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ABSTRACT OF THE DISSERTATION

Essays on Identification and Estimation of Structural Economic Models

by

Shaomin Wu
Doctor of Philosophy in Economics
University of California, Los Angeles, 2023

Professor Rosa Liliana Matzkin, Chair

This dissertation consists of three chapters that study the identification and estimation of
structural economic models. Chapter 1, “Identification and Estimation of Nonseparable
Triangular Equations with Mismeasured Instruments” studies the nonparametric
identification and estimation of the marginal effect of an endogenous variable X on the
outcome variable Y, given a potentially mismeasured instrument variable W*, without
assuming linearity or separability of the functions governing the relationship between
observables and unobservables. In order to address the challenges arising from the
co-existence of measurement error and nonseparability, I first employ the deconvolution
technique from the measurement error literature to identify the joint distribution of
Y, X, W* using two error-laden measurements of W* 1 then recover the structural
derivative of the function of interest and the “Local Average Response” (LAR) from the
joint distribution via the “unobserved instrument” approach in Matzkin| (2016)). I also
propose nonparametric estimators for these parameters and derive their uniform rates of
convergence. Monte Carlo exercises show evidence that the estimators I propose have good
finite sample performance.

Chapter 2, “Two-step Estimation of Network Formation Models with Unobserved

Heterogeneities and Strategic Interactions”, characterizes the network formation process as

i



a static game of incomplete information, where the latent payoff of forming a link between
two individuals depends on the structure of the network, as well as private information on
agents’ attributes. [ allow agents’ private unobserved attributes to be correlated with
observed attributes through individual fixed effects. Using data from a single large
network, I propose a two-step estimator for the model primitives. In the first step, I
estimate agents’ equilibrium beliefs of other people’s choice probabilities. In the second
step, I plug in the first-step estimator to the conditional choice probability expression and
estimate the model parameters and the unobserved individual fixed effects together using
Joint MLE. Assuming that the observed attributes are discrete, I showed that the first step

~1/4 where N is the total number of linking

estimator is uniformly consistent with rate N
proposals. I also show that the second-step estimator converges asymptotically to a normal
distribution at the same rate.

Chapter 3, “Identification and Estimation in Differentiated Products Markets Where
Firms Affect Consumers’ Attention” studies the nonparametric identification and
estimation of a demand and supply system where firms affect consumers’ consideration sets
via costly marketing inputs, when market-level data is available. On the demand side, I
characterize preferences and considerations nonparametrically, allowing rich heterogeneities
and correlations between them. On the supply side, I characterize firms’ optimal choices by
a set of first-order conditions without specifying the form of the oligopoly model. The
demand and supply sides form a simultaneous system of equations in the spirit of Berry
and Haile| (2014)). T then show the identification of the system using the method proposed
by Matzkin (2015). Moreover, using the variations of exclusive regressors entering
preferences and considerations respectively, I separately identify features of the utility
functions and the attention functions. Based on the constructive identification results, I

propose nonparametric estimators of the demand, utility, and attention functions and show

their asymptotic properties.
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Chapter 1

Identification and Estimation of Nonseparable

Triangular Equations with Mismeasured Instruments

1.1 Introduction

This paper studies the nonparametric identification and estimation of the marginal effect of
an endogenous variable X on the outcome variable Y, given a potentially mismeasured
instrument variable W*, without assuming linearity or separability of the functions
governing the relationship between observables and unobservables. Without measurement
error, this type of model is referred to as “nonseparable triangular equations” and its
identification was studied by (Chesher (2003)), Imbens and Newey| (2009), and Shaikh and
Vytlacil (2011). Measurement error on the instrument variable poses additional challenges
to the identification and estimation of the model primitives. Because of nonseparability,
simply using an error-laden measurement as the instrument leads to inconsistent results.
Because of measurement error, the true value of W* is unobserved, making it impossible to
proceed using existing methods in Imbens and Newey| (2009). In this paper, I propose a
way to deal with the two difficulties mentioned above and show the identification of

average and individual-level marginal effects. 1 also propose estimators for these



parameters. To illustrate ideas, I study the following model:

Y =m(X,e)

X =h(W* n),

where X is endogenous in the sense that it’s correlated with €, and W* is the instrument
variable independent with both of the error terms ¢, but cannot be measured accurately.
Following the measurement error literature, 1 assume that there are two error-laden
measurements of W* denoted as Wy, W,. Denote the corresponding measurement errors as
AW, AWy, ie. W = Wi + AW, W* = Wy + AW,. 1 could allow a vector of observed
exogenous control variables Z to enter both equations and all the arguments will carry over
by conditioning on Z, so they are omitted here for simplicity.

To give an example of where this model can be used, consider the Engel curve
estimation studied in Blundell et al| (2007). They used Sieve Minimum Distance to
estimate a semi-nonparametric model, but the curve can be estimated under less restrictive
modeling assumptions as done in [Imbens and Newey (2009). Y here is the share of
expenditure on a commodity of a household. X is the log of the household’s total
expenditure. Z is a vector capturing the household’s demographic composition and e
captures the household’s unobserved heterogeneity. Researchers might be interested in the
average response of households’ expenditure on food Y, to changes in household’s total
expenditure X, holding the distribution of unobserved household heterogeneity Fx—,
fixed. This parameter is called “Local Average Response” (LAR) by |Altonji and Matzkin

(2005)) and if the function m is differentiable, it can be written as

LAR(z) = / @”gi’e) Fax—s(e)de. (1.1)

In addition, researchers might also be interested in the structural derivative of the function

m. This is a more disaggregate level parameter. It stands for the marginal response of Y to



changes in X for a specific household, say the household with log total expenditure equal z,
and share of food expenditure equal 3. Denote the structural derivative of this household as
p(y,z). If m is differentiable and strictly monotone in its second argument for all values of

X, p(y, ) can be written as

pYT) = —5 — ) : (1.2)

where m ™!

is the inverse of m with respect to its second argument, and m~'(y, ) is the
value of € of the specific household one is interested in. To estimate these parameters, under
the assumption that heterogeneity in earnings is not correlated with households’ preferences
over consumption, one can use the income of the head of the household as the IV W™*.
The income variable is likely to suffer from measurement errors. Researchers could obtain
multiple measurements of it from panel data, for example.

To see how nonseparability makes it harder to identify parameters like the LAR and the

structural derivative when the IV W* is mismeasured, consider the case when both equations

are linear:

Y=ap+o X +e¢€

X =Bo+bW* +n,

where E[eW*] = 0 (exclusion restriction) and E[XW*| # E[X]E[W*] (relevance condition).
Suppose I have Wy = W* + AW, as an error-laden measurement of W*, it’s not hard to
verify that E[eWs] = 0 and X £ W, still hold under mild assumptions on AW, (e.g.
E [AW,|Y, X] = 0). This means in a linear model, even if the instrument variable suffers
from measurement errors, one can still use the error-laden measurement W5 as an IV and
proceed as usual. However, this is not the case in nonseparable models. Plugging W5 into
the second equation yields X = h(Wy — AW3,n), where both AW, and 5 are unobervable

and importantly, Wy £ AW,. This means if I were to use W5 as an IV, both of the two



equations in the triangular system would contain endogenous variables and nothing can be
done without additional IVs outside of this system. This also means that if one simply uses
W5 as the instrument variable and proceeds with the standard techniques in [mbens and
Newey| (2009), they would get inconsistent results.

Given that nonseparability makes the problem much harder to solve, a natural
question is why one wants to deal with nonseparable models instead of an additive
separable or linear model. There are multiple reasons why researchers might prefer a
nonseparable model. First, nonseparable models allow the observed variable X and the
unobserved variable € to interact in a flexible way. For example, a recent paper by
Brancaccio et al. (2020a) estimated the matching function m(s,e) between ships (of
number s) and exporters (of number e which is unobserved) at a seaport. Not imposing
functional form assumptions (including separability) is important. It allows the authors to
remain agnostic about the nature of the meeting process. In addition, the flexibility of
functional forms can be key when deriving welfare and policy implications (see Brancaccio
et al| (2020b)). Second, nonseparability is also important when X and € are correlated,
since in many cases the source of endogeneity is the nonseparable nature of the model. For
example, X could come from the optimization problem of maximizing the expected value
of Y minus the production cost, given an exogenous variable W, and some noisy
information about e. Think of X as an individual’s education level, or a firm’s input level,
and Y as the individual’s lifetime earnings, or the firm’s output. Then X could be the
solution of max, { E[m(z,e€)|n, W] —c(xz,W)}, leading to X = h(W,n), where n is some
noisy proxy of €, and c(x,W) is the cost function. If the function m were additively
separable in €, the optimal choice of x would not even depend on 7.

When there is no measurement error, Imbens and Newey| (2009) proposed a way to
identify the model primitives in a nonseparable triangular system, making use of the fact
that X L e|n. They first estimate the control variable n (or a strictly monotone function of

n, denoted as V in their paper) from the second equation, and then estimate the model



primitives in the first equation by first conditioning on the estimated 7, and then integrate
it out. Their method cannot directly apply when the instrument variable W* in the second
equation is mismeasured, because the control variable (or control function) cannot be
observed from error-laden measurements of W*. A recent paper by Aradillas-Lopez| (2022)
studies inference in models where control functions are unobserved. The setup of his paper
is different from this paper in many aspects. He requires the availability of observable or
estimable bounds for the unobserved control functions, which is not required by the model
in this paper. Instead, this paper requires the availability of error-laden measurements and
builds upon the measurement error literature. Also, his focus is on constructing confidence
sets for finite-dimensional parameters, while my focus is on point identification and
estimation of infinite-dimensional parameters.

In this paper, I propose a method that makes use of the same intuition as in Imbens
and Newey| (2009), but can deal with mismeasured W*. Same as Imbens and Newey
(2009), I utilize the fact that the correlation between X and e is merely coming from 7, but
instead of estimating and conditioning on 7, I separate out this correlation by writing € as
a function of n and a uniformly distributed random variable which is independent with X
and W*. In this way, I am able to write the model primitives like the structural derivative
and LAR as functionals of the joint distribution of Y, X, W*, which can be recovered using
the two error-laden measurements and the deconvolution technique developed in the
measurement error literature (e.g. |[Fan (1991a), |[Fan and Truong (1993), |Schennach
(2004a)), Schennach (2004b))). I can thus identify the model primitives in a constructive
way and estimate them using plug-in estimators. I also derive uniform rates of convergence
of the estimators.

This paper is most related to [Schennach et al. (2012) (SWC, hereafter), where the
authors also consider a triangular simultaneous equations model with a mismeasured
exogenous instrument. This paper differs from their paper in the modeling assumptions,

parameters that can be identified, and also theoretical methods. SWC shows that under
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separability assumption on the second equation, the instrument conditioned marginal
responsql| E [m,(X,e)|W* = w*] can be written as a ratio of the derivative of the
conditional mean of Y given W* over the derivative of the conditional mean of X given
W=, both of which can be recovered from the data given two error-laden measurements
Wi, Wy. Integrating out W*, they can also recover the average response E [m.(X,e€)].
However, under the nonseparability of both of the equations, their method cannot recover
either of the two parameters. Different from SWC, this paper shows that it’s possible to
identify not only the instrument-conditioned marginal response and the average marginal
response but also the structural derivative and LAR, even when both of the equations are
nonseparable. This conclusion, however, comes at the expense of more assumptions on the
function m and unobservables compared with SWC. In particular, this paper assumes strict
monotonicity of the function m on its second argument, and scalar unobservables, which
are not required in SWC. Regarding estimation, both SWC and this paper employ plug-in
estimators, but the asymptotic analysis in this paper is a bit more complex than in SWC,
because of the observed variable components Y, X of the joint density fy x w+. They have
non-trivial implications on the asymptotic treatment (including the convergence rates) so
that SWC’s asymptotic analysis cannot directly apply here.

This paper is also closely related to Song et al. (2015). In their paper, the coauthors
study a nonseparable model with mismeasured endogenous variable, assuming a correctly
measured control variable is available. The setup of this paper is different from theirs. This
paper also studies nonseparable models with endogeneity, but instead of mismeasured
endogenous variable, this paper studies the case when the endogenous variable is correctly
measured, and instead of assuming the existence of a correctly measured control variable,
this paper assumes that a potentially mismeasured instrument variable is available. The
two papers are complementary depending on the availability of data. Regarding the

parameters of interest, in addition to the various parameters studied in [Song et al.| (2015]),

m, denotes the partial derivative of the m function with respect to its first argument.



including the average marginal response conditional on the control variable, the average
marginal response, the LAR, and the weighted average version of these variables, this
paper additionally show identification of the structural derivative, which is more
disaggregate and could be helpful when researchers are interested heterogeneous effects.
The rest of the paper consists of six parts. Section 2 introduces the model and
assumptions. Section 3 talks about the identification of the model primitives. Section 4
proposes plug-in estimators of the model primitives identified in Section 3, and talks about
their asymptotic properties. Section 5 conducts limited Monte Carlo studies to show the

finite sample performance of the estimator. Section 6 concludes.

1.2 The Model

I consider the following triangular model in this paper:

Y =m(X, Z,¢)

X =h(W*, Z,n)

where X is an observed endogenous variable that is correlated with e. In the returns to
education example, X stands for years of education, which is correlated with e since it’s
chosen by the agent as an equilibrium outcome. 7 is a vector of observed exogenous variables
which are independent with € and . W* is an instrument for X and satisfies W* L (¢, n).

Researchers cannot measure W* exactly but have two error-laden measurements of it:

Wy =W* + AW,

Wy = W* + AW,.

The measurement errors satisfy E[AW; | W* AW, = 0 and AW, L W* Y, X, Z. As in

the literature studying the identification of nonseparable models (Chesher| (2003)), Matzkin



(2003),Altonji and Matzkin| (2005),Matzkin (2015))), I impose monotonicity assumptions on
the structural functions. I assume that m is strictly increasing in ¢ and that h is strictly
increasing in 7. Since the vector of covariates Z is correctly measured and exogenous, all
the analysis can be done conditional on Z. For brevity, from now on I omit the vector Z
in my notations and work on the simplified model below, while other assumptions on the

structural functions and distributions of variables remain unchanged.

Y =m(X,e) (1.3)

X = h(W*, 1) (1.4)

The assumptions mentioned above are stated formally below:

Assumption 1.1. Function m and h are continuously differentiable with respect to both of

their arguments and are strictly increasing in their respective second argument.
Assumption 1.2. W* L (e, 7).
Assumption 1.3. W, = W* + AW, and Wy = W* + AWs,.
Assumption 1.4. E[AW; | W* AW, =0, AW, L W* Y, X.
Following the measurement error literature, I also impose:
Assumption 1.5. For any finite t € R, |Elexp (itWs)]| > 0.

Note that for the measurement error AW, only the mean independence assumption is
imposed, which is weaker than the assumption on AW,. This weaker assumption is
sufficient to identify the distribution of W* (Schennach| (2004b)). On the other hand,
although AW, satisfies strong independence assumptions, making W5 a measurement with
classical measurement error, one still cannot use W5 as the instrument because of the

nonseparability of the model. More specifically, plugging W, into the second equation in



the triangular system yields

X = h(W2 — AWQ,T/)

This is a nonseparable model with two unobservables AW5 and 7, and Wj is not independent
with AW,;. This means both of the two equations in the system contain endogenous variables
and thus cannot be identified without further assumptions.

In addition, I also impose the following assumptions on the distribution of Y, X, W*:

Assumption 1.6. The distribution of (Y, X, W*) has compact support, denoted as S(y,x,w+)

and has a joint density fy xw- which is twice continuously differentiable on R3.

8FX\W*:w* (LIJ)
ow*

Assumption 1.7. For any x,w* belonging to the support of X, W*, > 0.

Assumption is a sufficient condition to ensure 2M-1

3t ’nzr(x’w*) # 0 for all z,w* on

the support of X, W*. This assumption is like the rank condition imposed in the linear
instrument variable models. To illustrate this idea, suppose h is a linear function such that
X = 7W* + 1, then Fxjw+—y~(x) = F(x — mw*), and m # 0 is a neccessary condition for

Assumption [1.7]

1.3 Identification

In this section, I show the identification of the model parameters in two steps. First, assuming
that the joint distribution of Y, X, W* is known, I show identification of the derivative of the
structural function m with respect to x, when the value of € is fixed, and the identification of
other model parameters including the LAR and AR. Then I show how to identify the joint

distribution of Y, X, W* from the two measurements W; and W5.



1.3.1 Identification of parameters assuming the joint distribution
of Y, X, W* is known

The independence between W* and €, implies that conditional on 7, W* and € are
independent. The next lemma uses this fact to show that one can write € as a function of n
and another random variable which is independent with X, W*. This lemma is similar to
Proposition 5.1 in Matzkin| (2016). Before stating the lemma, I first impose the following

assumption on the conditional distribution of € given 7:
Assumption 1.8. Fi,_;(€) is strictly increasing in €, given any values of 1.

Lemma 1.1. Under the model setup, suppose Assumption is satisfied. There exists a
function s : R? — R strictly increasing in its second argument and an unobservable random

term & such that

e =s(n,0), (1.5)

and § is independent of (X, W*) and is U(0,1).
Proof. See Appendix B. O

Next, I plug (1.5) into the first structural equation. The assumption that h is strictly
increasing in 7 implies that one can write the inverse of h(W*,n) w.r.t. g as r(X, W*). Then

I have

Y =m(X,e) =m(X,s(n,0)) =m(X,s(r(X,W"),§)) = v(X,W*J). (1.6)

Equation (1.6) builds a bridge between the structural function m and the reduced form
function v. Note that v is a function of observable variables X, W* and an unobservable
variable ¢ which is independent of the observables. The derivatives of v can be identified by

applying identification techniques in standard nonseparable models (Matzkin (2003))). To

10



identify the main parameter of interest, the derivative of the structural function m, one can
utilize the last equality in [L.6} m(X, s(r(X, W*),§)) = v(X, W*,d). Taking derivative w.r.t
X and W* yields:

om(z, €) om(z,€) 0s(n, 0) or(z,w*)  Jv(x,w*,0)
“or A T o 0
z e=s(r(z,w*),d) € e=s(r(z,w*),d) U n=r(z,w*) x x
(1.7)
om(x,e) 0s(n, d) or(x,w*)  OJv(z,w*, )
06 ) ow ow (18)
€ e=s(r(z,w*),d) U n=r(z,w*) w w
: om(z,e) 9s(n,d) .
Plug 1) into l} to cancel == s (58 87777 ‘nzr(%w*) yields

* or(z,w*)
om(z,€) _ Ov(z,w*,6)  du(x,w, ) e
* or(x,w*) *
ax :S(T('rvw*)v(s) ax aw ow*

Taking derivative w.r.t. W* on both sides of X = h(W* r(X, W*)) and cancelling out the

ar(z,w™*)

unobserved W‘ one can get M’ = — 522 . Then one can write
n n=r(z,w*)’ ow n=r(z,w*) dx
0 ) ov(x,w*,d ov(x,w*,d 1
m(z, €) _ v(x, w*, o) N v(x, w*, o) . ' (1.9)
8$ e=s(r(z,w*),) ax 8'11]* (w 1) ‘

n=r(z,w*)

The right-hand side of the equation (1.9)) can be identified from the data. To show this, note

that
FY|X:z,W*:w* (U(CC, w*, 5)) = F5(5) = 5 (1.10)
:>8FY\X=x,W*=w* (?/) i 8FY\X=:E,W*:w*<y) 50(90710*75) —0
Ox oy ox
N ov(w,w*,9) _ COFyix=swemu (Y) [ OFyix—p Wz (Y)
Ox or oy ’
Similarly

dv(z,w*,6)  OFyix=swomuw(¥) [ OFyixmsw=uw(y)
ow* ow* dy

11



ah(w*vn) . aFXlW*w*<x)/ 8FX‘W*:w*(SL’)

ow* ow* ox ’

where ¢ is the unique value such that y = v(z,w*,d) and 7 is the unique value such that

x = h(w*,n). Plug into (1.9)), one can get

OFy | x—z,w*=w*(¥) OFy | x—g,w*=w*(¥) OFx |w* =w* (Z)
ol ) = 210 e e —
’ - ox ~ Lo OFy | x=z w*=w* (¥) OFy | x=z,w*=w*(¥) OFx|w* =w* (T)
z=Z,e=m~1(Z,y) Ay Ay w
(1.11)

for all g,z belongs to support, and values of € such that §y = m(z,€). Note that as long as
y and x are fixed, € is fixed, no matter which value is picked for w*. This means there’s
actually overidentification for the structural derivative. To identify the LAR and AR, one
needs independent variations of € given X. Rewrite with slightly different notations

yields:

FY|X:x,W*=w* (U(l’, w*a 5)) = F(S((S) =0

=v(z,w*,0) = Fy L ©)

Y| X=z,W*=w*

so that one can write

— — 8F * —qp* (T
ﬁm(a:, 6) o aFg/\lX:ac,VV*:w" (5) _ aFg/\lX:ac,VV*:w" (6) X‘Wax_ ) (1 12)
or - or Ow* OF x| w =+ (z) * )
e=s(r(z,w*),0) o dwt

To show the identification of the LAR and AR, one needs to show that the support of
s(r(X,W*),d) given X = x is the same as the support of € given X = 2. This is stated

formally in the lemma below.

Lemma 1.2. Define random variable s = s(r(X,W*),d). Denote the support of s and e
conditional on X = x as Sgx—z and S¢x—,, respectively. If Assumption holds, then

Ss|x=2 = S¢|x=z, for all x belonging to its support.

12



Proof. See Appendix B. n

Lemma and [1.2| ensures that Fyx is the same as Fix, so that integrating %;”)

3(93)

over € given X = x will be equivalent to integrating over s given X = x. Then I have

the following identification results:

Jwex=(w")dddw*  (1.13)

1
LAR : E M\X:x :// om(z, €)
0 0T | war))

ox

AR:E[@mXe} ///18mxe

fxw=(z, w)dddw*dz. (1.14)
e=s(r(x,w*),d)

1.3.2 Identification of the joint density of Y, X, W*

First note that by Theorem 1 in |Schennach| (2004a)

S (t) ~ oxp /t E [ineiEWQ]

o E {ezf%} d

Then I can identify the density fy«(w*) by taking the Inverse Fourier Transform:

1 -

d(w*) = — [ e by (£)dt.

fiv-(w') = 5 [ b (1)

For the joint density fy xw+(y,z,w"), by Assumption , I have the following convolution:
fyxw, (T, ws) = /fY,X,W* (z,v) faw, (w2 — v)dv

Applying Fourier transformation on both sides (holding x constant) yields

(bfY,X,WQ (,) (t) = (bfy,x,w* (y,,) (t)¢AW2 (t)v

13



which, by Assumption implies

B ¢fY,X,W2(y7I,‘)(t) . ¢fy,x,w2(y7x7~)<t)¢w* (t)
¢fY,X,W* (y,2,°) (t) - ¢AW2 (t) - ¢W2 (t) . (115)

Then applying the inverse Fourier transform, one can get

1 X, Wy (4,2, t *
frixw(z,w") = %/e_”w Orxw, - Etgqbw 4 )dt,, (1.16)
and similarly,
1 Y, X, Wy (U5, t *
frxaws (g2 w%) = o / eitr 91 2;’W (i))aﬁw D (1.17)

Then Fx|w+—y-(2) follows from

Jooo fx e (y, @, w*)dx
Fx o () = (G RORTOLE (1.18)

and Fy|x—zw+=uw-(y) follows from

fgoo fY,X,W* (97 T, W*)dy
ffooo fY,X,W* (y7 z, w*)dy

FY|X:m,W*:w* (y) =
From the equations above, one can write the derivatives of the conditional CDFs as
functionals of the joint densities:

OFy | x=aw-=uw"(y) _ (fy MdS) fxwe(z,w*) — (f;yoo fY,X,W*(&JMU*)dS) %(f’w)

ow* f)2(7W* (xaw*)
Ofy.x 5,%,w * % Of x.w (z,w*
OFy x o () _ ([ 2055 ) Py ) — (2o S (s w)ds ) Rz
81’ f)2(7W* (x,w*)
OFy | X—o,w*=uw+(¥) _ Jy.xw+(y, 2, w*)
Jy fxwe(z, w*)
r  Ofx s,w * T * « (w™
8FX‘W*:’LU* (]}) o <ffoo f#g)ds) fW* ('lU ) - (ffoo fX7W* (S?w )dS) af‘gw(* )
g 72 ()
OF x|w=w= () _ fxwe (2, w)
Ox fo(w*)

14



This means that the right-hand side of the equation (|1.11)) can be written as a functional
of the joint density fy x w~, which can be identified from the data. To show identification
of the left-hand side of the equation , one needs to build the relationship between the
derivatives of conditional quantiles and the joint densities, which is shown in the following

lemmas:

Lemma 1.3. Let ¢ € [0,1] be a constant, then

—1 3] * (x,w* Fyl — *:w*(‘s) 0 « (y,z,w*
8FY\X=I,W*:U}*(5) _ 57&"&”&“” ) _ LY —fY’X’”gwiy” )dy
Our Frxrs (e (0), 2, 0%)
—1 1o} * (x,w* Fy — *:w*(é) 9] = (y,z,w*
aFY\X::c,W*:w* (5) 5 fX,Wam(ﬂf w*) ﬂifoIX W fY,X,w('%(y z,w )dy
= < : .
ox Ty x.we ( VX W (0) T W )
Proof. see Appendix B. n

The identification of the left-hand side of (1.13) and ((1.14) is a straightforward
implication of Lemma and equation ((1.12)).

1.4 Estimation

1.4.1 The Estimator

From now on, I use the following function to denote the joint density of Y, X, W* or its

derivative with respect to Y, X, W*:

aAfY,X,W* (y7 z, w*)
Ow* M Jyr219gr22

9x122,1,02,2 (ya xz, w*) -

where A1, Ag1, Moo € {0,1} and A = max{A;, Aa1, X202} < 1. The 0 — th order derivative
of a function is defined as the function itself. For convenience of notation, I also define
Ay = max{Az;, A22}. In this section, I first propose an estimator for gx, a,, . (Y, Z, W),

and then propose plug-in estimators for the structural derivative and a weighted average

15



version of the LAR since they can be written as known functionals of gx, x,; x,. (¥, 7, w*).
To make the expressions more transparent and clear, I show the explicit forms of the

functionals by taking the structural derivative as an example. I write each component on

the right-hand-side of equation [1.11]as

aF’Y|X::E,W*:w* (y)

ow*
 (Pegronls.w)ds)  (J2 gonols, 2 w)ds) (175 9100y, 2, w)dy)
(ffooo 90,00y T, w*)dy) (ffooo 90,00y, T, w*)dy>2

and

8FY|X:z,W*:w* (y)

ox
_ (ff/oo 90,0,1(37 z, W*)ds) (fi/oo 90,0,0(5, z, W*)ds) (f—oooo 90,0,1(3/» z, @U*)dy)
- e’} * N o) 2
(ffoo 90,0,0(97 T, w )dy) (f_oo g0,0,0 (y; z, 'U}*)dy)
and
aFY|X:a:,W*:w* (y) _ 90,0,0(y7 xz, w*)
dy (ffooo 9o.0,0(Y, T, w*)dy)
and
OFx|w—u ()
ow*

_ (ffoo J2% g100(y, 8 w*)dyds)

- (f(—)ooo 125 9000y, x, w*)dydx)

(ffoo J2% 9000(Y; s, w*)dyds) (ffooo 1% gro0(y, z, w*)dydx)
(ffooo I2% 9000y, 2, w*)dydx)Q

and

aFX\W*:w* (J]) . (ffooo G0,0,0 (yv z, w*)dy>
Oz (25 125 goo.0(y, @, we)dyde )

For the LAR, I will introduce a weighted average version of it, and propose an estimator
for this weighted average version of the LAR. The aim of introducing the weight is to ensure

that the integration is taken on a set where the joint density fy x w~ is bounded away from
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zero. This has the benefit of guaranteeing that the relevant functional is Fréchet differentiable
when fy x w+ appears in the denominator of it. The weighted average version of the LAR

is defined as follows:

X
WLAR(z) = E [W(X, W, E)W X =z
1
= // w(z, w*, ) Om(z, €) Jwe | x=e(w")dddw*, (1.19)
0 Ox e=s(r(z,w*),d)

where w(z,w*,€) is a known or estimable weighting function taking value 0 outside a
compact set M. As a weighting function, w(z, w*, €) also satisfies that given any values of z
such that w(z,-,-) could obtain non-zero values, [, . [ w(z,w*, €)few+x=z(€, w*)dedw* = 1.
The specific form of w is up to the researcher’s choice, however, to ensure easy calculation
of w(x, w*, s(r(z,w*),d)) on the right-hand side of (L.19), I require that function w(x, w*, €)
satisfy the following restriction: w(z,w* €) = @(z,w*) if € € [qnw*(n),qx,w*(ru)} and
w(z,w* €) = 0 otherwise, where @&(z,w*) is a known function with compact support, and
¢z (7) denotes the conditional-T quantile of € given X = z, W* = w*. The specific form of
function @w and the specific values of 7, and 7, are up to the researcher’s choice. Under this
restriction, w(z,w*, s(r(z,w*),d)) is equal to w(x,w*) if ¢ is between 7, and 7,, and is
equal to 0 otherwise. An example of function w(x,w*, €) is when &(z,w*) is a constant
equal to [(Tu —7) fg’ fW*‘X:x(w*)dw*}_l. The WLAR in this case can be interpreted as
the Local Average Response of a subgroup of individuals whose unobserved € is between its
7; and 7, conditional quantile given X, W* and whose W* is between w* and w*. Note that
even though X is correlated with e, neither the distribution of €|X nor the subgroup of
individuals changes as I take the derivative with respect to x. This means that my
objective of interest is the same group of people when studying the effect of the
counterfactual changes of the endogenous X. The WLAR can also be written as a
functional of gy, x, ;2. (Y, z,w*). The explicit form can be derived from Lemma and

equation (|1.12)).
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So far I have written the parameters of interest as functionals of g, x,, x,,(y, 7, w*) in
explicit forms. Next I focus on the estimation of gx, x,, . (¥, 2, w*). To deal with the
well-known ill-posed inverse problem when inverting a convolution operator, I base my

estimator on a smoothed version of gy, x, ;. x (Y, T, W*):

W — w*

« 1 ~ % ~ %
g)\1,>\2,1,>\2,2(y7x7w ahl) = /th <h1> g>\1,)\2,1,>\2,2(y7x7w )dw )

and use kernel functions satisfying the following assumption:

Assumption 1.9. The kernel functions K : R - R, Gy : R - R and Gxy : R - R
are measurable, symmetric. [K(x)de = 1, [Gy(y)dy = 1, [Gx(z)dz = 1. Gy, Gx
are differentiable. Gy, Gx, and their derivatives are bounded, and denote the maximum of
these bounds as G. Their Fourier transforms & — ¢x(€), € — ¢ay (€) and € — ¢y (€)
obey: (i) ¢p is compactly supported (without loss of generality, the support is [—1,1]) for
F € {K,Gx,Gy}; and (i) there exists &g such that ¢p(€) = 1 for €| < €p, where F €
{K,Gx,Gy}.

By assuming (ii), I use flat-top kernels proposed by [Politis and Romano| (1999)). The
benefit of using flat-top kernels is that the rate of decrease of the bias term will not be affected
by the order of the kernel, and will only be affected by the smoothness of the function to
be estimated. The restriction of compact support of the Fourier transform is without loss of
generality. As discussed by [Schennach| (2004b)), given any kernel K, one can always create
a modified kernel K that satisfies the assumption by using a “windowing” function. For

example,
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where

1 if |t| <t
W(t) = <1—i—exp ((1 — 1) (1= [t = (|t —t_)—l))>_ if1> [ >

0 if |¢] > 1

for some t € (0,1).
Assumption 1.10. E[|AW]|] < oc.

The following lemma shows that the smoothed version g, x,, x.,(y,z,w*, hy) can be
written as an expression involving the Fourier transform of the kernel function and the
characteristic functions of different variables. This expression makes it more straightforward

to introduce the estimator that will appear soon below.

Lemma 1.4. For (y,xz,w*) € Siy,x,w+) and h > 0, let

~ % *
w* —w -

* ]' ~ 3k
g)\1,/\2,1,)\2,2(y7x7w 7h1) = /th <h1> g)\l,)\gyl,/\z,Q(ywruw )dw .

where K satisfies Assumption|[1.9. Then under Assumptions and [1.10,

1 \ ¢f(>\2,17>\2,2>(y > )(t)¢W* (t)
ERUNVES —/ —it)™ e g (hyt) dt
Ir122,1,02,2 (y 1) o ( ) (bK( 1 ) (ng (t)
(A2,1,A2,2) _ 92 fy x,wy (y,m,w2)
where JCY,)Z(,IWQ2 ’ (y7 €, w2> = aZA);’lngAvaQ -
Proof. See Appendix B. n

I now define my estimator for g, x,, .Y, 2, w*, hy) by replacing ¢ (x 2, )(t),
T v, X, Wy Ty

ow+(t), and ¢w,(t) in Lemma |1.4] with their sample analogues. Formally,
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Definition 1. Let h, = (hin,honi,hon2) — 0 as n — 0. The estimator for

i dondes (Y, T, W) is defined as

~

ng(/\2,1v\2,2)( ) (t)¢W* (t)

N * 1 . —itw* kel o
G o1 Moo (y,x,w ,hn) = % / (—1t)>\1 e t ¢K(h1nt) Y, X, Wy qg (t) dt,
Wa

where

A

¢

: 1 -Y z—X
itW, (N21) (Y (A2,2)
6t 2 1+)\271 1+)\272 Gyzl ( )GX22 < )] ’

ty=FE
() hony” hopa hon,1 han,2

(A2,1,22,2)
fy,X7W2 (y,x,°)

dws (1) = B[]

~ t E [Z'W1€Z£W2}
Pw+ () = exp /o W

dg |

where B denotes the sample average, Gy,Gx denotes the kernel functions for Y, X,

A
respectively, and Gg?“)(x) = %. Gy, Gx are not necessarily the same as K.

Having defined g, x ;20 (Y, @, w*, hy), I can now define the estimator for p(y,z) by
replacing g, 1.x0. (Y, ¥, w*) with its estimator on the right-hand-side of Equation (1.11}).

Note that by Fubini’s Theorem

fgoo ¢ (0,A2,2)

(Ddsdu- (1)

v * 1 e A1 —itw* Iy x W (s,,°)
GX1,0,0,22,2 (Sa T, w >hn)d5 = 5 / <_1t) ten M ¢K(h1nt) = dt
Loo 2m dw, (1)
%) 1 N ¢f<07>\2,2)(x )<t>¢W* (t)
5 z,wt, ) dy = f/ i) e G (g t) —e dt
/_oo 9X1,0,0,22,2 (y ) Y o ( ) ¢K( 1 ) ¢W2 (t)
x oo 1 - iCoo 5 s (T dSA «(t
[ Grsootu s ha)dyds = 2= [ (it €10 gy T et O8O 1)
e g ¢W2 (t)

o BN * 1 . —itw* i
[ ooty awt h)dyde = o [ (=i € 6t bu- (2,

where I've let Gy (y) = [Y_. Gy (u) du and Gx(x) = [*. Gx (u) du denote the kernel CDFs,
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and I've defined:

. 1 5~ [(y=Y A r—X
itWs G G( 2,2)
‘ pLth22 v < haon 1 ) X < hon.2 )]

[N A
/ 10) (0.x2.2) (t)ds =F

—oo Ty, x,wy (s,z,)

2n,2
A | 1 o) (T — X
; dg _ E 61tW2 G( 2,2 -
P a0 Py "\ han

A

[m gng’WQ (S’.)(t)ds = E

v = - X
1tW2G T
‘ * ( hf2n,2 >] ‘

1.4.2 The Asymptotic Properties of the Estimator

In this subsection, I analyze the asymptotic properties for g, x,, x.. (¥, 2, w*, hy). 1 begin
by decomposing the difference between the estimator and the true value of the parameter as

the sum of a bias term, a variance term, and a remainder term.

Lemma 1.5. Suppose {Y;,Xi, W:,AWLi,WQ,i} is an IID sequence satisfying Assumptions

and and that Assumption holds. Then for (y,x,w*) € Sy,x,w+),

and h > 0,

g>\1,>\2,1,>\2,2 (ya z, w*7 h) 901,000 (yv z, w*)

= B>\17)\2,17>\2,2 (y7 z, w*’ h) + L/\17>\2,17>\2,2 <y7 Z, W*7 h) + R>\17>\2,17>\2,2 (y’ L, w*7 h)
where By, a1 2., (Y, 2, w*, h) is the bias term admitting the linear representation:

B)\17)\2,1,A2,2(y71'7w*7h)
=F [§A17>\2,1,)\2‘2 (yvan*7h)] ~9x1,A21,02.0 (y,z,w")

= 9,\1,,\2_,1,/\2,2(% z,w, hl) - gAl,)\gyl,AQQ(y’ z, U/*)

E ¢ o ra0) (t) = @ 21022 ()| dw(t)
1 Ny g fy Xows~ (y,xy0) fy . xXow,  (yz,)
—it 1 itw h nt , X, Wa , X, Wo dt,
+ 277/( it)" e Grc(hint) dw, ()
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Ly poipon (Y, ,w", h) is the variance term admitting the linear representation.:

L/\1,>\2,1,>\2,2 (y7 €T, 'LU*a h)
= §A17>\2,1,>\2,2 (ya xz, w*7 h) —F [§A1,)\2,17>\2,2 (y7 Z, w*a h)}

=F

/\IjlaAly)\Q,h)Q,Q (57 Y, Z, w*a hl) (W1€i§W2 - E[Wleing]) d§

+ / \112,)\1)\2,1,)\2,2(67 Y, z, ’UJ*, hl) (6iEW2 - E[eing]) dg

+/‘1’3,A1,A2,1,A2,2(§,yw,w*,h1)><

i 1 -Y z—X
iEWs —G()\Z‘l) ) G()\Q)Q)
(6 hy i hy hay )% ho2

. 1 o) (V=Y L0us [2—X
_E ‘§W2—G( 2,1 G 2,2 d
[e pire Y Thay )Y he ‘

= E[IA17A2,17A2,2 (y,x,w*, h; }/’Xa Wla Wg)],

where ['ve let 0(§) = E [Wleifwﬂ and defined

\Ijl,)\l,/\g,l,)\zg (57 Yy, r,w, hl) = % ¢W2 (é) /f (_lt) e ! ¢K(hlt)gbf}(j;’!lvv’kfz)(y,z,-)(t>dt
* 1 19(6) oo s A1 —itw*
\1127>\1,>\2,1,>\2,2 (ga y,r,w, hl) = _ﬂ (¢W2 (é’))2 /§ (_lt) e QSK(hlt)qsf}(/”\;’lV;\fy?)(y@’.) (t)dt

¢f(A2,17>\2,2) (ys2,) (6)

Y, X, W*

¢W2 (5)

— o (i) e ()

dw= (€

~—

* 1 . —ifw*
\113,)\17/\2,1)\2,2 (ga Yy, r,w 7h'1) = % (_lt))\l € ¢ ¢K(h1€)

where for a given function ¢ — f(C), I've written ffoo f(O)d¢ = lime, o fgg f(Q)d¢; and

R son s (U, T, w*, h) is the remainder term:

R)q,)\g,1,>\2,2 (y7 &€, U}*, h) - §A17A2,1,>\2,2 (ya xZ, w*7 h) - g>\1,>\271,>\2,2 (ya x, w*, h)

Proof. See Appendix B. n

To derive the uniform rate of convergence, I impose some assumptions on the smoothness
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of Gx1 Ao1 20 (U, T, W), stated in terms of the rate of decay of the tail of its Fourier transform:

Assumption 1.11. (i) There exist constants Cy > 0, ay <0, 85 > 0 and 74 € R such that

Bsve > 0 and for j =1,2

¢

max sup

< Cy(1 4 [t]) exp (ayt]%
A2€{0,1} (v,2)€S(v.x) ¢( ‘ ’) ( ¢)| ’ )

(>\2,1A2,2>(y7x7.) (t>

fY,X,W*

ow-(1)] < Co(L+ [t]) exp (alt]?)

(A2,1,A2,2) _ 02y x,w, (y,mw2) . - .
where  fy v (Y, v,we) = FRIRERCER Moreover, if By = 0, then for given

A E {O, 1},’}/¢ < =X —1.
(ii) Denote the Fourier transform of f@fé}lj‘}\f’z)(y,x,w*) as qbf(m,&,z)(tl,tz,{). There exists
constants Cy, > 0, Cf, > 0, ap, <0, oy, <0, B, >0, B, >0 and vy, € R, 74, € R such

that /8f17f1 >0, ﬂf27f2 >0, and
6001000 (11, 12, €)| < CrCry (14 [0a]) 7 (1 + [to]) 72 exp (g, [6]*1 + cupy[ta]*72) [ (1)

Moreover, if By, =0, vy, < =1, and if By, =0, v4, < —1.

In Assumption [1.11{(i) I impose the same bound for the tail behavior of ¢f<x271,x2,2)(y )
Y, X, W* Ty

and ¢w~(t). This is without loss of generality since they have the same effect on the

convergence rate. Assumption [L.11](ii) is similar to Assumption A7 in [Li (2002), and can be
viewed as a generalization of smoothness condition from the univariate case to the
multivariate case.

I next state the first main result of this paper, the uniform asymptotic rate of the bias

term:

Theorem 1.1. Let the conditions of Lemma hold with {Y;, X;, W}, AW, ;, AWy, } 11D,
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and suppose in addition that Assumption holds. Then for h > 0,

sup ‘B,\17,\2’17,\272 (y, z,w", h)’ =0 ((hf)lﬂﬁ/\l exp <04¢C}5<¢ (hl_l)6¢)> .

(y,z,w*)ES (v, x,w*)
Proof. See Appendix B. O

I impose the following assumption to ensure finite variance:

Assumption 1.12. For some § > 0, E[|[W,|*™] < oo, SUDy, sy, £ {|W1|2+5 | Wy = wz] <

oo .

To derive the rate for Ly, x,, x.(¥, 2, w*, h), I impose the following assumption on the
tail behavior of the Fourier transforms involved. These are common in the deconvolution

literature (e.g. [Fan| (1991b), |Fan and Truong| (1993)), and [Schennach| (2004h)).
Assumption 1.13. (i) There exist constants Cy > 0, ag < 0, 3 > [, > 0 and y2 € R
such that Baye > 0 and

O ()] = Co(1+ 1) exp (alt]*)

Moreover, if B =0, Ay — Y2 + 74 > 0.

(ii) There exist constants C, > 0 and v, > 0 such that

w (1)
Pw=(t)

< Co (L e)™ .

I explicitly impose B2 > B4 because

Cy (14 [t])7 exp (@W*

t%) > gw-(t)] = |Ele™]

> ‘E[eitW*]

‘E[eitAWQ]

> ’E[eitWQ]

= [dw, ()] > Co (1+ [t))™ exp (azlt|?) .
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The following theorem states the asymptotic properties of the linear term

L poi e (y, ,w*, h) and facilitates the analysis of various quantities of interest later.

Theorem 1.2. Suppose the conditions of Lemma hold. (i) Then for each
(Y, 2,w") € Syzwr)s ElLxa rorresys T, w* h)] =0, and if Assumptz'on also holds, then
E[L3, poi pos (U5 7, 0%, 1)) = 7 0 Ao has (U, T, W R, where
Do es (Y, T, W ) = E[(l,\lj,\m,,\m(y,x,w*,h;Y,X, Wl,WQ))2].

Further, if Assumption and[1.13 also holds then

\/ Sup Q/\1,>\2,17/\2.2 (y7x7w*7 h)

(y,2,w*)ES (v, x,w+)

-0 <max {(h1—1)1+7*’ (hii)1+A2’l(hi%)1+A2'2} (h1—1)1772+’7¢+)\1 exp ((a¢1{ﬂ¢ = [} — Ozg) (h;l)ﬂz)

I also have

sup |L)\1,>\2,1,)\2,2(y’xaw*7h)| = (121)

(y,2,w*)ES(y, x, w*)
-1 —1\1+ —1\1+A —1\1+A —1\1—vy2+y6+A —1\P2
O (= d max { (b )4, (g ) 22 (hg3) 22 L ()12 T 2 exp ( (g 1{B, = B} — a2) (1)) )

(1.22)

(ii) If Assumption also holds, and if for each (y,z,w*) € Syuzw),

D dondee (U, T, w*, hy) >0 for all n sufficiently large, then for each (y,z,w*) € Sy pwe)

~1/2

* * d
n'/? (QAI,,\Q,LAM(Z/,%W ahn)) Ly don oo (Y5 T, w™, hy) = N(O,1).

Proof. See Appendix B. O]

Finally, I bound the remainder term. To do that, I first impose some restrictions on the

moments of Ws:
Assumption 1.14. E[|W;|] < oo, E[|[W1W3]] < co.

I then impose the following bounds for the bandwidths:
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Assumption 1.15. If $, = 0 in Assumption |1.15, then hy! = O (n(4+47**472)_1*’7> and

hgn{j =0 (n(16+8)\2)*1—n); fOT’ somen > 0, j = 1,2; otherwise hfqzl -0 ((11171)’82_1_77) and
h'2_77£j = O (n(8+4>\2)_1717)’ fOT some n > 07 j — 1’ 2.

Theorem 1.3. (i) Suppose the conditions of Lemma and Assumption |1.11}, [1.19, {1.15,
and[1.14 hold. Then

Sup |R>\1,)\2,1’)\2,2 (y7m7W*ahn)|
(y,%w*)es(yyxyw*)

=0 (hﬁ(h;é)“”m1+26<h1;>1+%72 exp <—a2 (hls)ﬁ2)>
B2
% O (max {(hl—l)lJrv*, (h;’i)1+)\2,1(h2—é)1+/\2,2} (h1—1)1772+7¢+/\1 exp ((a¢1{[3¢ _ 62} . a2) (h1—1> ))
for arbitrarily small € > 0. (i) If Assumption also holds, then

Sup |R/\11>\2,17>\2,2(y7x71/~7*ahn)| =
(y,2,w*)ES(y, x, w*)

op (n—% max {(hl—l)l-&-w’ (hii)l+)\2‘1(h2—é)l+>\2,2} (R 1)L+ M ey ((a¢1{5¢ = B} — an) (h1—1)ﬁ2)> .
Proof. See Appendix B. n

Collecting the results from Theorem [I.I|[T.2] and [L.3] yields a straightforward corollary

of the uniform rate of convergence of gx, xy, a0 (¥, T, W*, hy):

Corollary 1. If the conditions of Theorem [1.5 (ii) hold, then

A * *
sup )gh,)\z,l,)\z,z (y: T, w, hﬂ) T 921,002 (ya T, w )
(y,,w*)ESy, x, W)

= OP (En)\l) + OP <€n7>\17>\2,1,>\2,2> .

where

1+y4+A _ B
€nny = (hl_l) e exp (O%C? (hl_l) ¢>

€n,A1,A2,1,02,2
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B2
= 012 pax {(hfl)“'”*, (hﬁ)lﬂzl(hg—é)lﬂz,z} (h1—1)1—72+’y¢+>\1 exp ((a¢1{6¢ = Ba} — a2) (hf) ) .

The uniform (over the whole support) rate of convergence of the kernel estimators of
the density or its derivatives has been considered in |[Andrews| (1995)), Hansen| (2008]) and
Schennach et al] (2012)F [Hansen| (2008) obtained a faster rate than [Andrews (1995) and
Schennach et al.| (2012) (Theorem 3.2, for the no-measurement error case), but requires
more assumptions on the kernel functions (their Assumption 1 and 3), including bounded
support or an integrable tail, which, unfortunately, are not satisfied by infinite order
kernels. |Andrews| (1995))’s conclusion is stated assuming a kernel with finite order. Infinite
order kernels are not essential when there is no measurement error (like in Andrews (1995)
and [Hansen| (2008)), but are especially advantageous when there are measurement errors.
If infinite order kernels are used, only the smoothness of the functions, but not the order of
the kernels will affect the rate of convergence. Corollary [If is similar to Corollary 4.7 in
Schennach et al.| (2012).

With the uniform rate of convergence of §, I can then derive the uniform rate of
convergence of the plug-in estimators of the structural derivative p(y,z) and the WLAR,

—

denoted as p(y,x) and Wﬁ(m), respectively.

Theorem 1.4. Suppose that {Y]-,Xj,VVj,AWLj,WQJ} is an IID sequence satisfying the
conditions of C’omllary with A, Aa1, Ao € {0,1} and max{\, A\a1, Aa2} < 1. Suppose in
addition, Assumption[1.7 and[1.8 hold.

(i) Define S,, = {(y,x,w*) € Sy, x,w+)
Then

OF x|y —y* ()
ow*

> 7, and fyxw(y,z, w*) > Tn}.

—

p(y, ) — p(y, x) Op (6"’1) + Oy (gn,1,0,0> '

2
Tn

sup
(y7$7w*)687—n

<0, (gn,0,0,l) +

Schennach et al.| (2012)) studies the case both with and without measurement errors. Their Theorem 3.2
corresponds to the no-measurement error case, and Corollary 4.7 corresponds to the case with measurement
errors.
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and there exists {,} such that 7, > 0,7, = 0 as n — oo, and

o —

sup  [p(y,x) — p(y, z)| = 0p(1).

(y,z,w*)ESr,

(i)

sup WITAE@) — WLAR(z)

TESx

<0, <€n,1) + 0, (gn,0,0,l> + 0, (én,Lo,o) :

Proof. See Appendix B. ]

In Appendix C, I state an asymptotic normality result for g, x,, . (¥, z, w*, hy) and
p(y,z). The proof of them requires a lower bound on €, x,, x. (Y, ®, w*.hy) relative to
B ponpan (s T, w hy) and Ry, a1 2, (Y, 7, w* . hy). The assumptions to ensure the lower

bound are stated at a high level, and more primitive sufficient conditions need to be derived.

1.5 Monte Carlo Simulations

In this section, I conduct some Monte Carlo simulation exercises to study the finite sample
performance of my proposed estimators. I consider two simulation designs. Design 1 is when
both of the equations are linear, and Design 2 is when the equations are nonlinear.

Design 1

Y =0.25X + 0.25¢

X=W"+n
Design 2

Y =1n (exp(X +¢€) + 1)
33 W*4
T A (P
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In both cases, € and n are correlated through a common component 6: ¢ = 6 + ¢, and
n = 6 + n,, where 6, ¢; and n; are mutually independent, and are independent with W*.
In both designs, I have two error-laden measurements W, = W* + AWy, Wy = W* + AW,
where AW; and AW, are independent and they are independent with all other variables.
The distributions of variables in both designs are listed in Table below:

Table 1.1: Distributions of Variables

Variables Design 1 (linear) Design 2 (nonlinear)

W N(0,+/0.5) N(6,1)

0 N(0,0.5) N(—3,1/0.5)
€ N(0,+/0.75) N(3,1/0.5)
771 N(0,0.5) N(-3,1/0.5)
€ N(0,1) N(0,1)

n N(0,/0.5) N(—6,1)
AW, N(0,/0.5) N(0,1/0.5)
AW, X3 (2) — 2 X3(2) — 2

In the estimation, I use the following flat-top kerne]ﬁ proposed by Politis and Romano
(1999)):

sin?(2mu) — sin?(7wu)

K(x) = 202
I use the sample size of 500 and replicate the estimation 500 times.

First I show the performance of my proposed method versus two other methods for
estimating the structural derivative: (1) 2SLS using the error-laden measurement Wy as IV;
(2) a plug-in estimator replacing W* with W5 in my identification equation (I.11)). Method
(1) will be valid under the linear design (Design 1), since Ws, although error-laden, still
satisfies the exclusion restriction and the rank condition for linear IV estimation. However,
because of its misspecification of the model, it won’t be valid under the nonlinear design
(Design 2). Method (2) won’t be valid under either the linear or nonlinear design, as the

estimator will converge to a population value that is not equal to the right-hand side of

3 I may use different flat-top kernels for Gx and Gy. For simplicity I use the same flat-top kernel.
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equation in general. I estimate p(y,x) evaluated at y = 0,z = 0, w* = 0.7 for Design
1, and y = 0.6,z = 0.6,w* = 7 for Design 2, yielding a true value of 0.25 and 0.4512,
respectively. There are three bandwidths used in the estimation: hq, hsi, hos. The latter
two correspond to estimating the unknown distribution of observed variables X and Y. 1
thus choose the values of hg; and hgy by cross-validation (i.e. minimizing the estimated
MISE of ny((y, x)). For the bandwidth hq, I scan a set of values ranging from 0.5 to 3 for
my proposed estimator and a set of values ranging from 0.5 to 6 for the method that uses
the error-laden measurement. Table [1.2] [1.3] and [I.4] show the MSE, VAR, and the absolute
value of BIAS of my proposed estimator, Method (2), and Method (1), respectively.

From Table [1.3] one can see that the bias from the error-contaminated estimator does
not shrink toward zero as bandwidth decreases. Comparing results from Table and Table
[1.3] one can see that my estimator also gives smaller variances than the error-contaminated
method. As a result, my estimator performs better than the error-contaminated method in
terms of MSE under both the linear and the nonlinear designs. Comparing Table with
Table [I.4] one can see that under the linear design, both my estimator and 2SLS work well
except that my estimator has a slightly larger variance. Under the nonlinear design, the bias
and MSE of 2SLS are much larger than my estimator, which aligns with the theory.

Table below shows the Monte Carlo simulation results of my proposed estimator as
a function of the sample size. The value of ho; and hgyy are selected by cross-validation for
the respective sample sizes and the optimal values of h; are selected by minimizing the MSE
in the corresponding set of values the same as when N = 500. The MSE, VAR, and Bias

decrease as the sample size increases, which is in accordance with the theory.
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Next, I study the performance of my estimator of the weighted LAR. For Design 1
(linear), I evaluate the WLAR at = = 0 and set the weighting function to be
w(0,w* €) = wy if € € [QO,w*(0-25),qo,w*(0-35)] and w* € [0.70,0.90]. The constant w; is
selected such that [)7 f;)()’f**((()o.'2355)) wi few+x=o(€, w*)dedw* = 1. For Design 2 (nonlinear), I
evaluate the WLAR at x = 0.6 and set the weighting function to be w(0.6,w*, €) = wy if
€€ {qo.ng*(0.25), q0_67w*(0.35)} and w* € [6,6.23]. The constant wy is selected to ensure that
023 fq?zf:(?;;)) wa few+ x=06(€, w*)dedw* = 1. These choices of the weighting functions
yield a true value of the WLAR of 0.25 and 0.5032 for Design 1 and 2, respectively. In the
estimation, I use the optimal values of h; coming from Table [I.2] and the same values of
hor and hgy as in Table [1.2] Table below shows the results of my estimators of the
WLAR under both designs. The performance of my estimator of the WLAR is comparable
to the performance of my estimator for the point-wise structural derivative p(y,z) (shown
in Table . This shows evidence that my estimator could not only perform well at single
points but also could maintain good performance in a global sense. The supports of the
weighting functions I used here are not large. This is mainly due to computation
constraints. One direction of future work is to look at the performance of my estimator for
WLAR when the support of the weighting function is larger. This will give us a better

understanding of the global performance of my estimator.

Table 1.6: Monte Carlo simulation results of my proposed estimator for the WLAR

hi  hoy  hgy true value MSE VAR  abs(BIAS)
Design 1 (linear) 1 1.05 292 0.25 0.00779 0.00777 0.00405
Design 2 (nonlinear) 1.75 1.75 2.09 0.5032 0.15082 0.13829 0.11193

The Monte Carlo simulation exercise shown in this section is very limited. To have a
comprehensive examination of the performance of my estimators, there are several future
directions that I can work on. First, in my current exercise, the distribution of the
measurement error AW, is set to be x?, which is ordinarily smooth. I can further explore

the performance of my estimators under different distributions of the measurement error
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AW, and other variables. Second, when estimating the WLAR, I set the support for the
weighting function to be small because of the computation constraint. With more time and
more computation power, I can look at the performance of my estimator when the support
of the weighting function in the WLAR is larger, i.e. the WLAR is taking the average
marginal effect over a larger population. Third, the way I select h; is by minimizing the
actual MSE, i.e., the mean squared difference between my estimator and the true value of
the parameter. This is infeasible in practice when one deals with real-world data. It will be

helpful if T could propose a feasible way to select the bandwidth.

1.6 Conclusion

I study the nonparametric identification and estimation of the nonseparable triangular
equations model when the instrument variable W* is mismeasured. I don’t assume linearity
or separability of the functions governing the relationship between observables and
unobservables. To deal with the challenges caused by the co-existence of the measurement
error and nonseparability, I first employ the deconvolution technique developed in the
measurement error literature (Schennach| (2004a)),Schennach| (2004b))) to identify the joint
distribution of Y, X, W* using two error-laden measurements of W*. 1 then recover the
structural derivative of the function of interest and the “Local Average Response” (LAR)
via the “unobserved instrument” approach in Matzkin| (2016]). Based on the constructive
identification results, I propose plug-in nonparametric estimators for these parameters and
derive their uniform rates of convergence. I also conducted limited Monte Carlo exercises
to show the finite sample performance of my estimators.

I recognize that there are some important future directions for this paper. First, in the
main text, I only demonstrated the uniform rate of convergence of the estimators. The
appendix contains proofs of their asymptotic normality, which rely on high-level

assumptions. To further enhance my results, it would be beneficial to derive more primitive
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sufficient conditions for these assumptions. Second, as discussed in Section [I.5], to conduct
a comprehensive examination of the performance of my estimators, additional Monte Carlo
studies are necessary. It will also be extremely useful if I could propose a feasible way to
select the bandwidth h;. Last, it will be an interesting exercise to apply my proposed

method to real-world data.
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1.7 Appendix

1.7.1 Appendix A: Useful Lemmas

Before stating the lemmas, I define some notations.
Let Y be a random variable, Z be a random vector of dimension 2. Denote Z; = X, Zy =

W. Let Sy,z) be the support of (Y, Z), and define

OF x1w—w(T
ST = {(ya Z) € S(Y,Z) : |ngw<>

> 1, and fyxw(y,z,w) > 7'}

OF x| w—w ()

and S, = {(5, z) €[0,1] xSz : ow

> 7 and fyxw(v(z,w,d),z,w) > T}. Let M
be a compact subset of the support of (Y, X,W). Define the mapping invm as
invm(Y, X, W) = (m 4Y,X),X,W), where m~! is as defined in (L.2). Define the
mapping invs as invs(Y, X, W) = (s7}(r(X,W),m (X,Y)), X, W), where s7! is the
inverse of the s function defined in Lemma with respect to its second argument. Let
M = invm(M), and M = invs(M). By Assumption and , M and M are also
compact, and there exist 7 > 0 such that M C S, and M C S;.

For any function g : R® — R, define §(z) = [g(y,2)dy, Gz,(22) = [g(z)dx,
G(y,2) = [V [P (s, t)dtds, and if §(2) # 0, define Gy|z—-(y) = (/' (s, 2)ds) /3(2); if
Gz,(22) # 0, define Gz,z,=2,(21) = (ffgo §(s,zQ)ds) /Gz,(z2). Let F denote a set of twice
continuously differentiable functions g : R* — R such that g vanishes outside of S(y,z). Let
f denote the joint density of (Y,Z). Assume that f belongs to F. For any value
(y,2) € Sy,z, and any value § € [0, 1], define the functionals A(-), a(:), ®¢;(-), ¥ (-) and

~ ~ _ Gy, ()

A(), W() on F by AMg) = Gyiz=(y), alg) = Gy_.00), Pule) = —5—,
BG - Gy |z—, X —

Ti(9) el [l ad Ag) = Gaweal)

=4 . 8GX|W wI) 6Gx‘w w( . . . . ..

U(g) = / . For simplicity, I leave the argument (z,y, d) implicit.
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Lemma 1.6.

581”( 2) f_g) 9f(y,2) dy

0z; 0z;
P;)(f) = Flalr).2)
A — v 22 ds
Vi (f) = 8]f(y’ 3 2
- A(F)2Iww) _ pz 9f(sw) 4
v(f) = )75 T {;;o dw_ 45

Proof. By definition,

Taking derivatives on both sides with respect to z; yields

) Of( Of(z
fath) e+ [ 2Ly - 52

535”;:) f_ 0f(y z) dy
flad(f), Z)

= ®;(f) =

Then note that

oG (e) (P 25205 (2) — (2o (5. 2)ds) L2

82]' .]E2<Z>
aGY|Z:z(9€) _ f(Nya z)
dy flz)

Then

9Gy|z=-(x) / 0Gyz=-(x)
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Fy|z— Ay ) Gz] - Y 6];§Z)d5

[y, 2)
The conclusion for \IJ( f) follows by the same argument.

Lemma 1.7. For any h in F such that sup |h| is small enough, I have that

Y,2)E€S(y, z)

A(f +h) = A(f) = DA(f; h) + RA(f; h)

A(f +h) = A(f) = DA(f; h) + RA(f; h),

where

Y. h(s,z)ds — ﬁ(z)wa:z(y)

DA(f:h) = f(z)~ |

RA(f: ) = {fy (s,z)dsf—(zf)L(z)Fnz:z(y)] f(z)h(f);; .

DA(f: 1) = I* h(s,w)ds ;Wh(wg 0) Fx, w—u (@)
e R e

and for some a; < o0,

sup |DA(f;h)] <a; sup |

(y,2)€S~ (¥,2)€S(y, 2)

sup |RA(f;h)| <ay sup |h|2;

(y,2)€S~ (¥,2)€S(y, 7)

for some a; < o0,

sup ‘DA f; h)‘ <a; sup |h

(y,2)€S+ (v,2)€S(y, z)

sup ‘RA fi h)’ <a sup |h)%

(y,2)€S~ (¥,2)€S(y, 2)
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Proof.

J o (f(s,2) + h(s, 2))ds — [Y [(s,2)ds

A(f +h) = A(f) =

f(z)+h(z) f(2)
_ Jhohds h[Y_ fds
f+h  f(f+h)
_ Jhohds — hFyiz-.(y) L[ Johds = hWyiz—.(y) || h |
f f f+h|’
~ ~ ffoo }NldS — BWFX1|W:w<'T) f_moo }NldS — ileXl‘W:w(x) iLW
A h) —A(f) = < - _
(4 h) = AL) fw " [ fw ] fw + hw
Define
DA(f: ) = oo s = hFyiz-:(y)
’ f
RA(Fi ) = | e s = Friz=) | | B
’ f f+h
~ fivoo ﬁds — BWFX1|W:w(1‘)
DA(f:h) = _
(f;h) .
RA(f h) _ ffoo iLdS — BE/VFXl\W:w(x) _ iLVV~
7 Jw fw+hw|

By the boundedness of Sy ), there exist finite constants C'x, Cy such that for all h € F,

sup Vl(z)‘ < sup [ |h(y,2)|dy <Cy sup ||

2€Sy z€Sy (¥,2)€S(v, 2)
sup ilw(w)‘ = sup /Vz(x,w)‘dm < CxCy sup |h]
wESH weSW (¥,2)€S(y, z)

By the definition of set S, I have that inf(, .)cs, f (2) > 7 and that inf(, .)ecs, fw(w) =

inf(, .yes. | f(s,w)ds > 7Cx Let ¢ = min{ 37—, 1}, For any h in F that sup |h] < e,

Y,2)ES(y, z)
I have that sup h(z)| < 7/2, sup hw (w)| < Cx7/2, so that inf(, ,es. (f(2)+h(z)) >
ZESy wWESW (yv ) T

7/2, and inf(w)egT(fW(w) + ﬁw(w)) > Cx7/2. Then there exists a finite constant ay such
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that

sup [DA(SiR) <2 sup  |h|

(yvz)EST T (yvz)ES(Y,Z)
Qo QSup(yaZ)GS(Y z) |h| 2ag 2
sup |RA(f;h)| < — sup |h] X ’ =— sup |h]%.
(y,2)€S~ T (y,2)€8(v,z) T T (y,2)€S(v,z)

Hence let a; = max{ao/7,2a9/7%}, I have that

sup |DA(f;h)] <a; sup |

(y,2)€Ss (¥:2)€8(v,z)
sup |RA(f;h)| <ay sup |h]%
(y,2)€S~ (¥,2)E€S(y, 7)

Similarly, I can show that there exists a constant a; such that

sup ‘D]\(f;h)‘g&l sup ||

(yvz)EST (y’z)ES(Y,Z)

sup |RA(f;h)|<ar sup  [hf

(y,2)€S7 (¥:2)€S(v,z)

Lemma 1.8. For any h in F such that sup |h| is small enough, I have that

Y,2)ES(y, 7)
a(f +h) —a(f) = Da(f; h) + Ra(f; h),

where

hz) [ £y, 2)dy = F(2) J*D by, 2)dy
f(2)f(a(f),2)

o (v = alf) + hlra,2)

f(re,z) +h(rp, 2)

Da(f;h) =

Ra(f;h) = —

Da(f;h)

for some vy and 'y between a(f + h) and a(f) defined in the proof. Moreover, for some
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0<a< oo,

sup [Da(f;h)| <a sup |h|
(6,2)ES- (¥,2)€Sy, z)

sup |Ra(f;h)|<a sup |h%

(6,2)€SF (¥,2)€S(v, 2)

Proof. First I show that for some 0 < ay < co and a; mentioned in Lemma [I.7]

2a1a
sup |a(f+h)—a(f)| <=2 sup Al
(6,2)€S T (¥,2)€S(y, z)

By the Mean Value Theorem, there exist 1 between a(f + h) and «(f), such that

(£ + H)Y\Z:z (a(f +h) = (F+ H)Y|Z:z (a(f))

= (f + h)y|z=:(11) (a(f + h) — a(f))

Hence since

(F + H)y,y_, (a(f + h))

= (F+ H)yy. (F+ H)ylye. (9)) = 6 = Fyiz=. (Fry—.(9))

it follows that

Friz=s (Frip=.(0)) = (F + H)y o (Frp=.(9)

alf +h)—alf) = (f + h)y|z=-(r1)

By the compactness of Sy, z, for any h in F, there exist some finite constant a, such that
sup,cs, (f(2) + h(2)) < as. By the definition of S,, inf(,.es, f(y,2) > 7. By similar

argument as in Lemma , for any h in F such that sup |h| < min {7/2,1}, I have

Y:2)€8(v,2)
inf(y,z)GST f(""l:z)'f‘}z(’l"l,z)
SUp(y,zyes, f(2)+h(2)

inf(y,z)ESq—<f(y7 Z) + h(yv Z)) > 7—/2 Then inf(y,z)e&—(f + h)Y|Z:z<T1) =

2a92 °
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By Lemma [1.7]

sup
(6,2)eS

Frizes (Filyea(®) = (F 4 By (Frb @) <@ sup Jh

(¥,2)€S (v, z)

for some 0 < a; < oo. Then I have that

2a1a
sup |a(f +h) —a(f)| < —— sup |[A]. (1.23)
(672’)687— T (yvz)eS(Y,Z)

Next, I will obtain a first-order expansion for o (f+ h). By the fact that

(F+ H)ypy_ (af + 1) = 6 = Fyjy—. (o)), T have

S fy.2)dy _ [T (f(y,2) + by, 2))dy
2 f() + h()
= () o) / " 2y = 76 [ .2+ by ) dy
a(f)
i) [ Fw 2y 7) [ b2y
- e /a”h Ay ) [

By the Mean Value Theorem, there exist 7y and ry,, between a(f) and a(f + h), such that

/C:XM) fy,2)dy = f(ry, 2) ((f +h) —a(f)) and

/(:ZJF’Z) h(y, z)dy = h(rn, z) (a(f + h) —a(f)).

Denote Az = h(z) [*U) f(y, 2)dy — f(2) [*P h(y, z)dy. Then

Az = [(2) [f(ry, 2) + B(r, 2)] (a(f + h) — a(f))

Az
« h) — « = — )
P =) = 5 T ) + hir )]

By the Mean Value Theorem, there exist r; between «a(f) and ry such that f(ry, z) —
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fla(f),z) =[0f(r},2)/0y|(r; — a(f)). Hence

Az
6f<7‘/ ,z)

o(f + 1)~ alf) =
e <f(a(f)7Z)+ L (rf—a<f>)+h<rh,z>>

Az 8f(gjz) (rf - a(f)) + h(rn, 2) ~ Az
f(2)f(a(f),2) Fla(f), 2) + Bf(r},z) (Tf _ a(f)) + h(rp, 2) f(2)f(al(f),2)

dy

Denote

= Az an
Dalfil) = 75 far ) ™™
) ( B
e (= al) ki 2) A
ROé(fah) - f(rf,Z)—l-h(Th,Z) f(z)f(a(f)7z)

Then
a(f +h) —a(f) = Da(f;h) + Ra(f;h).

By the definition of 7f and by (1.23), sup(s,\cs. |7r — a(f)] < sup;,es, [a(f +h) —a(f)| <

”Lﬁ sup( |h|. It follows by the continuity of df/0y and the compactness of S(y,z)

Y,2)E€S(y, z)

that

of (1, z)

oy (rf — a(f)) + h(rp, 2)

<dy, sup |h
(¥,2)€S(y, 2)

sup
(8,2)€S~

for some finite constant d;. Then for all h € F such that sup |h| < min{7/2,1}, 1

Y,2)E€S(y, z)

have inf (5 .)es, f(rf,2) + h (rp,2) > 7/2. Then there exists a finite constant a such that

sup |Da(f;h)|<a sup |h| and
(J,Z)GST (y,z)GS(y,Z)

sup |Ra(f;h)|<a sup |h
(8,2)€S> (4,2)E€S(y, 2)
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Lemma 1.9. For any value z € Sz, and any value § € (0,1), define functional ®q;)(-) as

Dy j(g9) = fo‘ég ) 99 yz)dy For simplicity, I leave the argument (z,8) implicit. For any h in

F that sup |h| is sufficiently small, I have that

¥,2)€8(v,z)
U+ 1) = By () = Dy (1) + Ry (D),
where
D®, ) (f;h) = af(a(;;))Daf h) +/ ]z)dy
vy 75t = LD gy + ST (5 - () s+ 1) - ()
+ 0 (ol +1) = al).

for some 7y and ), and 7 between a(f + h) and a(f) defined in the proof. Moreover, for

some 0 < b; < 00,

Oh(y, z
sup ‘D(bl G (f; h)‘ <by sup |h|+b sup ((gy )
(6,2)€S- (¥,2)€S(v, z) (y,2)€Sy, z Zj
oh(y, z
sup ‘R@l y(f; h)‘ <b, sup |h|*+b sup |h| sup éy )
(6,2)€S- (¥:2)€S(v,z) (¥,2)€S(v,z) (y,2)€Sy, 2 Zj

Proof.

alf+h) (9f(y,z)  Oh(y, 2 o) 0f(y, 2
o (f+h) — @y ><f)=/ i (fg:)+ a(ij )>dy‘/m Jl&;)dy

a(f) dh(y alf+h) Oh(y, 2) olf+h 0 f(y, 2)
_ Y+ dy + 8,
/ 8z] /a(f) 9z 7 oy 0y

dy

By the Mean Value Theorem, there exist 7y and 7, between a(f) and a(f + h) such that

/a(f+h) of (y, Z)dy _O0f(ry,2) (a(f +h) —a(f))

ao(f) 0zj 6zj
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olf+h) Oh(y,z) ,  Oh(Th, 2)
/a(f) 9z dy = “os, (a(f +h) —al(f))

Apply the Mean Value Theorem again. I have that there exist 7y between a(f) and a(f +h)
such that

82f(rf’ )

/;:+h) 8{;2@@; = W (a(f +h)—a(f)) + “oyds (7r —a(f) (alf +h) —a(f)).
Let
Doy (f;h) = af(a(;;))Da fih) +/ Jz)dy
0*f (7%,
By (f3h) = af(oé(z];)) alfih) + gyg; (77 — () (a(f +h) — a(f))
22 (o 41y - o)

By the boundedness of Sy z, continuity of 0f /9z;, 0*f /0ydz;, Oh/0z; and Lemma [1.8| there

exist finite constants ds, d3, d4, ds such that

oh(y, z
sup ‘D(I)l y(f; h)’ <dy, sup |h|+ds sup 8(y>
(8,2)€S- (¥,2)€S(y, z) (y,2)€Sy, z Zj
Oh(y, z
sup ’R@l (f; h)’ <d, sup |h|*+ds sup |h| sup éy)
(6,2)€S- (¥,2)€S(y, z) (¥,2)ES(v, 2) (y,2)€Sy,z Zj
Let b1 = H’laX{dz, dg, d4, d5}, then
Oh(y, z
sup ‘D@l y(fs h)‘ <b; sup |h|+b sup (éy)
(6,2)€Sr (¥,2)€S(y, z) (y,2)€Sy,z Zj
oh(y, z
sup ‘R@l (f; h)‘ <b, sup |h|*+b sup |h| sup 8(y ) :
(6,2)€ESr (¥:2)€S(v,z) (¥:2)€S(v,2) (y,2)ESy, z Zj

O

Lemma 1.10. Define functional ®5() on F by ®o(g9) = g(a(g),z). For any h in F that
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SUD(y 2)eS 1y 2, |h| is small enough, I have that

Oo(f +h) — Do(f) = DPo(f; h) + RP:(f; ),

where
pas(i) = LD paginy + a2
rurit) = 2D gy + 0D (5 () (ol + 1) () +
Oh(7h, 2)
222 (af + 1) = al1)).

for some 7y and 7y, and 7} between a(f + h) and a(f) defined in the proof. Moreover, for

some 0 < by < 00,

sup [D®y(f;h)| <by  sup  |A].

(6,2)€SF (¥,2)€S(y, z)

Oh(y,
sup |R®s(f;h)| <by sup |n|> 4+ by sup |h| sup € Z)
(8,2)€Sx (1,2)€S(y.2) WSz W2)Syx | OY

Proof.

Do(f + h) — Po(f)
= (f+h)(a(f +h),2) = [(alf) 2)
= [ (a(f +h),2) = [(a(f),2) + h(a(f + h), 2) = h(a(f),2) + h(a(f), 2)

By the Mean Value Theorem, there exist 7 and 7, between a(f + h) and a(f), such that

af<ff7 Z)
dy

Oh(Th, 2)
I (alf +B) = alf)).

fla(f+h),2) = fla(f),2) = (a(f +h) —a(f))

h (Oé(f + h),Z) —h (a(f),z) =

47



Apply the Mean Value Theorem again. There exist 7y between 7y and a(f) such that

fla(f+h),z) = fla(f),2)

_ Of(alf).2)
= T(a(f+h)—a(f))+

Pf (7, z
fa(y? ) (7 — a(f)) (a(f +h) = alf))

Then by Lemma [I.§ T have that

Do(f + h) — ®o(f)
= D) (D + Ra(sim) + o)

0y?
Oh(7, 2)
2 (a4 ) = al) + ha(£), 2),

(7r — a(f)) (a(f + ) — a(f)) +

where for some 0 < a < oo and sup, |h| < €o = min{7/2,1},

Y,2)€S(y, z)

sup |Da(f;h)|<a sup |h]
(6,2)ESF (¥,2)€8(y, 2)

sup |Ra(fih)| <a sup |h]>

(6,2)€S (4,2)€S(v, 2)
Define
pas(i = LD paggin + hia(s). 2
raurim = 2O oy 5 (5 - ai) a7+ ) = )+
ah(rh )

Sl + ) = a(f).

Then

Qo(f 4 h) = Do(f) = DO,(f; h) + RPo(f3 ).
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By the compactness of Syy,x) and continuity of df/dy, 9°f/dy?, and dh/dy, 1 have that

there exist some finite constant dg such that

sup |D®y(f;h)| <ds sup |h|

(8,2)€S- (¥,2)€S(y, 2)

holds for all h € F. On the other hand, by Lemma [I.8] there exist some finite constant as, ay

such that sup(syes, [7r—(f)] < supgs.es, |al(f +h) — a(f)] < 242 sup, )S(y.z |- Then
there exist some finite constants dr, dg such that
oh
sup |R®y(f;h)| <d; sup |h*+ds sup |h| sup v, 2)
(6,2)€S- (12)€8(v.2) W2)ESz  WAESvz| OY
Let by = max{ds, d7,ds}. Then
sup |D®o(f;h)| <by sup |hl.
(5,3’)687- (y,z)ES(y,Z)
oh
sup |R®o(f;h)| <by sup |h*+by sup |h| sup Oy, z) :
(6,2)€S+ (42)€8(v.2) W2y waeSyz| OY
]

Lemma 1.11. For any value z € Sz, and any value § € (0,1), define functionals Wy (;(-)

and Wy(-) as ¥, ;y(g) = J* 992) s and U, (g) = [*., %d& For simplicity, I leave the

00 Ozj

argument z implicit. For any h in ¥ that sup, ., )eSv.z) |h| is sufficiently small, I have that

Q) (f+h) — @ (f) = DPy(fi k) + ROy (fi h),
Vi) (f +1h) =P, (f) = DYy (fih) + RY(fih),

U(f +h)—T(f) = DU(f;h) + RU(f;h),

where

(552 - Doy (f31)) @a() = (3%L — #1,)(D)) DEa(fi )
®3(f)
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Bo(f)RD, () (f: 1) + ( f”*%,()(f))R@z(f,h)

Oz
Ré(j)(f;h)zf %( )
A®s(f; h) {( ah(Z) — Ad, () (f;h) ) ( Bf(z -, (J)(f)) Ado(f; h)]
- O2(f + h)3(f)
DA W22 + AN - [* 24245 x f(y,2) — (AN DL - 01,5)() x hlw.2)
D\I/(])(f, h) = f2 y’z
RA(f; h)af(z) + WZ) (DA(f;h) + RA(f; 1)) )
B (f3h) = f(y7 z)
DG 1) + DA (G2 + 52 10,2
- h(ya Z) X -

(F(y,2) + hly, 2)) 2y, 2)

MDY Ry, 2) + AWy ) (i) (4,2) = U1 ) (£ (Y, 2)
(F(y,2) + h(y, 2)) f2(y,2)

(DA WL+ Rp) Pl — [ O fa,w) = (A 2L = 01(9) x v

DY (f;h) = o)
(R[\(f; ny2fww) o b (o) (DR(f; k) + RA(S: h)))
RU(f;h) = _
Fla,w)
A ZHEE o) + AR(F: ) (2350 4 P9l ) )
h(z,w = = —
() (Fa,w) + h(e,w) F(z,w)
A 2 o, w) + ATy ) (5 0) Fl, w) = 81 (f5 )R, w)
(F@,w) + h(@,w)) (2, w) ’
with A®(f;h) = DO(f;h) + RO(f;h) for I = 1,(j) and | = 2,

AV ) (fih) = DUy (fh) + RUyGy(fih) and ATy(f;ih) = DU(f;h) + RU(f;h).

Moreover, for some cy, ¢y, c3 < 00,

Oh(y, z
sup ‘Dé(j)(f; h)’ <c¢; sup |h|+c  sup Ohly, 2)
(6,2)€S- (,2)€S(v, 29 (v,2)8v.z | 9%
Oh(y, z
sup ‘be(j)(f; h)‘ <c¢; sup |h|2 +c¢;  sup |h| sup %
(6,2)€S- (y,2)€S(y, z) (y,2)€S(y, z) (y,2)€Sy,z Y
Oh
+c¢; sup |h| sup Oy, z)
W.2)eSv.z)  (y2)ESv.z | 0%
oh(y, z
sup ’D\I/(j)(f;h)‘ <cy sup |h|+eca  sup é‘i)
(y,2)€S- (y,2)€8(v, z) (y,2)€8(v, z) Zj
Oh(y,
e ’R‘I’m (f; h)’ <c; sup |hP+c;  sup |h| sup w.2)
(y,2)€S~ (v,2)€S(y, z) (y,2)€8(v, z) (y,2)€S¢y, z) azj
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Oh(y, z)

sup ’D\Il fi h)’ <c3 sup |h|4+cz sup

(y,2)€Sr (¥,2)€S(v, z) (¥,2)€8(v,2) 0zj41
Oh(y, z
sup ’R\Il (f; h)‘ <cs sup |h|P4+cs sup |h| sup a(y’ ) ‘
(y,2) €S~ (y,2)E€S(v, ) (¥,2)ES(v, z) (4,2)€8(v, z) Zj+1

Proof. By Lemma (1.6

Pl =
AHUE W, ) (f)
Ui (f) = ( )8]( B R and
o A ()
m — N’LU
(f) Flo.w)
For all h € F,
60U 15U — @y i (f+h)  6BE — By (f)
D) (f +h)—Py(f) = (f+h) Dy(f)
N N
D Dy
AF + Ry () 4 200 AFHD) ANEL —w, ) (f)
Vi (f+h) =Y (f) ( f(y, )—i—h(>y, ) B 6‘}(y,z)
N, N,
D, D,
) o AR (fw(w) R (w)) = +R)A(F) f (w) = B (f)
U(f+h)=U(f)= Fz,w) + h(z,w) B f(z,w)
_ Ny N
Dy Dy
where I denote
0 h(z
Nl =6 gi]) +4 a;) —Qi(f+h)
N, = 56({;2%) = ®15(f)
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Dll = @Q(f + h)
Dy = ®,(f)
Dy = f(y,2) + h(y, 2)
D2 - f(y7 Z)
Note that
, oh
Ni— Ny =96 (2) — D®y (;(f;h) — R®y (;y(f; h) = DNy + RN,

Ny — Ny = (A(f +h) — A(f)) (

D] —

Dy, —

where

82’]‘

Of(z)  0h(z) Oh(z) v Oh(s,z)
0z; * 0z, >+A(f) 0z; _[w 0z, ds

- sty s sy (54 5 a2 - [ e

= DN2 + RNQ
Dy = D®y(f; h) + R®y(f; h)

Dy = h(y, z),

Oh(z)

RNy = —R® (;)(f; )

DN, = DA(f; h) agif‘) n A(f)ag£%> _ /yoo 8hgz,'z)d8

DNlE5

— D®y,;(f: h)

RN, = RA(f: h)ag iz) N 5’;5)

(DA(f;h) + RA(f; 1)) .
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I will make use of the equation:

D), — D;)(N/D; — N; D))

N; N, NjD; = N;Dj
D, D, D?

J
D;D;

(N} — RN;)D; — N; (D} — RD;)

_ —
J
X Dj X RN] — Nj X RD] _ (D; — Dj>(NJ/DJ — N]D2>
2 2 :
D? D}D?
Then
() (f+h) = 2¢(f)
(052 = Doy ) (£51)) @a(f) — (3% — @1 () DOa(F: )
- ®3(f)
2(F)RP1 () (f3h) + (8% = @1, (1)) RO2(F: 1)
B ®3(/)
(D) + Ra(fim) ( (5222 4 6% = (7 + ) #als) — (5L - @1 (1) Bals 410 )
- o(f + ) @3(f) '
Vi (f+h) =) ()
. DNz x Dy — Na X h(y, 2) D2 x RNy _ h(y,Z)(NéDg — NQDé)
B D3 D3 D4y D32
(AU + ADGD — [ 2e2as) x 55 2) — (MDD = 01,6,(D) x b 2)
- F2(y.2)
(RAGSI L + B2 (DA )+ RA(S ) )

N [y, 2)

h(y, 2) <<A(f +h) (—aaf;(j) + ng;))

af(2)
0z

— Uy ) (f + h)) fly.2) - (A(f) - wl,m(f)) (£(y.2) + h(y, z)))

Denote D®;)(f;h), DV (f;

(F(y,2) + hl(y,2)) f2(y,2)

h), R®;(f;h), and RY;(f; h) by

(3522 = D1y (£3) @a() = (3%L = #1,)()) DS 1)
Da()RE1 ) (151) + (32 — 01,5, (1)) REa (1)
R<I>U>(f;h) =- @%(f)
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(D®3(f: ) + Ra(f; 1) ((5%“ 0% = @y ) (7 + 1)) Ba() — (3%2 — 81)(D) @a(r + h))
@0+ MP0)

— @ m(f)) R®s(f;h)

Q2(f)RP1 (5 (f3h) + (5a<§z( 2
@3(f)
A®s(f;h) [(af’g‘f — Dy () (f; h)) ®a(f) - (5652(;) - ¢1,<j)(f)> M’Q(f;h)}
®o(f + h)D3(f)
oA B )« s - (30w ) <
2y, 2)

( (fh)af()—l-ah()(DAfh ) + RA(f3h) )

D\I/(j>(f; h) =

RV h)
o/ Iy, 2)

h(y, 2) ( A (F+n) 8f<j> + f“’g—”) — U+ h)) fy,2) — (A(f) 24 %,m(f)) (fw,2)+ h(y,z))>

(Fy,2) + h(y, 2)) f2(y, 2)
( m 2D + 2 (DA + RA W) )
f(y, z)
DT £ ) + 8w (2 + 52 10.2)
(F(y,2) + h(y, 2)) f2(,2)

— h(y,z) X

AL h(y, 2) + AWy Gy () (9, 2) = 1 ) (F ), 2)
(F(y,2) + h(y, 2)) f2(y,2) ’

where A®;(f:h) = D®i(f;h) + RP(f;h) for I = 1,(j) and | = 2, and AV, (;y(f;h) =

Q) (f+h) — @, (f) = DPy(fi k) + RO (fi h)

Vi) (f +h) =¥ (f) = DY (f; h) + RY Gy (f; h).
By the same logic, I can write
W(f +h) = W(f) = DU(f;h) + RY(f;h),

where DU(f;h) and RU(f;h) are as defined in the Lemma.

By compactness of Syy,z) and continuity of f, 0f/0z, I have that there exist finite
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constant dg such that

AN Of(y,z of(y, 2
sup ’(131,(j)(f)‘ = sup / gdy <dy sup 0/w.2) <00
(6,2)€[0,1] xS~ (6,2)€[0,1]xS, |/ =00 0%; W)z | 07
sup  [Po(f)| < sup  [f(y,2)] < oo (1.24)
(5,2)€[O,I]XS7— (y,Z)ES(yyz)
Also, by the definition of S,
inf ®2(f)> inf f> > 72, 1.25
ofs 2af) = inf Sy, 2) > 7 (1.25)
For sup(, .es, ) |h| < min {7/2,1}, I have
inf ®o(f+h)= inf fla(f+h),2)+h(a(f+h),z2)
(y,2)€S+ (y,2)€S~+
T T
>T7T— == — 1.26
By Lemma there exist finite constants dyg, di1, di2, di3, dy4, di5 such that
oh oh
sup |4 () — D®y (j(f;h)| <dio  sup || +dio  sup Ohly,2)
@G2)es, | 0% (v.2)€8(v. 2) (w.5)Syv.z | 0%
o7
sup (5 g(z) - (I)l,(j)(f)> D®y(f;h)| <din  sup |h
(6,2)€S, Zj (¥,2)€S(v,z)
of Oh(y,
sup || 0 g(z) — @y ) (f) | R®2(f;h)| <dia  sup |hf*+diz  sup |h| sup Ohiy,z)
(6,2)€S- Zj (4:2)€8v.2) WSz @)eSvz | Y
sup |A®y(f;h)| <diz  sup ||
(6,2)€S- (y,2)€S(y, z)
oh oh
sup |4 8(2) — APy j(f;h)| <dw  sup |h|+dig  sup only.2)
@G.2es, | 9% (4:2)€8v.2) (,2)€8v.z | 9%
sw (62 _a,(5)) ado(rim)| <ty sup  Jhl. (1.27)
(5,2)ES 0z; (¥,2)€S(v,2)

Combining results from (1.25), (1.26), and (1.27), I Thave that for
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SUD(y 2)eS 1y 2, |h| < min {7/2,1} and some finite constants dyg, di7

oh(y, z
swp_ [ Doy (fim)| <de s (i sup |28
(6,2)€S~ (¥,2)€ES(y, z) (y,2)€Sy,z Zj
oh(y, z
sup ‘R‘I’(j)(f;h)‘ <di; sup |h|*4+di; sup |h| sup %
(6,2)€S, (v,2)€S(y, z) (v,2)€S(y, z) (y,2)€Sy,z Y
oh(y, z
+di7  sup |h| sup 7@ ) )
(¥,2)€S(y, 2) (y,2)€Sy, 2z azj

max{dsg, d17} gives the desired result. By the same logic, it can be shown that

Let ¢; =
Oh(y, z
sup | DU ;)(f; h)‘ <dig sup |h|+dig sup éy)
(y,2)€Sr (¥,2)€S(v, 2) (¥,2)€S(y, z) Zj
oh(y, z
sup | RV ;) (f; h)\ <dyy sup |h*+diy sup |h] sup (;Zl)
(y,2)€S+ (¥:2)€S(v,z) (¥,2)€S (v, z) (¥,2)€S(v,z) Zj
~ Oh(y, z
sup [DVY(f; h)‘ <dy sup |h|+dy sup Oy, 2)
(y,2)€Sr (¥,2)€S(v, 2) (¥,2)€S(v, 2) azj+1
- oh
sup |RY(f; h)‘ <dy sup |hf*+dy sup |h| su Oy, z)
(y.2) €S- (v:2)€8(v,2) W2 WSy | 0%
Let co = max{dis, d19}, c3 = max{dy, da1} gives the desired result. O
and any value § € [0,1], define functional =

Lemma 1.12. For any value (y,z) € Syy.z
and Z on F by Z(g) = 1)) + @\(p%;)g) and Z(g) = Vy(9) + \Il&f()g(g). Then I have that
E(f+h) —E(f) = DE(f; h) + RE(f3 h)

(f) = DE(f; h) + RE(f; ),

[1]:

(f +n) -

[1]

and that there exist constants ey, ey such that
’3h(y,x,w)‘

= ¢ oh y Ly, W (&
250 DR S bl Fer  sup ‘(yax) £ £
, T, W)EST Y,T,W)ESY, X, W v,2,w)ESy x.w
h h
swp  |RE(FW| < SlE+ Ll sup |2BEW gy, |20 w)
(6,z,w)ES, 73 3 (y,z,w)ESy, x,w ow T (y,0) €Sy .1 ay
Oh oh 2
fefn| s (2O e o [y aw)
Oz T (y.ew) Sy x.w ow

(y,2,w)ESy, x,w
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Oh(y, x, w)
ow

)

)

‘ =, e ‘ Ohly,z,w)| e
(y,xb,?vI))GST (f7 h)‘ S 7—2 ”hH - “ (y,z,wb)légy,x,w ‘ 8(E " T2 (y@,wb)lelg}/,x,w
‘ o €212 €2 w %WLW‘
LS RE(f;m)| < S0l + Sl B S
Oh(y,x,w)| e Oh(y, z, w) |?
" e2||hH (y7$7ws)léIS)Y,x,W 8‘17 ‘ " ﬁ (y7$,U’S)l€1é)Y,X,W ’ 8111 ‘ .
Proof.
E(f+h) —E(f)
Qo) (f +h) D5 (f)
d h - —|® -
( @ (f+h) \I'(l)(f+h)> ( @(f) T (f)
D® h) W — DU :h)®
— AD(fih) + 2 (f;h) (1)(?2 - 1) (f; )P (f)
~ ~ (1) ~ ~
2 (f; h)‘l’u)(f)A‘I’(})(f; h)~ DUy (f; h) @2y (f) AV (1)(f; h)
(1)(f)‘1’(1)(f + h)
N R® (9 (f; h)fi’( y(f) = RU 1y (f; B)@a)(f)
Uy (f +h) Ty (f)
E(f+h) —E(f)
Vo) (f +h) U9 (f)
\\ h — | -
< m(f+h)+ \I/(l)(erh)) < () + Tof)
D o) (£ )T 1) (f) — DUy (f3 h) U 2 (f)
' ~ T ~
DV (9 (f; h)‘l’u)(f)A‘I’(})(fa h)~ DUy (f; )W (o) (f)AY 1y (f5 h)
(NP (f +h)
R‘I’(z)(f h)jif( y(f) = RU)(f;h) T o) (f)
Uy (f +h) Py (f)
Define
DEUJUEIMMﬂﬁh%+D¢@ﬂﬁh) (é)(inLﬂmémﬂﬁ
RE(f;h) = R®) (f: h) - D® o) (f; )W 1) (/) AV ) (f; h) = D1y (f5 1)) () AW (1) (f5 )
‘I’(l)(f)‘l’(l)(f +h)
R® 5y (f; h)ji’u)(f) R:‘i’u)(fa h)®2)(f)
Yoy (f +h)Way(f)
5 DV h)0 — DU :h)U
DE(f;h) = DUy (f; h) @i h) (1)%)2 0 i ¥ e )
(1)
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DU o) (f3 M)Wy (N AV ) (f3h) = DYy (3 1) W) (F) AT ) (£5 )
Ve (H¥a)(f +h)

RE(f;h) = RY(y)(f; h) —
R¥ 5)(f; h)fi’(n(f) - R~\i/(1)(f; R)W (2 (f)
Wy (f +h)Yay(f) .

Then
2(f 4+ h) — E(f) = DE(f; h) + RE(f; h)

Note that there exist some constant di4 such that

F Of (z,w
§OLE) By o) (f)| _ SUPGew)esS, §oLew) ‘1)17(2)(f)’
sup ‘(I)(Q)(f)‘ = sup 3 - <dyy
(6,2,w)€ES, (5.2,w)ES 2(f) inf (5 4.w)es, | fla(f), z,w)|
o (w.w) su A2 g (f)
A5 — Yo (f) P(y,z,w)es, Pw 1,(2)
sup “I’(z)(f)‘ = sup < - < dyy.
(y,z,w)€ES, (y,z,w)€ESy f(y,z,w) lnf(y,x,w)EST |f(ya z, w)|
]

Application of Lemma yields the desired result.
Lemma 1.13. In Lemma let the dimension of vector L = 2. For any value (y,z) €

S(v,z), and any value § € [0,1], define functional L onF by

- L - S 9(y, z.w)dy

I'(g E//wx,w*,srx,w*,d =(g dédw,
@)= [ [ el strio.w). D)2l AT L

where w() is a knowTﬁ compactly supported weighting function as defined in , and s()

and r() are as defined in and (1.6). Then I have that

L(f +h) = T(f) = DI(f; h) + RT(f; h),

4 The same logic carries over if w() is estimated. Take the example mentioned in the main text for instance.
. -1
When &(z, w*) is a constant equal to |:(Tu - T[)f:}* Jw+ x=2(w*)dw*| , and fy« x—p(w*) is estimated

by a plug-in estimator, the same argument in this proof will follow by replacing f f f(y, z,w)dydw with

qu}: J f(y,z,w)dydw in the definition of T
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and there exists a constant ey such that

Oh(y,r,w)

ox

Oh(y, z,w)
ow

sup ‘DF (f; h)‘ < ey||h|| + €4 sup

zE€Sx (y,z,w)€Sy, x,w

+eyq sup
(yvwi)ESY,X,W

ow

Oh(y, =, w) |

sup |RL(f; h)| < eal| B> + eal|R]|  sup

2E€Sx (y,2,w)ESy, x,w

Oh(y, x, w) ‘

|+e4HhH sup o

(y,2,w)€Sy, x,Ww

Proof. Define functional I' on F by I'(g) = E(g)%, then

S(f 4 1) [ f(goaw) + by, za)dy  Z(F) ] Flyzw)dy
P =T = =y ) + Ry, ww)dydw T f £y, w)dydw
N N

- D D

where I've defined

N =Z(f+h) / fly, x.w) + h(y, x.w)dy
=(f) [ Sy, wan)dy
D' = //f(y,:c,w) + h(y, z.w)dydw

DE//f(y,:c,w)dydw

N

Note that

N — N = D_fh/fy,xwdy—i- /hy,xw
+ DE(f;h) [ hly.z.w)dy + RE(f:h) [ (F(y,,w) + by, 2, w))dy
= DN+ RN

D'— D= //h(yw,w)dydw

v DN = DS SGey s SO Hpadl
RN = DE(f;h) [ h(y,z,w)dy + R=Z(f;h) [(f(y,z,w) + h(y,z,w))dy, and D=(f;h) and
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RE(f;h) are as defined in Lemma [1.12] Then by the same logic as Lemma [I.11]

L(f +h) = T(f)
(DE(f:h) [ fy, 2, w)dy + E(f) [y, @, w)dy) [ [ fy, 2, w)dydw —E(f) [ fy,zw)dy ([ [ by, 2.w)dydw)
(f [ £y, w)dyduw)®
. [ [ (v, 2, w)dydw x (DE(f; 1) [ by, ,w)dy + RE(f; h) [ (f(y, 2, w) + h(y, z,w))dy)

(fff(y,av,w)dydw)2
—//h(y,x,w)dydwx

((E(f +h) [ fy,zw) + h(y,zw)dy) [ [ fy, @ w)dydw —Z(f) [ fy,zw)dy ([ [ £y, 2,w) + h(y, w.w>dydw))
(fff(y,z,w) +h(y,z.w)dydw) (fff(y,:v,w)dydw)2

= DI(f; h) + RL(f; h).

where I've defined

(DE(f; 1) [ f(y, 2, w)dy +E(f) [ by, 2, w)dy) [ [y, 2, w)dydw —E(f) [ fy,zw)dy ([ [ by, z.w)dydw)
(fff(y,gv,w)dyclu))2

DI(f;h) =

RT(f; h)
. [ [ f,,w)dydw x (DE(f; k) [ h(y, =, w)dy + RE(f;h) [(f(y, 2, w) + h(y, z,w))dy)
(fff(y7x,w)dydw)2

—//h(y,z,w)dydwx

((E(f +h) [ fy,2w) + h(y, zw)dy) [ [ fy,z,w)dydw —Z(f) [ fy,zw)dy ([ [ fly,2,w) + h(y,x.w)dydw))
(fff(y,x, w) + h(y,x.w)dydw) (fff(y,:zz,w)dydw)2 .

By the boundedness of support, the definition of S, and Lemma[I.12] there exists a constant
e3 such that

Oh(y, x,w)

ox

Oh(y, x,w)
ow

sup  |DT(f;h)| < es||h|| + es sup ‘
(6,x,w)ES, (y,2,w)ESy, x,w

Oh(y,z,w) ‘

+e3 sup ‘ 90

(y,z,w)ESy, x,w

s (R < el +eallb] - sup \

‘ + esl|h]] sup ’
(8,2,w)ES, y,z,w)ESy, x,w

(y,z,w) €Sy, x,w

Oh(y, x, w)
dy

Denote the support of w(z, w*, s(r(z,w*),d)) as M, then by the argument stated at
the beginning of Appendix A, there exists 7 > 0 such that M C S, so that I have

sup | DU(f;h)| < es|lhll + e sup
(8,z,w)EM (y,o,w)€ESy, x,w

+e3 sup
(y,z,w)ESy, x,w

ox

Oh(y, x,w)
ow

Oh(y, x,w)
ow

Oh(y, x,w) ’

sup  |RD(f;h)| < esllhll? +esllh]  sup

‘ + esl|h]] sup
(8,z,w)eEM (y,z,w)ESy, x,w

(y,7,w)ESy, x,w

Oh(y, z,w)
Oy '
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By definition, I have

//01 w(m,w*,s(r(x,w*),é))I‘(f+h)d5dw_//01 w(z, w*, s(r(z,w*),0))'(f)dddw
= //Olw(x,w*,s(r(m,w*),é))DI‘(f;h)dédw—l—//01w(x,w*,s(r(z,w*),é))RF(f; h)dddw

= DI'(f; h) + RL(f; )

where I've defined DI(f;h) = [ [ow(z, w*, s(r(z,w*),8))DL(f; h)dddw and RT(f;h) =
[ Jo w(z,w*, s(r(z,w*),§))RT(f; h)dddw. By the compactness of M, there exist a constant
ey4 such that

Oh(y, x, w)
ox

Oh(y, z, w)
ow

sup Df‘(f,h)’ < ey4l||h]| + €4 sup ’
z€Sx (y,@,w)€Sy, x,w

Oh(y, x, w) ‘

+eq sup ‘ ow

(y,z,w) €Sy, x,w

sup ’Rf“(f;h)’ < eyl +edlhl]  sup

zE€Sx (y,2,w)ESy, x,w

\+e4||h|| sup

(y,z,w)ESy, x,w

Oh(y, z, w)
Oy '

1.7.2 Appendix B: Proofs of Theorems and Lemmas in the Main

Text

Proof of Lemma [1.1. Since W* L (¢,n), then e L W* | n. Define 6 = F},(¢). Then I can

write € = Fl_n1<5) =: s(n,6). By Assumption s is strictly increasing in . To see that

€

d L (X, W*) and is uniform (0,1), note that

(€ < Foppy(®) | W* = w,n = 1)
(

€
€ S FeTnlzﬁ(t> ’ 77 = 77)

e\n:n(FJnl:ﬁ(t)) =1,

r
r

P
P
F

which says that the conditional distribution of ¢ given W* n is U(0, 1) regardless of the

values of W* and 7. In other words, § ~ U(0,1) and is independent of (W*, 7). Since X is
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a function of (W*,n), ¢ is independent of X as well. O

Proof of Lemma [1.2l (i)First I show that S.x—, C Sgx=,. For any € € S.x—,, let
5 = Fip=r(z,e+)(€) for some w* € Spyrx=. Then 6 € [0,1] and thus
€ = s(r(z,w*"),6) € Se|x=s-

(ii) Then I show that Sqx—; € S¢x=,. By definition of Sqx—,, for each 5 € Sqx—a,
there is some (@, 0) € Sy+|x=s X [0, 1] such that § = s(r(z,@*),d) . Denote the upper and

lower bound (potentially infinity) of S;x—, as €, and e,, respectively. From Lemma I

know that e L W* | . Since X is a function of W* n, I have that ¢ L X | n. Then if

€x € Sejx=z, then Pr(e < e, |n=r(x,0%) = Pr(e<e, |n=r(z,0"),X =x) =1, which
implies FE‘_;:T (2.5 (1) < €y If e, ¢ Se|x =z then
Pre<e,|n=r(z,o*) = Pre<eé,|n=r(z,0"),X=2) = 1, which implies
F€|_n1:r($7w*)(1) < €,. Similarly, F5|_7]1:7‘(ac,111*)(0) > €, and the inequality is strict if e, & S¢x—s
Since & € [0,1], by Assumption , e, < FETnlzr(x7@*)(5) < e,, or equivalently,

e, < 3(7“(.75,1[1*),5) < €, and the inequalities are strict if e, ¢ S¢x—, or €; ¢ S¢x=u,
respectively. Thus 5 € S x—,. Combining results from (i) and (ii) yields the desired

conclusion. n

Proof of Lemma [1.3.

0= FY|X::C,W*:w* (F;‘l)(:x,w*:w* (5))
;\1)(:1 WH=w* (6) *
—00 ' fY,X,W* (?J,«’L’,w )dy
J%50 frxwe(y, z, w*)dy

1
FY\X:I,W*:w* (6)

—— 5fX,W*(x,w*) :/

— 00

fY,X,W* (ya x, U)*>dy

Taking derivatives on both sides with respect to w* yields

1 -1
6FY|X=$,W*=’LU* (6) + /FYX_E’W*—U’*((S) 8fY,X$W* (y7x7{lU*)dy

—1 *
fyvx.we (FY‘X:LW*:W (0),z,w ) - Ow*

afX,W* (‘ra W*)
ow*

— 00

=9
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This implies

-1 ) « (z0* Fole s e () 8  (yw®
OFY e == (0) _ 5%&“”) — [Lxx=ew MWTM@
* —
Ow fr.x,we (Fy‘ljgzw,w*:w*((S),x,w*)
. X # s (8) .
The conclusion for = — follows the same logic. n

Proof of Lemma [1.4l. Assumption and ensure the existence of

¢fY,X,W2(y’-TV)<t) =FE [eitWZ | Y=yX= ZL’} fY,X(ya {lf)
<t> - /eitw2 a)\QfY7X7W2 <y7 €, w2)
(y,@,°)

dws and thus
395‘,13%\,2 ?

(X2,1,22,2)
(bf 2,1:22,2

Y, X, Wy
Tk *
w* —w .

* 1 ~ %
g)\1,>\2,1,)\2,2<y7x7w 7h1) = /th <hl> g>\1,/\2,1,>\2,2(y7x:w )dw

1 ’LD* - w* 1 . )\1 —itw* gbf)(’?f(’,lv’v)\zz)(yvx:') <t)¢W* (t) ~ %k
— / — K _ — / (—lt) e 2 dt | dw*.
hy hy 2 Pw, (1)

Denote &y, (v) = ;- K (ﬁ), then for all x € R, gy, 2,0y, ©,w*, hy) is the convolution

between Ky, (-) and gx, a, 1,00 (¥, 2, ). By the convolution theorem, it’s equal to the inverse
Fourier transform of the product of the Fourier transformation of &, (-) and the Fourier

transformation of g, x,, x.,(¥, @, ). The Fourier transformation of ky, (-) is ¢x(ht), and the

¢f(>\2,1,>\2,2)( )(t)¢w* (®)
i 1 . . Y, T,

Fourier transformation of gy, x,, as, (Y, T, ) is (—it)M —2X12 o ‘
, , )

Proof of Lemma 5. Write §(¢) = £ {Wleig%}, 80(t) = 0(t) — 0(t), ddz(t) = dy(t) —
¢z(t) for random variable Z, and 5@3}(@271,&,2) L(t) = ) N1 A2.2)

(
Y, X, Wy (y5,°) v X, (y,x,7)

(t) - ¢ (A2,1,22,2)
fY,X,WQ "y,
¢ (A2,1,22,2) () 2 (X2,1,A2,2) ()

f (v,@,°) ~ f (y,z,°) ~ n
Denote X, (t) = Y7X"g‘2,v2(t) » Qg (t) Y,X,‘g;@(t) and 5(])\2 (t) = Q) (t) — X, (t)’ then

dGy, (t) can be written as

~

5o t ) t . -1
01021200 (00 (1) Pp0a10a o ) (D00WL (D) <1+5¢w2(t)> or

(5@)@ (t) = ¢W2 (t) - (¢W2 (t))2

5@)\2 (t) = 51@)\2 (t) + 62@)\2 (t), with
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5¢ (X2,1,22 2)( - )(t) o} (X2,1,22,2) .- (t)(S(ZASWg (t)

~ _ Ty Xow, . vy xiw, W
51(])\2 (t) = (bWz( ) (¢W2( ))2
R A T AU AN AT RO
200 =0 <¢W2<>> (” m@))
95021229 e D 6ua) (. 8bwa()\
o ow(d (” ¢W2<t>> | 12

Similarly, I denote qw, (§) = 7%, Gw, (€) = 555, and 04w, (€) = Gw, () — qw, (€). Then

dGw, (£) can be written as

B 000w (€) RGN
‘(m Goa) (14 20

dqw, (€ wy (&) + 02Gw, (§),  with
B <f> B(6)5m (©)
14w (€)= ¢W2<5> 0wl

80 S (), dw©)

(1.29)

For Q(t) = fg ¢W g
that [50(t)| < [5O(®)] for all 1,

)(t) = o %dg — Q(t) and some random function dQ(t) such

A — A

exp (@) + 5(0) = explQ0) (145000 + glespl6Q()] (500)°) (130

Then I can state a useful representation for

A

gbfyf( e 2 yz,) (H)ow-(?)
¢W2 (t)

= 00)+ 300, 0) exp(QU0) (146000 + g0 (5010) (5000 )

= 2, (1) exp(Q(1)) + g, (1) exp(Q(1)) (6@( )+ 1exp (5Q®)) (s @(t))Z)
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6,0 exp(@(0) (146000 + g o0 (5010) (30(0)')
— 00 D(QUO) + (0@ | B, (E] + 0, (0 sl
a1, @) | [ i (€| + 1, 0)ex0(@(0) [ 00 (5010) (5000

A . 1 - A 2
+ 022, (£) exp(Q(1)) + 5dx, (1) exp(Q(1)) (5@( )+ 5 exp (5Q(1)) (6Q(1) ) (13
Plug (1.31)) into ga, ap a0 (¥, T, w*, h), I get
g/\l,)\2,17/\2,2 (y7 xz, ’LU*, h) — 9\ 201,020 <y7 Z, w*7 h)
= Dg)\1,>\2,1,)\2,2 (ya z, w*7 h) + Rgz\l,)\2,1,)\2,2 (y7 z, w*a h‘)

where Dga, a1 h0 (¥, T, w*, h) is the term linear in 50(t), Odws,, and 6@ (g1 (t), and

Ty xXw. (y,z,°)
Rgx; 2o 000 (Y, x,w*, h) is the higher-order remainder term. More spec1ﬁcall§,

lt A1 71tw ¢K(h1n )

(
X 1614 d
(q)\z € p /0 19w, (f) f

= [

Rg)\l A2,1,A2, 2(yax w” h) = 7/ lt M 71tw ¢K(h1n )

{q ) exp(Q l /0 i52qwl<5>ds]

0 exp(Q(0) [ (5010) (500)]

Dg)\l )\21)\22(y,(£ w* h) = 5

+014x, (1) exp(Q(t))> dt

+ 024, (1) exp(Q(1))

+ 00 exp(@(0) (0000 + 5 o (50(0) (50(0) ) }dt.

Define g)\1,)\2,1,)\2,2 (y7 z, w*7 h) = 9/\1,)\2,1,/\2,2 (y7 z, U)*, h) + Dg)\l,/\g,l,)\zz (y7 Z, w*7 h) Then I

have the following expression:

g/\l JA2,1,A2,2 (y7 Zz, W*a h) T 9N 22,1,02,2 (y’ Z, w*)

= BA1,>\2,1,)\2,2 (ya z, W*a h) + L>\1,>\2,1,>\2,2 (yv z, W*’ h) + R>\1,>\2,1,)\2,2 (yv T, w*, h)
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where

B/\1,>\2,1,>\2,2 (y7 z, W*a h) =K |:§>\17A2,17>\2‘2 (yv Zz, w*a h)} 91, X21,02,2 (yv xz, w*)
L)\1,)\2,1,A2,2 (y7 z, w*v h) = g)\1,>\2,1,)\2,2 (ya z, w*v h) - F [gA17A2,17)\2‘2 (yv T, W*7 h)]

R}\1,)\2,17>\2,2 (y7 x, w*a h) = g)xl,)\g_;,)\zg (y> x, ’LU*, h) - g)\l,)\rz’l,)\zxz (yv &Z, w*» h)

To see the explicit form of By, x,, . (¥, Z,w*, h), note that

B>\17)\2,1,A2,2 (y7 €L, w*’ h) =F [§A1,>\2,1,>\2,2 (y7 Zz, ’LU*, h)] — 9X1,22,1,02,2 (ya z, w*)
= X1, 22,1,02,2 (y7 xz, w*, h) T 9N 221,222 (yv €z, W*) +FE [D9A1,)\2,1,>\2,2 (y7 €L, U}*v h)]
= 91, )2,1,02,2 (y’ z, U/*, h) T 9N 221,002 (yv T, W*)

1 E 6(£f(>\2,1ﬁ2,2)(( ’w)')(t> (bW* (t>

s A1 —itw* Y, X, Wo
— [ (-t hint dt
+op ) FHT T oxllund) oD

To see the explicit form of Ly, x,; x,, (Y, 2, w", h), note that

L/\1»>\2,17/\2.2 (y7 T,w, h) = g/\1,>\2,17/\2.2 (y, z,w”, h) -F [g)\l,/\z,l,)\z,z (y7 LTI h)]
= Dg/\1,>\2,17>\2,2 (yvaU*a h’) - F [Dg/\1,>\2,17>\2.2 (y7x7W*v h)}

1 -
=5 [ (G e g (huat)

100(6) _ 0(90ma(©) | 4

t 6<£W2 (t)
A2,1,22,2 t -
f}(/,X‘,W* ' )(y’aj")( ) /0 QSWZ (5) ((bWz (5))2

¢ dw, (1) (bf(y??sk’vxf’”(y,xf)

(t) | dt

~

<¢f(x2’l')\2’2)(y,m,') (t) - F |:§Z)f(%2,1v)\2,2)(y7r7') (t):| > ¢W* (t)

Y, X, Wy Y, X, Wy

¢W2(t)
Pis0(E)  i0(E)dow, (€)
(Wc,')(t) /O W. d¢ | dt

dt

(=)™ e " g (hyt)d

= o o owa(O) (6w (6))°
1 -
+ g [ (M e g ()
2
GB (A2,1,22,2) (t) -k GB (A2,1,22,2) (t):| n
Iy X Yz, Iy X Ty,
y Xowy (W) Xows (W) b () — dow, (t) @ | at

Pw, (1) dw, (t) ¢f@§’fv;ff’2) (v.@,)
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Then using the identity

[ [ o= [ [ pie.qazac [ [ rie opaeac
= [ re aac

for any absolutely integrable function f, I obtain

Lxideanee (Y, 2, W™, h) (1.32)
= g/\1>>\2,17/\2,2 (y7 Zz, U}*, h) T 9N 221,002 (y’ Z, w*> h)
ioo s . I
A g—itw g N~ d i60(§)  i6(£)dows, (§) d

=g [ b0 0 t(m(g) owe)’ )

+2— (=it)™ e " g (hyt) x (1.33)
v
byptienol® B [ 0) TR0 () | at
(D) D) = @ O e

B3 €W2) — B[W €] d

+ [ Wonidones (§ Y,z w hy) (B[] — lng}) d§

1 Y=Y\ (0u [(2=X
lgw 22) [T - A
+/\Il3 A1,A2,1,A2, 2(5 Y,x, w* h1 ( : 1+/\2 1h1+>\2 2 Gy < h271 > GX h2,2

i 1 y—Y A r—X
_ iEw. - (Az2,2)
E |:6 : h;Jg)Q 1h1+)\2 2 GY ( h271 ) GX ( h272 )] dg

/‘1’17)\17/\2,1,)\2,2 (£7y7wi>k7 hl) (I/VleiEVV2 - E[Wlei£W2]) d&

/‘I’ulxzmzz £y, z,w* hy)

A~

=F

+/\112,)\1,/\2,1,)\2,2 <£7y7$7w*ah1) (ei£W2 - [ lng]) dg

; 1 y—Y (Az2.2) - X
* iEWw: 2,2
+ / \IJ3>)\1,>\2,17)\2‘2 (53 Yy, T, w, hl) X (6 ’ h;{)\z 1h1+/\2 2 Gy ( h2,1 > G hgyg

; 1 y—Y Qo) [z —X
_ iEw: 2,2
2 [e ’ h2+,\2 1h1+>\2 ;Gy ( ho ) Gx Thoa dg

= E[l)\17/\2,1,)\2,2 (y7 Z, w*7 h; K X7 Wla Wg)], (134)
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where

1\ *hy) = — / —it)" eV hit t)dt
LA A1 A (65 Y5 T, W™, Ry 27 (€ Je (—it)™ e ™ g (I )¢f;?;7%‘*2,2)(y’$7')<)
1 ie(f) ﬁ:OO . )\ 3 *
v 1,A2,1,A2,2\8) >$aw*7h = T 5 / —it 1€1tw hit 2,1:22,2 t)dt
20 2210026, Y 1) 27 (G ()2 Je (—it) ¢ (h )¢f}</i\X,,W?\*7 )(y,m( )
gb (A2,1:22,2) (5)
1 by . * f ’ % (yzx")
o —lt 1 e—l{u) h Y, X, W
ot ( ) ¢K( 16) ¢W2 (6)
dw+(§)

« 1 . —iw*
\113’)\17/\2’17>\2’2(£,y’x,w yhy) = o (—1t)>\1 e i O (hi€) . (5)
2

]

Definition 2. Write f(t) = g(t) for f,g : R — R when there is a constant C > 0,
independent of t, such that f(t) < Cg(t) for allt € R (and similarly for = ). Write a,, < b,
for two sequences a,,b, if there exists a constant C' independent of n such that a, < Cb,

for alln € N

Proof of Theorem [I.1l By Parseval’s identity, I have

|g>\17)\2,1,>\2,2 (y7 x, w*v h) — 9\, 01,00,2 <y7 z, w*)|

¢ (/\2,19\2,2)(%%_)(75)

= 217T/(—it)>\1 o itw* (Grc(Pnt) — 1) fy,X,gj}VQ(w

- (1)dt

¢f(/\2’1’)‘2’2)(y,z,-)<t)’ dt

Y, X, W*

1
< — [t pr(hat) — 1
< oo [ 1P fonchat) -1

1

" or

¢

fyxws (@,

/ M br hnt) — 1] |6 onnen, (8)] dt
|hat|>Cx )

= g
[h1t|>Cx

¢

(AQ’l’AQ’Q)(y,:c;)(t)‘ dt

fY,x,W*

where I have used Assumption [1.9] to ensure ¢ () = 1 for [t| < (x and sup, [¢x(¢)| < co.
Then by Assumption and Lemma 7 in Schennach| (2004b),

|g>\17>\2,17>\2,2 (y, x7w*7 h) - g>\1,>\2,17>\2,2(y7x7w*)| = hat[>C |t|/\1(1 + |t|)7¢ €Xp (Oz¢|t|ﬁ¢) dt
1 K
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CaEas

1+74+A1 - Bo
O ( ) exp | g (%)
1
0 (1) ™ exw (it (1))

Next I show that the second term in By, x,, x,, (Y, 2, w", h) is of a smaller order. To do this,

Y, X, W*

I first state a useful representation of F q@f(m,xlﬁ(y N .)(f)]

|:¢ (A2,1:72,2)

Iy xXow, ()

. 1 -Y - X
o iEW. (re1) [ Y (h22) [ X
=P [e : pitAz. th)‘Z OY < han,1 ) Cx < hon 2 >

©)

2,1

X)) [ Y ] (A22) [ T — z -
// 1"")\2 1h1+)\2 2 G <th,1> GX (m) fY,X,W2( T, w)dydrdin

1 Co) [Y=T\ ~Cu) [T—T\ ,_ .
/ d’féf’)?’%w )© WG o ) O% T\ Ty ) 494

2,1

If )\271 - 1, )\272 - 0
B b0, 0ent®)]
e (120)) Ly (222) o
/ (/ ENCESIOI N oy ( o )) han ( o )dm
_ 1 Y-y
7/ (ﬁfyg)wz(y,i,')(g)EGY < ha 1 )
+ [y (400 ©di | —Cx (=2 az
hot © h21 B, @:85) Y ha.2 X ha o
1 y—79 1 T—=T\ ,_ ..
) i 1 dijd
//d)f‘(/)?)%(“ ) hz,lGY ( ha ) hz,zGX ( ha,2 > yff

For Ag1 = 0, A2 = 1, I have similar results, so

N 1 y—1 1 T—T o
A2,1,22.2 = X2,1,22,2) - T e — | dgdZ.
P {Qﬁfixvvz ) ’I")(O] //¢f<YX Y@ 7””")(5) h2,1GY ( ha 1 ) h2,2GX ( ha 2 ) -
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Then note that

(g)} W(é)‘

¢W2(§)
-/ [¢ O (52 ) g | G i = (©)
1o @50 gy hay ) han h2,2 YT O e

1 . I -
|/ Qb (A2,1,A2 2)(~ & )(5) ((27’()2 //671t1(y7y)71t2(m7r)¢GY (t1h2,1)¢GX (t2h272)dt1dt2> dgd.f‘

YXW

—it y—itex ity y+itex
~(2m)? / / (/ / ¢ (ykilw*f2)(y,w,->(£)dydx) Az
/ / TR (96, (t1ha)da (taha) — 1) / / TG (AR | diadty
27T fy Xowe (@:&,)

27{_ /SGX ﬂGY —it1y— 1t21¢f(>\2 1,22 2)(t1,t2 g)dtldtg

ha 1

|:6¢ (A2,1,A2,2)

Iy Xow, (W)

S ‘/ng /ﬁGY ¢f(*21/\2 2)(t1>t27§)‘dt1dt2

< Jow- @l [ feo (LD 0+ It2])77 exp (ag, 0] + aplta]2 ) dtrdty
= I4+74 b I+7s, = B = Bra
oy €ox oy Sox

= |¢W*(£)| © </12,1> <h2,2> b (afl <h2,1> o <h2,2> )

= Jow-(&)]o(1)., (1.35)

SO

5¢ (X2,1:22,2) (t):| (bW* (t)
1 s\ A1 —itw* |: ues Wa (v,)
in Pw- (1)
< o(1 t|A | L(t)] at
<ot [ ||,¢ o] 1w
h 1
= 0(1)/ (1 + [t 722 exp (a¢|t|5¢) exp ( a2|t\ﬂz) dt
0
1 A1—72 B B2
=<0(1)0 ((hll) e exp <a¢ (hf1> ¢> exp (—ag (hf1> ))
1+v4+M1 B

:o((hll) ’ exp (Q¢CK ( ) ¢>> .

This completes the proof. O
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Lemma 1.14. Suppose the conditions of Lemma hold.  For each & and hy, let

Uiaida e (&0, T, w*, hy)| for 1 =1,2,3. Define

+ _
\I,l7>\1,>\2,1,>\2,2 (57 hl) = SuP(yJ,w*)GS(Y,X,W*)

\1[1_1)\2,1,)\2,2( / \Ijl JALL,A2, 1,2 2(5 hl)d& + ( )H_/\Q ' H—)\z ’ /\Il3 ALA2,1,A2,2 f hl)dﬁ

If Assumption[I.11) and[1.13 also hold, then for hy >0

+
\II>\1,>\2,17/\2,2 (h)

-0 <max{(hf1)l+7*, (hQ—&)1+)\2,1(h2—é)1+A2,2} (h1—1)142+%+/\1 exp ((a¢1{5¢ =[G} — a2) (h;l)ﬁz)) .

Proof.

‘Ijii:)\l,)\gyl,)\g,g (E? hl)

= sup |\Ill7)\1,)\2,17/\2,2(£7y7 x,w*, hl)l
(y,,w*)ESy, x, w*)

= sup / |t M et (hat)| sup gbf(h D) (t)‘ dt
(y,2,w*)ES (v, x, W) ‘¢W2 ‘ (y,%)ES(v, x) v,x,w* W

Y, X, W*

< T k0] s (6, (0]
~ owa (O] e ( Iy xws Y e

¥,7) €Sy, x)

so that

hl
Ljel < hiy [ i

[ ¥hnma(&h)ds < [

fYXW*

1
m ¢ (A2,1,22 2)( 7:]c,.)(t)‘ dt] d§

Rt
< [ |l < b L g exp (gl ) dt] ¢

< e e (—a () exp (g (7))
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where in the third =<, I used the assumption 1 — 75 + 4 + Ay > 0 when 3, = 0 and invoked

Lemma 7 and Lemma 8 in [Schennach (2004b).

\P;A17x\2,1,>\2,2 (57 h’l)

= sup ‘\112,)\1)\2,1,)\2,2 (57 Y, x, w*a hl)‘
(y,z,w*)ES (v, x, w*)
0(& Fo0 .
= sup |()|2/ ‘t|/\1’e (hlt)| ¢f A2,1:22,2) .)(t)‘dt
(y,@,w*)ES (v, x, W) ¢W2( )’ 3 vxwr (%,

‘¢ (X2,1:22,2) y,:}c,-)(g)‘

fYXW*

+  osup Mgk (M)
(y,%,w*)ES (v, x, W) | pw, (§)]

O] =\
= sup {|¢W2( )|2/ |t|>\ |¢ hl |‘¢ (X2,1,22,2) y’L_)(t)‘dt

(y,2) €Sy, x) fy X we

fYXW

|ow, ()]

¢ (Ag,1,A2 2)(y,x,~)(t)‘
+ (€1 [or (hg)] }

1 ) A1 h
= el BB “'W(lmﬁwﬁim

)

1 ’¢/*€‘ A1 h
< o L “'W“IWQW%%M

¢ffff< Thes ED (&) ’) )

¢ (A2,1,22 2)(y’m7.)(t)D dt

fYXW*

+ €M [ox (€ ( sup

(y,2)ES (v, x)

¢ (A2,1,A2 2)(y,x,~) (5)

fYXW*

¢ (A2,1,22 2>(y,m,-) (t)‘) dt

fYXW*

y x ES(Y X)

+ €M [ox (ha €] ( sup

where I used the fact that

o0)  E[Wiete] B[ AWy SOV HAN)
ow,(§)  E [eif%} B E {eig(w*wwg)}
E [W*€i£(W*+AW2)} { (AT, | W*, ATW,] €W +AW2)}
E [elé(W*+A2)}
E [W*eif(W*-‘rAWQ)} E [W* eigw*}

E{eig(W*—i-AWQ)} o E{eigvv*}
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 —i(d/dOE [¢7] _ (4/dE)éw-(&)

B [ee] T ow(©

Integrating W3, . ,(§, h1) with respect to & and using Assumption and gives
/\IJIA1,>\2,1,>\2,2 (5’ hl)d§
/ +o0
[ow, ()] | |Pw=(E)] Je (¥,2)E€S (v, x)
+1 {|§| < hfl} |£|)\1 ( sup §Z§f(>\2,1,>\2’2)( . )(5)')) d£
(y2)ESy,x) | Tvixwx W

L (16Ol 1<y 7 w
</m(s)<¢>w<s>1{5'<hl}/g ! ( P

Y, X, W

¢f(k2,1%2,2)(y,x’_)(t)D dt

(¥,2)€S (v, x)

¢f;?;,1;svz><y,x,.><f>|) Jus

= [+ 1) exp(—aslél®)1 {Jg] < by}

t)| ] dt
(bf‘(/?;,w*z’Q)(y,w,-)( )D

(¥,2)€S (v, x)

+1{Jel < hyth e ( sup

X ((1 + €)™ /Oh11 [t (1 + [¢]) exp (a¢|t|5¢) dt + € (1 + |€]) exp (a¢|€|5¢)> d¢
< (1+hH 2 exp (—ozg (h;1)52>
X ((1 + ) (14 byt et exp <a¢ (h11)5¢) (1 + Ayt exp <a¢ (h11)ﬁ¢> >

< (hlf1)2fvz+w+v*+,\1 exp (—az (h11)62> exp (a¢ (h11)5¢)

\I[;:Al,&,l,)\zz (57 hl) = sup ‘\1137)\1)\2,1,)\2,2 (57 Y, x, w*a hl)‘

(y,@,w*)ES (v, x, W)

< [ ()]

(y,z,w*)ES (v, x, w*) dw, (6)]

w0,
= lom@) 1ok Ol

M e g (ha€)]
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so that

(hi%)1+>‘2’1(h2_é)1+>‘2’2/\II;M,)\M,)\QQ(& hl)d{’

RN VS RS ROV I (2l (Y [PRPY
j (h‘Q,i)lJr)\ ' (h2,5>1+)\ ' ‘¢W ( )‘ ’5|)\ 1 {‘5’ } 5

< (g gt [0 g

= ()T () P () exp (—aa (b)) exp (a0 (1))

Collecting together these rates delivers the conclusion of the lemma.

Lemma 1.15. Suppose the conditions for Lemma[I.5 hold, then

N 1 —-Y -X
iEWs (A21) [ ¥ (A2p2) [ L
sup E e G G
(¥:2) €S (v x) [ ho 2 hy v ( ha ) * ( h2,2 )]

. 1 T — X 1
iEWs, (A2,1) (A2,2)
e S vem s vl Cf Gy =
h2+>\2 1h1+>\2 o Y ( h2 1 > < h272 )] h2+>\2 1h1+>\2 2\/5

Proof. Denote the Fourier transform of fy xw,(y, z,w*) as ¢, (t1,t2,&).

. 1 -Y r—X
iEWo G()\z ) [Y G(>\2,2)
‘ hy t hy b2 ha X ha,2

M) [ Y -4 (M2po) [ X —T e\ Qe g g
/// +)\2 1h1+>\2 2 GY ( h271 > GX <h272> fY,X,W2 (y,x,w)dwdydx

| / / eitl(zi)itQ(yg)(itl)’\“(it2)>‘2*2¢gx(t1h271)¢gy(tghg,g)dtldtg)><

_ icw
/1] ((2772
Iy, x.w, (4, &, w)dwdgdz

1 . . —i —itax
= W//(ltl))‘z’l(ltzyme fay—itz 0Gy (t1he1)0Gy (taha2) Py, (1, ta, §)dtidts

—-FE

E

SO

. 1 - X
iEW, (A2,1) (A2,2)
sup FE e -Gy Gy
(¥,®) €S (v, x) hé—gh 1h1+/\22 ( ha,1 ) < ha2 )

; 1 -Y x—X
o iEW: () [ Y (A2,2)
’ [ e () ()

74



sup
(y,2)ES (v, x)

1 . .
7)2//(itl)A“(itz)b’ge_'tly_m%c:y(t1h2,1)¢0x (t2h2,2)x

1 . . .
- Z elt1Yj+1t2Xj+l£W2,j - (bfz (tla t27€) dtldt2

j=1
1 IS iy it s .
< )2 //|’51\’\2’1\t2|’\2’2 |bay (t1ha,1)day (t2ha,2))| Ezeltlmﬂtzx’ﬂgw“" — 95, (t1,t2,8)| dta.
j=1
Then since
2
1 & iy ity X, +HEW:
t . " 1 .
E 52611 jita X 2,]_¢f2(t1,t2,§)
=1
1 it, Y +ito X, HiEWa, 2
— 7E (6 11Xy 245 2,7 _¢f2(t1,t2,§)>
n
<lg [(eitlmithﬁisz,jﬂ _0 (1) :
n n
I have

A 1 -Y z—X
iEW, 1) [ Y (A2,2)
sup E |e G — |G _
(4,2) €Sy, x) hzﬂ“hl““ v ( ho ) X ( ha,2 )

. 1 -Y - X
_ iEW. A21) [ Y (A22) [ T
Ee h;_)\2 1h1+>‘2 2 Gy ( ha 1 > Ux ( ha.2 )

\?//|751|>‘21|t2|>‘22 |¢GY (t1he,1) Gy (t2ha2) |dt1dt2
1

2,2
|t 21 |to| 22 dt dty < .
/ / h;-‘?\z 1h1+/\2 2\/ﬁ

| A

]

Lemma 1.16. For a finite integer J, let {Pnyj(a)} be a sequence of nonrandom real-valued

continuously differentiable functions of random wvectors a, for j = 1,...,J respectively.

Let

A be a random vector. If for each n, o, = \/UCL’/‘ (Z}-le Pw-(A)) exist, and o, > 0 for n

sufficiently large, then

J
1/2 ZP

Jj=1
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Proof. Denote the centered version of the summands as Z, ;(4) = P, ;(A) — E [Pw»(A)}.

Then 02 = F {( 3]:1 Zn’j(A))Q] It’s sufficient to verify that the Lindeberg condition holds:

7j=1

Vno,

n
Z — 0, as n — o0,

=1

| Ly Zyi(A)

2
71 Zng(A)
Vo,

for all e > 0. Note that as n — oo

1 1 | 2Lz

=-—-F | =0
" E {( }]=1 Zn,j<A)) ]

Z}‘Izl Zn,j(A)

E
Vno,

J

! Z,i(A
By Markov Inequality, for any ¢ > 0, as n — oo, Pr FlTnj() > e) — 0, which
7 i (A (A J A 2
implies 1{|Z=ﬁi” >e} — 0,(1). Note that 1{‘2 Lo S 6} |Zf<> -

S Zus)[ Sz, [
‘Jlanm and that F Ujlo_:]‘ =1 < co. By Dominated Convergence Theorem
2
J J
1 Zni(A Zni(A
E|1 |]_1 5(4) > € |] 1 Zns(4) — 0, as n — oo.
Vnoy, On

The conclusion follows. O]

Proof of Theorem 1.2l (i) The fact that E[L), x,, x. (Y, z, w* k)] = 0 follows directly
from Eq. - Next, with fixed value of h, Assumption [1.9]and [1.12|ensures the existence

and finiteness of

R 2

E[L§\1,>\2,1,>\2,2 (y’ W, h>] = b [<E {l)\l)\z,h)@g (ya z,w*, hy Y, X, W, WQ)}) ]
-1 * 2

=n K {(Z/\1,)\2,1,/\2,2(y7$aw 7h;Y7 Xa W17W2)) }

—1 *
=n QM,)\2,1,>\2,2 (yu xr,w, h)
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From Eq. ((1.34), I have

QX17)\2,1,/\2,2 (yv z, w*v h)

_ 2
=FE [Tl (g)\1,>\2,1,>\2,2 (y,x,w*, h) T 9A122,1,00,2 (y7x7w*’ h)) ]

=

(/‘1’1,A1,A2,1,A2,2(€7y,x,w*,h1)n1/255(§)d£
+/‘1’2,/\17/\2,1,/\2,2(57217x’UJ*,hl)n1/25<£wz(f)d€

2
+/\I}3,)\1,)\2‘1,)\2,2('g’yvxv'LU*7hl)nl/zééf@\&l”\%?)(yx_)(g)d€> ‘|

Y, X, Wy

= //\Ijl,kl,kz,1,A2‘2 (fayaz7w*7h’1)E {néé(g)ééT(C)} (\1117)\17)\2)17)\212(4,y,l’,w*,hl))Tdfdc
+//\1127>\1,>\2,17)\2,2(€7y3mvw*vh’l)E |:n5(5W2(§)5Q§TW2(<):| (\IJ27>\1,>\2,17)\2,2(<ay7va*vhl))Tdfdc
+//(hﬁ)lﬂz’l(hig)lﬂw‘Ifs,xl,xz,l,xz,z(57y,xaw*7h1)><

242X 242X n
E nh+ 2'1h2§ 2,25¢

2,1

(A2,1,A2,2) (5)6(}51-()\2,1,)\2’2)

Iy Xy W) Fy X, wy (y,z,

_)<<>] x

(\1137A1,>\2,17A2,2 (C’ y) Z‘, ’U)*7 hl))]L dfdc

-l-//‘111,/\1,,\2,1)\2,2(5’%37771)*7hl)E n6é(£)6$&/2(<):| (\112,)\17)\2.1,)\2,2(<7y7xaw*ahl))ngdC

* A 14+A2,1 5 14X n
+ / / Vi e (69,00 h)E [n60(€ha 1™ hyy 00 v ,)(o] x

Y, X, Wy

o 1(h= * i
(h2 %)1—"_)\2' (h2 ;)1—”\2'2 (\IJ3,>\1,)\2,1,>\2,2 (Ca Yy, r,w, hl)) dde

) )

* I 1+ 1+ 2
+//‘1127,\1,,\2,17,\2,2(£,y,x,w 7h1)E n6¢W2(§)h2?; 2)1h2,J; 2’26¢j‘()\2’1')\2’2)(y$~)(C)] x

Y, X, Wo

(ha )20 (g )22 (W n, s sna s (G w0, ) dEdC
[ [ Wi €0t ) E [0, ()68 ©)] (V1,000 (G v ) dgdg
+ / / (ha 1) 20 (hg ) 22 W5 5 a4 na (G, 2w, hy) X
o

1+A 14X n
’I’Lh2 1 271h2 2 2126(25 (X2,1,22,2)
’ ’ Iy xow, (@)

(O )] > (W10 ) i

) i

+//(hZ_%)1+>\2’1(h2_§)1+)\2’2\IJ3A1,>\2,1,>\2,2(Cvyax7w*7h1)><
E

nh;ﬁ)\zlh;j;)\z’26¢f(>\2,lw>\2.2) z )(C)(Sé;r/{@ (f):| X (\Ilz)Alx)\z,l,Az,z (f,y,x,w*,hl))T dfd( (136)

Y, X, Wy (y) s
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Note that I have

E n(sé(g)am(g)} —E n (é(g) _ e(g)) (éf(c) — ot (c))}
(e o) (e o)

—F :eri@*OWZ} —9()E [Wle*iCWZ} ~E {Wleiﬁwz} 07(¢) + 0(6)07(¢)

= B [W2ee-O%2] —g(6)0(—0),

E [no0(§)66}y, ()] = £ n (09 - 0©)) (81, () - ¢€V2<<))]
:(Wleif% —0()) (7<= — g, (c))]

= B |[WaeWee W] — g [N | - [t g, (€) + 061, (O

= B [We €92 ] — 0()gw, (~0),

A )\ )\ A
E | nd0(&)hy > hy s 2260 o, | s <<>]
f (y,z,")

Y, X, Wo

-y {(Wleiﬂ% - 9(5)) X

—i y—Y Aoadeg) [T —X Aoy 14X
€ lCWQGY Gg( 1A2) - h;:’i > h;,—; 2Y2¢T(>\2,1,A2,2) (C)
ha21 ha .2 v Xow, (W)

: -Y - X
= E |:W1€I(E_C)W2GY <y ) Gg?Z,l)‘LZ) <x )] - e(g)h;i)\z’lh;:;/\lz(b (>\2,1«%2,2)(y xT )(_C)7

ho 1 ha 2 Fy X wsy

B [nddws (€06, (0)] = E {(ei% —ow.(©)) (7" — oy, (c))]
= B [O] — gy, (6w (),

E | nddw, ()hy " hyy 256!

féf;wvz2v2><y7x,.>@>]

Sy
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. -Y - X .
e_lCW2Gy <y> Gg?Q’l’AQv2) (xh2 . > — hé:’i%,lh;;)‘z,zqﬁ

Iy xow,  (W@)

ha2

)

; % - X
-5 [el<f<>W2Gy (yh ) Gl (x )] — owa(Oha i By E 0 0 v

E

1+X21 3 1+X22 ¢ 7 14+X21 ;14 A2,2 ¢ 2F
nhz,l h2,2 5¢f;*)2(,1v;;2,2>(y ") (f)hm 1hz,z 5¢f(>\2,11>\2,2)(y - )(C)]
X, Wa o Y, X, Wy 2Lt

: -Y - X
- B (615W2GY (yh> Gg§\2,1,k2,2) (mh> _ h;:’ik2’1hé:;)\272¢f(>\2,1’)\2'2>( ) (f)) X
2,1 22 Y, X, Wy Y,2,°)

)

. -Y - X
6_1<W2GY (yh > Gg?llv)‘l?) <x > - h;:‘;)‘llhé;)‘212¢f()\271»\2,2)

2,1 ha.2 Ty, X wy

)

i(6— -Y Aoiheo) [T —X
= F el(f QWa G ) G( 2,1,A2,2
v ha X ha o

24+2X2,1 7 242X2 2
—hy; hy 5 o

(=¢)-

(X2,1,A2,2)
fY,X,Wz (y,I,')

(f)@bf()\z,l))\z,z)(

vxXow, (W)

By Assumption [I.12]

‘E [naé(g)aéf(g)H - ‘E [eri@*OWZ} - 0(5)0(0‘

AE=OWa EW?

<E [Wf ]—i—E [|W1| }E {|W1| ‘e_ia%

|

<E [Wf] +E[W] E[Wi]] =1,

2 [1886061,(0)] | = 616 -~ 0©)owa(~0)|

<FE [|W1| l(E=OW2 W

|+ |

ol

|

<2E[|Wh]] =1,

sup |F
TESx

A 1+ 1+ n
nof(€)hy " hy 2~25¢*<A2,1,A2,2>(w _)(C)]

fy,x,w2
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Y, X, Wy (yvxa')

(A2,1,22,2) (C)

(

(y,z,°)

_C)a

©)



. Y _X
= sup E Wlel(£7<)W2GY L Gg?2,1’/\2,2) L _e(g)hétAth;;)\lzas (A2,1,22,2)
r€ESX h2,1 h272 ’ ’ fyyX1W2 (yvxv')
< E | W] |EOW2| qup |Gy | L= Y GQriaa) (2 - X
a zESx haa ha o
. . _ Y _ X
+E |:|W1 el&Wz :| E ‘e—ICWQ sup GY Yy Gg?zﬁl,Agyg) L
TESx h2,1 h2,2

<2E[W1]] =1,

where the last line follows by Assumption [I.9] Following the same logic, I have that

2 [n8dm (€600, (0] = 1.

=<1

— Y

7 1+ 1+ I
sSup E n5¢W2(§)h2j 2’1h2,—g 2’25¢;(A2,17>\2,2)(yz')<C)]

zE€Sx Y. X, Wy

242X 242X n A~
sup E nhl"i 2,1h2:g 2,25¢ ()\2’1»\2’2)(3/@7')(5)5¢T0‘2»1’>‘2,2)(yl.,)(C)] <1

- b
TESx fy,X,WQ fy,)(ﬂ/2

B [n8du (Q)807(6)]| < 1.

1+A2,1 3 14da0 ¢ 2 )
sup E [nh2j 2’1h2,—5 2’26¢f(k2,1ﬁ2,2)( ) (C)(E@T(f)] =1
2ESy v.xXow, (@)

1+A2,1 3 14da0 ¢ 2 2
aup | lnh PSS 00000, (01| 2 1
oSy v.xXow, (@)

It follows from Equation (1.36]) that

Q/\1,>\2,1)\2,2 (ya €, w*a h)

: //‘WI’AI’AQ’I’AZ*Q@’y’x’w*’hl)’ ’(\Ill,)\l,)\zl,kz,z(gyal‘yw*vhl))T‘dgdg
+//‘%’A“AQ*I’A?’Z(&y’m’w*’hl)"(‘1’2,A17A2,1,A2,2(C7y,x,w*,hl))T’dﬁdC
+//‘(hi}l)pr&’l(hﬁ)l““‘113,A1,,\2,17A2,2(5,y,m,w*,hl)’ X

‘ ((hz_&)lﬂz’l (hz_é)H/\M‘I’s,xl,,\z,l,ba(C, y, T, w, hl))T‘ dedc¢

+//|\Ill,)\1,)\2,1,>\2,2(§ay,wi*7h1)| ’(\112,)\1,)\2,1,)\272(C,y,x,’w*,hl))T'dfd(

80

(—C)‘



T
+ / / ‘\Ill,/\l,kzyl,)\zz (ga Y, T, w*a hl)’ ((hQ_&)L‘FAzl (hg_é)l—‘r)\zg\I/3,A1,>\2,1,)\2,2 (C’ Y, T, U)*, hl)) ’ dgdc

T
+//“1/2)\1,/\2,1,)\2,2(5’%%w*yhl)’ ((hii)l—‘rkzl(hié)l—‘r}\l?\113,/\1)\2,1,)\2,2(C7y7$7w*ahl)) ’dfdc

+//‘\112,/\1»\2,1,/\2,2(5’y,%w*,hl)’ (\1’1,)\17/\2,1,>\2,2(§7y7x’w*’hl))T’dgdc
//‘ 1+A21 2)1+>\22\I/3 A1,A2,1,A2, 2(<: Y, T, w” hl H ‘1/1 JA1,A2,1,A2, 2(§ Y, x, w” hl))T‘dgdC

2,

//‘ 1+A21 2)1+>\2 20, /\1)>\217/\22((: Y, x, w* hl H v, WAL, A2,1,A2, z(g Y, T, w* hl))T‘dde

= (/ |\I/17>\1,>\2117>\272(§,y,x,'w*, h1)| dg + / ’\112,)\1)\2‘1,)\2,2 (§7y7x7W*a h1)| dg§
2
/‘ (ha 1) A2t (hg ) 222 Ws xy gy e (6,9 20" hl)‘ dﬁ)
2
([ ¥hrnsnaemae + [0 emdes [ mahi g, L, ene)
2
= (Wil,kz,17A2,2(h)> ’
+ + + +
where \I]17)\17/\2,1,)\2,2 (57 hl)’ \112)\17)\2,1,)\2,2 (6’ hl)’ \Ij3,)\1,/\2,1,)\2,2 (S’h)’ and \IJ)\17>\2,1,)\2,2<h) are as
defined in Lemma [L14] and

\Ilil A2,1,A2,2 (h)

—-0 (max {(hf1)1+’y*, (hii)l-i-/\z,l(hi%)l-i-)\z,z} (h;1)1—72+7¢+/\1 exp ((a¢1{ﬁ¢ =02} — ag) (h11)52>> .

Hence I have proved Eq. (|1.20))
Next I show Eq. (1.22)). From Eq. (1.34) I have

Sup ‘LA17>\2,1,>\2,2 (y,ar,w*,h)|
(yrrvu)*)ES(YTX’V‘/*)

= sup
(y,2,w*)ES(y, x, w*)

+ / \:[12,)\1)\2,1,)\2,2 (ga Y,z, U.)*, hl) (E[eigwﬂ - E[eifwz]) df

/ \Ijl,)\l,)\z,l,)\zg (6’ Y, x, w*7 hl) (E[Wleing] - E[Wlei§W2]> dé-

+/\:[137)\1,>\2,1,)\2,2(£vy,x,w*vhl)x

PO I 1 y—Y Moadeo) [ 2—X
E iEWsy G G 2,1,A2,2
‘ h2+/\2 1hlJ”\2 2 ha 1 X ha.2

. 1 y—Y Moadeo) [ 2—X
_E iEWsy G G 2,1,A2,2 d
‘ h2+/\2 1hlJ“\Q 2 ha 1 X ha.2 ¢
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S / sup \Ijl,)\l,)\g,l,)\z,2 (f? Y,x, W*a hl) ’E[Wleigwﬂ - E[Wlei£W2] df
(y,2,w*)ES(y, x, w+)
+/ sup U2 arerheo (&0, @, w" hy) ’E[ei5W2} — E[ei"2)| a¢
(y,z,w*)ES(y, x, w+)
+/ sup (ho 1) 20 (hyp) FA22 W 5, 3y, a0 (6 s, w7 ) | X
(y,2,w*)ES(y, x, w+)
s -Y — X . -Y - X
sup |E elngGY Yy G(}?2,1,)\2,2) z _E el{WgGY Y Gg?z,l)e,z) € d¢
€Sy ha1 ha o ha1 ha.2
— /\I/I/\W\“)\M(g,hl) ‘E[WleiEWQ] — E[W;el"2]| d¢
_1_/\1,%1 N~ (& ) ‘E[eifm] — B[e'™2]| d¢
b [ B g e (€ )X
P - X . - X
sup E 615W2GY G(>\2 1,A2,2) - E €1€W2GY y G(>\2 1,A2,2) df
z€Sx h2 1 hz 2 h2,1 h2 2

where \I]iAl,/\z,l,Az,z(&hl) -V 2o (& 1) and v Adoines (& ) are defined in Lemma
1.14] The integrals are finite because of two reasons. First, with probability approaching
1, I have ‘E[Wleigwﬂ — E[W1ef"2]| < 2E[|W]] + € < oo, for some positive real number .
This follows from Assumption [1.12] the fact that

|EWe] — BV < | B

+ |BW i)

S E[ W1 €i£W2

]+ E[[Wie'ts

]

< E[IWhl] + E[[WAl],

and that E[|[W,[] 2 E[|[Wy]]. Also, it’s easy to show that ’E[eigWZ] — Ele"2]| <2+e< 0
and that

€W, (A2,1,22.2) [2—X . iEW, (A2,1,A2,2)
supxeSXIEl Gy <h21>G <h2,2)] E[ Gy <h21>G <h22> |

Second, it follows by Lemma |[L.14] that [ W}, \ (£ h1)d§ < oo for j = 1,2 and that
f(hQ_,%>l+)\2’1(h2 2)1+)\2 2‘113 JA1,A2,1,A2, 2(57 h1>d§ < Q.
By Assumption [1.12

=<1

E [(E[Wleif%] - E[Wleif%]ﬂ < [(Wleif% - E[W1ei5W2]>2] <lp [(Wleif%)?}

E[Wl} _OCL),
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which implies ‘ B [WleiéWz] _ E[Wlei5W2]
|B[eW2] — BeiWe]| = O, (n~1/?).
By the conclusions above and Lemma [1.15] T have

= 0,(n71?).

sup |L>\1,>\2117,\2Y2(y,x,w*,h)|
(y,2,w*)ES(y, x, W)

< /\Ili)\17>\2,1,>\2,2 (§7h1) ‘E[Wleing] _ E[Wlei§W2] d§
+ / \I/;;)\l)\zl,)\zz (67 hl) ‘E[eing] - E[eigwﬂ df
+ / W§A17A2,1,>\2,2 (6’ hl)x
iEWs (re) [ Y (A2,2)
sup E |e —_G LAl Ve 2
(y7I)€S(Y,X) h;’i)q'lhé-;)ql Y ( h2,1 > X ( h272

- 1 -Y
iEW: X21) [ Y (A2,2)
et (f) 8

< n~2x

</ \Iji)\lw\z,h)\z,z (5’ hl)dg + /\Ij;_,/\l,kz,l,/\z,z (57 hl)dg + /(hZ_&)IJr)\z’l (h£§)1+A2’2\P+

_ 12yt
=n /\IJA17A2,1,>\2,2(h)7

where

\Ili_la>\2,17x2.2 (h)

Similarly, I also have
r—X
—_ d
h2,2> ¢
3,A1,A2,1,A2 2 (f, hl)dg)

-0 (max {(h1—1)1+7*, (hQ_&)lJﬂ\z,l(hQ_é)lJrM’Z} (h1—1)1772+’7¢+A1 exp ((a¢1{ﬂ¢ = [} — Ozg) (h;l)@z)) ’

as shown in Lemma [[.14l

(ii) Next I show asymptotic normality. I apply Lemma to

l/\1,>\2,1’)\2,2 (y7 xz, w*, hn; Y, X, W1, WQ)
= /\IIL/\1)\2,17>\2,2 (gaya QT,UJ*, hl) (V[/leiﬂ/v2 - E[Wlei§W2]) dg§
+ / \112,/\1)\2,1,/\2,2 (ana z, ’LU*7 hl) (ei£W2 - E[eing}) d€

+ / \IJ3’/\1;)\2,1,)\2,2 (67 Y,x, w*7 hl) X

1 Y=Y\ Ouiden [2—X )\ ;
- @ G212, eiEW2
(héj’\z’lh;y‘z’z Y < ha,1 ) X ha 2
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1 y—Y Qaadeg) [ 2= X\
B G G 2,1,A2,2 el eIEWZ d. ,
[héjAQ,lhézAz,z Y < h271 ) X h2,2 5

where A = Y, X, W;, W, Previous argument ensures that for fixed h,

D don o2 (U, w*, h) < oo. The desired conclusion follows. O

Lemma 1.17. (Schennach (2004a) Lemma 6) Let A and Wy be random variables satisfying

.....

Then for any u,U > 0 and € > 0,

BlAexp (i(Wy)] — E[Aexp (i(Wy)]| = o, (™) .

sup
Ce[-Un®,Unv|

Proof of Theorem 1.3l Plug (1.28) (1.29)) and ((1.30]) into

gAl»A2,17>\2,2 (yv &£, ’LU*, h) —GX1,22,1,02,2 (ya Z, w*7 hl)

(=it)™* e " ¢ (hyt)
x 20 e ex / ) Ot een W / UGN
S (t) P\ dwa) s (©) P\ om(© '

and remove terms linear in (5@(75), (545% (€), and 5(5]0()\2’1,)\272) )’ For notation simplicity, I
Y, X, W* Y,Z,:

write h instead of hy, here. I can then find that

T om

A * * 1 7
‘gM,/\zl,)\z,z (yv T,w, h) 921,022 (yv r,w-, hl)‘ = o Zl:l Rl7>\1,)\2,17>\2,27 where

Rionsns = [ P 0 ()] a0 |- (1) ( [ 181w ©) dg) dt
Roniranias = [ MDY [6xc(ut) [ (0)] low- (1)

Russraisns = [0 o0 o) [0 ( [/ i (©) )
Rinonions = [ 111 10w ()] a3, (0) 6w (1) ( [ 162w, ) dé) dt

Resuaisss = 0 o0 16,0 b0 6, £ d)
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Ronirsioas = [ I lorc(at) lana ()] Jow- 1) 5 exo (|5200)]) ( [ 16w ©) dg) at

+ 2
Resurannes = [ 1P 1o (nt)] 903, (0)] Jow- ()] exp ([5Q00)) ( | Vo, (©) df)

where BV (t)a 5@)@ (t)a 61@)\2 (t)7 52@)@ (t)u qw, (t)a 6Q\W1 (t)7 51@W1 (t)a 62@W1 <t>7 and 5Q(t) were
defined in the proof of Lemma [1.5]
Lemma gives that for any € > 0,

. 1 xa) (Y=Y A )
E 1§W2—G( 2,1 e 22
le s e T

: 1 -Y
_ iEw. (x21) [ Y (A2, 2)
b [e 2 h;’\2 1hl+)‘2 SOy ( hon1 > Cx h2n 2

-Y A rz—X
G (X21) [ Y G( 2,2)
( h2n,l X h?n,Z
1421 -~ -~ .
N pa——")

By (1.35)) I have that

sup sup
(v,2)€SY,X) gel—hy} hy)]

sup

1421
= (rad) " () s
ee[—hy, AT

TESx

5 [eism} [

: 1 Cen) (Y=Y (Pao) [2—X
sup sup E |2 -Gy Gy — — P00
(1,2)ESY,X) ge[~hi, hi,) [ h;*ﬁ 1h1+A2 2 hana X han 2 R WZ(y,xw)(f)

g 1+vf, g 1+, é 5f1 g_ 6f2
= sup o (6)] O i ~Gx exp | ay, Gy + ay, SGx.
£el- hlnl hln] h271 h272 h2,1 hgﬁg
¢ 47 c s, = By — Bty
§a éa $a o
O —= =X exp | « Y + SGx
<h2,1 ha o Pl an haa f2 ha

I+A21 _ .
o((mad) 7 (o)

where the last inequality holds under Assumption Combining results from above, I

IA

have that for any € > 0,

~

¢) (A2)

Iy X w, (®:T5°)
i 1 A2,1) Oep) [2 =X
615W2 —G( 2,1 G 2,2
h;ﬁkllhé’g)\z’rz Y h2n 1 h2n 2
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(g) - ¢ (A2)

sup sup O, )

(y,2)€S(Y,X) ge[—hy,} hT M

<5>'

E

= sup sup

(y,a:)eS(Y,X) 56[ hlnl’hln]




i 1 A Y=Y\ o) [2—X
B e = ) G2z
[e hi?"”lhé?“ Y han 1 X han 2

i 1 (A2,1) y—Y (Az2,2) x—X

+  sup sup E |V G\ Gy | =——

(v:2)€8(Y.X) gel—hy ! hyt] ho iy hang )% han,2
_¢f§?§3W2(y,w,->(f)’

—o, (<h2j)1+>\2,1 (hlé)l-‘r)\z’zn_l/%_e) )
I define Y(hy) and &, as

Y(hin) = (14 hy}) < sup WW(QI) sup ’qﬁwz (§)|_1

gel-h-1 =11 [Ow= (O] ) \ cemn=tnot

B2
S

~

0(¢) = 0() Sw, (€) = dws ()]

s sup
ge[—hi,hi,]

@)\, = max sup
€€[—hy, h1,]

sup sup
(¥.:2)€S(Y.X) ge[—hy}hp )

in?

= oy ((hg1)" T2 (hgh) +2en /2T

s

(6) - ¢f(>\2’1’>\2’2)(y,a:,-)(§)’ }

Y, X,Wo

¢ (A2,1,X2,2)
fY,X,Wg (y,:z:,-)

for any € > 0. The latter order of magnitude follows from Lemma [1.17] and Assumption

and [[.14 Then Rixjoipee — Bixdeine. can be bounded in terms of
U aois(1n), T(h1y), and (i)m/\z' Note that under Assumption [1.15]

A

‘I)'I'L s
sup # j (I>n7,\2T(h1n)
cel-nytnrt) [Pws (€]

B
= o, ((hy 1) F221 (g ) F 2 m=1/24¢) O ((1 AL exp (—a2 (nr)) ))

= o0,(1).

Now [ have

o0 ® (21.22.2) (t) ‘
A1 1 fy,x’.w2 i (y,y) ~ .
Ry < 2/0 [t @ (hat)| w0 + a0 Dy, [ow- (2)] (/0 |51qwl(§)]d§> dt
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¢ (%2,17*2,2)(%%.)@)‘

o0
A fYXW
<Y () / M o (hat)] | 14 e
’ 0 ’ | |¢W2(t)‘

|pw~(t)| (/0 1014w, (€)] df) drdt

oo [ ¢ (>\2,1,>\2,2)(y7m’_)(t)’

h M ht)] | 1+ ‘ T Xwy

= Y (h1) D,

S—

|pw- (1) dt] |61qw, (€)| d&

/E [t | o (hat)] <}¢W*(t)\ + ‘¢f}(};1‘;§‘2)(y717')(t>‘) dt] |61Gw, (€)] d€

o0

/5 P [ ()| (ww*w\ + ‘qbf(yffsfvff’”(wﬂ(t)D dt}

0(6)] 1
1 d
( Fowa]) Tom@] ™
= T(hl)(i)?l,AQ\II;L\1,>\2,1,>\2,2 (h)

B
=0, (hﬁ(hng“%n‘l“f(hh})””*‘” exp <—a2 (ni)) )) x

=T (h1)®,.,

S—

= T(hl)‘i’i,xz

S—

0 (s {11 0501 e (s = ) (1)) ).

If further Assumption holds, I just need to show that

9, _ _ €/ — —s _1\P2
Op <h2§(h2,§)2+”2n 1/2+2 (hlnl)lﬂ 72 exp <—a2 (hlnl> )) = 0p(1).

If By #£0, hi! =0 ((1n n)l/ﬂr’"), hats = O (n<8+4A2>*1—’7), so that

o (3050 o (- (1)) )
=0, (n—1/2+26n1/2—2n(2+)\2)(hl—nl)l—i-v*—w exp (—052 (hl_n1>ﬁ2>>
=0, <n26—2n(2+)\2)((1n n)l/ﬁzfﬁ)l-&-w—w exp (_a2 (ln n)lnﬁ2)>

=0, (eXp {—ozz (Inn)' ™" + (26 — 29(2 + Ao)) Inn + (1 + 72 — 72) (1/B2 — ) In (In n)D

= 0;0(1)7

where the equality follows since (Inn)'~"" and In (In n) are dominated by Inn and by picking
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€< n(2+ o).
If B =0, hi = O (n(4+47*_472)71_’7), hono = O (n(16+8>‘2)71_’7) and with € < 7,

0p (n71/2+2e<h17n1)1+w*772 (hﬁ(hi%)HZAQ)

— _ —1_ _ _
~ o0, (n 1/2+26(n(4+4’y* 472) 17)1+7* Y2y, 1/4 2n(2+A2))

=0, (n2e—17(5+’7*—’72+2)\2)>

= 0,(1).

The remaining terms are similarly bounded

N ’¢fff§1w*”)< z->(t)’ 1 1
R s < t|M hit ER 14 o0,(1)]”
2,21,A2,1,A2,2 /O | | |¢K( 1 >|| |¢W2 t |2 ’¢W2( | n>\2| Op )|
1 -1
R 1 «(t)| dt
‘(bWz( )‘2 n>\2| +0P )| ‘|¢W ()|
[ 1 “bffﬁikv*“% @r)(t)‘
<X (), 10,0 [ e o) 2 1| [ow- ()] at
0 |¢W2(t)| |¢ 2 |

¢f(>\2’1‘>\2’2>(y,z,~) (t) ‘

Tmlth+%ﬂ”l<AmmMW““m Slowol "
i |pw-(1)]
AL W““”HwaM“)

-1
=Y (hy) @3 n, /\2‘1’,\1 A21 Az, ,(h) (1+0,(1) ;

R3)\1 A2,1,A2,2 = T(hl) n)\zRQ/\l A2,1,A2,2 _017( )R2/\1 A2,1,A2,29

R4,)\1,/\2,1,)\2,2 = / |t|>\1 ’¢K hlt | ‘(b (A2, 1 >\2 2) vz, ‘ </ ’52qW1 |d€>
0 Y,T,

. fgoo |t|)\1 |¢K(h1t)| ‘QSf;AZl,AzQ)(y - )(t)‘ dt

X, Wk (el d
6w (©)] ¢

< T(h)®2 ,, 14 0, )\_1/
0
(hl) n )\2\1’;\"_17/\2‘1,)\2,2(}2’)(1 +0p(1));

‘¢f(k2 1,22 2)( ,m,)(t)‘

Y, X, Wo

|¢ O om@OF

oo
R57>\1,>\2,1y)\2,2 < / |t|>\1 |¢K(h1t)|
0
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X @px, |14 0p(1 ‘¢W (/ | 62w, (€ |d§>

< T (h1)®na, |1+ Op(1)|71/0 |px (hat)] <|¢W* ()] + ’(ﬁf‘(/xff’lvrf’y(yva)(t)D

t
X (/0 |52t?w1(§)|d£> drdt

= T(hl)(i)’m)\z (1 + Op(l)) R4,>\17)\2,1,/\2,2 = Op(l)R47>\1,>\2,17/\2,2;

2
oo 1 t t
R6.2\ 1 201,00 S/ M |pr (hat)| ’¢f<xz,1»z,z>( , (t)‘ 5 exp (/ ’54W1(§)|d§> (/ |5CYW1(§)\d§> dt
0 Y, X, W Y,x,°) 2
exXp (Op(l)) / |t‘>\1 |¢K hlt ‘ ‘(b (A2, 1 Az 2) v.z,") ‘ (/ |5qW1 ‘df) dt
0 Y,x,

exp (0p(1) T(ha)8% 5, 1+ 0, (1) / |t|h|¢K<h1t>|'qbfu;,lv.,;f,z)(

IN

A
N = N

o)

YyiT,e)

§)| sd& | dt

< 5 exp (0,(1)) Y() 25, [1 -+ 0,(1)] ! / (/5 e h1t|‘¢ — m.)@)‘dt)
1 10(6)]
x ¢
(|¢W2 } |¢W2(§ ‘2)

¢ (A2,1,A2, 2)( x)(t)‘

Iy X ,Wo ) N B
‘¢W (t) ‘ T (h1) P, |1 +op(1)| ! |¢W*(t)|

t t 2
x 3 exp ( / }5qwl<£>|d§> ( / |5<§w1(§)|d€> a

Y 1+ 0,0 [P o) <|¢W*<t>| + ]¢fy;,lv,;3,2>(m(t)D

x5 exp ( /0 }5ﬁwl(§)|d€> ( /O |6@W1<5)|ds> i

R -1
= T(hl)q)nJu ’1 + Op(1)| Rﬁ,/\1,>\2,1,>\2,2 = OP(I)R67>\1,>\2,17)\2,2'

=0 ( )T(hl)q)n >\2\Il:\~_1,/\2,17)\2,2(h)

R7,)\17>\2,1,)\2,2 < / |t|/\1 ’¢K(h1t)| I+
0

]

Proof of Theorem 1.4l In Lemma [1.12| let Z = (X,W*). By (L.9), for any value

(y,z,w*) € Syxw~, and any value 0 € [0,1], I have that WLAR(z) = I'(f) and that
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p(y,x) = Z(f). (i) By Lemma [1.12]

sup_ |p(y. ) — p(y. 7)
(y,z,w*)ES,
< O, (Gn,0> ‘:—2010 (En,o,oyo) +0, (en,o) +0, (gn,0,0,1> N O, (En,l) —i—TQOp (En,l,O,(])
< Op (€n70’071> 4 Op (en’:l) _:—201? (gn,l,o,o) '

The last inequality follows since €, is of smaller order than €, 1, €,00,0 is of smaller order
than €,.1,0,0. Choose 7, such that 7,, > 0,7,, = 0 asn — oo, and that E:—Ql — 0 and E"Tl% — 0,
I can get the desired result.

(ii) A direct application of Lemma [1.13| gives the desired result. O

1.7.3 Appendix C: Asymptotic Normality

For asymptotic normality, I need to place a lower bound on Qx, x, , x,, (¥, 2, w*.h,) relative to
By pon oo (Y, T,w"hy) and Ry x, 1 a, (4, 2, w".hy). The following assumption is stated at a
high level. More primitive sufficient conditions can be derived using techniques of [Schennach
(2004b). Combining this assumption with the results from Theorem [1.1 and yields a

corollary establishing the asymptotic normality of ga, x, ;.. (Y, 2, ", hy).

Assumption 1.16. (High Level) For given A\, Ao 1, Ao2 € {0,1} and given j € {1,2}, h,, —

0 at a rate such that for each (y,x,w*) € Sy, x,w+) such that Qx, x,, r. (Y, T, w*, hy) >0 for
~1/2

all n sufficiently large, I have n'/? (QAI,M’IAZ’Z(y,x,w*,hn)> / ‘BMAQ’LAQ’Q(y,:E,w*,hn)’ N

. ~1/2
0, and n*/? (QM’)\M’AQYZ(y,x,w ,hn))

p
R>\1,>\2,1,>\2,2 (y, z, w*’ hn)‘ — 0.

Corollary 2. If the conditions of Theorem and Assumption hold, then for each

(y, x,w*) € S; such that Qx; x,, xo, (Y, 2, W hy) > 0 for all n sufficiently large I have

* —-1/2 A * * d
n1/2 (Q)\l,)\g,h)\zg (y7 z,w 7hn)) (gx\l,)\g,h/\g,z (y7 r,w, hn) - g)\l,)\zyl,)\z,z (y7 T, w )) — N<07 1)
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In the next few lemmas, I show the asymptotic normality of p(y,z) under some high-
level assumptions. The asymptotic normality of WLAR(z) can be shown following the same

logic. I first state a Lemma in a similar fashion as Lemma
Lemma 1.18. For any value (y,x,w*) € S;, I have that

—

p(y,x) — p(y,z) = BDZ, + LDZ, + RDZ, + R=,,

where R=,, corresponds to the nonlinear part of functional Z; BDZ,, and RDZ,, are the bias
term contained in the linear part of functional Z; LD=, = E [lDén} s the linear ter
contained in the linear part of functional é, and is equal to E {Z,lﬁlzl §k(y,x,w*)lDén7k} mn

which

D=, = /l07070(y,x,w*,hn)dy
lDéng = /_yoo loo0(y, z,w*, hy)dy
lDén’g = /loyo,l(y,:c,w*,hn)dy
IDZ1 = [ tooaly, . h)dy
lDénj = lo,0,0(y, v,w", hy)

lDén,G = /l17070(y,x,w*,hn)dy
lDéng = /yoo 00y, z,w*, hy)dy
IDZ, s = / lo.o(s, w*, hy)ds
IDE,, = /_ : lo0(s,w*, hn)ds
lDémlo = /[1,0(s,w*,hn)ds

lDémll = /x 5170(8, w*, hn)ds.

5 Linear in terms of F [WleiEWZ], E [e’fwﬂ and E

iEW. 1 y=Y (A2,2) (z—X
e~ PEERCEFRER T Gy ( haa ) Gx P22

a1 h2,2
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51(@/7557“]*) =

3 Py | x—a,w*=w=(Y) Ofx, w+(z, w*) n Ofx w=(z,w*) 1
Ix,we (T, w*) fy, x, w= (Y, T, w*) Oz ow* 1y (f)

« (w* T of * (s,w™*
P () 20 2 O 0D gy oy
_ _ X —
2 (z, w*) ‘1’?1)(1’)
~ £\ 1 8fX,W*(va*) an,W*(x7W*) 1
32(y7x7w ) - + T,
fx,w(z, w*) fy, x, w+ (y, ,w*) Oz ow* vy (f)

Fy | X —¢,w+=w* (Y)
fy,x,w (y, ©, w*)
1

Fy,x w (y, ©, w*)

§S(yazzw*) =
54(3/733,1”*) =

1

dy
f2(y, z, w*)

55(y,1‘,w*) =

ofx,we(@w*) [V Ofyx,we(y, z,w")
ox oz

—o0

Ofx,w+(x, w*) Y Ofy,x,we (y, T, w*) 1
+ F =z, W*=w* (y) : - — dy =
( YiX=2,W dw* . ow* Ty (f)

Fy|x—o,wr=w*(y) 1

[FY|X_x,W*_w* (v)

36(y, z,w*) = —
6y ) Ty, x,w= (Y, z, w*) Wy (f)

1 1
frxowe (g, z,w) 1y (f)
7Fx‘w*:w*(1‘)af‘}5+&w*) % ‘I/(Q)(f)
Jw (w*) fx w= (z, w*) ‘i’%l)(f)

57(y7 x7w*) =

§S(y,:p,w*) =

Pege) V()

Ow* X =
Jws (W) o, (@, w*) W2 (f)
Fx\w =w= () y U2y (f)
Ixwe(@,w*) = W (f)
B 1 y Vg (f)
Fxw (@, w*) = W (f)

39(y,z,w") =

510(y, =, w*) =

1y, z,w*) = )

OF; 1 (6)

where  a(f) = F17|1X:z,w*:w*(5>; Dy (f) — Vix=swr=ur®
Wi () = - g [ it g () = — @) [ i)

Proof of Lemma [1.18. By (1.11]), for any value (y,x,w*) € S,, I have that

—_—

By Lemma [I.12]

11
DEn = Z §k(x,w*, 5)DEn7k,

k=1
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where 5i.(x,w*, ) is as stated in the Lemma. and

Dén,l = / (f]o,o,o(% T, W, hn) - go,o,o(y, T, W, hn)) dy
—_ Y A * *
D‘:n,2 = /_ (90,0,0(?/7% w 7hn) - 90,0,0(97% w >hn)> dy
Dén,i} = / (g(),l,l (y; Z, w*7 hn) - 90,1,1 (Z/, z, w*7 hn)) dy
— Y A * *
D‘:'n,4 = / (90,1,1<Z/7 T,w, h’n) - 90,1,1(3/7 T,w, hn)) dy
—00
DEn,S = ﬁo,o,o(% T, W, hn) - 90,0,0(97 T, W, hn)
Dén,ﬁ = / (57170,0(% T, w, hn) - 91,0,0(?/, T, W, hn)) dy
—_ Y A~ * *
Dzn,? = [ (gl,0,0(yv xr,w, hn) - 91,0,0(y7 xr,w, h’n)) dy
Dén,8 = / (50,0(5, w*, hy) — Gools, w”, hn)) ds
= z 2 ~ *
D:n,g = /_ (90,0(3, w*, hn) - 90,0(37 w 7hn)) ds
Dén,lo = / (51,0(5770*7 hin) — G10(s, w”, hn)> ds

Dén,ll = [ (.61,0(37 w*a hn) - §1,0(57 U)*, hn)) d3~
By Lemma a first order expansion of D=, can be written as

D=, = BD=,, + LD=, + RD=,,

11
— BDZ, + Y &(z,w*,8)LDE, ; + RDZ,
k=1

where

LDén,l = /LO,O,O(y7 x, 'U}*, hn)dy = /EA1 {10,0,0@7 z, w*7 hn)] dy = E |:/ l0,0,0(y; Z, w*7 hn)dy

~ Yy ) A
LDEn,Z = L L0,070(y,:r,w*,hn)dy :/ E [lo,o,o(y,f,W*,hn)} dy

A ]
- E l/_ lo,o,o(% €, w*u hn>dy‘|
LDénB = /Lo,a,l(y,%W*7hn)dy = /E {ZO,O,I(y7I7w*,hn)] dy
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— E / l07071 (y, x, ’LU*, ]’Ln)dy:|
= y_ * v g *
LDDnA = - Lo,o,l(%w;w ,hn)dy = /_ E [lo,o,1(y,ﬂ?,w 7hn>} dy
N Y
=5 [ lo,ovl(y,x,w*,hn)dy]

LDén,g, = Looo(y,z,w", hy) = E [lo,op(y,.ilf, w*, hn):|
LDén,(i = /L1,0,0(yy$, w*, hy)dy = /E {ll,o,o(y, T, W, h”)] dy
= E [/ ll,O,D(ya xz, w*’ hn)dy]

~ Y
LDEn,7=/_ Ll,o,o(y;$,1U*,hn)dy:/

—0o0

Y

E |:l1,0,0(y7 xz, w*a hn)] dy
N Y N
= E /_ ll,0,0(ya T,w, hn>dy

LDETMB - /£0’0(57w*7 hn)ds - /E [[070(57 w*7 hn)i| dS = E |:/ 0(57 w*a hn)d8:|

xT

LDén,g :/ f)oyo(s,w*,hn)ds:/

—00

E [fo,o(s,w*, hn)} ds = F [/ l~070(s, w”, hn)ds]

—0o0

LDEMO = /il,o(s,w*, hyp)ds = /E [[170(5,11}*, hn)} ds = E { Lo(s,w*,hn)ds}

T

LDémll :/ il,o(s,w*,hn)dS:/

—00

E [Zl,o(s,w*,hn)} ds = E U iLo(s,w*, hn)ds] )

— 00

Then I can write

where lDén are as stated in the Lemma. O

Lemma 1.19. Suppose the conditions of Lemma[1.5 hold. (i) Then for each (y,z,w*) € S,
E[LDZ,] =0, and if Assumption also holds, then E[LDZ2] = n~'Q(y, z, w*, h), where
Qy,z,w* h) = FE [lDé,ﬂ < 0.

(ii) If Assumption also holds, and if for each (y,z,w*) € S;, Q(y,x,w* hy) > 0
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for all n sufficiently large, then for each (y,z,w*) € S;
1/2 (& * -2 = 4
n (Q(y, ,w ,hn)> LD=, — N(0,1).

Proof of Lemma [1.19. (i) The fact that F {LDén} = 0 follows directly from Theorem .
Next I show that for all (y,z,w*) € S;, Q(y, z,w*, h) < co. It follows by Cauchy Schwartz

that

Note that

E {lDéiyl} =F [(/ lo0.0(y, z, w", hn)dy> 21
<FE {/ (l(w,o(y7 x,w*, hn))2 dy]

- /E [(l()’(),o(y,x,w*,hn))? dy

where the second line follows from Jensen’s Inequality and the third line follows from
Tonelli’s Theorem. By Theorem , fE[(lo,(),O(y,x,w*,h))?] dy < oo for each h.
Conclusions for other values of k € {1,2,3,...,11} follows similarly. Then by Assumption
, I have that Q(y, z,w*, h) < oo for all values (y,z,w*) € S,.

(il)  To  show  asymptotic  normality, I apply Lemma |[1.16] to
ID=, = Yit, gk(x,w*,é)lDényk. By previous argument, Q(y, z, w*,h) < oo for all values
(y,z,w*) € S,. T've assumed that for n sufficiently large, Q(y,m,w*,hn) > 0. The

conclusion follows. O]

Finally, I state the asymptotic normality result for the estimator of p(y,z) under a

high-level assumption:
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Assumption 1.17. (High Level) For given A1, Ao 1, Ao2 € {0,1} and given j € {1,2}, h,, —
0 at a rate such that for each (y, z,w*) € S, such that Q(y, x,w*, hy) > 0 for all n sufficiently

. —1/2 - - ~1/2
large, I have n'/? (Q(y,x,w*,hn)) / ‘BDEn’ 20 and n'/? (Q(y,x‘,w*,hn)) /

0.

‘RDEH‘ LN

Theorem 1.5. If the conditions of Theorem and Assumption hold, then for
each (y,z,w*) € S, such that Qy, z,w*, hy) > 0 for all n sufficiently large I have

—

2 (g, a0 b)) (p(y,w) — ply, x)) % N(0,1).
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Chapter 2

Two-step Estimation of Network Formation Models
with Unobserved Heterogeneities and Strategic

Interactions

2.1 Introduction

The social network to which an individual belongs can be an important element when
studying many economic behaviors of such an individual. Peer effects in education and
crime, the dynamics of product adoption, and financial contagions are just a few examples.
However, most network studies of these behaviors are challenged by the endogeneity of the
network. This highlights the importance of developing econometric models of network
formation. Moreover, the network formation process is itself an interesting subject to
study, since it helps us better understand people’s real-life activities such as interactions on
social apps.

There are two features that are important in a network formation model. First, the
incentives of forming a link in a network not only include the two agents’ characteristics
but also the linking decisions of other agents, such as the “popularity effect”, meaning that
an agent ¢ is more likely to link to j if 7 has many other friends. It’s important to include

such strategic interaction effects in a network formation model. Second, some
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individual-specific characteristics affecting the utilities and thus linking choices are private
information (like people’s personalities when using a dating app). They are correlated with
observed characteristics but are unobserved to other agents or researchers. It is thus
important to incorporate these unobserved individual-specific characteristics in the network
formation process. Motivated by the two features, I study a directed network formation
model with individual-specific unobserved heterogeneities and strategic interactions. I
allow the incremental utility of a link from person 7 to 7 to depend on the linking choices of
the person j to capture the popularity effect. I also allow the wunobserved
individual-specific heterogeneities to be correlated with observables by introducing
individual fixed effects. I don’t require that the conditional distribution of the individual
fixed effects be known to the researchers.

There’s growing literature on the estimation of network formation models. Among
them, this paper is most related to |Leung| (2015) and Ridder and Shengl (2022). Both of
them study the estimation of network formation games with incomplete information and
strategic interactions and assume that the private information is independent of observed
characteristics. In Leung (2015), the payoff depends on network structure in a separable
way, through the sum of incremental utilities from each link. Then the optimal link choices
are myopic, in the sense that an agent chooses to form a link with another member if the
expected utility of forming that link is greater than 0. To be specific, let G;; denote the
linking proposal from individual ¢ to j, and let X;, X; denote observed characteristics of
the two individuals; let ¢; denote unobserved link-specific characteristics that are

independent with X. |Leung| (2015))’s model yields the following optimal linking decision:
Gij =1 {w(XZ,X])BO + E[G_Z‘j|X, O'] + €ij 2 0} s (21)

where w is a known function capturing the homophily effect, and ¢ denotes the equilibrium.

Ridder and Sheng (2022) considers a more general case in which the utility function depends
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on the choice of potential partners in a non-separable way, for example, allowing the utility
to depend on links-in-common. Using the Legendre transform, they show that even under
this general case, the optimal linking choice is still equivalent to a sequence of myopic link
choices. For estimation, both of the two papers assume that the data observed comes from
a symmetric equilibrium, whereby agents with the same observable characteristics have the
same equilibrium linking probabilities, i.e. P(G;;|X;; = 2, X) = P(Gy| Xy = z,X). Then
the conditional linking probabilities can be estimated in the first step, by taking the empirical
frequency with which agents with the same observable characteristics link to each other. In
terms of strategic interactions, this paper adopts the same framework as Leung (2015),
including only the popularity effect and keeping the dependence on the network structure
to be separable, which is simpler than Ridder and Sheng (2022)’s framework. Different
from the two papers, this paper studies the case when private information is correlated with
observables by including individual fixed effects in the utility. For estimation, this paper also
adopts a two-step procedure and estimates the realized equilibrium beliefs in the first step.
This allows us to circumvent the difficulty to specify the equilibrium selection mechanism
when there might be multiple equilibria.

This paper is also closely related to (Graham| (2017)), which studies a network formation
model with dyadic link formation. In their model, the linking decision between individual ¢
and j only depends on the characteristics of ¢ and j and there are no strategic interactions.

Let A;, A; denote individual fixed effects unobserved to researchers. The linking decision in

Graham| (2017) is
Gij = 1{w(Xi, X)) + Ai+ A; + 5 > 0} (2.2)

Same as (Graham| (2017), this paper also incorporates unobserved individual fixed effects.
The difference is that my model contains strategic interactions, so the information structure

matters. I assume that individual fixed effects A; are private information that is i.i.d. across
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individuals. The agents know the distribution of the individual fixed effects so that they can
form beliefs of the expected “type’ﬂ of other people. From the modeling point of view, this
paper studies a model which is a combination of and . Note that a special case
of is when €;; can be written as the sum of an individual “random effect” A; and an
idiosyncratic error v;;. This is different from this paper’s setting since A; is assumed to be
independent with X in [Leung (2015)).

Another strand of literature on estimating strategic network formation models assumes
complete information, such as Miyauchi (2016) and [Sheng (2020). These models are the
hardest to deal with because they generally admit multiple equilibria and thus achieve set
but not point identification of the model parameters. This paper shies away from these cases
by assuming incomplete information.

The rest of the paper is organized as follows. In section 2, I develop the model and
derive the optimal link choices. In section 3, I propose a two-step estimation procedure
and show the consistency of the first-step estimator. In section 4, I show the asymptotic
distribution of the estimators. In section 5, I conduct some Monte Carlo exercises to study

the finite sample performance of my estimators. In the last section, I conclude.

2.2 The Model

I consider the directed network formation model in this paper. The formation process is
a static game of incomplete information. An agent’s payoff of forming a link depends on
idiosyncratic private information. Given the belief of other people’s linking decisions, agents
form their own links simultaneously. Formally, the network formation game is set up as
follows:

There are n agents indexed by i € Z = {1,2,...,n}. Each agent chooses whether or not
to link with the other n — 1 agents. Player i’s action vector G; = (Gi1, Giz, ..., Gij, ..., Gin)’

where j # i is chosen from the action profile A which has 2"~! components. The payoff

L' T don’t assume A; to have discrete distribution, though.
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function of individual 7 is

n

Ui(G7Xa Aiygz Z i (UZ] G—zaX AZ,/B) +€m> (23)

The deterministic part of incremental utility from link ij is specified as

UZJ(G—’MX Auﬂ) - w(X“X )51 +A + ngﬂQ + 4 Z G]kﬂ?n (24)
k#i,j5
where the first term captures the homophily effect. w is a known function.

X = (X{,..., X)) is public information for all agents and is observable to researchers. For
simplicity, write w(X;, X;) = W;; from now on. The second term A; is individual-specific
heterogeneity, which is unobserved both to other agents and researchers. Let Fqx be the
distribution of A; conditional on observables, which is assumed to be independent and
identical across ¢, and known to all agents, but not necessarily known to researchers. A;
can be correlated with X. The third and the last term capture the popularity effect. The
realization of €; = (€1, ...,&;,) is agent ¢’s private information which is also unobserved to
researchers. The model is therefore a static game with incomplete information, and the
solution concept is Bayesian Nash Equilibrium. Different from |Leung (2015), my model
allows private information to be correlated with common information while doesn’t require
the conditional distribution of private information to be known to researchers. Also, I
consider the “symmetric” equilibrium where pairs of agents with the same observable
attributes and the same type A; have the same conditional linking probabilities. This
means that pairs of agents with the same observable attributes may have different choice
probabilities if their (unobserved) types are different, which is different from |Leung| (2015)).

For the above model, I impose the following assumptions:

Assumption 2.1. (a) X; L X; for i # j. X, is discrete distributed with finite support
X = {x,..,xp,}. (b) A; are independently and identically distributed. The conditional

CDF Fyx is known to all agents but unknown to researchers. (c) e;; are i.i.d. with logit
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distribution F., which is known to both agents and researchers. (d)e; L (X', A) for alli.

Let 0;(X, A e5) denote agent j’s (pure) strategy. Let
o;(a|lX,A;) = Pr (@-(X, Aj gj) = alX, Aj) denote the agent i’s belief that agent j of type
A; chooses action a, given commonly known information X and agent i’s private
information. By Assumption (b) and (c), actions G; and G;, ¢ # j are independent
given commonly known attributes X. This fact simplifies the proof of consistency by
weakening the correlation between links.  Since agent ¢ actually doesn’t know the
realization of A;, his/her expected utility from choosing action ¢; € S is

>, Ui(gi, 9-i, X, A, €1)EA,j {U,i(g,i]X, A,j)}. Therefore,

Pr(G; = gi| X, A, 0)

= PT(Z [Ui(giag—i7X7 A%Ei) - Ui(.giag—ivX7 Aiagi)] IEA,j {O’—i(g—i|Xﬂ A—])} > 07

9—i

Vg, € S

X, Ai7 O') .
A (Bayesian) equilibrium o*(X, 4;) is a belief function that solves the fixed point equation:
O':(CI‘X, Al) = P?"(GZ = G‘X, Ai, O'*)

for all X € X, agents ¢ € Z and actions a € S.

I consider “symmetric” equilibria in which pairs of agents with the same observable
attributes and the same type (A;) have the same conditional linking probabilities. For any
(X, A;, &) and “symmetric” belief profile ¢ in a neighborhood of an “symmetric” equilibrium

o*, player i’s optimal strategy G;(X, A;,&;,0) = (Gij(X, Ay e, 0))#1, is given by:
Gij(X, Ai, Ei, 0') = 1{E[UIJ(G_1, X, AZ, 6)’X, AZ‘, O':| + 62‘]‘ 2 0} (25)

Assuming a symmetric equilibrium exists, the model is incomplete because there could

102



be multiple equilibria for any realization of (X, A,¢). For completeness of the model, I
specify the equilibrium selection mechanism in the following assumption. The mechanism,
however, is not explicitly used in writing the likelihood function in part 3, because by using
two-step estimation, [ can avoid specifying the equilibrium theoretically.  For the
convenience of defining equilibrium selection mechanisms, I add subscript n to G, X, A,
and e. The equilibrium selection mechanism is a measurable function
A 0 (X, s, Bo) — on € G(Xy, An, Bo), where G(X,,, A,, Bo) is the set of symmetric

equilibria.

Assumption 2.2. (Equilibrium Selection) There exist sequences of equilibrium selection
mechanisms {\,(-);n € N} and public signals {v,;n € N} such that for n sufficiently large,

G(X,, Bo) is nonempty, and for any g, € S™,

Pr(G, = gu| X, An) = Z Pr(\NXn, vn; Bo) = 04| X0, Ap) H 0i(9i| Xn, As).
Uneg(XnyAnaBO):Un‘XnyAn =1

2.3 Estimation

Define P;;(X, A;,0) to be the probability that individual ¢ proposes to form a link with j
conditional on X A;, and o. According to (2.5 and Assumption [2.1] (c),

Pij<X7 Ai,na 0) = PT(Gij(XJ Ai? Eiy U) - 1|X7 Ai7 U) =
exp (Wz'jﬂo + Ai + Eqg, {Uji(Gji = 1’X, Aj)}ﬁl + ﬁ Dkti Ba; {ij(ij = 1‘X, Aj)}BQ)
1+ exp (Wijﬁﬁ + Az + ]EAj {O'ji(GjZ' = 1‘X, AJ)}ﬁl + ﬁ Zk;ﬁi,j ]EAj [O'jk(ij = 1‘X, AJ)} ﬁg)

(2.6)
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Define p;;(X, A;) to be the equilibrium probability that agent ¢ proposes a link to agent j.

which is realized in the data. Equilibrium condition requires that

pij (X, 4;) = Py (X, Ai, p(X, 4;))
exp (Vviﬂﬂo + A+ Eax [pji(X’ Aj)]ﬁl + ﬁ Dokti Bayx [ij(X, Aj)}ﬁz)

1+ exp (Wz’jﬁo + Ai + Eqjx [pji(X> Aj)}ﬁl + 5 Yt Eayx {pjk<X7 Aj)}ﬂZ)

(2.7)

For notation simplicity, denote g;x(X,0%) := Ey4, {Pr(ij(X, Ajej,0) =1X, Aj,o*)},
which is the probability that agent j proposes a link to k£ conditional on X and the realized
equilibrium ¢*. Then (2.7) can be rewritten as

exp (VVijﬁo + A + q;i(X, 0%) 81 + 5 S (X, U*)52)

I +exp (Wijﬁo + A + q;i(X, 0%) 1 + ﬁ Setij Gk (X, U*)ﬁ2>

::Qij (X: Aiaq(Xa U*)) : (28)

Although p;r(X, A;) is not identified from data, ¢;;(X) is identified. With abuse of
notations, let gq(X) = E4, [pjk(Xj =24, Xp = 14, X, Aj)}.

Consider the empirical frequency of pairs with the same observable characteristics
proposing to form a link:

A

Qn,st =

D0 Dt Gijl{Xi =T, Xj = xt}
> Zj;éz' 1{Xz' =T, X; = xt} .

The following lemma shows that g (X, 0*) can be consistently estimated by §, s under the

payoff function specified in [2.3]
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Lemma 2.1. For any X and realized symmetric equilibrium o*,

S?P ‘cjn,st —qs(X,0")| =0, (n_l/Q).

Proof. See the Appendix. O

For the convenience of the following analysis, I introduce a change of notation:

1
n—= 2z
and
7 . VRPN 1 AN/
Zij = (Wi, ji, p—Y > Qi)
n k£i,j

Then by Lemma 2.1} sup,, |257t — Zsi| = O, (nfl/Q).
With the estimated §,, = {@st }vs.s, | propose to estimate the parameter 5 and individual

fixed effects {A;}!, jointly by MLE. By Assumption (c), the conditional likelihood of

the network is

P(G = ng, A) = HPT(GZJ<X) Ai76i70-) = g|X7 Aiao-)‘
i#£]

By (20) and (3.

PT(G'LJ(Xa Aiagiao-) = g|Xa Ai70)

1-g

=Qii(X, A,4(X))*[1 = Qi(X, A, q(X))]

Then one can construct the log-likelihood function as follows

i i
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Let B and A be the maximizer of the log-likelihood with ¢ replaced by §,.
wax Ln,(5, A, Gn)-

By first concentrating out A, the estimators are given by:

B = argmax £7,(8, A(8), ) (2.10)
where
A(B) = argmax £,(8, 4, )
A 1

J#i

By rearranging the sample score of 1} it can be shown that fl(ﬁ), when it exists, is

the unique solution to the fixed point problem:

A(B) = p(A(p)) (2.11)

where

exp(Z/ B8)
In3 Gy —In}n W{jﬁﬂh)

p(A) = : : (2.12)

exp(Z1,.8)
In Zﬁ’én an —In 2375” 1+exp( 7 jfé’-i-An)

!
n,

2.4 Asymptotic Analysis

In this part, I first show the consistency of 3 and A and then prove the asymptotic normality
of B . Because link proposals from the same individual are correlated, the first step estimator

has a slow convergence rate /n, which is equivalent to the usual convergence rate of N4,
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since the number of summands in the likelihood function is N = n(n—1). Asis well discussed
in the nonlinear panel literature, there is an estimation bias of B caused by the incidental
parameters problem (e.g. [Hahn and Newey| (2004), Arellano and Hahn| (2007))). However, as
I will show in this part, the second-step bias has a higher order than the slow convergence

rate of the first step, so a bias term won’t show up in the asymptotic distribution.
Assumption 2.3. (Compact Support) (3, € int(B), with B a compact subset of RE.

Assumption 2.4. (Joint FE Identification) E[L, (5, A, q)| X, Ao is uniquely mazimized

at f = By and , A = Ag, for large enough n.

Compactness of the support (Assumption (a)(b) and Assumption implies that

Qij (B, Aisq) € (5,1 — k) (2.13)

for some 0 < k < 1 and for all A; € A, f € B and Vg € (k,1 — k).

Theorem 2.1. (Consistency) Under Assumptions and

B% Bo;
Ap.

J;a

A

Proof. See the Appendix. n

With a more involved argument, I can actually show the uniform convergence rate of

A

A, as shown in the Theorem below.

Theorem 2.2. With probability 1 — O(n=?),

sup |AZ—A10| < O( hln) .

1<i<n n

Proof. See the Appendix. n
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To state the form of the asymptotic distribution, define

- lin o S 4040 - @)
i=1 jF#i
1 zn: <nllj§z Qi (1 — Qz‘j)%’) (”11%&2 Qi (1 — Qij)%‘) o1
+ - 2.14
niA o7 D Qi (1 — Q)
The asymptotic normality of B is formally stated in the theorem below.
Theorem 2.3. Under Assumptions and[2.4),
V(B — fio) ‘
— N(0,1
e O
for any d x 1 vector of real constants a and 2, as defined in the Appendiz.
Proof. See the Appendix. n

2.5 Monte Carlo Simulation

In this section, I implement the proposed method in some simulation studies. Assume the

following utility specification:

" 1
UZ(G, X7 Aiagi) = Z ij (‘X X; ‘ﬁl + A + GﬂﬁQ + 5 Z GJkﬁB + 8@])

k#i,j

where X; is a random variable taking values in {1, —1} with equal probability, and ¢;; follows

the Logistic distribution. The distribution of A; is generated according to
A; = (ap +va)H{X; = -1} + ag{X; = 1} + V,

with o < ag and a; ~ N(0,0.1),V; ~ N(0,40.1), and they are independent. In the

simulation exercise, I consider three scenarios. In the first two scenarios, A; is correlated with
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X. In Scenario 1, Tlet oy, = —2/3, a0y = —1/6, and v = 0, so that the correlation between
A; and X is only through the value of X;. In Scenario 2, I let ay, = —2/3,ay = —1/6,
and v = 1, so that the correlation between A; and X, is determined not only by the value
of X; but also by the identity of i (captured by the random variable a;). In Scenario 3, I
let af, = —1/2,ay = —1/2 and v = 0, so that A; is independent with X. The true values
of the parameters are (31, 32, 33) = (—2,1,1). The network is generated according to the
n—player incomplete information game described in Section 2.2 with n taking values of
50,100, 250, and 500. For each value of n, I generate a single network and use the method
proposed in this paper and [Leung| (2015) to estimate the parameters. When using Leung
(2015))’s estimator, the private information 7;; is the sum of A; and ¢;; with A; L ¢;. Each
experiment is repeated 1000 times. I report the means and standard errors of the estimated
parameters in the tables below.

Table 2.1: Scenario 1 Correlated Private Information (o = —2/3,ay = —1/6,7 = 0)

This paper’s estimator Leung| (2015))’s estimator

n I B2 B3 B B2 B3
o0  -1.922  0.966 0.936 -2.092  0.827 1.390
(0.049) (0.101) (0.069)  (0.249) (0.484) (1.024)
100 -1.930 0.951 0.926 -2.085  0.807 1.435
(0.035) (0.058) (0.033) (0.198) (0.478) (0.985)
250  -1.967 1.050 0.973 -2.065  0.864 1.334
(0.042) (0.101) (0.055)  (0.170) (0.476) (0.961)
500 -2.015 1.065 0.975 -2.047  0.919 1.237

(0.036) (0.057) (0.035)  (0.160) (0.476) (0.950)

This table gives the mean of each estimator across the 1000 Monte Carlo
estimates. The standard deviation of the Monte Carlo estimates is reported
below the mean value of the point estimates in parentheses (this is a quantile-
based estimate which uses the 0.05 and 0.95 quantiles of the Monte Carlo
distribution of point estimates and the assumption of Normality).

As can be seen in Table and [2.2] when the private information is correlated with
observed individual characteristics X, this paper’s approach yields good estimates for the
parameters, while [Leung (2015))’s estimator doesn’t perform well, both in terms of the mean

and variance of the estimators. This is not surprising since Leung (2015) assumes that
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Table 2.2: Scenario 2 Correlated Private Information (ap = —2/3,ap = —1/6,7 = 1)

This paper’s estimator Leung (2015))’s estimator

n B B2 B3 B B2 B3
50  -1.921  0.952 0.928 -2.072  0.866 1.294
(0.043) (0.108) (0.069) (0.280) (0.698) (1.521)
100 -1.932  0.909  0.902 -2.079  0.820 1.408
(0.048) (0.034) (0.021) (0.258) (0.732) (1.539)
250 -1.955  0.956  0.925 -2.056  0.888 1.287
(0.045) (0.055) (0.029) (0.242) (0.738) (1.509)
500 -2.015  1.023  0.953 -2.035  0.956 1.162

(0.047) (0.069) (0.038)  (0.233) (0.724) (1.460)

This table gives the mean of each estimator across the 1000 Monte Carlo
estimates. The standard deviation of the Monte Carlo estimates is reported
below the mean value of the point estimates in parentheses (this is a quantile-
based estimate which uses the 0.05 and 0.95 quantiles of the Monte Carlo
distribution of point estimates and the assumption of Normality).

private information and observable individual characteristics are independent. Under the
correlated scenario, [Leungl (2015))’s estimator will not be consistent. Table shows the
simulation results when the individual private information A is independent with observed
characteristics X. Not surprisingly, both this paper’s estimator and |Leung (2015))’s estimator

perform reasonably well, except that Leung| (2015))’s estimator has larger variances.

Table 2.3: Scenario 3 Independent Private Information (o = —1/2,ag = —1/2,7 =0)

This paper’s estimator Leung (2015))’s estimator

n P o Bs b Ba Bs
50  -1.913  0.951 0.925 -2.046  0.909 1.181
(0.040) (0.050) (0.025)  (0.205) (0.482) (0.936)
100 -1.921  0.925 0.911 -2.014  0.956 1.085
(0.027) (0.030) (0.014)  (0.154) (0.470) (0.901)
250  -1.945  0.946 0.919 -2.016  0.944 1.109
(0.030) (0.030) (0.014)  (0.140) (0.464) (0.901)
500 -1.994  1.043 0.965 -2.010  0.967 1.064

(0.029) (0.042) (0.020)  (0.134) (0.463) (0.892)

This table gives the mean of each estimator across the 1000 Monte Carlo
estimates. The standard deviation of the Monte Carlo estimates is reported
below the mean value of the point estimates in parentheses (this is a quantile-
based estimate which uses the 0.05 and 0.95 quantiles of the Monte Carlo
distribution of point estimates and the assumption of Normality).
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2.6 Conclusion

In this paper, I characterize the network formation process as a static game of incomplete
information, where the latent payoff of forming a link between two individuals depends on the
structure of the network, as well as private information on agents’ attributes. I allow agents’
private unobserved attributes to be correlated with observables through individual fixed
effects. Using data from a single large network, I propose a two-step estimator for the model
primitives. In the first step, I estimate agents’ equilibrium beliefs of other people’s choice
probabilities. In the second step, I plug in the first-step estimator to the conditional choice
probability expression and estimate the model parameters and the unobserved individual
fixed effects together using ioint MLE. Assuming that the observed attributes are discrete,
I showed that the first step estimator is uniformly consistent with the rate n='/2, where n

14 rate

is the number of individuals in the network. This rate corresponds to the usual N~
where N stands for the total number of linking proposals and is the effective sample size. The
slow convergence rate is translated to the second step so that the usual asymptotic bias of
order N~1/2 caused by the “incidental parameter problem* won’t show up in the asymptotic
distribution. The second-step estimator 3 subtracted by its mean converges asymptotically

—1/4

to a normal distribution at the rate NV . Monte Carlo Simulation shows that the estimator

proposed in this paper performs well in finite samples.
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2.7 Appendix

2.7.1 Useful Lemmas

The next two lemmas are to be used in the proofs of the asymptotics.

Lemma 2.2. Under Assumptions 1,2 and 3,

D (Gij — Qi)

J#i

/1
sup <0 ( nn)
1<i<n n

n—1

with probability 1 — O(n™2%), and

> (Gij — Qi)

J#i

sup
1<isn

ol

n—1

with probability 1 — O(n=2), where

Qij = Qi (Bo, Aio, Zij)

Qij = Qi (Bo, Ao, Zw)
Proof. The first conclusion comes by applying Hoeffding’s inequality
2(n — 1)€?
> <2 — oy
) o (-0 )

3(1-2x) lnn
2 n

J#i

Pr ( nil > (G — Qi)

for k as defined by ([2.13)). Setting € = gives

1 3(1—2k)2Inn
2(n—1) 3(1 —2k)?Inn
<2eXp<_(1—2H)2 2 n)
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Applying Boole’s inequality then gives

1 3(1 —2k)?Inn
Pr| max | -— 2 (Gyj — Q) 2\/ 2 n
J#i
<nx0(n?)
=0(n™),

from which the first conclusion follows.

To prove the second conclusion, first, observe that for any ¢, j

1
— 2.(Giy — Q)
J#i

. > (Gij — Qi)

<
X
n—lj#

+

1 N
n_1 ;(ng - ng) .

By the triangle inequality,

1

> Qi — Qi)

n—153

< sup ‘Qij — Qij
Z?J

Applying mean value expansion gives that for any i, j

exp(Zj@o + A;0)5 (Zz; ~ 7))
(1 +exp(ZijBo + Aip))?

‘Qij - Qij

= 0,(1)0,(n"?)

= Op(n_l/z)

where the second equality comes from condition (2.13]), Assumption and Lemma .
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The second conclusion follows from the first conclusion. O

Lemma 2.3. Under Assumptzons M and . A (Bo) — Ai(Bo) has the asymptotically

linear representation

A A _ YilGy — Q) Dt Qij — Qij (hln)
Az(ﬁO) AZ(BO) - Zg;&z Q”( QU) + Zﬁéz QZ](]_ — Q”) OP -

Proof. Consider the first order condition with respect to A

8/Cn (607 A7 Cj)

9A =0;

A=A(Bo)

a mean value expansion gives that for all ¢

0= (G — Qus(Bo. Ai(Bo). )

JFi
(sz — Qij(Bo, Ai(Bo), @ij))
J#
; i(B0) = AilB0)) Qi (Bo, Ai(Bo), dig) [1 — Qi (Bo, As( o), )]
;Z Ai(50))?Qis(Bo, Ai(Bo); i) X
i

|1 = Qij(Bo, Ai(Bo), )] 1 = 2Qi5(Bo, Ai(Bo), )] - (2.15)

Denote the last term by R;. The Triangle Inequality and Condition (2.13) then implies

|R;| <1 —Ai(ﬁo)r%:‘Qz’j(ﬁow‘_h(ﬁo)a@j)x
(1= Qi Aulo), )] [1 = 204550, Au(50), )|
(2.16)
<A20,(n — 1), (2.17)
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< Op(y/™2) according to Theorem . From ({2.15) I have

where A\, = sup; ¢, 0

Ai(Bo) — Ai(Bo)
. Z];éz[ QU <ﬁ07 i(ﬁ())’ qu]>]
>z Qij(Bo, A (50)7 Gij)[1 — Qij(Bo, Ai( o), Gij)]
R;
> Qi (Bos Ai(Bo), Gij)[1 — Qi (Bos Ai(Bo) Gij)]

_ > i#ilGig — Qi(Bo, Ai(Bo), i) Vinn Inn
N 5)%])]+O<n)+0p<n>

+

iz Qij(Bo, A (50)7 Gij)[1 — Qij(Bo, Ai(

2ji(Giy — Qi) i Zj;éi@z’j—Qz’j L0 Vinn
J#QU( — Qi) X;uQu(1-Qy) T\ n

where the second equality follows from (2.17) and Condition (2.13)) and the third equality

come from a similar argument as in the proof of Lemma 2.2l More specifically, from the

proof of Lemma , I know that QU =Qi;;+0, ( ) then applying Condition ([2.13)) yields

Z]#l( QZ])
jyéz QU( - QU)

:Zj;ﬁz( ij QU) n Ej;éiAQij —ij
>t Qi;(1 — Qi) Y Qig(1 — Qi)
i (G — Q) . <[Z#¢ Qi1 = Qiy)] = [ Q1 — Qz‘j)D Sizi (G — Qu)
Y54 Qis(1 - Qi) [Zj;ﬁi Qi (1 — Qij)} {Zj;ﬁi Qij(1— ng)}
i Qis — Qi
2 Qi (1 — Qi)

_ Zj#z ( iJ QU) i Zj;éi Qz’j - Qij + Op <1> :
> Qif(1 = Qi) 354 Qi (1 — Qi) n

_|_

the conclusion thus follows. O
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2.7.2 Proofs of the Theorems and Lemmas in the Main Text

Proof of Lemma [2.7] As specified in (2.5)), the optimal linking decision of agent i with

agent j is Gy;(X, A;, e5,0%).

Slll?‘@z,st — qu(X, U*)‘

- 20 Dot (Gij — PGy =1|1X; =25, Xj = 24, X, a*))l{XZ- =24, X; = xt}
T S Y WX = w0, X = 1 ‘

Denote the fraction term by A, 4. It suffices to show that

7—00 N—00

lim lim P(sup ‘Amst > nn_1/2> = 0.
s,t

By the law of iterated expectations and dominated convergence theorem, it suffices to show

P(sup ‘An,st > nn_1/2
s,t

X,U*) L 0asn,n— co.
Note that

P(sup ’An,st > nn_1/2
st

X, a*) < ZP(\An,st
s,t
nE(AZ%|X,0%)
s,t 772
nT?

T 2
< ? I%%XE(A“

> nn_l/Q‘X, 0*)

<

X, J*).

Then it suffices to show E (Agt

X, O'*> = O(nil) for all s, t.

E(A;

X, U*)
_Zi 2izj Var (Gij|Xi =25, X; =24, X, a*) 1 {Xi =14, X, = xt}

(Zmpt {Xe = X, = o))
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+Zi Dt 2ktij COU (Gijy G| Xi = w5, Xj = 21, X, 0*) 1 {Xi = Ts, Xj = $t}

(Zi >zl {Xi =I5, Xj = $t}>2

(2.18)

where I used the fact that link proposals from different agents are independent, i.e.
Gij(X, A e,0) s Gy (X, Ai/,ai/,a*)‘X,a, SO
Cov(Gij, G| Xi = Xy = 25, Xj = Xjp = 20, X,0%) = 0 for all i # i,

Since G;; is a binary random variable, Var (Gij|XZ- =5, X; =24, X, a*) < i. The

first term is bounded by

le (ZZl{Xi—xs,Xj —xt})_ )

)

Then for the second term, by Cauchy-Schwarz Inequality,

Cov <Gij7 Gik|Xi = 3737Xj =Xy =1, X, U*)

< Var (GU
1

<
4

1/2 1/2
Xi=z5,X; =, X, a*) Var (Gik X,=x4, X = x4, X, a*>

so the second term is bounded by

2
n—1 1 . -
; = — —
B e V[ ) Di 2t Dokig 1 {XZ- =1,X; =X = xt}

i ((11> i i { X = w0, X; = “”t}y

“dn

Both the numerator and denominator are U-statistics. It’s straightforward to show that they
converge to their expectations. Therefore, the sum of the first and second terms are O(%),

and the proof is complete. O]

Proof of Theorem [2.1l According to Assumption [2.4] [y, Ap uniquely maximizes
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E[L.(8, A, q)| X, Ag]. Since (3, A) solves maxgep aca Ln (5, A, §), it suffices to show that

sup (L£,,(8,A,q) — E[La(8, A, ¢)| X, Ag]| = 0 (2.19)

8,A

By the triangle inequality, the left-hand side is less than or equal to

Sﬁugl) ['n(ﬂa Aa qA) - E[‘Cn(ﬁ> Aa C7)|‘X77 AO]

E[£n(ﬁ7 Av Q)le AO] - E[£n(67 Av Q)|X> AO] :

+ sup
B,A

I 11

By Continuous Mapping Theorem and Lemma 2.1, I7 = 0,(1). By the Logit formalization
of Qij(ﬂa Ai; qA)a

I = Sguf £n(67 A7 qA) - E[En(ﬂa A7 Q)‘X7 AU]
_Sg,A n—l ;; — @i)ln (1_Qij(67Ai7d)>|

where Q;; = Qi;(5o, Ao, §). According to the Triangle Inequality,

n—l

*Z

T3 -am(2g0)

)

Qu (8, As, )
i (G = (2 ézj(ﬁ,Ai,é))"

JF

Condition (2.13)) implies that In(:*-) < In (W) In(£2), thus (k — 1) In 2 <

(Gij — Qij) In (Q’(/BAq)> < (1 — k) In == According to Hoeffding’s inequality,

1-Qi5(B,A:,9)
(n—1)e
<2 — .
6) exXp ( 2(1 _ R)Q(ln 1;5)2

. Qi; (5, Ai, §)
P’f’( 7 2.(Gi; — Qi) (1 — Qij(ﬁvAi"?)) g
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Take € = /=222 31“” and apply Boole’s inequality, for any g € B, A € A",

! Qi (8, Ai, ) 3lnn

o s 00— (120 | )
1 Qi (8, Ai, @) 3lnn
<npr(n_1§(G“‘W“(l—é@-jw,m@)|2 ! )

(n=1)

2\ 20(1—r)2(n 12E)2
<=
nQ

“6)

Qi (B, Ai, q) ) /31Hn
= Pr ZZ Qz] (1_Qz 6 A“
e J
1 1 Qz] 67 isd ?)lIlTL
< - - 0.
<Pr n ; n—1 j¢i<Gm Qz]) In <1 — QU ﬁ,Az,q ‘ )
1 Qi (B, A, 4) 31“”
< 0.
<Pr 112251 n—1 Z(G” Qi) In (1 — Qi (B, A, §) q

J#i

which implies the uniform convergence result:

Qi (5, Azaq /31ﬂn
Pr| sup — Qi) ( — ) (2.20
<5Ann—1 ;; ’ szﬁa iy q 2 )
and hence I = 0,(1) and (2.19)) follows. O

Proof of Theorem [2.2l Let Ay denote the population vector of heterogeneity terms and
A; = ¢(Ap). From (2.12), I have

A= A =Y Gy~ Y P (2,5 + Au)
15 — 4102 — % I = .
) ’ JFi 1+ eXp( ijﬁ + AOZ)

A Taylor expansion of the second term on the right-hand side gives:

exp(ijB + AOZ)
n PN
iz L+ exp(Z];8 + Agy)
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eXp(Zz{ﬂo + Aos) >t Qij(B Ao, Z, A' )( - Qij(B? A, sz))Z{ A
=1 ]A J . J _ )
njz;é:i I+ eXP(ijﬂo + AOZ) i z;éz Qz] (ﬂ 10 Z ) <B 50)

Using ([2.13), the compact support of Z;; , and Theorem [2.1]

> Qi (B, Ao, Zz’j)(l — Qi (B, A, Zzg))Z{] (B — Bo)
= = — Do
i;éz' Qi (B, Ao, Zij)
Qii (B, A, Zi5) (1 — Qi3(B, Aw, Zij)) Zi;
< ST (B - By)|
i iz Qij (B, Ao, Zij)
SUp,cy |2
gEZH’ 5 Bo) ‘
=0,(1) - 0,(1)
=0p(1).
I can conclude that
exp(Z!.By + Ag;
A — Ao = hlZGij - 1“2 bl Z]Aﬁ,o o) + 0p(1).
Denote Qij = %, a mean value expansion around Qij gives

A > ;éz Qz]
lng Gzzlng Qz+ J ~
el 7 A LGyt ( = A) Xz Qi

for some A € (0,1). By (2.13)), for all

Z];ﬁz( Q’L])
A Zj;éi Gz] + ( ) JFi QU

o (Sl — Q)]
DR (P

Lemma then gives, with probability 1 — O(n~2), the uniform bound
<0 (\/ mn) .
n
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Then the conclusion follows by applying Lemma 4 in |Graham| (2017). [

Proof of Theorem 2.3l Step 1. Characterizing the probability limit of the Hessian of the
concentrated log-likelihood.

First define the following notations. The Hessian matrix of the joint log-likelihood is

given by
Ho Hynps Hppa
H;ngA Hn,AA
where
Hops =~ > ZiiZij Qi;(1 — Qi) (2.21)
1§
Y1 Qi (1 — Q1)) 2
Hy, g4 = — : (2.22)
Y jn Qni(1 — Qnj) 2y
Ej;él Qlj(l - Qlj) s 0
Hpaa=— : : (2.23)
0  jtn Qni(1 = Qnj)

and ﬁnﬂg, f[r’LﬂA, and [:[n,AA are defined by (]2.21[), (]2.22[), d2.23[) respectively with Z;;

replaced by Z]
Following Amemiya (1985, pp. 125-127), the Hessian of the concentrated likelihood is
62‘60 (607 N .
8586/ ZZ aﬁ,sﬁw , Ai(Bo); Gij)

i=1 j#i

wps — Hopal, 4 H, 4

, A n (25 Qi (1= Qi) Zig) (X Qi (1 — Qi) Z4;)
_— 25520001 = Qi) + . -
;; Q @) ; iz Qi (1 — Qi)

)
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which implies

1 " 0 A .
n(n—1) ; < (975’8’8 ij(Bos Ai(Bo), Gij)
1 " 5 A A A
T n(n —1) ;j;ﬂ' ZiaZ@ull = Q)
(2 0u0-002) (5 £ 0u- 02
+ l Z J#i Hil
ni 1 Ve ng( ng)
1 /
= - n(n—l) ;;Z Z Ql] Qz])
1. (nil ]%é:z sz( sz) ) <ni1 j%é:i Qm(l - QZ])ZZ/]>
N 5; 1 J# QZ]( sz) +0p(1)
:I(] + 0p<1>, (224)

where Z; is as defined in (2.14]). The second equality in ([2.24) is given by the same logic as

the proof of Lemma and more involved calculations.

Step 2. Asymptotic Linear Representation

Consider the first-order condition associated with the concentrated log-likelihood

oL (B, A(B), 4)
b p=p

a mean value expansion gives

A A

OZZZSWJB i(B),q Zzsﬁu , Ai(Bo), dij)
i=1 j7#i 1=1 j#i

0
+ZZ 8618521(

1=1 j#i

Tbl
:r>.>
S
<
T
=
|
S
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which implies

V(B — Bo)
== mzzaﬁ' pislP (6)’%] L%ZZSM Bo). )

i=1 j#1i 1=1 j#i

-1 11

The first term I converges in probability to Zy as defined in (2.14). I cannot apply a
CLT directly to /1 because of the strong correlation between summands caused by using the
same set of data to get ¢, A and estimator of G.

A second order Taylor expansion of I gives

n3/2 Zzsﬁ i ( (Bo> Ai(Bo), dij)

i=1 j#i
n3/2 Z Z s5,i5 (B0, Ai(Bo), Gij)
i= lj;éz
n3/2 Z > (A Ai(Bo0))Qii (1 — Qij) Zij
=1 j#i
n3/2 Z N Qii(1 = Qij)Zi;B)(Zij — Zij) + Qij(Zij — Zij)
=1 j#
) n3/2 ZZ Ai(B0))*Qii(1 — Qi) (1 — 2Q45) Zij
=1 j#i
2 n3/2 Yod (Zij— 2y vZZJZ s8.i7(Bos Ai(Bo) @ij ) (Zij — Zij)
i=1j7#i
3/2 ZZ 4i(Po)) [Qij(l — Qij)(1 = 2Qij) Zij Bo(Zi — Zij)
=1 j#i

+Qii (1= Qi) (Zij — Zy)| (2.25)

where Q;; = %% with A; between A and A, Z;; between Z and Z;;, for all i, j.

The main result follows by showing that
(i) A CLT can be applied to the second and third terms of ([2.25]).
(ii) The first term converges in probability to 0.
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(iii) The last three terms (second-order terms) converge in probability to 0.

[ start from the last three terms in ([2.25)). Condition (2.13)), compact support and Theorem
[2.2] implies that

e S (A) — AR Qs (1~ @)1~ 205)Z

By the same argument, it can be shown that

11 & _
T o932 ZZ — Zij)'Vz, 3258, ii(Bo, Ai(Bo), q”)(Z = Zij)| = op(1)
i=1 j#i
n3/2 Z Z o)) [Qz‘j(l —Qij)(1 = 2Qij)) Zi; Bo(Zij — Zij) + Qi (1 — Quz) (Zij — Zij)}
i=1 j#i
= op(1).

Then I consider the first term in (2.25). By Lemma 2.2}

n3/2 ZZSM Bo, Ai(Bo): 4i5)

1=1 j#i
3/2 ZZ ij QZ] ij
= 1]761
SupIZI > 3Gy - Q)
i=1 j#i

<o
\\/ﬁ P
=0,(1),

where the second inequality comes from the fact that \/m iy 2ji(Gig — Qi) = Op(1).
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This is true because G;; are independent conditional on A and X. Applying the central limit
theorem yields the desired conclusion.

Then look at the second term. Applying Lemma 2.2 and [2.3] yields

n3 /2 ZZ A BO))QU( Qij)Zz]

i=1 j#i

i#i(Gij — Qi) >t Qij — Qyj 1 A
n3/2 ZZ ( Qlj) + Zj;éi Qij(l — ng) + Op <n>) Qz](l QzJ)ZZJ

i=1 j#i J?EZ QU

" Lz Qu=Qu \ o 107
Z%( SN @m)%“ @

2 Qii(1 — Qij) Zi exp(Zj;fo + Ai(B) .,
n3/2 Z ( i Qi (1 — Qi5) ) ; (1 +exp(Z; 80 + Ai(o)) (Zig = Zu) | + op(D):

1
32

The sum of the second and third terms can be written as

n3/2 ZZ — Zij) + 0p(1), (2.26)

i=1 j#i

D Qii(1-Qij) Zij exp(Z],Bo+A: (o))
whore 0 — (S 0ult 0t ) onper b1+ (0401 - Qu) 2y + Q]
Define ;= (W}, Gji, 755 Xpsij Gin)'- As defined in Section ,

Zij = (W}, Gjiy 55 Sk @)~ 1 will show that

n3/2 ZZ - ) - 07 (227)

i=1 j#i

so that

My (2~ ) =

i=1 j#i

and hence I can replace Zj in |D with (;;. To see why 1) holds, observe that

b1 ik Gig H{ Wiy = Wi}
Mz oy : - Gz =V,
3/2 ; ; 7 ( Skt Xk W{ Wiy = Wi} ’
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and the claim follows. Define V; = + 37, M;;((;; — Zij). Then (2.26) can be written as

\}ﬁgvi + 0p(1)

where {V;}!" | is independently distributed, conditional on X, .

Step 8. Demonstration of Asymptotic Normality of the second and third term in .
To apply CLT, one needs to check the Lindeberg condition. Take any vector a € R,

the conditional mean of ﬁa’ Viis 0

1
E %a,‘/g X, ol =0.
The conditional variance of ﬁ >, d'V; given X, o is
1
Var ﬁ;a"/} X, 0| = ZE{ (a'V;)?|X, a] =Q,.

By compact support, Condition (2.13), and Lemma

max; |ﬁa'Vi| »

vV,

To check the Lindeberg condition, note that for any € > 0

1 _ / 2 |T V| _
Q—HZE n< V)l{ NN >er|X,0

1 7
1 1 max; —naVi
<—> E (a/%)Ql{w>e} X, o
n

Qn i \/Qn
<1ZE_1( VX, | =1
<5, 2 ~(a ol =1.
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By the dominated convergence theorem, the Lindeberg condition follows, i.e. for any ¢ > 0

1 7
1 1 —=a'V;
@;E n(a,‘/;)Q].{’\/\ﬁ/Q_n | >€} ‘X,O' ﬂ)O

By Lindeberg-Feller CLT, for any a € R,
1 d
Q2—=3"d'V; 5 N(0,1).
nn Xi:a (0,1)

Combining with the result in Step 1, this yields the desired conclusion that for any

acRY,

\/ﬁa’(B — fo)

d
— N(0,1).
Tl 72 (@zy Sy e O
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Chapter 3

Identification and Estimation in Differentiated
Products Markets where Firms Affect Consumers’

Attention

3.1 Introduction

Demand estimation in differentiated product markets is an important topic in modern
industrial organization studies. The approach proposed by Berry et al| (1995) (hereafter
BLP) plays a central role in this area of research. Though allowing heterogeneous tastes,
traditional BLP assumes that consumers pay full attention to all the products available on
the market. However, there is various empirical evidence that consumers have limited and
heterogeneous attention and make choices only from their own “consideration sets” (Goeree
(2008), Reutskaja et al| (2011]), |[Draganska and Klapper| (2011)), Conlon and Mortimer
(2013)), Honka et al.| (2017))), among others). Ignoring this issue may lead to a biased
estimation of both demand and supply.

When incorporating limited attention into the model, several features of consideration
sets raise concern. First of all, they are usually formed endogenously and are affected by
firms’ (optimally chosen) marketing inputs such as advertising, packaging, and listing of

products on websites (Ursu (2018)). As a result, heterogeneous consideration sets are an
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equilibrium outcome reflecting both the demand and supply sides. Second, however,
different from other equilibrium outcomes, consideration sets are usually unobserved by
researchers. Third, consideration sets can be formed through many mechanisms. The
modeling of their formation process is often parametric and context-based. Identification
and estimation of such a model are usually infeasible once the functional form or modeling
assumptions have changed. Due to these concerns, separately recovering preference,
attention, and supply side features in the entire demand and supply system is an
interesting topic that hasn’t been well studied in the previous literature.

Assuming the availability of market-level data, this paper studies the identification
and estimation of a nonparametric demand and supply system when consumers have
limited attention. On the demand side, I propose a nonparametric model for utility, which
allows rich heterogeneity in preferences. To characterize consumers’ limited attention, for
each consumer-product pair, I propose a latent attention score which is a nonparametric
function of the product- and consumer-specific characteristics. The attention score function
proposed in this paper is flexible in three aspects. First, it’s nonparametric and thus
accommodates many reduced-form representations of drivers of inattention used previously
in applied work. Second, it allows the unobservable determinants of utility and attention to
be arbitrarily correlated with each other. Third, it allows correlated consideration among
products through unobservables. These three features distinguish the model in this paper
from many limited attention models studied in the previous literature. Another essential
feature of the utility and attention models in this paper is that it allows the endogeneity of
prices and the firm’s marketing inputs. Though the nonparametric identification of models
with price endogeneity has been studied previously by |Berry and Haile (2014) and Berry
and Haile| (2018), no previous literature has studied the nonparametric identifiability of a
model with consumers’ attention influenced by endogenous marketing inputs.

On the supply side, following Berry and Haile (2014), this paper characterizes firms’

optimal choices by a set of first-order conditions without specifying the form of the
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oligopoly model. In addition to the traditional production decision, I add firms’ decision
for marketing inputs into the model and showed that the optimal marketing decision can
be characterized by an additional first-order condition in a similar fashion. I allow for
latent cost shocks and unobserved heterogeneity in cost functions.

To identify the model, I combine the demand and supply model in a single system of
nonparametric simultaneous equations. In the system, the exogenous demand and cost
shifters serve as exclusive regressors, whose variations can be exploited to show
identification. The identification of demand and supply functions follows Matzkin| (2015]).
By connecting the elements of the structural system with conditional densities of observed
variables, it can be shown that desired features of the structural functions, such as
derivatives and ratios of derivatives, can be expressed as easily computed functionals of the
conditional densities.

From the identification of the demand and supply system, this paper goes one step
forward to identify the latent utility and attention functions on the consumer’s side and the
marginal cost functions on the firm’s side. To separately identify the features of utility and
attention functions, I exploit the exclusion restriction that prices only affect utility and
marketing inputs only affect attention. In the general model with nonadditive utility and
attention functions, I show the identification of ratios of derivatives of the structural
functions by exploiting the cross-market variation of the market share of the outside
option. Then I consider a more restrictive additive-separable specification for the utility
and attention functions and show identification of the derivatives of utility and attention
functions with respect to product features. To recover the marginal cost functions, one
needs to have information on the specific oligopoly model, since the structural functions
identified in the simultaneous system are actually reduced forms combining both the
marginal cost functions and the (unknown) oligopoly first-order conditions. This can be
achieved by investigating a testable condition proposed by |Berry and Haile| (2014)), once

the demand and supply system is identified.
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Following the constructive identification results, one can propose a nonparametric
estimator for the demand and supply system by replacing the conditional densities of
observables with their Kernel estimators. The asymptotic properties of this estimator are
studied by Matzkin (2015). I extend the result in Matzkin’s paper to the estimators of
derivatives of utilities and attention functions. The asymptotic properties of these
estimators follow directly by the delta method. The rest of the paper consists of six
sections. In Section 2, I briefly discuss the place of this paper in the previous literature. In
Section 3, I describe the model studied in this paper. In Section 4, I show the identification
of the demand and supply side structural functions. In Section 5, I propose a
nonparametric estimator based on the constructive identification results in Section 4. I

conclude in Section 6.

3.2 Related Literature

The demand side structure of this paper is related to the large body of literature on
discrete choice models when consumers consider subsets (consideration sets) of the entire
set of alternatives. This topic has long been studied in the applied literature, where
researchers usually assume that consideration sets are observable, or that auxiliary data on
consideration sets are available (recent work includes [Reutskaja et al. (2011), Draganska
and Klapper| (2011), |Conlon and Mortimer, (2013), Honka and Chintaguntal (2017))).
Different from this strand of research, this paper doesn’t require the availability of any
auxiliary data on the consideration sets.

Without assuming that consideration sets are observable, many theoretical papers
have shown the identifiability of the discrete choice model under different settings.
Masatlioglu et al. (2012), Manzini and Mariotti (2014) and Cattaneo et al. (2020) rely on
exogenous changes to the set of alternatives (menu hereafter) available on the market.

Data satisfying this hypothetical requirement could be difficult to find outside of an

131



experimental setting. Instead of exploiting the change of menus, other researchers put
additional assumptions on preferences to obtain point identification. [Dardanoni et al.
(2020) assumes homogeneous preference and that individuals only have the capacity to
consider a certain number of alternatives. In a recent survey by Crawford et al.| (2021), the
authors mentioned a differencing-out approach dating back to McFadden (1978), where the
unobserved consideration sets are differenced out by using a subset of the true choice set in
estimation. However, this approach requires multinomial preference and the stability of
consideration sets over time. Moreover, it cannot identify the attention parameter and
cannot deal with market-level data. A recent paper by Abaluck and Adams-Prassl (2021)
showed the identification of the derivatives of demand functions using the asymmetry of
demand responses in limited-consideration models. Though there is no explicit assumption
on preference, their key identification assumptions - Slutsky symmetry and translation
invariance of the demand functions essentially require the utility to be linear in price and
the marginal disutility of price is the same for different products. Moreover, their
identification result requires a large support assumption of the price vector. They assume
that when the price of a product equals oo, it’s conceptually the same as when this product
is removed from the menu.

On the demand side, this paper differs from the previous literature on discrete choice
with limited attention in the following ways. First, the nonparametric specification of the
utility function in this paper imposes no additional restrictions on the preference. Second,
the structure of consideration set formation also takes a very general nonparametric form,
which allows arbitrary correlation among unobservables driving utility and attention. This
framework is more general than the previous work where each product is considered by the
consumer independently, and consideration is independent with preference conditional on
observables (see, for example, Manzini and Mariotti (2014)) and |/Abaluck and Adams-Prassl
(2021))). Barseghyan et al.| (2021)) also allows correlation between unobservables driving

consideration and utility. They remain completely agnostic about the consideration set
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formation process, which is more general than the model in this paper. However, the cost
is that they only get partial identification. The third perspective in which this paper differs
from the previous literature is that the data structure I use is market-level. Only the
market share and product-specific characteristics are observed by the researcher. I show
that the nonparametric structural model can be identified as long as the exogenous
variables in the system have enough variation across markets. No exogenous change in the
availability of products is required. Fourth, the identification of structural functions in this
paper doesn’t rely on large support assumptions, which can be unrealistic in applications.
The most important feature of this paper that differs from previous work is that I
incorporate price and marketing endogeneity in the model. The formation of consideration
sets is not only endogenous but also affected by the firm’s endogenous choices. Instead of
looking purely at the demand side discrete choice problem, one has to consider the
interaction between the demand and supply side to properly identify the model. In a
theoretic paper, Eliaz and Spiegler| (2011)) studies a model in which competing firms use
costly marketing devices to influence consideration sets. They assume homogeneous
consumers and firms and deterministic consideration while this paper allows rich
heterogeneities in preference, consideration, and the supply side. Another difference
between the model in this paper from theirs in that they consider firms’ joint decisions on
product quality and marketing devices, while this paper treats product quality as fixed. In
applied literature, the work by |Goeree| (2008)) is under a similar framework as this paper,
but their model is parametric. In this paper, I show the nonparametric identifiability of the
model which encompasses the model studied in Goeree (2008) and many other potential
specifications estimated in the applied literature. This paper thus contributes to the
nonparametric identification of demand and supply in differentiated product markets. The
methods used in this paper closely follow conclusions in |[Berry and Haile (2014). Their
model incorporates rich preference heterogeneities. 1 extend their results by adding

information heterogeneities into the model, where a consideration stage is added to the
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demand side and firms’ marketing decisions are added to the supply side.

3.3 The Model

3.3.1 The Demand Side

In this part, I describe the demand side of the model consisting of both the preference and the
attention of consumers. The preference is characterized by a random utility model. For the
attention, I constructed a nonparametric rule which can accommodate many reduced-form

representations of drivers of inattention used previously in applied work.

3.3.1.1 The Preference

Suppose there are T" markets in the economy. Each of the markets consists of a continuum
of consumers with measure one. On each market, there is a menu of products that are
available J = {0, 1, ..., J}. Consumer i on market t’s indirect utility from choosing product

j€{1,...,J} is given by:
Uijt =’ (xjtagjtapjta Eijt) )

where u/ is an unknown function; pj; is the price of product j; x;; and ;; are, respectively,
observed and unobserved product characteristics. In practice, each product may have
multiple observed characteristics. Here, for simplicity, I suppress the dependence of utility
on other demand shifters and leave only one demand shifter in the model, as the variation
of a scalar xj is enough for identification. Since price pj; is an equilibrium outcome, it’s
correlated with & for all k € 1,..., J. Let the vector €; := (€14, ..., €;51) denote individual’s
heterogeneous tastes towards products. I assume the vector €; is i.i.d. across ¢, with an

unknown joint distribution. Note that the elements of vector €; i.e. consumer ¢ in market
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t’s tastes towards different products may be correlated. Let x; = (14, ..., T5),
& = (&, &) and py = (payy .., pge) denote the vector of observed and unobserved
product characteristics, and the price vector, respectively. Without loss of generality, I
normalize the utilities of good 0 for each consumer on each market: Uy, = 0 for all ¢ and
all t.

Following Berry and Haile| (2014), I restrict that x;, and &;; enters the utility through

a linear index d;; = 23 + £, and normalize the scale by letting 8 = —1 for all j, so that

Uz'jt =u’ (5jt7pjt7 €ijt)

=’ <—$jt + &ty Dt Ez‘jt) . (3.1)

As discussed in Berry and Haile (2014)), the linear structure of the index is stronger than
necessary. The minimum requirement for identification is that x; and §;; enter the utility
through an index that is strictly monotone in &;;. The normalization of 5 = —1 is just for
simplicity of notation in the later part of this paper, this is innocuous because theoretically,
one could normalize § to any real number.

Moreover, I impose the following assumptions on the function v’/ and the error term €j;:

Assumption 3.1. (i) €; := (€14, ..., €i5¢) s distributed independently with x,, &, p; with a
joint CDF that is continuous. (i) For all j € {1,...,J}, for all p; and €;; on their support,
function u! is continuously differentiable in &;; for all 6; and €;; on their support, function
u! is continuously differentiable in p;; for all §; and p; on their support, function u’ is
continuously differentiable in €;;. (iii)For all j € {1, ..., J}, for all 6; and p; on their support,

u? (85, pj, €i5) is strictly increasing in €.
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3.3.1.2 The Attention

Let ®,;; denote the latent attention score of consumer 7 in market ¢ towards product j. It’s
some unknown function ¢’ of product characteristics index d;;, firm’s marketing input M,

and a consumer- and product-specific heterogeneous error term n;;;.

(I)jt = ¢j(5jt, th, th)

= ¢ (=0 + iy, Mjs, mije ), (3.2)

where the vector n;; = (Wi, ..., Mige) is 1.1.d. across i,t. I require the following assumptions

on function ¢’ and the error term n;:

Assumption 3.2. (i) ni == (Di1g, ..., Mige) 1S distributed independently with x;, &, My with a
joint CDF that is continuous. (it) For all j € {1, ..., J}, for all M; and n;; on their support,
function ¢’ is continuously differentiable in &;; for all 6; and n;; on their support, function
@7 is continuously differentiable in M;; for all 6; and M,; on their support, function ¢’
is continuously differentiable in n;;. (iii)For all j € {1,...,J}, for all §; and M; on their

support, ¢ (8;, M;,ni;) is strictly increasing in n;;.

In the general model in (3.1), where the individual-specific error terms enter the
attention function nonadditively, the independence assumption in (i) is much weaker than
it would be if the error terms enter additively. Assumption [3.2(ii) and (iii) are required for
the identification of utility functions and attention functions in Section [3.4.2]

Consumer i always considers product 0, while he will consider product j € {1, ..., J} if

his latent attention score of that product is larger than 0. In other words,

0 € C

j € Ct iff @jt > O, forj: 1,...,J,

where C;; denote the consumer’s consideration set.
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The nonparametric attention model in this paper is very flexible. It can accommodate
many reduced-form representations of drivers of inattention used previously in applied work,
as shown in the following three examples. The first two examples describe models with
independent and correlated considerations among alternatives. The third example describes

a model incorporating consumers’ limited awareness and costly search.

Example 3.1 (Limited Consumer Awareness). |Goeree, (2008) studies a model of limited
consumer awareness in the U.S. personal computer industry. The model assumes that each
product [ has an independent (conditional) probability of being considered. Advertising on
product [ helps inform consumers about that product. To fit the context of aggregate data
in this paper, I omit the individual heterogeneities in the original model of |Goeree| (2008]).

The conditional probability that a consumer is aware of product j is given by

exp ()

where
’)/j = (,OMJ + pr + MJ\I}f + 191']'.

M; stands for the number of advertisements of product j on certain media. Wy is a firm
fixed effect and z; is the PC age measured in quarters. Let 7;; follow a logit distribution
for all 4,7. The information technology proposed by Goeree (2008) can be regarded as a

parametric special case of the model in this paper since
gbj(xj, Mj, T]z]) = (,OMJ + pMJQ + M]\I]f + 19[Ej + U

and

_ exp(oM; + ,OMj2 + M;V; + VJx;)
— 1+exp(pM; + pM? + M;¥y + da;)

qi; = Pr (ﬁbj(mpMjﬂ?z‘j) >0 | $j7MjaVi)
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Example 3.2 (Limited Attention Due to Imperfect Information and Cognitive Limits). In
a real choice environment, consumers may not fully know the utility-relevant attributes of
products, for example, a consumer buying a car may not be aware of the price; applicants
for insurance may not be aware of the premium. Before making the purchase decision,
however, they may receive some signal helping them refine their posterior beliefs about the
unknown attribute. Moreover, if the consumer is willing to do a further inspection, they can
fully discover the true value of this attribute (for example, through quoting). Suppose the
consumer’s information acquisition process can be characterized by two steps where in the
first step he/she pins down the set of alternatives for further inspection by comparing the
posterior expected utility of alternatives with the utility of outside options. Let F, ¢ n;n;;
denote the posterior belief about the joint distribution of (p;, €;;) conditional on product j’s
marketing device M; and a consumer specific signal 7;;. The posterior belief may come from
certain information structures whose sufficiency is affected by the marketing device put on
product j. For example, a car advertisement mentioning the minimum monthly payment
for buying/leasing that car reveals more information about the price compared with an
advertisement without the minimum payment information. In fact, such an advertisement
can be viewed as a signal revealing the lower bound of the price. Upon forming the posterior

belief, consumers can calculate their posterior expected utilities denoted as ¢’ (d;, M;, 1;;) by
¢ (85, Mj, mij) = /Uj(%pj? €ij)AF iy M iy

In the second step, the consumer will further investigate the set of products with posterior
expected beliefs greater than 0, which is the utility of the outside option. That means the
consumer’s consideration set will consist of the outside option and all j € {1,...,J} such

that ij((sj;Mj;nij) > 0. ]
Example 3.3 (Simultaneous Search). Suppose consumer i’s indirect utility for product j
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takes a linear form
Uij = Bo; + vpj + €ij-

d; is product j’s feature. ¢;; is a consumer- and product-specific heterogeneous taste. d; and
€;; are observable by the consumer before the search. p; is the price of product j, which is
not known by the consumer until the search. Consumers know the distribution of p;. Denote
their expectation of p; as ,u? . Based on the information they have, consumers can form their

expected utilities before the search:

E [UZJ} = 65] + ’)/E [p]} + €ij

= Bo; + 15 + €5

Let ¢; denote the cost of the search for product j, which depends on the marketing input
of product j and a consumer-specific component 7;; and takes a linear form c¢;(M;,n;;) =
p°M; +n;;. Consumers simultaneously search all products whose expected utility less search
cost is positive. They can only choose from the products that have been searched. That

means consumer ¢ will consider product j € {1, ..., J} if and only if

B + v + ey — (B°M; +1n55) >0
& B0; + s — BM; + (e —nj;) >0

<:>¢j (53'7 Mjanij) >0

where 7;; 1= €;; — ;. In this example, the unobserved consumer-specific component 7;; in
the utility function and the unobserved consumer-specific component 7,; in the attention

function are correlated. O

Example 3.4 (Listings by Online Platforms.). Previous research has found the power of

listings on consumers’ attention and purchasing decisions online (see, for example, Ursu
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(2018)). Consumers searching for a laptop online may enter some attribute §; into the
search box. The underlying listing algorithm of the website will then process the attribute
the consumer enters, and generate a list of products with customized ranking, which depends
on the marketing inputs of products and the consumer’s characteristics. Consumers may
search multiple times, but because of cognitive limits, they may only pay attention to the
products that have ever appeared on the first page of the search result. Let M; denote the
marketing input of product j. Let ®;; denote the frequency that product j appears on the
first page of consumer i’s search result. It’s given by ®;; = ¢/(d;, M;,7;;). The consumer

will then consider product j if and only if ¢/ (d;, M;, ;) > 0. O

3.3.1.3 The Demand System and Invertibility

Given the preference and attention model, the market share of product j in market ¢ is
the probability that j is considered by the consumer and its utility is the highest in the

consideration set, i.e.

Sjt = Pr ((D]t > 0 and U]t > 0 and U]t > Ukt for ¢kt > O,k = 1, ceey J | 6t7pt7Mt) (33)

= O-j (6t7pt7 Mt) ) (34)

where o is some unknown function to be identified. The equality in (3.4) comes from the
fact that after integrating out the consumer heterogeneities €;; and 7;;, the market share of
product j is a function of the product features d;, the prices p; and the marketing inputs M,
of all products.

A key step for identification is the inversion of the demand system as shown in Berry!

et al. (2013). The invertibility requires the following assumption:

Assumption 3.3 (Connected Substitutes). Let A denote either §, —p, or M. The demand

for products (0,1, ..., J) satisfy:

1. (Weak substitutes): o;(0,p, M) is nonincreasing in X, for all j € {0,1,...,J}, k ¢ {0, 5}
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and for all (§,p, M) € R*/.

2. (Connected Strict Substitution): For any nonempty K C {1,...,J}, there exist k €

IC and j ¢ K such that o;(6,p, M) is strictly decreasing in A, for all (6,p,M) €

supp((d, p, M)).

Lemma 3.1 (Lemma 1 in [Berry and Haile (2014))). For any price vector p, marketing input
vector M, and any market share vector s = (s, ..., s;5) such that s; > 0 for all j and Z] 185 <

1. Under Assumption there is at most one vector ¢ such that o; (6,p, M) = s;,Vj.

With this result, for any (s, p;) in their support, one can write

—Tje +&e = 05 Yse,p M), j=1,...,J. (3.5)
~————

:55jt

3.3.2 The Supply Side

On the supply side, instead of specifying a particular supply model, following [Berry and
Haile| (2014), I require the less restrictive condition that a set of first-order conditions
characterize firms’ optimal choices for prices or quantities and marketing inputs. The
existence of first-order conditions requires the market share functions o;(d,p, M) to be
continuously differentiable with respect to prices and marketing inputs. Formally, the
following assumption analogous to Assumption 6 in Berry and Haile (2014) is required.
Part (ii) of the assumption slightly strengthens the connected strict substitutes assumption

in Assumption by ruling out a zero derivative when o is strictly increasing in Ay.

Assumption 3.4. (i) 0;(0,p, M) is continuously differentiable with respect to py and My,
Vi k € {1,...,J}; (i) For any nonempty KK C {1,...,J}, there exist k € IC and j ¢ K such

that 221022 I’)p’ M >0 andw < 0 for all (6,p, M) € supp((5,p, M)).

Under Assumption [3.3]and [3.4] the first order conditions defining firms’ behavior can be

expressed as the marginal cost of production mc;; and the marginal cost of marketing input
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mc?

% as functions of equilibrium prices, equilibrium quantities, and equilibrium marketing

inputs. Formally, the following high-level assumption is imposed:

Assumption 3.5. For each j = 1,...,J, there exists a (possibly unknown) function v; and

7, such that, for all d;, s, in their support,

mcjt = @Dj ((Sta St Pt Mt)’

mc, = Vi (0t, 8¢, pe, My).

Building upon similar arguments as [Berry and Haile| (2014), it can be shown that given
Assumption (connected substitutes) and , after adding the optimal marketing inputs
decision into the model, Assumption follows from the first order conditions of a variety
of supply models. To see how the optimal decision on production and marketing inputs
interact with each other, I show the supply model under price setting and quantity setting

in the following two examples.

Example 3.5 (Price Setting). Consider a complete information simultaneous price-setting
game with Nash equilibrium as the solution concept. Let J; denote the set of products
produced by the firm that produces goods j. The first order conditions for the price and

marketing inputs of good j are:

0s
Sit + Z (prt — kat)Tkt =0
keJ; Pjt
aS it
> (prt — meg) s — mc, =0
ves, oM, J

The first-order condition of all firms can be written in matrix form as

st + Ay(pr —mey) =0

Ty(ps — mey) — mef =0,
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where the (j,k) elements of matrix A; and I'; are Jsy:/0p;: and Osy/OM;; respectively if
j and k are produced by the same firm, and zero otherwise. By simultaneous permutation
of rows and columns one can obtain from matrix A; a block diagonal matrix, with each
blocking being a principal submatrix of DY, the Jacobian matrix of s, with respect to p;.
Under Assumption and one can show that DY is a P-matrix using Theorem 2 in

Berry et al.| (2013). As a result, A, is invertible and

me; = p; + At_lst

mC? = —FtAt_lst.

[l

Example 3.6 (Quantity Setting). Consider a complete information simultaneous quantity-
setting game with Nash equilibrium as the solution concept. Under Assumption [3.3 by
Theorem 1 of Berry et al.| (2013), there exists an inverse demand function p; = P(6, $¢, My).
Under Assumption and , by Theorem 2 in Berry et al. (2013)), D! is invertible. Then
by inverse function theorem, the derivatives of p, = P(dy, s4, M;) exist and are equal to the

inverse of DY, that is

P _
aijz - {Dp}kl

If the inverse demand function is also differentiable in M, the first order conditions of

firms can be written as

Okt -
Z Ds. Skt + Pjt = MCjt
keJ; 995t

Z Ot Sk = mct
kt — jte
keJ; aM]t
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Following Berry and Haile| (2014), I define the following cost indices as linear functions

of production cost shifter w;; and marketing cost shifter z; respectively:

Kjt = Wi + Wyt

>\jt = thej -+ Cjt-

I normalize ; and 6, for each j € {1,..., J} to be —1 without loss of generality. Moreover,
I assume that the cost shifters affect the marginal cost of production and the marginal cost

of marketing inputs only through the cost indices xj; and Aj;.

Assumption 3.6. Forallj=1,....J,

mcje = ¢;(Sje, Kjt)

meajs = ca;(sjt, Ajt)

where c¢; s strictly increasing in kj and ca; is strictly increasing in Aj;.

Under Assumption and [3.6], the supply-side equilibrium conditions can be written

as

CJ'(Sjta /fjt) = wj(ét, St, P, My) (3-6)

ca;j(sje, Aje) = 75 (0¢, St, pe, My). (3.7)

The following lemma shows the invertibility of these conditions, a conclusion that can be

derived directly from Lemma 2 of Berry and Haile (2014]).

Lemma 3.2. Under Assumption [3.3, [3.5, and [3.6, the cost indices can be written as

(unknown) functions of s, pr, My:

—th+th :le(st,pt,Mt), j = 1,...,J. (38)
— —

=ZI€jt
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_Z]t+<]t :pj_l(shptaMt)? .] = 17‘“7<]' (39)
7-)\.
=:\j¢

Proof. The index structure of the utility model satisfies Assumption 1 in [Berry and Haile
(2014). Assumption[3.3] and [3.6/are Assumption 2, 7b, and 10 of Berry and Haile| (2014])

respectively. The conclusion follows directly from Lemma 2 of Berry and Haile (2014). [

3.3.3 The Demand and Supply System

Combining the inverse of demand and supply side equations (3.5)), (3.8)), and (3.9)) yields a

system of 3J simultaneous equations:

—xji 4+ & = 05 (56,06 My), =1, .
N—

::6jt

—Wj + Wi = Wfl(st,Pth)? J=1..,J (3~10)
————

::Hjt
—2zjt + Gt = p;l(stapta M), j=1,..,J.
—_———
::)\jt
The researchers observe the exogenous demand and cost shifters
(1gy ooy Tggy Wigy ooy Wygy 2145 -, 23¢)  and  the  endogeneous  equilibrium  outcomes
(S1ty .Sty Pits -y Dats Mig, ..., M yy) for each market t. The joint distribution of &, w;, and (,

as well as the functional forms of o} L L L

and p; ' for all j € {1,...,J} are unknown to
the researcher and to be identified.

The system of equations in takes a form of equations (2.2) in Matzkin| (2015),
with the demand shifter x; appearing exclusively in the j-th demand equation, the
production cost shifter w;; appearing exclusively in the j-th production equation, and the
marketing cost shifter z;; appearing exclusively in the j-th equation derived from optimal

choice of marketing inputs.

For the simplicity of discussion, I give the functions, endogeneous and exogeneous
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variables in (|3.10]) a unified notation. Since all variables are i.i.d. across markets, I suppress
the subscript ¢ from here on. Let the 3J-dimension vector y denote the vector stacking all
the endogenous variables, with the first J elements being (s1,...s), the J + 1-th to 2J-th
elements being (p1, ..., ps), and the last J elements being (Mj, ..., M;). Similarly, I denote z
as the 3.J-dimension vector stacking all the exogenous variables together, and £ as the
3.J-dimension vector stacking all the unobservables together. Let function r? denote aj_l for

j=1,...J,m  for j=J+1,..,2J and p;,; for j =2J +1,...,3J. That is

O'j_l, for j=1,..., J;

rl = 7T]7_1J, for j =J+1,...,2J;

pj__12j, for j =2J+1,...,3J;

Y= (Sb -8, P15 -, D, Ml’ (R3] MJ>3J><1

T = ('rlu ey Xg, W1, ..., Wy, 21, "')ZJ)?)JXI'

With the new notations, the system of equations (3.10) can be written as:

— I +£1 = Tl(ylv "'7y3J)

—x37 + &35 = 7“3J(

Y1, "'>y3J)a

where the researcher observes (z1,...x37, Y1, ...y3s) in each market and wants to identify the

joint distribution of (£, ...£35) and functions 7!, ..., 77,
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3.4 Identification

3.4.1 Identifying the Demand and Supply System

3.4.1.1 Identifying the Inverse Function r

The identification follows the argument in Section 2 of Matzkin (2015)). Let y denote the
vector of all endogenous variables (y1, ..., y3;) and let = denote the vector of all exogeneous
variables (21, ..., 237). Let  denote the function r = (r',...,r*/). Let r, denote the Jacobian
of r. The (j, k)-th element of r, is 277"1, for j,k € {1,...,3J}. For each value of y in its
support, I will show the identification of r, by exploiting the variation of x. Consider a set
where the value of y is held fixed: M C {(y,t1,...,tss)|(t1, ..., ts;) € R*'}. The constructive

identification of the demand and supply system requires the following restrictions on function

r and the densities of ¢ and z:

1 SJ)

Assumption 3.7. The function r = (r',...,r*’) is twice continuously differentiable. The

function r : R3 — R3’ is injective.

Assumption 3.8 (Assumption 2.2 in Matzkin (2015)). (&,...,&y) is distributed
independently of (z1,...,x35) with an everywhere positive and twice continuously

differentiable density f.

Assumption 3.9 (Assumption 2.3 in Matzkin (2015)). (xy,...,x3s) has a differentiable

density.

Assumption 3.10 (Assumption 2.5 and 2.6 in Matzkin| (2015))). () There ezist 3J + 1, not

necessarily known values €V, ... €BIHD of € such that the following matriz is invertible:

AW, ... €3
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dlog fe (¢1) dlog fe (€M) dlog fe (€M) 1
&1 962 T 03

dlog fe (£83) dlog fe (£639) dlog fe (£83) 1
061 0&2 T 0837
dlog fe (£B/HD))  dlog fe (£B3/+D) dlog fe (€BI+D)
061 062 T 0831

(ii) There exist 3J + 1, not necessarily known values (z™M,y), ..., (x®7+Y y) in the set M,

such that for each k =1,...,3J + 1, €% = r(y) + z®) where £ is as in (i).
The following theorem states that r, is identified on M under the assumptions above.
Theorem 3.1. Under Assumptz'on r, is identified on M.

Proof. By Assumption[3.7and 3.8 r and f, are continuously differentiable, and the function
r is bijective. For all (x,y) in the support of (X,Y"), the following transformation of variables

equation holds

frix=a(y) = fe(r(y) + ) - [ry].

Taking logs and taking derivatives with respect to y; and x;, on both sides yields:

0log fyix=a(y) _ i Olog fe(r(y) +2) Or*(y)  Olog|r,| (3.11)
Iy, k=1 9k Iy, dy;

9log fyix=(y) _ 9log fe(r(y) + =)
o _ 5 . (3.12)

Plugging into and eliminating 0log fe/0& yields
1 _ 3J 1 _ k

Olog frix=aly) _ 5~ Dlog frix=sly) Or'(y) , Ologlry| (3.13)

Dy, = Oy, dy; dy;
=gy, (z,y) =Gy, (zy)

Denote the derivative of log conditional density over y; by g,,(z,y), and the derivative of

log conditional density over xy by g, (z,y). Suppose there are 3.J + 1 different points on M:
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(M, y), ..., (@3 y). Denote the value of g,, (z,y) evaluated at the point (z(),y) as g{?).
By Proposition 2.4 in [Matzkin (2015), Assumption is equivalent to the condition

that there exist (2™, ), ..., (x®/*D y) in the set M such that the matrix

1 I A |

B (2, y), .., @**V,y)) = . N N
gg(ﬁ1 ) gg(m ) 99(03(]) 1
s I C s |

is invertible.

Evaluating (3.13)) at these 3J 4 1 points yields 3J + 1 equations:

or'(y) or3(y)  dlog|r,|
(1) — (1) N2/ 1) Y
Gy (T Y) = G (T, Y + oot Guy, (2 )y +
or'(y) ar¥’(y)  dlog|r,|
(2) - (2) N2\ (2 y
Gy; (T, Y) = Gy (X7, Y + i F Go, (2 y +
b o.9) = 0, 0) 2 () P O]
(3.14)
or'(y) or¥(y)  dlog|r,|
(3J+1) f— (3J+1) _ NI/ (3J+1) Y
9u; (@77 y) = gy (277 y) oy, Tt 9 (zB+D ) TR

They can also be written in matrix form as

1 arl(y)
g?(Jj) dy;
=B x(l), s ey x(3‘]+1),
. (@M, 9), .. ( ) i
9y; 9y
3J+1 Olog|ry|
9 " “ou

The left-hand side vector (gg), ...,géi?””)l and the matrix B ((a:(l),y), . (:U(3J+1),y)> are

both observable from data. Since matrix B is invertible. The derivatives of r with respect

to y;, (f’g;g@, s 8T;;; )), are identified. The same argument holds for all j € {1,...,3J}. O

Define the class of functions r that satisfy Assumption 3.7 as I'. Given the invertibility
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of matrix B, Theorem 2.1 in Matzkin| (2015) implies that two functions r and 7 in I" are
observationally equivalent on M if and only if their Jacobians are equal. Having identified

the Jacobian r,, one can impose location normalizations to get the exact value of r.

3.4.1.2 Identifying the Demand Function o

Now I build a relationship between the derivative of the function r and the derivative of

o. Plugging the inverse of functions back into the demand system, I have that for j €

{1,2,...,J},

yj =0 (=1 + &, —v2+ &, oo, =25 + €5, Yst1s -0, Y37)

=o0; (rl(y),rz(y), oY), Yrg1s ...,ng) . (3.15)

The right-hand side should be y; (i.e.s;). Taking derivatives on both sides of (3.15) with

respect to  and y, and by the chain rule, I get the following 3.J equations:

_ 0o, ort(y) N do; Or(y) - Ja; 0’ (y)

1 e
901 Oy; 0oy Oy; 06; 0Oy,
o Or'(y) | 9o, 0r(y) do; 01’ (y) ,
0=~ ! J for k dke{l, ... J
961 Oy 0oy Oyi * 04y Oyy ork#jand k€ {l,... J}
0o; 0rt(y) | do; 0r*(y) do; or'(y) B0,
0= -2 J 4+ = + 9% e {41, 30 316
851 ayl 8(52 ayl 85(] ayl ayl { } ( )
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Writing (3.16)) in matrix form:

ot .. od . 9o
oy oy 0 0 991
ol .t g 905
ayJ ayJ 85J
ot .. ot 1 .. 0o,
Oys+1 0Yy+1 0Ys+1
ort .. ot g L 90,
0y3J 9y3J OysJ
—_———
RT(r) 0o

where [; is the 3J-dimensional unit vector with the j-th element equals to 1. As long as the

matrix RT(r) is invertible, one can recover the vector of derivatives
9o do; do; 9o .
(521, o %, 8@;11 - 8;;2) evaluated at the point (rl(y), s (Y)Yt s ygj). Formally,

Assumption 3.11. On the set M, the matriz RT(r) in is nonsingular.

Corollary 3. Under Assumptz'on the following derivatives are identified on M
forall j,k e {1,...J} andl € {J+1,...,3]}:

ao_j (rl(y)7 BET) TJ(y)v Yg41 -5 y3J)
00,

&Tj (Tl(y)a ~-~,7"J(?J)>yJ+17 ---,st)
oy, .

Proof. The conclusion follows from Theorem [3.1]and the previous argument in this section.

O

3.4.2 Identifying the Preference and Attention

The previous section established the identification result of the derivatives of 0,5 =1, ..., J
with respect to p and M. Given this information, features of the utility and attention

functions can be separately identified by exploiting the exclusion restriction that p only
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affects utility and M only affects attention. In this section, I first show that the ratios of

dud /96, d¢7 /95
Oud /Op; and 997 [OM;

and M; and n;; are not separable in ¢/, that is, v/ and ¢’ take the general form in (3.1)) and

derivatives are identified when p; and €;; are not separable in function v/,

(3.2)) respectively. Then I let p; and €;;, M; and n;; enter w/ and ¢’ in an additive separable

way, and show identification of the derivatives du? /9d; and d¢’ /94;.

3.4.2.1 Identification of a Nonseparable Model

Oul/08; 4 097 /00;

The identification of the ratios of derivatives 57 Top, TYEITE

exploits the variation of the
market share of the outside option and the fact that functions w/(d;, p;, €;;) and ¢ (6;, M;, ;)
are invertible with respect to their last arguments. The following assumption states the rank

condition necessary for the identification:

Assumption 3.12. For each j = 1,...,J, and for any (0;,p;, M;) belonging to its support,
there  exist 2 not mnecessarily known  wvalues (8,0 ],p],p( J),M M( )) and

(65,52 pys. %), My, MP) such that (6]-,5(_23-) _ 0-—1( <p]7 (z)) (M M()))} and the

matrix

Baél) 60((]1)

dp;,  OM;

II; = 1232) @)
dao, Jdo,

8])]' 8MJ

) doo (5 89 py ot My, M >) dog (57,5< O pipM; M“))

has full rank, where 9on_ . and o) _ A for
’ op; op; oMy - dM;

i=1,2.

Denote by H’gj the matrix formed by replacing the k-th column of II; with the vector

(Goél) 6052) )/

55— —¢—) - The following Proposition (proved in the Appendix) states that the ratios of
J J

du /96, 097 /96,
Bud [op; and D7 /O,

derivatives are constructively identified.

Proposition 3.1. Suppose for each j = 1,...J, the derivatives of o; are identified. Under
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Assumption [3.1], and[3.19, for all j =1,...J,

uj, (65,05, €5) ‘H§j
ub, (85,05 €0)  |TI|
5, (85 My, i) 2 |
Sha, (05, M, mig) ’Hj’ '

where €;; is the value at which w? (8}, pj, €;5) = 0, and 6; = aj’l(sl, 87y D1y ey Dy, My, ooy My).

Proof. See Appendix. n

3.4.2.2 Identification of an Additively Separable Model

Till now, additivity between p and € is not required, neither is the separability of them with
other parts of the utility. For simplicity, in the following parts of this paper, I will let p;
and ¢; enter the utility function as an additive index, and let M; and 7); enter the attention
function as an additive index. Moreover, I will let the two additive indices be separable from
other parts of the utility and attention, respectively. With a slight abuse of notations, the

following assumption is maintained for the rest of this paper:

Assumption 3.13. The indirect utility and attention functions take the following additive

and separable forms:

Uij = uj ((5]) —Dj + €ij

Oy = ¢ (5j) + Mj + 13-

Under the separable and additive setting, instead of using only the outside option, I can

utilize the demand functions of all alternatives 7 = 0, ..., J for identification:

Sj = 0j (617 '--75J>p17 -'-7pJ7M17 -'-7MJ)

=Y Pr(C=cl|éM)Pr (j:argnklggiUk | 5,p,C:c)

ce2d

153



= 3 A (' (01) + My, s 67 () + May) gje (uF(35) = pro e € )

ce2d

= Aj (ul(él) — P1, ...,'U/J((SJ) —PJ, (b1(61) + Ml, ey ¢J(§J> + Mg]) . (318)

The second equality in comes from a mixture representation of the demand
function when the consideration set could be a subset of 7. The third equality in (3.18|)
comes from the fact that the conditional probability Pr (C = ¢ | d, M) can be represented
as a c-specific function of the systematic components of attention functions and that the
choice probability conditional on the consideration set ¢, Pr (j = arg maxye. Ug|d, p,C = c)
can be written as a (j, ¢)-specific function of the systematic utilities of the products in the
consideration set c. The last equality in is just a simplification of notation since one
doesn’t need to investigate the choice probability under each possible consideration set for
identification.

To see how derivatives of utility and attention functions are identified, let A{l) denote
the derivative of A7 with respect to its I-th argument. By the chain rule, taking derivative

with respect to d1, p1, and M; on both sides of (3.18]) gives:

an<5,p7 M) . Aj aul((sl) + J 89251(51)
96, W98, U+ 96,
ao_j(57p7M) _ _Aj
op1 - 1)
ao_j<67p7M) _Aj
aMl — S J+1)

Eliminating Agl) and A{ J+1) yields

do;(6,p, M) _ 9o;(d,p, M) out(6y) N D ;(8,p, M) D¢*(61) (3.19)
8(51 B (9p1 8(51 8M1 351 ' '

Evaluating (3.19) at & = o; ' (s, p, M) + x;, for j € {1,..., J} gives:

doj(o™ (s, p, M), p, M) B _an (U_l(SJ?a M),p, M) aul(afl(s,p, M))
861 N apl 651
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90, (o~ (5.p.M).p. M) 95! (07 (5. p, M))
8]\/[1 051

+ (3.20)

which holds for all j € {1,..., J}. Out of the J equations in (3.20)), as long as the following

rank condition for at least 2 of them are satisfied. one can identify the derivatives

8%1(0_1(37P’M)) a¢1(0_1(37p)M)) . auj(o'_il(sJ;’M)) 6¢j(0'-71(5,p,M))
— g and —5==—=. The same is true for all 5, and L%, :

where j = 2, ..., J. Formally,
Assumption 3.14. For each j € {1,...J}, there exist k;,l; € {1, ..., J} such that on the set

M, the matriz

8ok], (a_l(s,p,M),p,M) 8<7kj (a‘l(s,p,M),p,M)

Op; OM;
—1 —1
80’[]. (U (SJ),M),p,M) 80’[]. (U (Svp7M)7p7M)
- 812]' 8M]‘

has full rank.

Theorem 3.2. Suppose for each j = 1,...J, the derivatives of o; are identified. Under

wi (o7 (s (o7 (s
Assumption and (3.14), for all 7 = 1,...J, gu ]86(4,]3,1\4)) and il J%(A’p’M)) are
J J
identified.

Proof. The conclusion follows from the above argument in this section. O

After identifying the derivatives, one can impose location normalizations to get the exact

values of the functions.

3.4.3 Identifying the Joint Distribution of Unobservables

In this part, I analyze how to recover the distribution of &, and the joint distribution of €
and 7.
The identification of the distribution of ¢ is directly given by the transformation of

variables equation:




Next I analyze the joint distribution of € and 1. Consider the market share of the outside

option j = 0:

so = 00(d,p, M)
_PT’< {{uj((S) p]+61]\O}U{gbj((gj>+Mj+nij<0}}|ZL’,p,M,§>

= AO(—U1<51) +p1, ceey —u‘](5J) +pJ7 —gb1(51) — Ml, cees —¢J(6J> — MJ)

Proposition 3.2. Suppose for each j=1,....J, 0;, v/ and ¢’ are identified. Then F, the
joint distribution of (€;1, ..., €1, Mi1, -, Niy) 1S identified.

Proof. I prove the identification of F' for J = 2. The argument carries over for all finite
integers J > 2. Since the demand functions o;(d,p, M) is identified for j = 1, ..., J, then
the demand function of the outside option j = 0 can be recovered from ogy(d,p, M) =

1 =37, 0;(6,p, M). Once v/, ¢/ are identified, A°() is also identified.

Let € = —u/(d;) +pj, j=1,2and 7 = —¢/(6;) — M;, j=1,2. Then

A (&, &, 11, 12)
2)
+ P(eg < €1,€ > €a,m1 < My < 12) + Pley < €r,60 < €,m1 > 11,12 < 72)

2)

+ P(ey < €1,€0 > €0,m1 > 11,12 < 12) + Pley < €1, 60 < €11 > 11,12 > 12)

R

= Pe; < €,60 < €,m < Mpym2 < 72) + Pler > 61,60 < o, < 11,12 <

+ Pley < 61,6 < €0, < 11,12 > 12) + Pler > €1,60 > €0, < 11,12 <

3 I

+ P(ey > €1, 62 < €,m1 < 11,12 > 12)

=Ple <6, <ém <N, <) + Pler > é,m <, ne < 1)

+ Per < €,6 > 63,10 <) + Pley < €r,6a < éo,m > 1) + Plea < &,m1 < 11,12 > 12)
= F(e, &, 72) + Foyne (71 72) — Feipne (€1, 71, 12) + Feyn (€1, 712) — Feyeans (€1, €2, 712)

+ FE162 (glv €2> - F€162771(€1a €2> 771) + F62771 (E27 ﬁl) - F627771,772(€2> 771’ ﬁ2)
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Assuming —u’(0;) + p; and —¢?(6;) — M;, j = 1,2 have full support, then

F. o, (61,6) = A&, &, —00, —0)

Fons (71, 712) = A% (=00, —00, 71, 7j2)

Fepo(€1,72) = A°(€1, —00, —00, 7j2)

Feyny (&,71) = A°(—00,&, 71, —00)
Foiom (€1, €,11) = A2(€1, €, —00, —00) + A%(—00, &, 1, —00) — A%(1, &, 1, —00)
F o (€1, E2,72) = A°(€1, —00, —00, 1a) + A°(€y, €2, —00, —00) — A%(y, €, —00, 7)2)
Foyuns (61,771, 772) = A%(—00, —00, 11, 772) + A°(€1, —00, —00, 7j2) — A%(€1, —00, 71, 72)

Fryins (€2, 71, 72) = A%(—00, —00, 11, 772) + A (—00, &, 71, —00) — A(—00, &, 71, 72).
Therefore, F'(€1, €2, m,172) is also identified. ]

3.4.4 Identifying the Supply-side Features

Section shows the identification of the inverse function r. Note that the J + 1-th to
3.J-th components of r are actually 7', ..., 7, and p;', ..., p;*. Given the identification of
7! and p!, in this section, I discuss how to identify the marginal cost functions ¢; and ca;
for j € {1,...,J}.

By Assumption the marginal price function ¢; is invertible in the production cost
index x;, and ca; is invertible in the marketing cost index A;, so that the following invertibility

results hold

Kjt = C;1 <3jt, ©;i(0¢, 8¢, Pt Mt)) = 7T;1(5t75tapt7Mt)

Aje = Cafl (Sjt77j<5t7 S¢, Pt Mt)) = p;1<5t7 S¢, pe, My).

! and pj’1 are identified, to identify c;l and ca; ', one needs to specify a model

Since i

J

of oligopoly competition so that the functional forms of ¢; and 7; are known. Berry and
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Haile| (2014) discussed a testable condition based on (3.6) and (3.7)) to discriminate between
alternative models of oligopoly. After specifying ¢; and «;, the inverse cost functions cj’1
and ca;1 are identified on the support of their arguments. Then the marginal cost functions

c¢; and ca; are also identified on the support of their arguments.

3.5 Nonparametric Estimation

In this section, I propose nonparametric estimators for the derivatives of the demand
function o, the utility function w/, and the attention function ¢/, j = 1,...,.J based on
their constructive identification conditions. Then I show the asymptotic properties of the

estimators.

3.5.1 The Estimators

First, I consider the estimation of the derivatives of the inverse function r. They can be

estimated by the average derivatives estimator proposed by [Matzkin (2015)). The estimator

employs the fact that the identification equation (3.13) holds for all values of (gxl, cey Oag J)

over the set M. For convenience, rewrite the 3.J equations in |D as follows:

g g$1ry1 + gIQTyl + + gl‘3J yl + dy1

Gys = gmlryg + gl'2ry2 + ot Gagy T yz + dy2 (3'21)

gyBJ gfcl y3J + g$2 y3J + + gx3] y3J + dy3]’

where d,; = al%l”l. Then (ry,d,) for j = {1,...,3J} can be characterized as the unique
solution to the minimization of an integrated square distance between the left-hand side and
the right-hand side of (3.21]). Before formally introducing the estimator, I introduce some

additional notations. Let pu(y,t1,...,t37) be a strictly positive and continuous weighting
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function such that [ u(y,t)dt = 1. Denote the average of g,, and g, over M by

/ngf = /ngj(y:t)u(y,t)dt
/M Jos = /M 9a; (y, ) p(y, t)di.

Denote the average centered cross products between g,. and g,,, and between g, and g, ,

by

T,

YT T /M (gyj (y,t) — /M gyj) <g$k(y)t) - /M gxk> X pu(y, t)dt

Ty = /M (flxj(y,t) —/M gwj) (gmk(y,t) —/M gxk> X pu(y, t)dt.

Then define the matrices of average centered cross products by:

Tthl e Tst@l T:v1,:v1 e TIE3J,11
TYX = and TXX =
Ty1,$3J Ty3J,SC3J T$11$3J o TfCSJ@SJ

The following theorem states the conditions under which (r,,d,) can be expressed in terms

of TYX and TXX-

Theorem 3.3 (Matzkin (2015) Theorem 2.3). Under Assumptions 3.10, if the
nonnegative and continuous function p(y,ty, ..., tsy) is strictly positive at least at one set of
points (zW),y), .., (xCI+Y ) satisfying Assumption |3.10(ii), then (r,,d,) is the unique

minimizer of

N 3J N N o N2
S (@’dy) = /M |:Z (gyj - Tgl/]-gl1 - nggfm o T TS;']-QISJ - dyj> ] X :u(yvtla '--at3J)d(tla "'at3J)’
j=1

and r, is given by

_ m—1
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Proof. The functional forms of the inverse demand and supply system satisfy Assumption
2.4’ in Matzkin (2015)). The rest of the proof is the same as the proof of Theorem 2.3 in

Matzkin| (2015)). O

To obtain the estimator of r, in Ty x and T’x x, I replace the conditional density fy|x—z(y)
with its Kernel estimator fy| x=z(v). Denote the estimators of the matrices by T/X\X and T/y\X

— 1 —
respectively. The estimator of r, can be obtained as 7, = Txx Ty x.

Next I look at the estimator of g—qg and g%f. From (3.17), on M where y is fixed, by
J J

solving the linear system of equations, I can write the vector of derivatives of o; (denoted as

Jo;) as a known function H; of vector rr:

(9aj aO'j 80’j (9aj '
80—] <851 I 9 85']’ ayJJrl 9 I ayg] ](rr(y))

Moreover, picking the equations corresponding to the product k; and I}, k;,1; € {1, ..., J} in
1. on M where y is fixed, I can write the vector of derivatives of u/ and ¢’ as a known
function L; of vector doy, and doy,:

(E)uj ol

£ 86]> = L;j(0oj,001) = Lj(Hy, (rr(y)), Hi, (rr(y))).

Denote the known composite function L;(Hy,(rr(y)), Hy,(rr(y))) as LH;(rr(y)), so that

ol O¢)

—,—— | =LH, . 22
(555 ) = L) (322
The exact forms of functions H;, L;, and LH; are shown in the appendix.

Then for all j € {1, ..., J}, the estimator for %i and g%’f can be obtained by replacing
J J

rr in (3.22)) with its estimator, that is:

RN
(8(5]’8(2) = LHj(”(y))-
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3.5.2 Asymptotic Properties of the Estimators

In this part, I discuss the asymptotic properties of the estimator. Let {Y?, X*}¥ denote N

i.i.d. observations from fy x. The Kernel estimator of conditional density fy‘ x=z(y) is

R

oN ' onN

fY\X:z(y> = O'?VJ J-\LIK (@> )

ON

where K is a kernel function and oy is a bandwidth. I assume that, for any t € M?,
t =2 € R¥. Thus, M = {y} x M*. Let MY be a convex compact set that contains y in its
interior. Let M? be a convex compact set whose interior strictly includes M. I impose the

following assumptions.

Assumption 3.15 (Matzkin (2015) Assumption 2.9). The kernel function K is of order
s. equals zero outside a compact set, integrates to 1, is differentiable of order A, and its

derivatives of order A are Lipschitz, where A > 2.

Assumption 3.16 (Matzkin (2015) Assumption 2.7). The density fy x generated by f., fx
and r is bounded and continuously differentiable of order d > s+ 2 where s is the order of the
kernel function. Moreover, there exists 6 > 0 such that for all (y,xz) € MY x M?®, fx(z) >

and fyx(y,z) > 0.

Assumption 3.17 (Matzkin (2015) Assumption 2.8). The set M* is compact. The function
w(y, ) is bounded and continuously differentiable. It has strictly positive values at all x
belonging to the interior of M*, values and derivatives equal to zero on the boundary and
the complement of M!. The set M contains at least one set of points (y,zM), ..., (y, zG37+D)

satisfying Assumption |3.10(ii) and such that p is strictly positive at each of the points.

Assumption 3.18 (Matzkin (2015) Assumption 2.10). The sequence of bandwidths, hy, is

6J+2
such that hy — 0, Nh3/*? — oo, VNA/PHH 0, M8 oo, and VNAGPH x

2
[\/m N/(NRS?) + h3| — 0.
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Under the assumptions above, the asymptotic properties follow from Matzkin| (2015)’s
Theorem 2.4. Before formally stating the theorem, I define the following additional notations.
Let rr be the vector formed by stacking the columns of matrix r,. Let 177y x denote the
vector formed by stacking the columns of matrix Ty x and let TTxx := I3;.

/
L _ (.1 3J. .1 3J. .1 3J
rr: = vec(ry) = (Tyl, s T3 Ty woes Ty i o Ty ...,Ty3J>

/
TTyy := UeC(TYX) = (Tymcw X Ty17$3J; Ty2,0617 XEL TyQ,an; s Ty3J7$17 XEL Tywww)

TTxx =135 @ Txx.

For each s € {1,...,3J}, denote

dlo — dlo —
80, 10g fyxoaly) = OBINZAD) [ OB e lW) i, g,

and for each j, k € {1,...,3J}, denote

B 0K (g, %) OK(7,2) .\
Ky, . = /< By, 33)( B dz | dy.

Denote by Vi, the matrix whose elements are

| (80,108 fyix=o(v) (20, 10g frix—.(v) (“(“)) dr| KKy,

fY,X(y,x

The following theorem in Matzkin (2015) states the asymptotic property of the estimator

o~

rr.

Theorem 3.4 (Matzkin| (2015) Theorem 2.4). Under Assumption [3. 5.1, [3.15{3.1§,

VNRY2 (7 = rr) 5 N (0, (TTxx) " Vi (TTxx) ™)
and (ﬁ)*lf/;pyx(@)*l is a consistent estimator for (TTxx) "Vr, (TTxx)!
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Proof of Proposition 3.4 The functional form of r satisfies Assumption 2.4" in Matzkin
(2015). The rest of the proof is the same as the proof of Theorem 2.4 in [Matzkin

(2015). 0

Next, I consider the asymptotic properties of the estimator of the derivatives of utility

Ou? j € {1,...,J} and the estimator of derivatives of attention functions g%f, J €
J

functions 55,

{1, ..., J}. Denote

8,(rr(y) : = 22" W) gfy))
) = 220

The following corollary follows directly from Theorem

Corollary 4. Under Assumption -IB.JJL 13.1313.18, on M where y is fized, for each j =

1,0

VNI (3070 27 w) = (530w rr()) ) 5 N (o, s, agH)

where 3, = (TTxx) "WV, (TTxx) ™.

Proof. It can be shown that function LH; in (3.22)) is continuously differentiable with

respect to r7(y). By delta method, the conclusion follows from Theorem O

3.6 Conclusion

Assuming the availability of market-level data, this paper studies the nonparametric
identification and estimation of a demand and supply system where firms affect consumers’
consideration sets using costly marketing inputs. On the demand side, I characterize
preferences and considerations nonparametrically, allowing rich heterogeneities and

correlations between them. On the supply side, I characterize firms’ optimal choices by a
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set of first-order conditions without specifying the form of the oligopoly model. The
demand and supply sides form a simultaneous system of equations in the spirit of Berry
and Haile| (2014). T then show identification of the system using the method proposed by
Matzkin (2015). Moreover, using the variations of exclusive regressors entering preferences
and considerations respectively, 1 separately identify features of the utility functions and
the attention functions. Based on the constructive identification results, I propose
nonparametric estimators of the demand, utility, and attention functions and show their

asymptotic properties.
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3.7 Appendix

Proof of Proposition [3.1} By Assumption (iii), function u?(d;, pj, €;;) has an inverse
with respect to the last argument. I can write @ (d;,p;,0) as the value of ¢; at which the
utility of j equals the utility of the outside option, which is equal to 0. Similarly, I can

write ¢/(d;, M;,0) as the value of 7;; at which the attention of j equals 0, which equals the

attention of the outside option,i.e.

u? (5japj> o’ (5j7pj7 O)) =0 (323)

& (8, Mj, & (85, M;, 0)) = 0. (3.24)

Consider the market share of the outside option:

S0 = 00 (617"'75J7p17"'7pJ7M17“-7MJ>
= PT’(Uj(5j,pj7€ij) < 0or ¢j(5j,Mj,’l7,’j) < 0, for all j = 17 ceey J | 6,]9, M)
= PT’(GZ']' < ﬂj(5j,pj,0) Oor 1;5 < (Z;j((Sj,Mj,O), for all ] = 17 ciey J | (5,]9, M)

- AO (al((sl)p170)7 ...,aJ(d],pJ,O),QZ;1<(51, M170)7 "'7§Z§J<5J7 MJJ 0)) :

Let Af}, denote the derivative of A with respect to its [-th argument. By the chain rule, for

all j =1,...,J, one can derive the following equations:

800(57]77 M) _AO- aﬂj((sjapjao) 0 6¢j(6j7Mj70>

o5, U 9 D 9s;
80'0(5,}7, M) _ AO 8aj(5japj70)
op;i ) Ip;
J J
doo(d,p, M) — A0 8¢j(5j’Mj>0)
OM,; (R oMy
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Solving for A?j) and A? J+j) from the equations for 90" /0p; and dc”/OM; and substituting

them into the first equation, I get for all j =1,....J

8ﬁj(6j7 j70) 8¢~)j6j7Mj70)
80'0(5,]7, M) _ (90'()(5,]?, M) 35jp + 80'0(5,]?, M) 35j

99, op; 9t (65,p5,0) oM, d¢15;,M;,0)
617]' 8Mj

(3.25)

Differentiating (3.23)), I get

8uj(5japj7ﬂj(5j7pja0)) + auj(ajapjaaj(éjvpﬁo)) aﬂj(éj,pj,O)

a5, De;; o5, U
8uj((5j,pj,’&j(5j,pj,0)) auj<5j7pj?aj(5j’pj70)) 3ﬂj((5j,pj,0) _
+ =0,
Gpj aﬁij apj

which implies

a3, T,
Oul (6] »Pj 7ﬂj ((;J »Pj )0)) - ol (61 »Pj 70) ’
Op; Op;

Differentiating (3.24) and by the same reasoning, I get similar results for ¢’

997 (8;,M;,¢7 (8;,M;,0)) 947 (6;,M;,0)

a5, T o
A3 (8;,M;,¢7(8,;,M;,0)) 97 (8;,M;,0)
oM, aM,

For notation simplicity, denote the derivatives of u’ as uj, and u{,j, and derivatives of ¢’ as

f;j and ¢?\4j, respectively. The above equation (3.25)) is equivalent to

0oo(,p, M) B doo(9, p, M)L 0oo(d,p, M) ¢§j

j
9j
99, Opi  up, oM; ¢y

Assumption ensures that the coefficient matrix of the following system of equations has
full rank:

30(()1) B (90(()1) %j 80(()1) Gbgj
0d;  Opj up,  OM; ¢y

166



Us; 80(()2) Gbgj
0;  Opj wp,  OM; @),

80(()2) B 80(()2) uj

The conclusion follows from Cramer’s rule. O]

The Exact Form of Function LH; in (3.22)

Take J = 2 for example. Results for more general values of J are of similar logic.

<8r1 or? ort or2 ort  or?  ort  or? ort or? ort or? )
rr = N s A a0 Aa s ) ) ) ; ) ) )
Oy Oy Oya” Oy ayJH 3yJ+1 aZ/J+2 5yJ+2 8y2]+1 a?J2J+1 592J+2 a3/2J+2

Consider j = 1 and let k&; = 1 and [; = 2. Equation (3.17) for k&; = 1 and [; = 2 are

respectively:
200 0 0 3 1
Oy 9y1 861
b2 000 0| % 0
1 2
33?;+1 angrl 1000 %‘il _ 0
1 2
63§+2 33§+2 0100 % 0
1 2
8y821(ﬂ]+1 3y827;+1 0010 3;2(‘7111 0
3982312 3y8232+2 0001 35;;1% 0
and
o2 0 0 0 0 2 0
Oy1 0y1 061
oo 2 000 0| % 1
1 2
83§+1 37(37;+1 1000 % _ 0
1 2
3??;+2 35§+2 0100 % 0
2
515927;1-«-1 52,(/921;“ 0010 87;92‘2-1 0
1 2
3y823+2 3y627j1+2 0001 3;2312 0
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By Cramer’s Rule,

or?
801 Ay
L) orl 9r2 _ 9rl or2
1 Oy1 Oy2 Ody2 0y1
9 ort _ar2 _ _ort or?
01 0y2 Oys+1 0ys11 Oy
) ort or2 _ orl or?
Y1 Oy1 Oy Oya Oy1
) ort _or2 _ _or! or?
01 Ay2 0y2.74+1 Oy27+1 Oy2
0 orl or?2 _ orl or?
Y2741 Oy1 0y2 0y2 Oy1
ar?
80'2 - Ay
0o orl or2 _ orl or?
1 dy1 Oy2 Oy2 Oy1
9 ort _or? o' or?
02 0y1 0y 41 0yj+1 Oy1
bS] ort or2 _ orl or?
Yr+1 Oy1 Oy2 Y2 Oy1
) ort _or2 _ _or' or?
02 9y1 0Y2s+1 0y27+1 Oy (3 26)
02741 B orl or2 _ orl or2 )
+ 0y1 Oy Jy2 Oy1
Equation (3.20) for k& = 1 and [; = 2 can be written as
do1 foled) da1 dut
961 _ Oys+1 O0Y2j+1 001
[elop) [elep) [elep) el
001 Oys+1  OY27+1 001
Again by Cramer’s Rule
oul Qo1 _Boy _ Ooy _Oo1
u- 001 9yag41 001 Oy2j4+1
851 - Oo1 doz _ ODog Oo1
0yj+1 Oy27+41 0yj+1 Oy27+1
do1  Oo doy  Oo
1 1 0oz 2 001
dg- Byser 061 Dysi1 061 (3.27)
851 - Oo1 doz _ ODog Oo1 '

0yj+1 Oy2741

0yj+1 Y2741

The exact functional form of LH; can be obtained by plugging (3.26|) into (3.27)).
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