting an appropriate height, resulting

in a set of change-points at any desired resolution.

3.4. Numerical Studies

In this section we use simulated data to assess the performance of proposed method. Specifically,

in each simulation run, we apply m.WBS to the generated data and pass the first-step result τ̃

to m.BE and get the final estimated result τ̂ . We have configured the algorithm by setting the

following parameters: α = 0.01 to regulate the local significance level, L = 100 to provide adequate
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coverage of the data, MinLen = 10 to ensure detection of frequent change-points, and J = 1

to enlarge searching space. Through the incorporation of various distributions and change-point

structures, it is anticipated that the efficacy of the proposed methodology in handling complex

data will be demonstrated. Let θ be a d−length vector with the first d/5 entries equal to 1 and all

others equal to 0, and θ1 be a d−length vector with d − 1 entries equal to 0 and 1 entry equal to

1. The proposed method is tested under the following four settings:

(5) yi ∼ Nd(0, I) if (i mod 50) ∈ [1, 15] ∪ [21, 35]; yi ∼ Nd(δθ,Σ) if (i mod 50) ∈ [16, 20];

yi ∼ Nd(0, σ
2Σ) if (i mod 50) ∈ [36, 49] ∪ {0} where i = 1, . . . , 500, and Σjk = 0.2|j−k|.

(6) yi ∼ Nd(0,Σ) if (i mod 45) ∈ [1, 40]; yi ∼ Nd(δθ1,Σ) if (i mod 45) ∈ [41, 44] ∪ {0} where
i = 1, . . . , 450, and Σjk = 0.2|j−k|.

(7) yi ∼ t1,d(0, I) if i ∈ [1, 40] ∪ [91, 145] ∪ [191, 255] ∪ [300, 340] ∪ [391, 445] ∪ [491, 555];

yi ∼ t1,d(δθ,Σ) otherwise, where i = 1, . . . , 600, and Σjk = 0.3|j−k|.

The number of true discoveries and false discoveries are reported in Table 3.1 and 3.2. If a detected

change-point is within 1 observations of a true change-point in Setting 5 and 6, and 2 observations

in Setting 7, then it is counted as a true discovery. Otherwise it is counted as a false discovery. In

addition, we compare the new framework with the method proposed in Chapter 2, which is used

as a baseline to better understand the new framework.

Table 3.1. Number of detected true change-points and corresponding standard
deviations (in parenthesis) with 100 replications. The largest value under each
setting is in bold.

Setting 5

d 20 50 100 500 1000
δ 2.20 1.75 1.40 0.90 0.75
σ 4.55 4.24 3.93 3.61 3.52
New 35.34 (3.39) 36.17 (3.40) 35.65 (4.26) 35.60 (4.09) 35.02 (5.66)
Chapter 2 34.12 (3.67) 35.24 (3.29) 35.31 (3.92) 34.84 (4.13) 34.27 (5.57)

Setting 6

d 20 50 100 500 1000
δ 3.85 4.55 5.95 8.05 10.50
New 13.01 (4.25) 12.41 (3.94) 15.82 (2.81) 12.80 (4.35) 16.71 (2.60)
Chapter 2 13.47 (4.68) 12.02 (4.66) 15.35 (4.29) 12.08 (4.97) 15.97 (4.74)

Setting 7

d 20 50 100 500 1000
δ 1.1 0.85 0.76 0.64 0.60
New 7.44 (1.58) 7.32 (1.58) 7.45 (1.78) 8.08 (1.61) 7.78 (1.56)
Chapter 2 7.38 (1.74) 7.10 (2.02) 6.95 (1.92) 7.72 (1.76) 7.49 (1.61)
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Table 3.2. Number of detected false change-points and corresponding standard
deviations (in parenthesis) with 100 replications. The smallest value under each
setting is in bold.

Setting 5

d 20 50 100 500 1000
δ 2.20 1.75 1.40 0.90 0.75
σ 4.55 4.24 3.93 3.61 3.52
New 1.16 (1.13) 0.59 (0.73) 0.77 (0.79) 0.61 (0.72) 0.49 (0.70)
Chapter 2 2.46 (1.75) 1.19 (1.23) 1.12 (1.12) 1.01 (1.05) 0.91 (1.04)

Setting 6

d 20 50 100 500 1000
δ 3.85 4.55 5.95 8.05 10.50
New 1.60 (1.51) 1.42 (1.36) 1.00 (1.15) 0.97 (1.14) 0.66 (0.92)
Chapter 2 1.83 (1.80) 1.56 (1.47) 1.04 (1.17) 1.00 (1.05) 0.75 (0.91)

Setting 7

d 20 50 100 500 1000
δ 1.1 0.85 0.76 0.64 0.60
New 3.39 (1.64) 3.15 (1.49) 3.34 (1.77) 2.46 (1.51) 2.30 (1.30)
Chapter 2 3.86 (1.92) 3.28 (1.62) 3.63 (1.92) 2.90 (1.72) 2.57 (1.52)

It is conceivable that the new framework outperforms in terms of both power and false discovery

under most settings. Setting 5 mimics two scenarios. First, the case where a small portion of

dimensions has a mean change during a short time interval. Second, the case where the covariance

matrix changes in a short interval. In Setting 6, the mean vector is even sparser. In Setting 7,

we test its performance in pure mean changes under heavy tail distributions. The new framework

shows better performance in both power and false discovery rate. This can be explained by the

skewness correction of max-type scan statistics. When the scan interval is short, max-type scan

statistics have more accurate estimated p-values, leading to better performance.

31



CHAPTER 4

A Parallel Computation Approach and an Application to

Neuropixels Data

4.1. Introduction

Nowadays, electrophysiological methods are widely adopted in neuroscience to reveal the dy-

namics of neural processing across time scales (Chen et al. 2017). The key to comprehending how

the brain represents, transforms, and communicates information is found in high-resolution neural

recordings from scattered nodes of the brain network (Lewis et al. 2015). Starting from using in-

sulated metal microelectrodes with single recording sites in 1950s, electrophysiological techniques

to record neuronal activity in vivo has been dramatically improved by the use of CMOS fabrica-

tion (Steinmetz et al. 2021, 2018). Modern electrophysiological tools can allow accurate recordings

with single neuron spatial precision and single spike resolution. In addition, they make population

recording possible, allowing high-quality recordings of a large group of neurons distributed across

different brain regions over long time scale.

Neuropixels is a CMOS-based silicon probe developed by Jun et al. (2017). There are 384

recording channels in each probe, each of which can be programmed to address 960 complimentary

CMOS sites. Neuropixels were able to produce isolated spiking signals from hundreds of neurons

in small rodents by densely sampling the signals (Gardner et al. 2019, Sauerbrei et al. 2020). Using

multiple shanks, Neuropixels can record spikes from hundreds or even thousands of neurons across

multiple brain regions in vivo (Stringer et al. 2019).

The vast data produced by Neuropixels present a challenge to statistical analysis. A typical

dataset records the activity of hundreds of individual neurons over several minutes to hours. The

data acquisition rate for each probe is around 1 gigabyte per minutes. Moreover, neural signals are

generally noisy and non-stationary. The patterns of neural activity exhibit high temporal variabil-

ity, with frequent changes occurring over time. All these factors makes modeling Neuropixels data
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parametrically unfeasible theoretically and computationally. Dividing long Neuropixels sequences

into stationary subsequences can be served as a preliminary procedure for statistical analysis. The

division procedure is commonly referred to as change-point detection. Change-point detection

contributes to the Neuropixels data analysis from two perspectives. First, detected change-points

themselves can be considered valuable targets for research, as they could indicates a sudden change

in neural activity pattern. Second, detected change-points split the data into homogeneous subse-

quences, which opens up possibilities for future statistical modeling.

However, this field has received little attention. The work of Chen et al. (2019) is one of the

few attempts to address this problem. It involves finding an initial change-point set by graph-based

statistics (Chu & Chen 2019) and binary segmentation (Vostrikova 1981), followed by refining the

results through a three-step iterative process. Though graph-based statistics is suitable for such

high-dimensional noisy data, the use of binary segmentation and a lengthy revision procedure can

cause severe power loss. Another graph-based method proposed by Zhang & Chen (2021) combined

generalized edge-count statistics and Wild Binary Segmentation (WBS) (Fryzlewicz 2014). This

WBS-style method generates hundreds of random intervals along the sequence, and scan for change-

points on each interval. The most significant one is chosen as the first change-point. Then the

process recursed until no new change-point being found. After that, they prune candidate change-

points using a goodness-of-fit statistic. Although their method shows satisfactory power and false

discovery rate, it is only practical for analyzing short data.

In this work, we propose a comprehensive framework to detect and understand change-point

in Neuropixels data. The new framework represents a significant improvement over the previous

method: g.WBS and g.BE proposed in Chapter 2. We innovatively parallelized WBS algorithm on

graph-based scan statistics, greatly reducing its computation time and overcoming the limitation of

being used only on smaller data. In addition, we leveraged max-type edge-count scan statistics (Chu

& Chen 2019) to further improve its detection accuracy. In the pruning part, mep-BIC built on

max-type two-sample test statistic is used. To understand the structure of detected change-points,

we utilized change-point dendrogram to represent the relative importance of change-points.
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The organization of this Chapter is as follows. Some background information in neuroscience

is described in Section 4.2. The details of the framework are illustrated in Section 4.3. In Section

4.4, the new framework is applied to a Neuropixels data collected from an alive mouse.

4.2. More Background in Neuroscience

For neurons, the communication of information between them relies heavily on action potentials,

also known as spikes. For most neurons, a typical signaling process begins with the generation of an

action potential by the neuron, which conducts a bioelectrical signal to the neuron terminal. The

neurosynapse at the neuron terminal receives the electrical signal and releases neurotransmitters

through the vesicle, thus converting the electrical signal into a chemical signal and transmitting

it to neighboring neurons, completing the transmission of information. The mammalian cerebral

cortex contains millions or even billions of neurons. The cerebral cortex can be divided into several

regions, and different regions are responsible for different functions and coordinate with each other

to accomplish a variety of activities. Exploring the relationship between neuronal activity in the

brain and external stimuli and spontaneous activity has been one of the enduring research topics

in the field of neuroscience.

Neuropixels is one of the state-of-the-art probe platform allowing recording neuronal activity

of large neuronal population across multiple brain regions (Lewis et al. 2015). The application

of Neuropixel has been extended to a diverse range of species, encompassing mice (Bennett et al.

2019, Evans et al. 2018, Park et al. 2022, Stringer et al. 2019), rats (Krupic et al. 2018), and

ferrets (Gaucher et al. 2020). It is a custom implementation of a 200mm wafer scale 130nm CMOS

silicon on insulator technology with aluminum back-end of line (Dutta et al. 2019). Before record

extracellularly from neuronal population, the head of the experimental animal are usually fixed to

reduce the drift of probes. Then multiple probes are slowly placed into the brain of the experimental

animal and keep recording for hours. Once the recording is complete, the data needs to be processed

through spike sorting and probe localization. Spike sorting aims to identifying single spike from the

recording and attributes it to individual neuron. There are many mature algorithms could finish

the process effectively, including KiloSort and MountainSort (Chung et al. 2017, Pachitariu et al.

2016). The regions of the brain where neurons were recorded can be identified during the process
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Figure 4.1. Neuropixels probe locations of recordings in a mouse (Stringer et al.
2019).

of probe localization. Once can either identify each structure along the recording track or using 3D

atlases of the mouse brain (Johnson et al. 2010).

4.3. A Parallel Graph-based Multiple Change-point Analysis Framework

The new framework we proposed consists of a two-step procedure. First, we use a parallel WBS

with max-type edge-count scan statistics to search for candidate change-points. Subsequently, mep-

BIC is introduced for performing change-point selection. Figure 4.2 shows the pipeline of analysis.

The first three steps include preprocessing of Neuropixels data. More information can be found in

Section 4.2. Our new framework focuses on the last three steps related to change-point analysis.

DefineK as the number of folds used to separate the sequence, α as the pre-specified significance

level and MinLen be the minimum length of generated intervals, and L as the number of randomly

generated intervals. The functions ParagraphWBS is defined in Algorithm 6.

The searching procedure begins with evenly dividing the whole sequence into K folds. Usually

we choose K such that each fold contains a hundreds of observations. Next, for each fold, apply

m.WBS onto it. In each fold, m.WBS randomly generates L intervals and use max-type edge count

scan statistics to search for candidate change-points. Among those L change-points, we keep the

most significant one if its p-value is smaller than the significance level α. After that, most change-

points should be found by m.WBS. Some change-points close to the boundaries of folds might be

35



Neuropixels recording

Spike sorting Probe localization

Discretization

ParagraphWBS

m.BE

Change-point dendrogram

step 1

step 2

step 6

step 5

step 4

step 3
pre-processing
change-point analysis

Figure 4.2. Process of analyzing Neuropixels data from data collection to change-
point analysis.

Algorithm 6 parallel Change-point search by max-type graph-based statistic

procedure ParagraphWBS(K, τ̃ , α, L, MinLen)
for each fold k = 1, . . . ,K do in parallel

m.WBS(⌊(k − 1)n/K⌋+ 1, ⌈kn/K⌉, τ̃ , α, L, MinLen)
end for
for each fold k = 1, . . . ,K − 1 do

ak ← argminτ̃j∈τ̃ ,τ̃j<⌈nk/K⌉(⌈nk/K⌉ − τ̃j)

bk ← argminτ̃j∈τ̃ ,τ̃j>⌈nk/K⌉(τ̃j − ⌈nk/K⌉)
m.WBS(ak + 1, bk, τ̃ , α, L, MinLen)

end for
end procedure

missed. So in the second loop, ParagraphWBS search near each boundary of folds, making sure

all parts of the data are scanned. After ParagraphWBS gives a pool of change-points, m.BE can

be used to further select the change-points and explore the relationship between them.

By dividing a long sequence into several short subsequences, ParagraphWBS achieves high

speed, high efficiency and high accuracy. The time complexity of edge-count statistics is mostly

determined by finding distance matrix and similarity graph, which are O((b − a)2) and O(k(b −
a)2 log(b − a)) with Prim’s Algorithm. Shortening the scan region of m.WBS to 1/10 or even

1/100 of its original length will greatly speed up the computation. In addition, this strategy can

make the loop easily parallelizable, further accelerate the algorithm. The idea behind WBS type

algorithm is to scan over single change-point by generating a large number of random intervals. In
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Neuropixels data, change-points are densely distributed (Zhang & Chen 2021). Scanning over long

sequences is time-inefficient. Meanwhile, estimated change-points and their corresponding p-values

are questionable as signal can be hidden and overwhelmed by overlong sequences with multiple

change-points. In contrast, introducing folds into ParagraphWBS increased the probability that

generated intervals cover only single change-point. This enhancement leads to improved efficiency

and estimation accuracy of scan statistics.

Compared with the original g.WBS, the new algorithm uses max-type scan statistics in place

of generalized edge-count scan statistics. One of prominent features of Neuropixels data is densely

distributed change-points. Neighboring change-points are sometimes only a few observations apart;

thus, scan statistics must have enough power when scanning over short intervals. The primary

change-points detected in Neuropixels data pertain to mean vector change, with a small portion

attributed to covariance pattern change (Zhang & Chen 2021). Max-type edge-count scan statistics

are more sensitive to pure mean vector or covariance matrix changes than generalized edge-count

scan statistics. Max-type edge-count scan statistic confers an additional benefit of accurate p−value
estimation with skewness correction, which is especially advantageous in the context of scanning

over short intervals. All these benefits makes max-type edge-count scan statistic a better choice for

Neuropixels data analysis. On the other hand, if generalized edge-count scan statistic is preferred

in the real data analysis for specific reasons, ParagraphWBS can be readily adapted to utilize

generalized statistics.

4.4. Change-point Analysis of Spontaneous Neural Activity in Mice Using

Neuropixels Recordings

Sensory cortex refers to the part of the cerebral cortex that process sensory information in-

cluding visual cortex, auditory cortex, olfactory cortex, and more. The neurons in these cor-

tices exhibit significant activity when receiving external stimuli. Even without external stimuli,

the brain generates structured patterns of activities. The spontaneous activities have been in-

ferred to be associated with recapitulation of sensory experience, behavioral and cognitive states,

and ongoing behavior (Berkes et al. 2011, Schneider et al. 2014, Stringer et al. 2019). To study

spontaneous activities in population level, we use Neuropixels recording in the brain of a mouse

37



C
P

F
rM

o
H

P
F

LS
M

B
S

C
S

om
M

o
T

H
V

1

0 100 200 300 400 500
t (1/30 second)

spikes

1

2

3

4

5

6

7

8

9

>9

Figure 4.3. First 500 observations of Neuropixels data in nine brain cortical areas.

(https://janelia.figshare.com/articles/dataset/Eight-probe_Neuropixels_recording

s_during_spontaneous_behaviors/7739750). The original data used eight Neuropixels probes

to record activity across different cortex. During the data acquisition process, the mouse were

awake and free to rotate a wheel. After spike sorting and probe localization, 1462 units were used

from 9 different cortical areas, including Caudate putamen (CP, 176 units), Frontal motor (FrMo,

78 units), Hippocampus (HPF, 265 units), Lateral Septum (LS, 122 units), Midbrarin (MB, 127

units), Superior colliculus (SC, 42 units), Somatomotor (SomMo, 91 units), Thalamus (TH, 227

units), and V1 (334 units). Subsequently, the recordings were discretized into 1/30-second intervals,

and to enhance data quality, the initial 1,000 and last 1,053 observations were excluded from the

analysis. The cleaned dataset have n = 37, 000 observations, and yi,j denotes the number of spikes

recorded for neuron j during time interval i. A snippet of the data is shown in Figure 4.3.
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Table 4.1. Number of change-points returned by ParagraphWBS and m.BE in
each step.

Region CP FrMo HPF LS MB SC SomMo TH V1

Step 1 1490 1499 1598 919 1274 1135 1717 1645 1998
Step 2 636 335 495 235 206 362 299 504 611

H
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T

H
V

1

0 5000 10000 15000 20000 25000 30000 35000
t (1/30 second)

Figure 4.4. Detected change-points τ̂ in three cortical area with most units. Each
vertical line represents a detected change-point.

Using ParagraphWBS and m.BE, we analyze the change-point structure of the mouse Neu-

ropixels data. To be specific, we first applied ParagraphWBS to the data in each cortical area,

with K = 100, α = 0.0001, L = 200, MinLen=10, and 20 CPU cores. On average, it takes only 10

minutes to scan each cortical area. ParagraphWBS detected thousands of change-points, offering

a high level of granularity for Neuropixels analysis. Often the case, researchers are interested in

understanding the high-level structure of the data. We pass each τ̃ to m.BE with J = 200 and

penalty parameter c = 2. The average time consumed for each area is 34 minutes. The numbers of

detected and selected change-points in two steps are listed in Table 4.1. Detected change-points τ̂

of three cortical areas with most units are plotted in Figure 4.4. If a coarser granularity is needed,

J can be set to 1 to get the full hierarchical structure of change-points, which requires more com-

putational time. Another choice is to continuously track the value of mep-BIC(τ̃ ) as the algorithm

progresses. One can manually stop m.BE if mep-BIC(τ̃ ) keep decreasing for a long period of time.

Using V1 as an instance, we set J = 1 to study its full hierarchical structure. The full trajectory of

mep-BIC and a truncated change-point dendrogram with 30 change-points are shown in Figure 4.5

(A) and (D). One may choose an appropriate resolution of change-points based on the trajectory

of mep-BIC. Except for choosing the global maximum of mep-BIC, some local maximum with a
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few change-points are also good candidates to choose from. A relatively high mep-BIC can still be

reached with a few change-points, showing their importance in maintaining the high-level change-

point structure of the data. In addition to the dendrogram, the order in which change-poins are

removed in m.BE reflects their importance in the data. The last two change-points removed from

the data are 20,343 and 28,121. The two change-points are plotted in observation-wise mean and

standard deviation plot (Figure 4.5 (B) and (C)). We can clearly see the data become more stable

during that subsequence.
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Figure 4.5. (A): Value of mep-BIC during the process of m.BE in the cortical
area V1. (B, C): Mean and standard deviation along each observation of the Neu-
ropixels recording of cortical area V1. The last two change-points to be removed
in m.BE (20,343 and 28,121) are marked with red vertical lines. (D): Change-point
dendrogram of V1 with the last 30 change-points to be removed in m.BE.

The use of max-type statistics in the framework shows its advantage in detecting more frequent

changes over generalized statistics. We applied ParagraphWBS again with g.WBS and g.BE to

the Neuropixels data, and compared their respective results. We observed that several important
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change-points identified by the max-type-based method are not found using the generalized-based

method. Change-points t = 9, 338 and 9,343 in the LS region exemplify this (Figure 4.6 (A)).

During this short time interval, a single neuron becomes highly active. Also, we found that the

majority of neurons exhibit activity at t = 9, 335, but rapidly become inactive between t = 9, 336

and t = 9, 337. This intriguing observation is only discerned by the max-type-based method.

Another example is change-point t = 19, 488 in the region TH (Figure 4.6 (B)). The boxplot of

observation-wise sum before and after the detected change-point is shown in Figure 4.6 (C). It

could be observed in both plots that neurons are more active after the change-point.
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Figure 4.6. (A): A snippet of Neuropixels recording in the region LS. Two detected
change-points 9,338 and 9,343 are marked. (B): A snippet of Neuropixels recording
in the region TH. The detected change-point 19,488 is marked. (C): Boxplot of sum
of spikes along each observation of the Neuropixels recording of cortical area LS
before and after the change-point t = 19, 488.
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CHAPTER 5

Conclusion

In this dissertation, we propose a graph-based framework for multiple change-point detection

for high-dimensional and non-Euclidean data. In Chapter 2, we build a two step method using

generalized edge-count scan statistics and greedy algorithms. In addition, to prune candidate

change-points, a new goodness-of-fit statistics is used with change-point dendrogram. Then, we

incorporate max-type edge-count statistics in Chapter 3 to further improve its power under frequent

changes scenario. Finally, a parallel computation approach is utilized to analyze long series in

Chapter 4 with special attention to Neuropixels data.

To conclude this article, we would like to discuss some interesting topics for future research.

When there are some prior information, it could be that some other graph-based methods are more

suitable. For example, the weighted edge-count test would be preferred if one is only interested in

location alternatives. The arguments in this work can be extended to the weighted edge-count test

(Chen et al. 2018). Let Z
[a,b]
w (t) be the weighted edge-count scan statistic for a ≤ i ≤ b. Given the

fact that Z
[a,b]
w (t)2

d→ χ2
1 under some regularity conditions, the corresponding expanded pseudo-BIC

may be defined as
∑m̃

j=1 Z
[τ̃j−1+1,τ̃j+1]
w (τ̃j)

2− m̃ log n. These goodness-of-fit statistics and detection

algorithm may further be generalized to other nonparametric statistics. How to generalize them to

other statistics in a uniform framework is our next goal. Constructing distance matrix and MST

demands a large amount of memory resources. Further reducing both memory and CPU usage is

our next topic. Lastly, we plan to generalize the framework to kernel-based statistics to bring more

flexibility to researchers.
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APPENDIX A

Appendix for Chapter 2

A.1. Proof of Theorem 2.2.1

Define

T (u) := lim
n→∞

S[1,n](nu)

n
,

û := argmax
u∈

[
n
[1,n]
le
n

,
n
[1,n]
ri
n

]S[1,n](nu)

n
,

ω̄ := argmax
u∈

[
n
[1,n]
le
n

,
n
[1,n]
ri
n

]T (u),

T [al,bl](u) := lim
n→∞

S[al,bl](nu)

bl − al
,

û[al,bl] := argmax
u∈

[
n
[al,n]
le
n

,
n
[al,bl]
ri
n

]S[al,bl](nu)

bl − al
,

ω̄[al,bl] := argmax
u∈

[
n
[al,bl]
le
n

,
n
[al,bl]
ri
n

]T [al,bl](u).

Recall that ω := {ω1, . . . , ωm}, and ω̃ := {τ̃1/n, τ̃2/n, . . . }. Then define the proportion pj for each

multivariate distribution fj(x) between ωj and ωj+1 as pj = ωj+1 − ωj .

Let Tj(∆) = limn→∞
S[1,n]((ωj+1−∆)n)

n , where

∆ ∈


[0, p0) when j = 0,

[0, pj ] when 1 ≤ j ≤ m− 1,

(0, pm] when j = m.

Follow Chen & Friedman (2017), Henze & Penrose (1999), for k-MST, we have
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(A.1) Tj(∆) =
[δ1,j(∆)− δ2,j(∆)]

2

(ωj+1 −∆)(1− ωj+1 +∆)Var(Dd,k)
+

[(1− ωj+1 +∆)δ1,j(∆) + (ωj+1 −∆)δ2,j(∆)]
2

(ωj+1 −∆)2(1− ωj+1 +∆)2k
,

where

δ1,j(∆) : = lim
n→∞

R
[1,n]
1 ((ωj+1 −∆)n)−E

[
R

[1,n]
1 ((ωj+1 −∆)n)

]
n

= k

∫ [∑j−1
l=0 plfl(x) + (pj −∆)fj(x)

]2∑m
l=0 plfl(x)

dx− k(ωj+1 −∆)2,

δ2,j(∆) : = lim
n→∞

R
[1,n]
2 ((ωj+1 −∆)n)−E

[
R

[1,n]
2 ((ωj+1 −∆)n)

]
n

= k

∫ [
∆fl(x) +

∑m
l=j+1 plfl(x)

]2∑m
l=0 plfl(x)

dx− k(1− ωj+1 +∆)2,

and Dd,k is the degree of vertex at the origin in the k-MST on a homogeneous Poisson process on

Rd of rate 1, with a point added at the origin. Specially,

δ1,0(∆) = k

∫
[(p0 −∆)f0(x)]

2∑m
l=0 plfl(x)

dx− k(ω1 −∆)2,

δ2,m(∆) = k

∫
[∆fm(x)]2∑m
l=0 plfl(x)

dx− k∆2.

Define

A1,j =

{
j−1∑
l=0

plfl(x) ̸= fj(x)

j−1∑
l=0

pl

}
for j ̸= 0 and

A2,j =


m∑

l=j+1

plfl(x) ̸= fj(x)

m∑
l=j+1

pl


for j ̸= m.

We can prove the following seven lemmas (The detailed proofs are provided in Section A.3.).

Lemma A.1.1. δ1,j(∆) = δ2,j(∆) for all j = 0, . . . ,m.
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Lemma A.1.2. For j = 0, . . . ,m,

(A.2) (1− ωj+1 +∆)δ1,j(∆) + (ωj+1 −∆)δ2,j(∆) ≥ 0.

For j = 1, . . . ,m− 1, the equality of (A.2) hold, when

(1− ωj+1 +∆)(

j−1∑
l=0

plfl(x) + (pj −∆)fj(x)) = (ωj+1 −∆)(∆fj(x) +
m∑

l=j+1

plfl(x)).

For j = 0, the equality of (A.2) holds when (1− p0)f0(x) =
∑m

l=1 plfl(x). For j = m, the equality

of (A.2) holds when ωmfm(x) =
∑m−1

l=0 plfl(x).

Lemma A.1.3. ∀∆ ∈ [0, pj ], Tj(∆) = 0 only when Ac
1,j ∩ Ac

2,j holds. Specially, for j = 0,

T0(∆) = 0 when (1 − p0)f0(x) =
∑m

l=1 plfl(x); for j = m, Tm(∆) = 0 when ωmfm(x) =∑m−1
l=0 plfl(x).

Lemma A.1.4. (1) When A1,j ∩A2,j holds, Tj(∆) takes its maximum at ∆ = 0 or ∆ = pj.

(2) When A1,j ∩Ac
2,j holds, Tj(∆) takes its maximum at ∆ = pj.

(3) When Ac
1,j ∩A2,j holds, Tj(∆) takes its maximum at ∆ = 0.

(4) When Ac
1,j ∩Ac

2,j holds, Tj(∆) is a constant function on ∆ ∈ [0, pj ].

Specially, when j = 0 and Ac
2,0 holds, T0(∆) is a constant function on ∆ ∈ [0, p0), otherwise

T0(∆) takes its maximum at ∆ = 0. When j = m and Ac
1,m holds, Tm(∆) is a constant function

on ∆ ∈ (0, pm], otherwise Tm(∆) takes its maximum at ∆ = pm.

Lemma A.1.5. If fj ̸= fj+1 for all j, there exists ωj, j ∈ {1, . . . ,m} such that

ωj ∈ ∂argmaxu∈(0,1) T (u), where ∂ represents the boundary of a set.

Lemma A.1.6. When Ac
1,j ∩ Ac

2,j holds, Tj−1(∆) is strictly increasing on ∆ ∈ [0, pj−1], and

Tj+1(∆) is strictly decreasing on ∆ ∈ [0, pj+1].

Lemma A.1.7. Assume

(A.3) sup

u∈
[

n
[1,n]
le
n

,
n
[1,n]
ri
n

]
∣∣∣∣∣S[1,n](nu)

n
− T (u)

∣∣∣∣∣ p→ 0,
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and |ω̄| is finite, then

P (∃ωj ∈ ω̄, |û− ωj | < ϵ)→ 1,

∀ ϵ > 0 as n→∞.

With these Lemmas, we next prove Theorem 2.2.1.

When there are true change-points τj between [a, b] in the process of g.WBS, for any generated

interval [al, bl], there are two possibilities:

Case 1. Interval [n
[al,bl]
le , n

[al,bl]
ri ] contains at least one true change-points.

Case 2. Interval [n
[al,bl]
le , n

[al,bl]
ri ] contains no true change-point.

We first consider Case 1, for τj ∈ [n
[al,bl]
le , n

[al,bl]
ri ], the limiting relative position limn→∞

τj−al
bl−al

are

fixed, as limn→∞
al
n , limn→∞

bl
n , and limn→∞

τj
n are fixed. Notice that ∀(u1, u2) ⊆

[
n
[al,bl]

le
n ,

n
[al,bl]

ri
n

]
,

the probability that limn→∞
S[al,bl](nu)

bl−al
is a constant function on (u1, u2) is 0. The condition in

Lemma A.1.4 for constant function happens with 0 probability in the limiting regime, since al
n and

bl
n are uniformly generated between [ an ,

b
n ]. Even if the limit is a constant function, by Lemma

A.1.3 and Lemma A.1.6, we know the constant is 0 and the corresponding interval (u1, u2) is a

local minimizer. Therefore, this extreme case will not interfere the detection process.

By Lemma A.1.7, ∀ϵ > 0,

P
(
∃ωj ∈ ω̄[al,bl], |û[al,bl] − ωj | < ϵ

)
→ 1.

Thus, a true change-point is detected by û[al,bl]. Next, we study the order of the statistic. Under

assumption (2.2),

S[al,bl](nû[al,bl])

bl − al

p→ T [al,bl](û[al,bl]).

By continuous mapping theorem, T [al,bl](û[al,bl])
p→ T [al,bl](ωj), where ωj ∈ ω̄[al,bl]. Then,

S[al,bl](nû[al,bl])

bl − al

p→ T [al,bl](ωj).
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∀ϵ > 0,

P
(∣∣∣S[al,bl](nû[al,bl])− (bl − al)T

[al,bl](ωj)
∣∣∣ > (bl − al)ϵ

)
→ 0,

P
(
S[al,bl](nû[al,bl]) < (bl − al)T

[al,bl](ωj)− (bl − al)ϵ
)
→ 0.

T [al,bl](ωj) only depends on limiting relative position of change-points limn→∞
ωj

bl−al
and distri-

bution functions. Notice that bl − al ≍ n. When ζn ≺ n,

P
(
S[al,bl](nû[al,bl]) > ζn

)
→ 1,

as n→∞.

Next, we consider Case 2. In this case, the conditions of Theorem 4.1 in Chu & Chen (2019)

are satisfied. For n given L and ζn ≍
√
n, the probability of any generated interval falsely detects

a change-point,

lim
n→∞

P (∃l = 1, . . . , L, S[al,bl](nû[al,bl]) > ζn)

= lim
n→∞

P (∃l = 1, . . . , L, sup
u

[
Z∗
l,diff(u)

]2
+
[
Z∗
l,w(u)

]2
> ζn)

≤L lim
n→∞

P (sup
u

[Z∗
diff(u)]

2 + sup
u

[Z∗
w(u)]

2 > ζn)

≤2L lim
n→∞

P (sup
u

Z∗
diff(u) > (

ζn
2
)1/2) + 2L lim

n→∞
P (sup

u
Z∗
w(u) > (

ζn
2
)1/2),(A.4)

where Z∗
diff and Z∗

w are independent Gaussian process defined in Theorem 4.1 and 4.3 in Chu &

Chen (2019).

LetDdiff andDw represent Dudley’s Integral of Z∗
diff(u) and Z∗

w(u) defined on their corresponding

metric space. By the definition of Dudley’s integral, it is easy to see that Ddiff and Dw are two

constants not depending on n. Then, when ζn = max{Ddiff,Dw}2
√
n,

lim
n→∞

(A.4) ≲ 4L lim
n→∞

exp

(−√n
4

)
= 0.

Next we study how many intervals are necessary for g.WBS. When there exists at least one

true change-points within [a, b], at least one interval belonging to Case 1 is necessary. Define the
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event D
[a,b]
L =

{
∀ l = 1 . . . , L,∀τj ∈ (a, b), τj /∈ [n

[al,bl]
le , n

[al,bl]
ri ]

}
.

P (D
[a,b]
L ) =

L∏
l=1

P
({
∀τj ∈ (a, b), τj /∈ [n

[al,bl]
le , n

[al,bl]
ri ]

})
=
[
P
({
∀τj ∈ (a, b), τj /∈ [n

[a1,b1]
le , n

[a1,b1]
ri ]

})]L
.

If the default choice of n
[al,bl]
le and n

[al,bl]
ri are used, P

({
∀τj ∈ (a, b), τj /∈ [n

[a1,b1]
le , n

[a1,b1]
ri ]

})
< 1.

When L ≻ 1, P (D
[a,b]
L )→ 0 as n→∞. Specially, if n

[a1,b1]
le = al and n

[a1,b1]
ri = bl then

P (D
[a,b]
L ) =

[∑
tj∈T [al,bl]\{t1}(tj − tj−1)

2

(b− a)2

]L
,

where T [al,bl] = {t1, . . . } = {al, bl}
⋃
(ω
⋂
[al, bl]) with t1 < t2 < . . . .

A.2. Checking the Convergence Assumption in Theorem 2.2.1

Here, we check the convergence of S[al,bl](nu)
bl−al

towards its limit in Theorem 2.2.1. Since T [al,bl](u)

usually does not have explicit formula, in each simulation run, we independently generate K = 10

S[1,n](t)
n sequences (

S
[1,n]
k (nu)

n , k = 1, . . . ,K), and measure maxt,k

∣∣∣∣S[1,n]
k (t)

n − 1
K

∑K
k′=1

S
[1,n]

k′ (t)

n

∣∣∣∣. This

serves as an alternative way to measure the rate of uniform convergence of scan statistic. Setting

6-9 are used for illustrating:

• Setting 6: yi ∼ Nd(0, I) if i ∈ J1, n/6K∪Jn/3+1, n/2K∪J2n/3+1, 5n/6K;yi ∼ Nd(
5

4 log (d)1, I)

otherwise.

• Setting 7: yi ∼ Nd(0, I) if i ∈ J1, n/6K∪ Jn/3+ 1, n/2K∪ J2n/3+ 1, 5n/6K;yi ∼ Nd(0, (1+

2√
d
)I) otherwise.

• Setting 8: yi ∼ t5,d(0,Σ) if i ∈ J1, n/6K ∪ Jn/3 + 1, n/2K ∪ J2n/3 + 1, 5n/6K; yi ∼
t5,d(

7
4 log (d)1,Σ) otherwise, where Σjk = 0.5|j−k|.

• Setting 9: yi ∼ Nd(0,Σ) if i ∈ J1, n/6K∪Jn/3+1, n/2K∪J2n/3+1, 5n/6K;yi ∼ Nd(
1

log (d)1, I)

otherwise, where Σjk = 0.5|j−k|.

We increase n from 60 to 6000, and the results are shown in Table A.1. It is conceivable from

Table A.1 that under most cases, the uniform convergence empirically holds. When the original

distribution is multivariate t distributed and dimension is high, the convergence is a bit slower.
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Table A.1. Average maximum divergence of 100 replicates of S[1,n](t)
n .

Setting
d

n
60 300 1500 6000

Setting 6
20 0.238 0.106 0.041 0.017
100 0.230 0.103 0.054 0.026
300 0.229 0.109 0.051 0.028

Setting 7
20 0.251 0.124 0.045 0.022
100 0.250 0.114 0.043 0.017
300 0.245 0.105 0.039 0.018

Setting 8
20 0.270 0.126 0.045 0.020
100 0.257 0.145 0.070 0.040
300 0.247 0.188 0.128 0.096

Setting 9
20 0.243 0.106 0.038 0.021
100 0.230 0.105 0.048 0.024
300 0.233 0.104 0.049 0.025

A.3. Proofs of Lemmas

Proof of Lemma A.1.1. When j /∈ {0,m},

δ1,j(∆)− δ2,j(∆) =k

∫ [
∑m

l=0 plfl(x)]
[∑j−1

l=0 plfl(x) + (pj − 2∆)fj(x)−
∑m

l=j+1 plfl(x)
]

∑m
l=0 plfl(x)

dx

− k(2ωj+1 − 2∆− 1)

=k

∫ j−1∑
l=0

plfl(x) + (pj − 2∆)fj(x)−
m∑

l=j+1

plfl(x) dx− k(2ωj+1 − 2∆− 1)

=0.

The case when j ∈ {0,m} can be proved similarly. □

Proof of Lemma A.1.2.

δ1,j(∆) =k

∫ [∑j−1
l=0 plfl(x) + (pj −∆)fj(x)

]2
−

(∑m
l=0 plfl(x)

)
(ωj+1 −∆)

[∑j−1
l=0 plfl(x) + (pj −∆)fj(x)

]
∑m

l=0 plfl(x)
dx

=k

∫ [∑j−1
l=0 plfl(x) + (pj −∆)fj(x)

] [∑j−1
l=0 plfl(x) + (pj −∆)fj(x)−

(∑m
l=0 plfl(x)

)
(ωj+1 −∆)

]
∑m

l=0 plfl(x)
dx

=k

∫ [∑j−1
l=0 plfl(x) + (pj −∆)fj(x)

] (∑j−1
l=0 plfl(x) + (pj −∆)fj(x)

)
(1− ωj+1 +∆)∑m

l=0 plfl(x)
dx

− k

∫ [∑j−1
l=0 plfl(x) + (pj −∆)fj(x)

] (
∆fj(x) +

∑m
l=j+1 plfl(x)

)
(ωj+1 −∆)∑m

l=0 plfl(x)
dx
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δ2,j(∆) =k

∫ [
∆fj(x) +

∑m
l=j+1 plfl(x)

]2
−

(∑m
l=0 plfl(x)

)
(1− ωj+1 +∆)

[
∆fj(x) +

∑m
l=j+1 plfl(x)

]
∑m

l=0 plfl(x)
dx

=k

∫ [
∆fj(x) +

∑m
l=j+1 plfl(x)

] [
∆fj(x) +

∑m
l=j+1 plfl(x)−

(∑m
l=0 pjfl(x)

)
(1− ωj+1 +∆)

]
∑m

l=0 plfl(x)
dx

=k

∫ [
∆fj(x) +

∑m
l=j+1 plfl(x)

] [(
∆fj(x) +

∑m
l=j+1 plfl(x)(ωj+1 −∆)

)]
∑m

l=0 plfl(x)
dx

− k

∫ [
∆fj(x) +

∑m
l=j+1 plfl(x)

] (∑j−1
l=0 plfl(x) + (pj −∆)fj(x)

)
(1− ωj+1 +∆)∑m

l=0 plfl(x)
dx

(1− ωj+1 +∆) δ1,j(∆) + (ωj+1 −∆)δ2,j(∆)(A.5)

=k

∫ [
(ωj+1 −∆)

(
∆fj +

∑m
l=j+1 plfl

)
− (1− ωj+1 +∆)

(∑j−1
l=0 plfl + (pj −∆)fj

)]2∑m
l=0 plfl(x)

dx

≥0(A.6)

When (1 − ωj+1 + ∆)[
∑j−1

l=0 plfl(x) + (pj − ∆)fj(x)] = (ωj+1 − ∆)[∆fj(x) +
∑m

l=j+1 plfl(x)],

(A.5) = 0. The case when j ∈ {0,m} can be proved similarly. □

Proof of Lemma A.1.3. When Ac
1,j holds,

j−1∑
l=0

plfl(x) + (pj −∆)fj(x) =

(
j−1∑
l=0

pl

)
fj(x) + (pj −∆)fj(x)

= (ωj+1 −∆)fj(x).

When Ac
2,j holds,

∆fj(x) +

m∑
l=j+1

plfl(x) = ∆fj(x) +

 m∑
l=j+1

pl

 fj(x)

= (1− ωj+1 +∆)fj(x).

By Lemma A.1.2, δ1,j(∆) = δ2,j(∆) = 0. Thus, Tj(∆) = 0. □
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Proof of Lemma A.1.4. By Lemma A.1.1,

Tj(∆) =
1

k

[
δ1,j(∆)

(ωj+1 −∆)(1− ωj+1 +∆)

]2
.

By Lemma A.1.2, δ1,j ≥ 0. The monotonicity of Tj(∆) is the same as that of

T
1/2
j (∆) =

δ1,j(∆)

(ωj+1 −∆)(1− ωj+1 +∆)
√
k

=

√
k
∫ [

∑j−1
l=0 plfl(x)+(pj−∆)fj(x)]

2∑m
l=0 plfl(x)

dx−
√
k(ωj+1 −∆)2

(ωj+1 −∆)(1− ωj+1 +∆)
.

Here we do a transformation for easier calculation. Let ωj+1 −∆ = 1− θ, where

θ ∈ [1− ωj+1, 1− ωj ] ⊆ (0, 1) when 1 ≤ j ≤ m− 1.

Accordingly, we have pj −∆ = 1− θ − ωj . Then,

T
1/2
j (θ)
√
k

=

∫ [
∑j−1

l=0 plfl(x)+(1−θ−ωj)fj(x)]
2∑m

l=0 plfl(x)
dx− (1− θ)2

θ(1− θ)

=

∫ [
∑j−1

l=0 plfl(x)+(1−ωj)fj(x)]
2
+θ2fj(x)

2−2θfj(x)[
∑j−1

l=0 plfl(x)+(1−ωj)fj(x)]∑m
l=0 plfl(x)

dx

θ(1− θ)

−
∫ [

∑m
l=0 plfl(x)][(

∑j−1
l=0 plfl(x)+(1−ωj)fj(x))+θ2fj(x)−2θ(

∑j−1
l=0 plfl(x)+(1−ωj)fj(x))]∑m

l=0 plfl(x)
dx

θ(1− θ)

=

∫ [
∑j−1

l=0 plfl(x)+(1−ωj)fj(x)][(1−ωj+1)fj(x)−
∑m

l=j+1 plfl(x)]∑m
l=0 plfl(x)

dx

θ(1− θ)

+ θ2

∫ fj(x)
2−fj(x)[

∑m
l=0 plfl(x)]∑m

l=0 plfl(x)
dx

θ(1− θ)

+ 2θ

∫ [
∑m

l=0 plfl(x)−fj(x)][
∑j−1

l=0 plfl(x)+(1−ωj)fj(x)]∑m
l=0 plfl(x)

dx

θ(1− θ)
.(A.7)
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Take the derivative of the above quantity (A.7) w.r.t. θ, we have

dT
1/2
j (θ)
√
k dθ

=θ2

∫ fj(x)[fj(x)−
∑m

l=0 plfl(x)]∑m
l=0 plfl(x)

dx+ 2
∫ [

∑m
l=0 plfl(x)−fj(x)][

∑j−1
l=0 plfl(x)+(1−ωj)fj(x)]∑m

l=0 plfl(x)
dx

θ2(1− θ)2

+ (2θ − 1)

∫ [
∑j−1

l=0 plfl(x)+(1−ωj)fj(x)][(1−ωj+1)fj(x)−
∑m

l=j+1 plfl(x)]∑m
l=0 plfl(x)

dx

θ2(1− θ)2
.(A.8)

Notice that θ2(1 − θ)2 > 0 for all θ ∈ (0, 1). Also notice that the numerator of (A.8) has the

structure of

Aθ2 +B(2θ − 1).

When A,B ̸= 0 and A+B ̸= 0, limθ→0+(A.8) = sign(−B) ·∞ and limθ→1−(A.8) = sign(A+B) ·∞.

Next we show that A+B ≥ 0 and B ≥ 0.

A+B =

∫ [∑j−1
l=0 plfl(x) + (1− ωj)fj(x)− fj(x)

]
[
∑m

l=0 plfl(x)− fj(x)]∑m
l=0 plfl(x)

dx

+

∫ [∑j−1
l=0 plfl(x) + (1− ωj)fj(x)

] [∑j
l=0 plfl(x)− ωj+1fj(x)

]
∑m

l=0 plfl(x)
dx

=

∫ [∑j−1
l=0 plfl(x)− ωjfj(x)

]
[
∑m

l=0 plfl(x)− fj(x)]∑m
l=0 plfl(x)

dx

+

∫ [∑j−1
l=0 plfl(x) + (1− ωj)fj(x)

] [∑j−1
l=0 plfl(x)− ωjfj(x)

]
∑m

l=0 plfl(x)
dx

=

∫ [∑j−1
l=0 plfl(x)− ωjfj(x)

] [∑m
l=0 plfl(x) +

∑j−1
l=0 plfl(x)− ωjfj(x)

]
∑m

l=0 plfl(x)
dx

=

∫ [∑j−1
l=0 plfl(x)− ωjfj(x)

]2∑m
l=0 plfl(x)

dx

≥0
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The equality holds when
∑j−1

l=0 plfl(x) = ωjfj(x).

B =

∫ [
∑m

l=0 plfl(x)]
[
(1− ωj+1)fj(x)−

∑m
l=j+1 plfl(x)

]
∑m

l=0 plfl(x)
dx

+

∫ [
(1− ωj+1)fj(x)−

∑m
l=j+1 plfl(x)

]2∑m
l=0 plfl(x)

dx

=

∫ [
(1− ωj+1)fj(x)−

∑m
l=j+1 plfl(x)

]2∑m
l=0 plfl(x)

dx

≥0

The equality holds when (1− ωj+1)fj(x) =
∑m

l=j+1 plfl(x).

When A + B > 0 and B > 0,
dT

1/2
j (θ)

dθ is negative when θ is close to 0 and positive when θ is

close to 1. Considering the quadratic structure of the numerator of (A.8), it indicates that
dT

1/2
j (θ)

dθ

has only one root in (0, 1). There are 3 possibilities of monotonicity of T
1/2
j (θ) according to the

position of ωj and root of
dT

1/2
j (θ)

dθ .

1. T
1/2
j (θ) is strictly decreasing on (1 − ωj+1, 1 − ωj), i.e., the root of

dT
1/2
j (θ)

dθ is greater than

1− ωj .

2. T
1/2
j (θ) is strictly increasing on (1 − ωj+1, 1 − ωj), i.e., the root of

dT
1/2
j (θ)

dθ is smaller than

1− ωj+1.

3. T
1/2
j (θ) first strictly decreases and then strictly increases on (1− ωj+1, 1− ωj), i.e., the root

of
dT

1/2
j (θ)

dθ lies between (1− ωj+1, 1− ωj).

No matter which case happens, T
1/2
j (θ) take its maximum at 1− ωj+1 or 1− ωj . Or if we use

Tj(∆), Tj(∆) takes its maximum at ∆ = 0 or pj .

When A = 0 and B > 0, the numerator is not quadratic. But
dT

1/2
j (θ)

dθ is still negative when θ

is close to 0 and positive when θ is close to 1. This is similar to the previous scenario.

When A + B > 0 and B = 0,
dT

1/2
j (θ)

dθ is always positive on (0, 1). Therefore Tj(∆) takes its

maximum at ∆ = pj .

When A+B = 0 and B > 0, the numerator of (A.8) becomes −Bθ2+B(2θ− 1) = −B(1− θ)2.

So (A.8) becomes −B/θ2. Therefore,
dT

1/2
j (θ)

dθ is always negative and Tj(∆) take its maximum at

∆ = 0.
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When A+B = 0 and B = 0, Tj(∆) is a constant function ∀∆ ∈ (0, p).

Next we discuss the corner case when j = 0, i.e., fj(x) is the first distribution in the whole

sequence. We will show that T0(∆) takes its maximum at ∆ = 0 or it could be a constant function.

The corresponding T
1/2
0 (θ) is defined as:

T
1/2
0 (θ) =

√
k
∫ [(1−θ)f0(x)]

2∑m
l=0 plfl(x)

dx−
√
k(1− θ)2

θ(1− θ)
,

where θ ∈ [1− ω1, 1). The derivative is

1√
k

dT
1/2
0 (θ)

dθ
=θ2

∫ [
∑m

k=1 pkfk(x)−(1−ω1)f0(x)]f0(x)∑m
l=0 plfl(x)

dx

θ2(1− θ)2

− (2θ − 1)

∫ [
∑m

k=1 pkfk(x)−(1−ω1)f0(x)]f0(x)∑m
l=0 plfl(x)

dx

θ2(1− θ)2
.(A.9)

Notice that the numerator of (A.9) has the structure of Aθ2 + B(2θ − 1) with A + B = 0. The

numerator of (A.9) becomes −Bθ2 + B(2θ − 1) = −B(1 − θ)2. So (A.9) becomes −B/θ2. It has

been shown that B ≥ 0. Therefore,
dT

1/2
0 (θ)
dθ is always negative and T0(∆) take its maximum at

∆ = 0. Therefore T
1/2
0 (θ) is strictly decreasing on [1 − ω1, 1), and T0(∆) takes its maximum at

∆ = 0. Also, B = 0 when
∑m

l=1 plfl(x) = (1 − ω1)f0(x), implying T0(∆) is a constant function

when ∆ ∈ [0, p1).

Similarly, consider the other corner case that j = m, i.e., there is no other distributions on the

right side of fm(x). This is symmetric to j = 0 scenario. T
1/2
m (θ) is strictly increasing on (0, pm]

when A1,m holds. Then, Tm(∆) takes its maximum at ∆ = pm. When Ac
1,m holds, Tm(∆) is a

constant function. □

Proof of Lemma A.1.5. According to Lemma A.1.4, when u is between two adjacent change-

points, the monotonicity of T (u) is restricted to 4 possibilities: strictly increasing, strictly de-

creasing, strictly decreasing then increasing, degenerating to a constant function. Therefore, any

u ∈ (ωj , ωj+1) cannot belongs to ∂argmaxu∈(0,1) T (u). Next, we rule out the possibilities that

∂argmaxu∈(0,1) T (u) = {0, 1}, {0}, or {1}.
If ∂argmaxu∈(0,1) T (u) = {0}, it indicates T (u) strictly decreases when u ∈ (0, ω1), which

contradicts with Lemma A.1.4. Similarly, ∂argmaxu∈(0,1) T (u) = {1} can also be ruled out.
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If ∂argmaxu∈(0,1) T (u) = {0, 1}, it indicates that T (u) is nonincreasing on (0, ω1) and nonde-

creasing on (ωm, 1). Also, limu→0 T (u) = limu→1 T (u). By Lemma A.1.4, T (u) must be a constant

function on (0, ω1) and (ωm, 1). Furthermore, if T (u) is not a constant function on (0, 1), there

must exist another ωj ∈ ∂argmaxu∈(0,1) T (u) other than 0 and 1. Therefore, T (u) is a constant

function on u ∈ (0, 1). By Lemma A.1.4, when u ∈ (ω1, ω2), T (u) is a constant function indicates

f0 = f1, which is contradictory. □

Proof of Lemma A.1.6. In this proof, we use the same notation in Lemma A.1.4. Let

1√
k

dT
1/2
j−1(θ)

dθ
=

Aθ2 +B(2θ − 1)

θ2(1− θ)2
,

where

A+B =

∫ [∑j−2
l=0 plfl(x)− ωj−1fj−1(x)

]2∑m
l=0 plfl(x)

dx,

B =

∫ [
(1− ωj)fj−1(x)−

∑m
l=j plfl(x)

]2∑m
l=0 plfl(x)

dx.

Furthermore,

B =

∫
[(1− ωj)fj−1(x)− pjfj(x)− (1− ωj+1)fj(x)]

2∑m
l=0 plfl(x)

dx

=

∫ [
(1− ωj)fj−1(x)− (1−ωj)

ωj

∑j−1
l=0 plfl(x)

]2∑m
l=0 plfl(x)

dx

=

∫ [
1−ωj

ωj

∑j−2
l=0 plfl(x)−

(1−ωj)ωj−1

ωj
fj−1(x)

]2∑m
l=0 plfl(x)

dx

=

(
1− ωj

ωj

)2

(A+B).

The derivative
dT

1/2
j−1(θ)

dθ can be represented in the following way:

(A.10)
1√
k

dT
1/2
j−1(θ)

dθ
=

[
2ωj−1
(1−ωj)2

]
Bθ2 + 2Bθ −B

θ2(1− θ)2
.

55



Notice that 1 − ωj is a root of the derivative, which can be seen easily by plugging θ = 1 − ωj in

(A.10). Recall that
dT

1/2
j−1(θ)

dθ only has one root on θ ∈ (0, 1), then Tj−1(θ) is strictly increasing on

[1− ωj , 1− ωj−1].

The case of Tj+1(θ) can be proved similarly. □

Proof of Lemma A.1.7. By Lemma A.1.5, if fj ̸= fj+1, there exists ωj , j ∈ {1, . . . ,m} such
that ωj ∈ argmaxu∈(0,1)T (u), since T (u) is continuous. If ω̄ only contains finite numbers of u, then

ω̄ must consists of ωj ∈
[
n
[1,n]
le
n ,

n
[1,n]
ri
n

]
. Let Vϵ(ωj) := {u : |u− ωj | ≤ ϵ}. Observe that

⋂
ωj∈ω̄

{|û− ωj | > ϵ} ⊆
⋂

ωj∈ω̄

 sup
u∈

⋂
ωk∈ω̄ Vϵ(ωk)c

(
S[1,n](nu)

n
− S[1,n](nωj)

n

)
≥ 0

 .

We can rewrite the supremum on the right side as

sup
u∈

⋂
ωk∈ω̄ Vϵ(ωk)c

(
S[1,n](nu)

n
− S[1,n](nωj)

n

)

= sup
u∈

⋂
ωk∈ω̄ Vϵ(ωk)c

S[1,n](nu)

n
− sup

u∈
⋂

ωk∈ω̄ Vϵ(ωk)c
T (u)

−
[
S[1,n](nωj)

n
− T (ωj)

]
+

 sup
u∈

⋂
ωk∈ω̄ Vϵ(ωk)c

T (u)− T (ωj)

 .

By mimicking the proof of Theorem 5.2.1 in Chen & Friedman (2017), it is not hard to see that

when fj ’s are continuous multivariate distributions, if the graph is a k−MST, k = O(1), based on

the Euclidean distance,
S[1,n](nωj)

n
a.s.→ T (ωj). Notice that sup

u∈
⋂

ωk∈ω̄ Vϵ(ωk)c

S[1,n](nu)

n
− sup

u∈
⋂

ωk∈ω̄ Vϵ(ωk)c
T (u) > ϵ


⊆

 sup
u∈

⋂
ωk∈ω̄ Vϵ(ωk)c

∣∣∣∣∣S[1,n](nu)

n
− T (u)

∣∣∣∣∣ > ϵ

 .

By (A.3), the probability of the above event converge to 0. Finally, supu∈
⋂

ωk∈ω̄ Vϵ(ωk)c
T (u) −

T (ωj) < 0 when ωj ∈ ω̄, as u is bounded and the shape of T (u) is determined by lemma A.1.4. □
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A.4. Choice of c

We here check the choice of c in the expanded pseudo BIC ep-BIC(τ̃ ) = eAS(τ̃ ) − cm̃ log n

numerically. We use the g.WBS-based version and all the other parameters are set at their default

values. We use the same simulation Settings 6-9 defined in Section A.1 with n set to be 120. Each

simulation settings is repeated 1000 times, with dimensions d = 20, 50, 100, 500 and 1000. The

number of truly and falsely detected change-points are plotted in Figure A.1. A true change-point

τj is deemed to be detected if an estimated change-point exists within 2 observations of it. The

number of falsely detected change-points is defined as the number of estimated change-points minus

the number of truly detected change-points.
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Figure A.1. The average number of true discoveries and false discoveries under
different values of c’s setting. Each has 1,000 replicates.

We can see from Figure A.1 that the average true discoveries decreases faster after roughly

c = 2. For average false discoveries, it decreases slower after roughly c = 2. Though the exact
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position of change varies a bit across different settings, we recommend c = 2 since it reaches a good

balance between power and false discovery rate.
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