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a b s t r a c t

Consider inference about the pre and post break value of a scalar parameter in a time series model with
a single break at an unknown date. Unless the break is large, treating the break date estimated by least
squares as the true break date leads to substantially oversized tests and confidence intervals. To develop
a suitable alternative, we first establish convergence to a Gaussian process limit experiment. We then
determine a nearly weighted average power maximizing test in this limit experiment, and show how to
implement a small sample analogue in GMM time series models.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

This paper is concerned with testing hypotheses about the pre
and post break value of a parameter in a time series model with a
single break. By reversing the time ordering, inference about the
post break value becomes inference about the pre break value,
so that for simplicity, we will exclusively discuss the post break
case. If the break date is known, inference is straightforward, as
standard results apply after restricting attention to the stable post
break data. The effect of an incorrectly chosen break date crucially
depends on whether the chosen date is earlier or later than the
true break date. On the one hand, if the chosen date is later, then
a restriction to the presumed post break data still yields a stable
model, and inference remains valid. There is a cost of efficiency,
though, since more post break data could have been used. On the
other hand, if the chosen date is earlier than the true break date,
then the presumed post break data stems from an unstable model.
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Parameter estimators in this unstable model tend to estimate the
average parameter value, which is different from the true post
break value, so standard inference yields tests and confidence in-
tervals with distorted size.

These distortionary effects are small if the chosen break date is
sufficiently close to the true break date. With the break date un-
known, this requires a precise break date estimator. As formally
shown by Bai (1994, 1997) and Bai and Perron (1998) for linear re-
gressions, and Hall et al. (2012) and Perron and Yamamoto (2012)
for two stage least squares, the least squares break date estimator
is indeed sufficiently precise for these distortionary effects to be-
come asymptotically negligible if the parameter shift is sufficiently
pronounced. Formally, these papers study asymptotics in which
the break magnitude, while possibly shrinking, is outside the local
T−1/2 neighborhood of zero. Relative to the sampling uncertainty
of the parameter estimator in a stable model, the parameter shift
thus becomes infinitely large. We consider the behavior of the 5%
nominal level two-sided test based on the least squares break date
estimator under local asymptotics in Section 2.3.1,where the break
magnitude is measured in multiples of standard deviations of the
full sample parameter estimator in a stable model. With the break
date restricted to the middle 70% of the sample, the largest null re-
jection probability is almost 30%, a break magnitude of less than 5
standard deviations leads to effective size of more than 10% for all
break dates, and a break of 11 standard deviations still yields size
greater than 10% for some break dates. These distortions are fur-
ther exacerbated by attempts to pre-test for parameter stability.

http://dx.doi.org/10.1016/j.jeconom.2014.03.007
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Fig. 1. Quarterly productivity growth in the non farm business sector and average
growth pre and post 1995Q4 (Fred Database series OPHNFB).

In other words, for any sample size, there exists a break magni-
tude for which these standard methods yield incorrect inference,
so they are not uniformly valid.

It is instructive to consider these issues in the context of an
example. Productivity growth in most developed nations appears
to have suffered shifts in its mean a number of times. Most re-
searchers agree on a downward shift in productivity following the
oil crisis of 1973, typically dated at the third quarter. In post 1973
data, there is a suggestion of a mid 1990’s upward shift in aver-
age productivity growth and speculation about its cause. A recent
summary appears in Jorgenson et al. (2008), who informally sug-
gest a break in the fourth quarter of 1995. Gordon (2003) also dates
the increase to 1995. Anderson and Klieson (2006) refer to the in-
crease in productivity as the ‘‘defining economic event of the past
decade’’.

Fig. 1 plots quarterly observations of US non farm business pro-
ductivity growth, along with the pre and post break means using
the Jorgenson et al. (2008) break date of 1995 Q4. With this break
date, quarterly productivity growth is estimated to have increased
by 1.1% in 1995 Q4. The least-squares estimate of the break date
is slightly later at 1997 Q1, although the parameter stability test
of Elliott and Müller (2006) fails to reject the null hypothesis of
stable mean growth at the 5% level. With a (long-run) standard de-
viation of productivity growth of approximately 2.6% and a sample
of T = 143 observations, 5–11 standard deviations of the full sam-
ple estimator correspond to a 1.0%–2.3% shift in quarterly produc-
tivity growth. In this example, one would thus not want to assume
that the true breakmagnitude is sufficiently large for least-squares
break date based inference to be reliable. These concerns are cor-
roborated in a small sample Monte Carlo study modeled around
the productivity example in Section 4.3. This illustrates that lack
of uniform asymptotic validity directly translates into poor small
sample properties with practically relevant parameter values.

More generally, it seems hard to argue that break magnitudes
of less than 11 standard deviations of the full sample estimator
are not part of the empirically relevant parameter space in most
applications. One way to see this is that shifts of, say, 8 standard
deviations tend to induce highly significant rejections of the null
hypothesis of parameter stability with high probability—see Elliott
and Müller (2007). But in practice, rejections of the stable model
are rarely overwhelming. For instance, there is continued debate
about the stability of monetary policy with Orphanides (2004) ar-
guing for rather stable relationships, while Cogley and Sargent
(2005) find instabilities that they deem ‘‘economically important’’,
but of a magnitude that would be detected by a formal parameter
stability test less than 25% of the time.

Simple adjustments to the standard procedure that ensure size
control over all break magnitudes do not deliver reasonable tests.
Table 1
Inference about current US productivity growth.

Method 95% Confidence interval

Break date chosen at 1995Q4 [2.00, 3.36]
Least squares break date estimator [2.02, 3.49]
Corrected LS break date estimator [0.92, 4.59]
Using last 15% of data [0.89, 2.99]
Test of this paper [1.74, 3.43]

Note: Sample size is T = 143. All confidence intervals use Newey andWest (1987)
standard errors with 4 lags.

For instance, in the set-upmentioned above and described in detail
in Section 2.3.1, the critical value for the 5% two-sided t-statistic
would need to be increased from 1.96 to approximately 4.9 to en-
sure uniform size control, with obvious adverse effects on power.1
A Bonferroni procedure based on uniformly valid confidence sets
for the break date developed by Elliott andMüller (2007) performs
well for large breaks, but has poor power for breaks of moderate
magnitude. Also, given the results of Andrews and Guggenberger
(2010a), it seems clear that standard bootstrap or subsampling
techniques would not yield uniformly valid inference in this prob-
lem.

Themain contribution of this paper is the construction of a pow-
erful test about the post break parameter value in a general GMM
time series model with unknown break date in the middle 70% of
the sample that controls size uniformly over the break magnitude.
This test follows a switching rule: if there is strong evidence for
a large break, then the test essentially reduces to standard infer-
ence using post break data determined by a break date estimator,
with a slight increase of the 5% critical value from 1.96 to 2.01. In
the absence of strong evidence for a large break, the test switches
to a likelihood ratio test. This likelihood ratio test is carefully
constructed to ensure both overall size control and approximate
efficiency in the sense that for a particular weighting function,
(local asymptotic) weighted average power of the suggested test
is demonstrably at most one percentage point smaller than the
weighted average power of any test that controls size. Section 4.1
gives a fully self-contained explanation of how to construct the test
statistic, and is the relevant section for readerswishing to apply the
method to data.

Returning to the US productivity example, Table 1 contains
nominal 95% confidence intervals for current US productivity
growth, constructed using different methods. The first method as-
sumes the Jorgenson et al. (2008) break date to be correct and re-
ports the post 1995 Q4 sample mean ±1.96 times the standard
error. The secondmethod estimates the break date by least squares
and, conditional on this estimate, again applies standard critical
values. The third method also relies on the least-squares break
date, but instead uses a critical value of 4.9 instead of 1.96 to en-
sure uniform asymptotic coverage control, as explained above. The
fourth method conducts standard inference using the last 15% of
the data only. The final row reports the 95% confidence interval
constructed by inverting the 5% level test developed in this paper.

As argued above, in this example it is not reasonable to assume
that the true breakmagnitude is large enough for the (uncorrected)
least-squares based method to yield reliable inference. In contrast,
the last three methods are asymptotically uniformly valid. Among
those valid methods, the inference developed here is by far the
most informative. The resulting confidence interval is nevertheless
wider than those with the break date presumed known, and its
center is shifted towards smaller values. This makes intuitive
sense: with the break date unknown, part of the low productivity

1 This adjustment to the critical value is also the end result of the size corrected
hybrid subsampling method advanced by Andrews and Guggenberger (2009,
2010b) when applied to this problem.
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growth quarters of, say, the early 90s are potentially realizations
from the post break period, which suggests a relatively lower post
break population mean.

The efficiency claim of the derived test is obtained as follows.
Consider first a parametric underlying model. We apply LeCam’s
limit of experiments theory to establish that quite generally, time
variation of parameters of the order of T−1/2 in a nicely behaved
parametric model leads to a corresponding limit experiment in-
volving the observation of an appropriately defined Gaussian pro-
cess on the unit interval. Specializing this result to a model with
a single break then leads to a hypothesis testing problem in the
limit experiment where both the null and alternative hypothesis
are composite. In particular, under the null hypothesis about the
post break parameter value, the nuisance parameters are the break
date and breakmagnitude. This non-standard testing problem falls
into the class of problems considered by Elliott et al. (2012) (EMW
in the following),whoderive a set of upper bounds on theweighted
average power of any valid test, and suggest a numerical algorithm
to determine both a low upper bound and a test with weighted
average power close to the bound. We apply EMW’s approach to
the limit experiment corresponding to post break parameter infer-
ence.2 We further show how to construct an analogue to the nearly
optimal test in the limit experiment for the original testing prob-
lem. The local asymptotic power of this test matches the power of
the nearly optimal test in the limit experiment, which establishes
our efficiency claim via standard limit of experiment arguments.
For an underlying GMM model, we invoke the results of Müller
(2011) to obtain the corresponding asymptotic efficiency claims in
the class of tests that are ‘‘robust’’ in the sense of Müller (2011).

The remainder of the paper is organized as follows. Section 2 is
dedicated to the analysis of parametric models. Section 2.1 estab-
lishes convergence to a limit experiment under quite general forms
of (parameterized) time variation in parameters of the order T−1/2.
This is then specialized to the problem of post break parameter in-
ference in Section 2.2. Section 2.3 analyzes the limit experiment
for a scalar parameter, illustrates the failure of least-squares based
inference and describes how we apply the ideas of EMW to obtain
a powerful test. Section 2.4 translates this result for a scalar pa-
rameter to an efficiency claim for models with a vector parameter.
Section 3 considers GMMmodels and contains details on the appli-
cation of Müller’s (2011) approach to large sample efficiency. Sec-
tion 4 defines the suggested test statistic in terms of partial sample
GMM statistics (cf. Andrews (1993)), establishes its asymptotic
properties, and analyzes its small sample behavior in three Monte
Carlo experiments. Proofs are collected in an Appendix.

2. Asymptotic analysis for parametric models

2.1. Limit experiment for general forms of time variation

Let XT = (xT ,1, . . . , xT ,T ) ∈ RqT be the available data in a sam-
ple of size T . The data is the realization of a random vector XT

with density
T

t=1 fT ,t(Γt) relative to some σ -finite measure µT

when the parameter Γ ∈ Rk takes on the value Γt at time t . This
form of the likelihood arises naturally when fT ,t(Γt) is the den-
sity of xT ,t conditional on FT ,t−1, the σ -field generated by {xT ,s}t−1

s=1 .
We will refer to the model with density

T
t=1 fT ,t(Γ0) as the ‘‘sta-

ble’’ model. Define lT ,t(Γ ) = ln fT ,t(Γ ), sT ,t(Γ ) = ∂ lT ,t(Γ )/∂Γ
and hT ,t = ∂sT ,t(Γ )/∂Γ ′, and write ⌊x⌋ for the largest integer
smaller or equal to x ∈ R. Assume that the stable model is nicely
behaved, as described in the following regularity condition.

2 The examples worked out in EMW all have a single nuisance parameter under
the null hypothesis; the presence of two nuisance parameters renders this exercise
relatively more involved from an ‘‘engineering’’ point of view.
Condition 1. In the stable model with parameter Γ0
(i) in some neighborhood B0 of Γ0, lT ,t(Γ ) is twice differentiable

a.s. with respect to Γ for t = 1, . . . , T , T ≥ 1;
(ii) {sT ,t(Γ0), FT ,t} is a square-integrablemartingale difference ar-

ray with T−1⌊sT⌋

t=1 E[sT ,t(Γ0)sT ,t(Γ0)
′
|FT ,t−1]

p
→ sH for all 0≤ s≤1

and some k × k full rank matrix H, T−1 supt≤T ∥E[sT ,t(Γ0)sT ,t(Γ0)
′

|FT ,t−1]∥
p

→ 0 and there exists ν > 0 such that T−1T
t=1 E[∥sT ,t(Γ0)

∥
2+ν

|FT ,t−1] = Op(1);
(iii) T−1T

t=1 ∥hT ,t(Γ0)∥ = Op(1), T−1 supt≤T ∥hT ,t(Γ0)∥
p

→ 0
and for any decreasing neighborhoods BT ⊂ B0 of Γ0 that converge
to {Γ0}, T−1T

t=1 supΓ ∈BT
∥hT ,t(Γ )− hT ,t(Γ0)∥

p
→ 0;

(iv) for all 0 ≤ s ≤ 1, T−1⌊sT⌋

t=1 hT ,t(Γ0)
p

→ −sH.

These conditions are a special case of Condition 2 in Li and
Müller (2009) and Condition 1 in Müller and Petalas (2010), who
provide further discussion and references.

Now consider a version of this model with time varying param-
eters, that is for all t ≤ T

ΓT ,t = Γ0 + T−1/2B(t/T ; θ). (1)

For a given θ ∈ Θ, B(·; θ) is a function on the unit interval that
describes the shape of the parameter instability through time. This
shape is parameterized by the finite dimensional parameter θ , so
that the parameter space for the time varying version of the model
is (Γ0, θ) ∈ Rk

× Θ; in the next subsection, we will specialize
this set-up to functions B that correspond to a single shift in the
parameter value. The scaling by T−1/2 in (1) ensures that even in
large samples, there is only a finite amount of information about
B, and thus θ . Such asymptotics provide good approximations for
small samples when the parameter variability is of the same order
of magnitude as sampling uncertainty about Γ .

At this point, we only put some mild constraints on the shape
of the parameter instability B (cf. Condition 2 (i) in Li and Müller
(2009)).

Condition 2. For all θ ∈ Θ , the function s → B(s; θ) is a bounded
and piece-wise continuous Rk valued function with at most a finite
number of discontinuities, and left and right limits everywhere.

Now by a second order Taylor expansion and Condition 1, one
can show that the likelihood ratio statistic LRT (θ) between the
model with parameter evolution described by (1) and the stable
model, with data generated from the stable model, satisfies

ln LRT (θ) = T−1/2
T

t=1

B(t/T ; θ)′sT ,t(Γ0)

+
1
2T

−1
T

t=1

B(t/T ; θ)′hT ,t(Γ0)B(t/T ; θ)+ op(1)

⇒

 1

0
B(s; θ)′H1/2dW (s)−

1
2

 1

0
B(s; θ)′HB(s; θ)ds (2)

where W (λ) is a k dimensional standard Wiener process.
Now consider the k × 1 vector continuous time process G(·) on

the unit interval

G(s) = W (s)+ H1/2
 s

0
B(λ; θ)dλ. (3)

By standard arguments (see, for instance, Kailath (1971)), the log
Radon–Nikodymderivative of themeasure ofG in (3)with parame-
ter θ ∈ Θ relative to themeasure ν of the standardWiener process
W , evaluated atW , is given by

ln fθ (W ) =

 1

0
B(s; θ)′H1/2dW (s)−

1
2

 1

0
B(s; θ)′HB(s; θ)ds (4)
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under Condition 2. This is the same expression as the r.h.s. of (2),
suggesting that the information about θ from observing XT con-
verges in large samples to the information obtained by observingG.

This intuition is made formally precise in the limit of experi-
ments theory pioneered by LeCam; see, for instance, van der Vaart
(1998) for an introduction. Formally, we have the following result.
Let Ck

[0,1] be the space ofRk valued continuous functions on the unit
interval.

Proposition 1. Let E0 be the statistical experiment of observing G ∈

Ck
[0,1] in (3) with parameter space θ ∈ Θ . Let ET be the statistical ex-

periment of observing XT with parameter space θ ∈ Θ and known Γ0
under Conditions 1 and 2. Then ET converges (weakly) to E0.

The asymptotic representation theorem (see, for instance,
van der Vaart (1991)) now implies that for any statistic ξT that con-
verges weakly in the time varying parameter model ET under all
θ ∈ Θ , ξT ⇒ ξ , there exists a corresponding statistic ξ0 in the
limit experiment E0 with the same distribution ξ0 ∼ ξ under all
θ ∈ Θ . Thus, any weakly converging statistic in the original model
has asymptotic properties that can be ‘‘matched’’ by some statistic
in the limit experiment.

We will be especially interested in the implications of this
general result for hypothesis tests
H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1.

A (possibly randomized) test in the parametric model is a se-
quence of measurable functions ϕT : RqT

→ [0, 1], with rejection
probability Eθ [ϕT (XT )] =


ϕT
T

t=1 fT ,t(ΓT ,t)dµT . The test is of
asymptotic level α if supθ∈Θ0

lim supT→∞ Eθ [ϕT (XT )] ≤ α. The
asymptotic representation theorem now implies that if ϕT (XT ) ⇒

ξ in the time varying parameter model with parameter θ , then
there exists a corresponding test ϕ : Ck

[0,1] → [0, 1] with the same
asymptotic local power Eθ [ϕ(G)] =


ϕfθdν = Eθ [ξ ].

In many testing problems there does not exist a uniformlymost
powerful test, even in the limit experiment. If that is the case,
then a useful criterion to choose among tests is their weighted
averagepower for somegiven integrableweighting function F with
support in the (closure of)Θ1, as in Wald (1943) and Andrews and
Ploberger (1994). In particular, the weighted average power of a
test ϕT in the time varying parameter model of sample size T is
Eθ [ϕT (XT )]dF(θ), and the weighted average power of a test ϕ in

the limit experiment is

Eθ [ϕ(G)]dF(θ). The following proposition

is a simple corollary of theorem 15.1 of van der Vaart (1998).

Proposition 2. Suppose Conditions 1 and 2 hold, and let ϕT : RqT
→

[0, 1] be a test such that Eθ [ϕT (XT )] → π(θ) for all θ ∈ Θ , and that
ϕT is of asymptotic level α.
(i) If ϕ∗

: Ck
[0,1] → [0, 1] maximizes weighted average power

Eθ [ϕ(G)]dF(θ) among all level α tests ϕ in E0, then

lim sup
T→∞


Eθ [ϕT (XT )]dF(θ) ≤


Eθ [ϕ∗(G)]dF(θ).

(ii) Suppose there does not exist a level α test ϕ : Ck
[0,1] → [0, 1]

in E0 with weighted average power

Eθ [ϕ(G)]dF(θ) larger than π̄ .

Then

lim sup
T→∞


Eθ [ϕT (XT )]dF(θ) ≤ π̄ .

Proposition 2 formalizes the notion that the limit experiment
provides bounds on the asymptotic performance of tests in the
underlying parametric model. Part (ii) is of particular interest in
this paper, as the next sections derive upper bounds on power
in the limit experiment. Note that both parts of Proposition 2 are
not constructive, but only provide limits on how well tests in the
underlying small sample problem may perform asymptotically. At
the same time, it seems that for a given ϕ∗ of part (i), one should be
able to construct tests in ET with the same asymptotic power as ϕ∗.
We describe the translation of a good test in the limit experiment
E0 to a test with good asymptotic properties in ET in Section 4.

2.2. Limiting problem for post break parameter inference

The set-up of the last subsection is quite general and can poten-
tially accommodate many inference issues in time varying param-
eter models. In this paper we focus on the particular issue of tests
about the post break parameter value. Thus, let B in (1) be of the
following form

B(s; θ) = H−1/2β + H−1/2δ1[s ≤ ρ] (5)
where θ = (β, δ, ρ) ∈ Rk

× Rk
× [0.15; 0.85]. Under (5), the

parameter ΓT ,t is equal to Γ0 + T−1/2H−1/2(β + δ) for t ≤ ⌊ρT⌋,
and equal to Γ0 + T−1/2H−1/2β for t > ⌊ρT⌋. As in previous stud-
ies on break models, such as Andrews (1993) or Bai and Perron
(1998), we assume that the break date ρ, expressed in fractions
of the sample size, is not too close to the boundaries, and restrict
ρ ∈ [0.15; 0.85]. The normalization by H−1/2 in (5) ensures that
the magnitudes of β and δ are expressed in multiples of the limit-
ing standard deviation of the full sample maximum likelihood es-
timator in the stable model.

Suppose the scalar parameter of interest is the first element of
Γ . The null hypothesis that its post break value is equal to the first
element of Γ0 then corresponds to the hypothesis

H0 : v′β = 0 (6)
where v′ is proportional to the first row of H−1/2, normalized such
that v′v = 1. Let Rv be a k × (k − 1) matrix such that (v, Rv)
is full rank. The null hypothesis (6) has 2k nuisance parameters:
R′
vβ ∈ Rk−1, δ ∈ Rk and ρ ∈ [0.15; 0.85].
The process (5) satisfies Condition 2 for all θ ∈ Θ , so that the

limit experiment is given by
G(s) = W (s)+ βs + δmin(ρ, s), s ∈ [0, 1] (7)
with associated density (cf. (4))

fθ (G) = exp

δ′G(ρ)+ β ′G(1)−

1
2 (β

′β + 2ρβ ′δ + ρδ′δ)

. (8)

To heuristically motivate the form of the limit experiment (7),
consider observations {yt}Tt=1 from a scalar Gaussian model with a
break in the mean at time τ

yt = µ+∆1[t ≤ τ ] + εt , εt ∼ iidN (0,H−1). (9)
We then have the following equality in distribution

T−1/2H1/2
sT
t=1

yt ∼ G(s) for any s ∈
 t
T

T
t=1

where ρ = τ/T , β = T 1/2H1/2µ and δ = T 1/2H1/2∆. Except for
the scaling by T−1/2 and the discretization s ∈ {

t
T }

T
t=1, the test-

ing problem (6) involving the observation G is therefore identical
to inference about the post-break mean in the Gaussian location
model (9). It is also straightforward to show that model (9) satis-
fies Condition 1, so that observing G is indeed also the formal limit
experiment via Proposition 1.

2.3. Scalar limit experiment

Initially, we consider the limit experiment associated with an
underlying model that only contains a scalar parameter Γ , that is
k = 1. We treat the vector case in Section 2.4.

In this section, we seek to derive good tests for the value of
the post mean parameter in this scalar limit experiment. In the
notation developed in the last subsection, this corresponds to the
hypothesis test
H0 : θ = (β, δ, ρ) ∈ {0} × R × [0.15; 0.85] = Θ0

vs H1 : θ = (β, δ, ρ) ∈ R{0} × R × [0.15; 0.85] = Θ1. (10)
Geometrically, the null hypothesis asserts that the slope of the
deterministic component βs + δmin(ρ, s) of G(s) is equal to zero
after the (potential) kink at s = ρ.
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We consider two approaches. First, we analyze the properties of
tests that estimate the break date ρ by least squares, and then take
that estimate as the true value. This approach corresponds to the
suggestion by Bai (1994, 1997) and Bai and Perron (1998) for a lin-
ear regression setting, such as the simple mean shift example (9).
We find that this way of conducting inference does very poorly un-
der small and moderate break magnitudes (|δ| < 12, say). Second,
we apply the general approach of EMW to derive nearly weighted
average power maximizing tests to this specific testing problem.

2.3.1. Tests based on least-squares break date estimator
As discussed in the introduction, Bai (1994, 1997) and Bai and

Perron (1998) suggest and analyze the following procedure for
conducting inference about the post break value of a coefficient in
a linear regression that is subject to a break: estimate the break
date by least-squares, construct a post break dummy using this es-
timate, and perform the usual t-test on that dummy. These papers
show that this procedure results in asymptotically correct infer-
ence for break magnitudes that diverge when multiplied by the
square root of the sample size. This corresponds to |δ| → ∞ in the
notation developed here. Another procedure, arguablymost preva-
lent in applied work, first performs a pretest for a break on some
conventional significance level, followed by standard full sample
inference about the post break value if no significant break is found,
and performs least-squares based post break inference as above if
the pretest rejects.

In the scalar limit experiment (7), the nominally 5% level least
squares and pretest procedure (based on the supF statistic) corre-
spond to the test

1[supF > cvpre(αpre)]1[|t̂| > 1.96]

+ 1[supF < cvpre(αpre)]1[|G(1)| > 1.96] (11)

where cvpre(αpre) is the critical value of the supF statistic of level
αpre as tabulated in Andrews (1993), (and cvpre(1) = 0 corresponds
to always using the least squares break date estimator, with no
pretest), and

ρ̂ = argmaxr∈[0.15;0.85]
(G(r)− rG(1))2

r(1 − r)
,

supF =
(G(ρ̂)− ρ̂G(1))2

ρ̂(1 − ρ̂)
, t̂ =

G(1)− G(ρ̂)
1 − ρ̂

.

(12)

Under standard assumptions, the large sample properties of the
small sample pretest and least square based tests in a linear re-
gression with a single coefficient converge in distribution to those
in (11) for breaks of magnitude T−1/2—this follows, for instance,
from Proposition 1 of Elliott and Müller (2007).

Fig. 2 displays the null rejection probability of (11) for αpre = 1
(no pretest), αpre = 0.10, αpre = 0.05 and αpre = 0.01 as a func-
tion of δ for selected values of ρ, based on 50,000 Monte Carlo
draws and 1,000 step randomwalk approximations toWiener pro-
cesses. None of these tests comes close to controlling size uni-
formly over δ. The approximately largest null rejection probability
of the pure least-squares break date based test is approximately
29% at (ρ, δ) = (0.85, 2.6). Pre-testing for a break seems to
both substantially exacerbate and shift the size control problem to
larger values of δ.3

In fact, to obtain a 5% level test in the no pretest case, one must
employ a critical value of approximately 4.9 instead of 1.96 for the
t-statistic, with size still approximately equal to the nominal 5%
level at the point (ρ, δ) = (0.85, 6.8). Denote this size corrected

3 Unreported results show that these asymptotic results provide very good
approximations for the small sample Gaussian location problem (9) with T = 100.
Fig. 2. Asymptotic null rejection probabilities of nominal 5% level tests for the post
break parameter value based on the least squares break date estimator.

test ϕLS. Because the worst size distortion occurs for a strictly
positive break magnitude, the size corrected hybrid subsampling
method of Andrews and Guggenberger (2009, 2010b) reduces to
the size corrected fixed critical value test ϕLS. Alternatively, one
could always use the test ϕ0.85(G) = 1[|G(1)− G(0.85)|/

√
0.15 >

1.96]which corresponds to a usual 5% level t-test based on the last
15% of the data. As onewould expect, though, the power of bothϕLS
and ϕ0.85 is quite poor (we provide power computations in Fig. 4),
motivating the construction of an alternative test.

2.3.2. Approximately weighted average power maximizing test
The testing problem (10) has exactly the structure of testing

problems analyzed in EMW: it is a non-standard but parametric
testing problem with composite null and alternative hypotheses.
We thus follow their general approach to determine a test that
comes close to maximizing a weighted average power criterion.

As discussed in EMW, in problems of this kind the weighted av-
erage powermaximizing test rejects for large values of a likelihood
ratio type statistic. The numerator in this ratio is the likelihood
fθ integrated over the weighting function F , which can be chosen
freely by the researcher. The intuition here is that the weighted
average power criterion


Eθ [ϕ(G)]dF(θ) =

 
ϕfθdνdF(θ) is,

by a change of the order of integration, equivalent to Eh[ϕ(G)] =
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ϕhdν, where h =


fθdF(θ). Thus, maximizingweighted average

power amounts to maximizing power against the single mixture
density h.

The denominator in the likelihood ratio statistic is the likeli-
hood integrated over the so-called ‘‘least favorable distribution’’Λ
with support in Θ0, so that the best test rejects for large values
of h/


fθdΛ(θ). The distribution Λ is endogenous to the prob-

lem and depends on the weighting function F and the level of the
test. Its name may be understood by thinking of a game between
the econometrician and nature: nature selects the parameter value
under the null hypothesis to make it as hard as possible for the
econometrician to devise a powerful level α test between the null
hypothesis and h. In general, nature’s best strategy is randomized,
and described by the least favorable distribution.

Now in many non-standard problems, such as the one under
consideration here, it is very difficult to analytically derive the form
of the least favorable distribution. For this reason, EMW devise an
algorithm to numerically determine an approximately least favor-
able distributionΛ∗ as amixture of a finite set of base distributions
with support inΘ0. The distributionΛ∗ is useful for two purposes:
on the one hand, it implies an upper bound on weighted average
power of any level α test. The reasoning is that the econometri-
cian’s best response to any given randomized strategy of nature
provides an upper bound for the power against nature’s best ran-
domized strategy. On the other hand, by EMW’s definition of an
approximately least favorable distributionΛ∗, the level α test that
rejects for large values of the likelihood ratio statistich/


fθdΛ∗(θ)

has power only slightly below this upper bound. For practical pur-
poses, this feasible test thus comes numerically close to solving the
problem of determining the weighted average power maximizing
test.

In order to implement EMW’s algorithm, we thus need to
choose a weighting function F and select a set of base distributions
that discretizes the null parameter spaceΘ0.

We choose F such thatρ is uniformly distributed on [0.15, 0.85]
and (β, δ) is bivariate normal independent of ρ, with β ∼ N (0,
σ 2
β ), δ ∼ N (0, σ 2

δ ) andβ independent ofβ+δ, whereσ 2
β = 22 and

σ 2
δ = 400. The Gaussianity of the marginal distribution of β and δ

in F is chosen for analytical convenience, and the independence of
the pre and post break parameter values β and β + δ mirrors the
independence of the pre and post break sample information G(ρ)
andG(1)−G(ρ). The value ofσ 2

β = 22 ismotivated byKing’s (1988)
discussion of overall reasonable point-optimal tests, since it turns
out that for σ 2

β = 22, the best 5% level test has approximately 50%
weighted average power. The uniform weighting over ρ accords
to the choice in Andrews and Ploberger (1994) and is intended to
generate reasonable power for all break dates ρ ∈ [0.15, 0.85]. Fi-
nally, the value σ 2

δ = 400 is motivated as follows: for large δ, (say,
|δ| > 12 or so) there is a lot of information about the break date
ρ, and good tests can come close to performing as well as if ρ was
known. By putting enough weight on rather large values of δ, the
choice σ 2

δ = 400 ensures that tests that have large weighted aver-
age power share this desirable feature. At the same time, the distri-
bution N (0, 400) concentrates about half of its mass on |δ| < 12,
so tests with large weighted average power also perform reason-
ably well when there is only limited sample information about the
break date ρ.

We choose the base distributions to be of the form ‘‘ρ is uni-
formly distributed on [max(0.15, a/100 −

1
2 ),min(0.85, b/100 +

1
2 )] and δ is an equal probabilitymixture of δ ∼ N (µδ, σ

2
δ ) and δ ∼

N (−µδ, σ
2
δ )’’ for some integers a, b ∈ {15, . . . , 85}, b ≥ a, and

µδ ∈ R, σ 2
δ > 0.

The algorithm now proceeds as follows. Set the candidate Λ∗

equal to some base distribution, and construct the optimal test
against the weighted average alternative distribution h. Slightly
adjust the critical value of this test upwards so that it has null rejec-
tion probability slightly below α. Check whether the adjusted test
controls size for data drawn from the other base null distributions.
If it does not, determine a newΛ∗ that is a mixture of the previous
Λ∗ and the violating base distribution. Iterate until the adjusted
test controls size uniformly over all base distributions.

The result of this process is a test that has power that is close
to the power bound, and that controls size under all mixtures of
base distributions. It may not, however, control size for all possible
values of the nuisance parameters (δ, ρ). So the final step is to
check size control. If size control is not obtained, then additional
null base distributionswith smaller σ 2

δ and/or smaller values of b−

a are added to the set of base distributions, and the iterative process
goes through another round. Table 6 in the Appendix describes the
sets of base distributions in this process in detail.

In the application of this paper, we determine a level α test
ϕ∗ in the limit experiment with weighted average power close to
the upper bound of a slightly simplified form. The computation
of rejection probabilities requires the simulation of (pseudo) ran-
dom continuous time processes G. Discrete time Gaussian random
walk approximation based on, say, 1000 steps are computation-
ally expensive and of uncertain accuracy. For this reason, we ap-
proximate all integrals over ρ by sums with ρ ∈ {1/100, 2/100,
. . . , 1}. The rejection probability of the (approximate) likelihood
ratio type test thus becomes a function of
G
 l
100

100
l=1 . (13)

The 100 random variables (13) can be simulated without any
approximation error, as they are exactly jointly Gaussian. Also,
looking ahead, implementation of this test only requires eval-
uation of an appropriate partial sum process at the 71 values
0.15, 0.16, . . . , 0.85, which numerically simplifies applications in
potentially computationally demanding GMM problems.

In addition, we modify the behavior of the test when the break
is obviously large. The motivation is as follows: by construction,
the level α test that rejects for large values of h/


fθdΛ∗(θ) comes

close to maximizing weighted average power over F . But F puts
very little mass on very large breaks (say, |δ| > 40). Thus, the
test might perform quite poorly there. At the same time, for a
large break |δ|, there is ample information about the break date ρ.
With ρ known, inference about the post break value is a standard
problem—simply reject for the analogue of a t-test based on the last
1 − ρ fraction of the data, that is ϕρ(G) = 1[|tρ | > 1.96], where
tρ = (G(1) − G(ρ))/

√
1 − ρ. The suggestion of EMW for prob-

lems of this kind is to switch between the standard test if there
is overwhelming evidence that |δ| is large, and the likelihood ra-
tio type test h/


fθdΛ∗(θ) otherwise. Numerical calculations sug-

gest that once the supF statistic (12) takes on very large values,
inference based on 1[|t̂| > 1.96] is nearly correct. Thus, whenever
supF > 90, we switch to using the test statistic t̂ in (12), but with
critical value of 2.01 rather than 1.96 on the 5% level. The adjust-
ment of the critical value is to ensure overall size control, including
the switching.

Thesemodifications are only applied to the nearly weighted av-
erage powermaximizing test ϕ∗, however. The computation of the
power bound does not involve any switching and requires eval-
uation of and integration over the actual densities (8), which we
approximate by Riemann sums with 8 · 105 steps.

Fig. 3 plots the approximate least favorable distribution ob-
tained by the algorithm. It is amixture of 18 base distributions; see
Table 2 for the corresponding weights and values of (a, b, µδ, σ 2

δ ).

Proposition 3. In model (7) with k = 1,
(i) any5% level test ϕ of (10) has


Eθ [ϕ(G)]dF(θ) ≤ π̄ ≃ 50.0%;

(ii) the (nonrandomized) test ϕ∗ defined in the Appendix is of level
α∗

≃ 5%, and

Eθ [ϕ∗(G)]dF(θ) = π∗

≃ 49.0%.
The numbers for π̄ , α∗ and π∗ in Proposition 3 are estimated

based on 50,000 independent Monte Carlo draws.
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Table 2
Approximate least favorable distribution.

j 1 2 3 4 5 6 7 8 9

pj 0.588 0.123 0.067 0.057 0.038 0.032 0.026 0.02 0.009
aj 15 85 85 20 75 20 20 75 45
bj 85 85 85 74 85 74 74 82 59
σ 2
δ,j 100 10 4 300 200 10 3 10 10
µj 20 5 3 16 28 9 6 7 11

j 10 11 12 13 14 15 16 17 18

pj 0.009 0.008 0.006 0.005 0.004 0.004 0.002 0.001 0.001
aj 70 15 15 60 80 60 83 85 75
bj 74 19 24 69 82 69 84 85 82

σ 2
δ,j 10 10 200 10 10 3 10 3 3
µj 9 5 28 12 11 8 13 15.5 13

Notes: The least favorable distribution is a mixture of j = 1, . . . , 18 base distributions. Under each base distribution, ρ is uniform on [max(0.15, a/100 −
1
2 ),

min(0.85, b/100 +
1
2 )] and δ is an equal probability mixture of δ ∼ N(µδ, σ 2

δ ) and δ ∼ N(−µδ, σ 2
δ ). The values in this table also enter the definition of the nearly

weighted average power maximizing test ϕ̂∗ of Section 4.1.
Fig. 4 plots, for selected values of ρ and δ, the power of the sug-
gested test ϕ∗, of the size corrected least squares break date based
test ϕLS, of the test using the last 15% of the sample ϕ0.85 only, and
the infeasible test using actual post break dataϕρ = 1[|tρ | > 1.96]
introduced above. All tests are invariant under the transformation
G → −G, so there is no need to plot the power for negative δ. As
one might expect given the large critical value of 4.9, ϕLS has very
low power. In contrast, ϕ∗ is almost always more powerful than
ϕ0.85, often substantially so, and comes close to the power of the
infeasible benchmark ϕρ for large |δ|.

2.4. Multivariate limit experiment

We now return to the vector limit experiment (6) with k > 1.
In principle, one could again try to apply EMW’s algorithmdirectly,
but due to the high-dimensional nuisance parameter spacewith 2k
parameters, this is computationally difficult.

Instead, note that one could always choose to ignore the infor-
mation contained in G beyond the scalar process v′G. But the test-
ing problem treating v′G as the only observation is identical to the
one treated in the last subsection. In particular, simply applying ϕ∗

of Proposition 3 to v′G obviously yields a valid 5% level test, with a
rejection probability that only depends on ρ ∈ [0.15; 0.85], v′β ∈

R and v′δ ∈ R.
Now it seems that ignoring the information in G beyond v′G

is very inefficient. But the following proposition shows that this
approach is nearly admissible.

Proposition 4. In model (7) with k > 1, let Fv be the probability
distribution for θ such that (v′β, v′δ, ρ) has distribution F of Sec-
tion 2.3.2, and R′

vβ = R′
vδ = 0 almost surely under Fv . Then

(i) any 5% level test ϕ of (6) has

Eθ [ϕ(G)]dFv(θ) ≤ π̄ ≃ 50.0%;

(ii) the test ϕ∗(v′G) of (6), with ϕ∗ defined as in Proposition 3, is
of level α∗

≃ 5%, and

Eθ [ϕ∗(v′G)]dFv(θ) = π∗

≃ 49.0%.

Proposition 4 shows that for a particular weighting function Fv
that is closed related to F on Section 2.3.2, no 5% level test can have
weighted average power larger than π̄ . At the same time, ϕ∗ ap-
plied to v′Ghasweighted average powerwith respect to Fv equal to
π∗, which is only slightly smaller than π̄ . Thusϕ∗(v′G) is nearly ad-
missible in the multivariate problem: no level α test can exist that
has substantially higher power uniformly over θ ∈ Θ ⊂ R2k+1.
What is more, in a more general limit experiment where the last
k− 1 elements of Γ undergo breaks at a different time, or are sub-
ject tomultiple breaks, the testϕ∗(v′G) still controls size, as its null
rejection properties are entirely unaffected by the form of parame-
ter instabilities in parameters other than the parameter of interest.

We consider the combination of near admissibility and this
robustness as quite attractive and will thus implement ϕ∗(v′G) in
the multivariate problem.
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Fig. 3. Approximate least favorable distributionΛ∗ .

3. GMMmodels

The last section discussed the problem of deriving asymptoti-
cally powerful inference about the post break parameter value us-
ing LeCam’s limits of experiments theory. The theory derived there
applies to any well-behaved parametric model, such as, say, the
post-break parameters of a Gaussian ARMA(p, q) model (see Sec-
tion 4.3 for an illustration), or post break parameter values of a logit
model with time series data.

The results do not, however, apply to general semiparametric
models, such as those defined through moment conditions. It is
in principle possible to apply limits of experiments ideas also to
semiparametric models (see, for instance, Choi et al. (1996) for an
application to semiparametric LAN models), but the non-standard
nature of the testing problem here makes this an involved enter-
prise beyond the scope of the paper. As a more straightforward al-
ternative, we now apply the asymptotic efficiency concept of tests
introduced by Müller (2011) to post break parameter inference in
GMMmodels.

Using data XT = (x1,T , . . . , xT ,T ) ∈ RqT , let the moment con-
dition be the Rm-valued function g(·, ·), so that E[g(xT ,t ,Γt)] = 0
when the true parameter at date t is given byΓ = Γt . Consider first
the stable version of the GMMmodelwith true parameter valueΓ0.
Then full sample efficient GMM estimation is based on

Γ̂ = argmin
Γ


T

t=1

g(xT ,t ,Γ )

′

V̂


T

t=1

g(xT ,t ,Γ )


where V̂ is possibly data dependentm×mpositive definiteweight-
ingmatrix that converges to the inverse of the asymptotic variance



148 G. Elliott, U.K. Müller / Journal of Econometrics 180 (2014) 141–157
Fig. 4. Asymptotic power of the approximately optimal test ϕ∗ and of the size corrected least-squares date estimator based test ϕLS , compared to the infeasible test ϕρ with
break date known, and the test using only the last 15% of the observations ϕ0.85 .
V−1 of T−1/2T
t=1 g(xT ,t ,Γ0), and

√
T (Γ̂ − Γ0) ⇒ N (0,H−1)

where H−1
= (Ῡ ′V Ῡ )−1, T−1T

t=1 Υ (xT ,t ,Γ0)
p

→ Ῡ and the
Rk×m valued function Υ (·,Γ ) is the partial derivative of g with re-
spect to Γ . Further, let Ω̂ be a consistent estimator of the variance
of Γ̂ , in the sense that TΩ̂

p
→H−1, and Ω̂−1/2(Γ̂ −Γ0) ⇒ N (0, Ik).

Now consider a time varying parameter version of this
GMMmodel, where the parameter evolves according to (1) and (5),

ΓT ,t = Γ0 + T−1/2H−1/2 (β + δ1[t/T ≤ ρ]) (14)

so that the (local) parameter instability is parameterized by θ =

(β, δ, ρ) ∈ Θ , just as in the previous section. Conditional on
τ = ⌊ρT⌋, the natural estimators for the pre and post break value
of Γ are given by the efficient GMM estimator using pre and post
break data,

Γ̂pre(τ ) = argmin
Γ


τ

t=1

g(xT ,t ,Γ )

′

V̂pre(τ )


τ

t=1

g(xT ,t ,Γ )



Γ̂post(τ ) = argmin
Γ


T

t=τ+1

g(xT ,t ,Γ )

′

V̂post(τ )


T

t=τ+1

g(xT ,t ,Γ )


with V̂pre(τ ) and V̂post(τ ) the appropriate m × m positive defi-
nite weighting matrices, and associated covariance matrix estima-
tors Ω̂pre(τ ) and Ω̂post(τ ) of Γ̂pre(τ ) and Γ̂post(τ ), respectively. A
natural starting point for post break parameter value inference in
the absence of knowledge about ρ ∈ [0.15; 0.85] is arguably the
information contained in {Ω̂pre(τ ), Ω̂post(τ ), Γ̂pre(τ ), Γ̂post(τ )} for
⌊0.15T⌋ ≤ τ ≤ ⌊0.85T⌋. In other words, it seems natural to try
to learn about the post parameter value from the relevant set of
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‘‘partial sample’’ parameter GMMestimates (alongwith their stan-
dard error estimates) in the jargon developed in Andrews (1993).

In large samples, the set of estimators {Γ̂pre(⌊·T⌋), Γ̂post(⌊·T⌋),

Ω̂pre(⌊·T⌋), Ω̂post(⌊·T⌋)} typically satisfies the followingweak con-
vergence

YT (s) =


T 1/2(Γ̂pre(⌊sT⌋)− Γ0)

T 1/2(Γ̂post(⌊sT⌋)− Γ0)

TΩ̂pre(⌊sT⌋)

TΩ̂post(⌊sT⌋)



⇒ Y (s) =


H−1/2G(s)

H−1/2(G(1)− G(s))
sH−1

(1 − s)H−1


(15)

where G is distributed as in (7), and the convergence is in the space
of 2k+2k2 valued cadlag functions on the interval [0.15; 0.85]. We
discuss relevant primitive conditions below Proposition 5 in Sec-
tion 4.

Now consider tests of the null hypothesis that the post break
value of the first element of Γ is equal to the first element of Γ0.
Under (14), just as in Section 2.2, this corresponds to the composite
null hypothesis

H0 : v′β = 0 (16)

where v′ is the normalized first row of H−1/2.
Now one might demand that a test ϕT (XT ) does not overreject,

at least asymptotically, whenever the GMM model is well enough
behaved for (15) to hold. Formally, Müller (2011) introduces the
following definition: a test ϕT : RqT

→ [0, 1] of (16) is consid-
ered robust if lim supT→∞ Eθ [ϕT (XT )] ≤ 0.05 for all θ ∈ Θ with
v′β = 0, for any sequence of distributions of XT that induces the
weak convergence (15). Theorem 1 in Müller (2011) shows that
under this constraint, the asymptotically weighted average power
maximizing test based on XT is simply the correspondingweighted
average power maximizing test in the limiting problem of observ-
ing Y (·) in (15), evaluated at the sample analogue YT (·). In contrast
to the more traditional LeCam-type arguments of Section 4.1, no
additional regularity assumptions on the likelihood or other prop-
erties of XT are required for this efficiency claim. At the same time,
the robustness requirement is arguably very strong, as there are
many ways in which (15) may hold, correspondingly weakening
the strength of the claim. See Müller (2011) for further discussion
on the merits of this notion of efficiency.

The limiting problem of observing Y (·) in (15) is recognized as
(essentially) identical to the limit experiment considered in Sec-
tions 2.3 and 2.4 (it is potentially less informative, as observing
Y (·) on [0.15; 0.85] is equivalent to observing G(·) on [0.15; 0.85],
rather than observing G(·) on the entire unit interval). Thus, the
bound π̄ ≃ 50.0% on weighted average power derived in Proposi-
tions 3 and 4 also applies to tests of (16) based on XT underMüller’s
(2011) robustness constraint relative to (15). In Section 4, we dis-
cuss in detail the construction of the small sample analogue ϕ̂∗, and
show in Proposition 5 that its asymptotic rejection profile is equal
to the rejection profile of ϕ∗ whenever (15) holds, so its asymp-
totic weighted average power is equal to π∗

≃ 49.0%. Thus, ϕ̂∗

is the nearly asymptotic weighted average power maximizing test
among all tests that are robust in the sense of Müller (2011) rela-
tive to (15).

4. Test statistic and properties

This section gives the precise form of the test statistic and pro-
vides the asymptotic justification for the test as well as some ev-
idence on its small sample performance. Section 4.1 details the
construction of the statistic, and is the relevant subsection for those
wishing to apply themethod todata. The suggested statistic applies
to inference on a single element of a k × 1 parameter vector in a
GMM problem. Hence the method applies to linear and nonlinear
regression, maximum likelihood models with differentiable likeli-
hoods, and structural and reduced formmodels. The method takes
as its input the output of standard GMM estimation over various
subsamples, as detailed below. In Section 4.2 we examine the large
sample properties of the statistic, establish limit results and show
that the test is consistent under local and non-local break magni-
tudes. The conditions on the data and models are similar to the
set of assumptions in the breaks literature (for example Andrews
(1993)), allowing for time heterogeneous data and a wide range of
models, but ruling out unit (or near unit) roots and time trends.We
examine small sample size and power properties in Monte Carlo
experiments in Section 4.3 in a mean estimation problem, for in-
ference about a parameter estimated by maximum likelihood, and
in an instrumental variables regression problem.

4.1. Definition of test statistic

We define the statistic in a general method of moments
framework with the k dimensional parameter Γ = (γ , γ̃ ′)′, with
γ ∈ R and γ̃ ∈ Rk−1. The data in a sample of size T is given by XT =

(x1, . . . , xT ), and the population moment condition is E[g(xt ,Γ0)]
= 0 when the true parameter at date t is given by Γ = Γ0 for
some known, Rm valued function g(·, ·). For example in a linear
IV/2SLS problemwemight have g(xt ,Γ0) = (x1t −Γ ′

0x2t)x3t where
the scalar variable x1t is regressand on the vector x2t , using x3t as
instruments. The weight matrix may be chosen in the usual way
and, for the validity of our test, does not have to be the efficient one.

The parameter Γ changes its value from Γpre = (γpre, γ̃
′
pre)

′ to
Γpost = (γpost , γ̃

′
post)

′ at some unknown date τ ∈ N in the mid-
dle 70% of the sample, τ ∈ [0.15T , 0.85T ] (the methods apply for
any size of the change so are applicable where subsets or even all
of the parameters in Γ do not change). The hypotheses of interest
concerns the post break value of the first element γ of Γ ,

H0 : γpost = γpost,0 against H1 : γpost ≠ γpost,0. (17)

Denote by Γ̂pre(t) and Γ̂post(t) standard GMM estimators of Γ us-
ing data {xs}ts=1 and {xs}Ts=t+1, and denote by Ω̂pre(t) and Ω̂post(t)
the estimators of the covariance matrix of Γ̂pre(t) and Γ̂post(t),
respectively. These covariance matrix estimators, as well as the
weighting matrix for efficient GMM estimation in the overiden-
tified case, are based on data {xs}ts=1 and {xs}Ts=t+1 for the pre
and post break estimators. If necessary, the estimators Ω̂pre(t) and
Ω̂post(t) account for serial correlation by employing a correction
as in Newey and West (1987) or Andrews (1991), for instance,
so that in an overall stable model with parameter Γ0, approxi-
mately, Ω̂pre(t)−1/2Γ̂pre(t) ∼ N (Γ0, Ik) and Ω̂post(t)−1/2Γ̂post(t) ∼

N (Γ0, Ik).
Our test statistic of (17) only requires evaluation of {Γ̂pre(t),

Γ̂post(t), Ω̂pre(t), Ω̂post(t)} at the 71 numbers t = ⌊lT/100⌋ for
l = 15, 16, . . . , 85 where ⌊x⌋ denotes the largest integer smaller
or equal to x ∈ R. Let γ̂pre(l) and γ̂post(l) be the first element
of Γ̂pre(⌊lT/100⌋) and Γ̂post(⌊lT/100⌋), and denote by ω̂2

pre(l) and
ω̂2

post(l) the 1, 1 element of Ω̂pre(⌊lT/100⌋) and Ω̂post(⌊lT/100⌋),
respectively. With the definitions in Box I,4 the 5% level test ϕ̂∗ of

4 One obtains the test ϕ∗ of Proposition 3 and defined in the Appendix by setting
γ̂pre(l) = 100G(l/100)/l, γ̂post (l) = (G(1)−G(l/100))/(1− l/100), ω̂2

pre(l) = 100/l
and ω̂2

post (l) = 100/(100 − l).
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8)
supF = max
16≤l≤85


γ̂post(l)− γ̂pre(l − 1)

2
ω̂2

post(l)+ ω̂2
pre(l − 1)

∆̂pre(l) = lγ̂pre(l)− (l − 1)γ̂pre(l − 1)

∆̂post(l) = (101 − l)γ̂post(l − 1)− (100 − l)γ̂post(l)

l̂ = arg min
16≤l≤85

 l−1
j=16

∆̂pre(j)2 − (l − 1)γ̂pre(l − 1)2 +

85
j=l+1

∆̂post(j)2 − (100 − l)γ̂post(l)2


t̂post =
γ̂post(min(l̂ + 1, 85))− γpost,0

ω̂2
post(min(l̂ + 1, 85))

(1

ω̂2
=
(l̂ − 1)2

9900
ω̂2

pre(l̂ − 1)+
(100 − l̂)2

9900
ω̂2

post(l̂)

LR =

85
l=15

exp


1
2
σ2pre(γ̂pre(l)−γpost,0)

2 l2

1002ω̂2v(l,σ2pre)
+

1
2
σ2
β
(γ̂post (l)−γpost,0)

2(100−l)2

1002ω̂2v(100−l,σ2
β
)


71

v(l,σ 2

pre)v(100−l,σ 2
β )

18
j=1

bj
l=aj

pj exp


−

1
2

µ2
δ,j l

100v(l,σ2
δ,j)

+
1
2
σ2
δ,j(γ̂pre(l)−γpost,0)

2 l2

1002ω̂2v(l,σ2
δ,j)


cosh


(γ̂pre(l)−γpost,0)µj l

100v(l,σ2
δ,j)ω̂


(bj−aj+1)


v(l,σ 2

δ,j)

where v(l, σ 2) = 1 + σ 2l/100, σ 2
pre = 378, σ 2

β = 22, and aj, bj, pj, µj and σ 2
δ,j are defined in Table 2.

Box I.
(17) rejects H0 if and only if either (i) supF > 90 and |t̂post | > 2.01,
or (ii) supF ≤ 90 and LR > 2.41.5

The intuition for these computations is roughly as follows. The
statistic supF is the largest F-statistic of the null hypothesis that
the value of γ in the first (l − 1)% is equal to the value of γ in the
last (100 − l)%, maximized over 16 ≤ l ≤ 85. By leaving out the
middle 1% of observations, it is ensured that for any true break frac-
tion within the middle 70% of the sample, one of these F-statistics
(often, the largest) only involves estimators (γ̂pre(l), ω̂2

pre(l)) and

(γ̂post(l), ω̂2
post(l)) from stable periods. When supF > 90, that is,

when there is very strong evidence for the occurrence of a break,
the test ϕ̂∗ rejects if the usual t-statistic t̂post is larger than 2.01
(rather than the usual 1.96) in absolute value, where t̂post uses l̂ to
determine the appropriate post-break data.

In (approximately) linear and stationary models, γ̂pre(l) is cen-
tered at the average parameter value of the first l% of the sample,
⌊lT/100⌋−1⌊lT/100⌋

t=1 (γpre + (γpost − γpre)1[t > τ ]), and similarly,
γ̂post(l) is centered at the average parameter value of the last (100−

l)% of the sample. The statistics ∆̂pre(l) and ∆̂post(l) thus approxi-
mately estimate the value of the parameter in the lth percent of the
sample. If the true break τ is in the l0th percent of the sample, then
∆̂pre(l) should be approximately equal to γpre for all l < l0, and sim-
ilarly for ∆̂post(l). The break fraction estimator l̂ is usefully thought
of as a least squares estimator based on these discretized estima-
tors leaving out the middle one percent; note that for a given po-
tential break date l ∈ {15, . . . , 85} measured in percentage points

min
γpre,γpost


l−1
j=1

(∆̂pre(j)− γpre)
2
+

100
j=l+1

(∆̂post(j)− γpost)
2



≈

l−1
j=1

∆̂pre(j)2 − (l − 1)γ̂pre(l − 1)2

+

100
j=l+1

∆̂post(j)2 − (100 − l)γ̂post(l)2

5 Replace (2.01, 2.41) by (2.36, 10.6) for a 1% level test.
and the omission of
15

j=1 ∆̂pre(j)2 and
100

j=86 ∆̂post(j)2 in the def-
inition of l̂ is immaterial, as neither term depends on l. By adding
one to l̂, it is ensured that with high probability, l̂ + 1 is at least as
large as the true break fraction in percentage points, so that t̂post
is based on estimates from a stable post-break period. The advan-
tage of the least squares criterion (18) based on (∆̂pre(l), ∆̂post(l))
over, say, an analogue to the F-statistics that underlie supF, is that
l̂ in (18) has appealing properties under relatively weak conditions
also when the break magnitude is not small—cf. Proposition 5.

In the absence of strong evidence for a break, that is supF ≤ 90,
the test ϕ̂∗ switches to deciding the null hypothesis based on a like-
lihood ratio statistic. The numerator of this statistic is the result
of the weighting over alternative values for γpost , break dates and
break magnitudes with the weighting function F defined in Sec-
tion 2.3.2. The denominator is the result of a weighting over break
dates and break magnitudes that make detection of this alterna-
tive as difficult as possible, the numerically determined approx-
imate least favorable distribution Λ∗ discussed in Section 2.3.2,
ensuring size control of ϕ̂∗ even when information about the true
break date is scarce. In this likelihood ratio statistic, the scale of
γ̂pre(l) and γ̂post(l) is normalized by ω̂. If the break date τ satisfies
(l̂−1)/100 ≤ τ/T ≤ l̂/100, then the estimator ω̂2 is based on vari-
ance estimators of stablemodels,which improves the small sample
properties of LR.
4.2. Asymptotic properties

The following proposition establishes formally that under suit-
able conditions, the suggested test ϕ̂∗ is consistent for non-local
alternatives for both local and non-local break magnitudes; it has
local power close to that of the infeasible test that uses only ac-
tual post break data when the breakmagnitude is large; it has local
asymptotic power equal to the power of ϕ∗ of Proposition 3 under
a local break and local alternative; and it controls size uniformly. In
particular, this implies that the weighted average power in Propo-
sition 1, π∗

≃ 49.0%, and the power in Fig. 4 of Section 2.3.2 is also
the (weighted average) asymptotic local power of ϕ̂∗ under local
breaks.
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Proposition 5. Define δT = T 1/2(γpre−γpost)/ω, βT = T 1/2(γpost −
γpost,0)/ω, and ρT = τ/T for some ω > 0.
(i) Suppose δT = δ ∈ R, ρT = ρ ∈ [0.15, 0.85] and

{T 1/2(γ̂pre(l)− γpost), T 1/2(γ̂post(l)− γpost),

T ω̂2
pre(l), T ω̂

2
post(l)}

85
l=15

⇒


ω
G0(l/100)
l/100

, ω
G0(1)− G0(l/100)

1 − l/100
,
ω2

l/100
,

ω2

1 − l/100

85

l=15
(19)

where G0(s) = W (s) + δmin(ρ, s). (i.a) If βT = β ∈ R, then
ϕ̂∗(XT ) ⇒ ϕ∗(G). (i.b) If βT → ±∞, then ϕ̂∗(XT )

p
→ 1.

(ii) Suppose δT → ±∞, ρT = ρ ∈ [0.15, 0.85], and, for some
ωpre > 0 not necessarily equal to ω,

{T 1/2(γ̂pre(l)− γpre), T ω̂2
pre(l)}

⌊100ρ⌋

l=15

⇒


ωpre

W (l/100)
l/100

,
ω2

pre

l/100

⌊100ρ⌋

l=15

{T 1/2(γ̂post(l)− γpost), T ω̂2
post(l)}

85
l=⌈100ρ⌉

⇒


ω
W (1)− W (l/100)

1 − l/100
,

ω2

1 − l/100

85

l=⌈100ρ⌉

P(T 1/2
|γ̂pre(⌊100ρ⌋ + 1)− γpre| > M) → 1

P(T 1/2
|γ̂post(⌈100ρ⌉ − 1)− γpost | > M) → 1

(20)

for any M ∈ R, where ⌈x⌉ = −⌊−x⌋, and the weak convergences do
not have to hold jointly. (ii.a) If βT = 0, then lim supT→∞ E[ϕ̂∗(XT )]
≤ 5%. (ii.b) If βT = β ∈ R and ρ ∉ Rgrid = {0.15, 0.16, . . . , 0.84},
then ϕ̂∗(XT ) ⇒ 1[|Z + β

√
0.98 − ⌊100ρ⌋/100| > 2.01], where

Z ∼ N (0, 1). (ii.c) If βT → ±∞, then ϕ̂∗(XT )
p

→ 1.
(iii) Suppose βT = 0; (19) holds for all sequences (ρT , δT ) →

(ρ, δ) ∈ [0.15, 0.85] × R; (20) holds for all sequences (ρT , δT ) →

(ρ, δ) ∈ ([0.15, 0.85] \ Rgrid) × {−∞,+∞}; and for all sequences
(ρT , δT ) → (ρ, δ) ∈ Rgrid × {−∞,+∞}, there exists a subsequence
(ρT ′ , δT ′) → (ρ, δ) such that along this subsequence, (20) holds
except for

(T 1/2(γ̂pre(l0)− γpre), T ω̂2
pre(l0))

⇒


ωpre

W (l0/100)
l0/100

+ νpre(l0),
ω2

pre

l0/100


(T 1/2(γ̂post(l0)− γpost), T ω̂2

post(l0))

⇒


ω
W (1)− W (l0/100)

1 − l0/100
+ νpost(l0),

ω2

1 − l0/100


(21)

where l0 = 100ρ and νpre(l0), νpost(l0) ∈ R ∪ {−∞,+∞} are non-
random constants, of which at most one is nonzero. Then lim supT→∞

supθ∈Θ0
Eθ [ϕ̂∗(XT )] ≤ α∗

≃ 5%.

Part (i) of Proposition 5 considers the case where the pre and
post break value of γ only differ of the order T−1/2, i.e. when the
break size is small in a statistical sense. In that neighborhood,
the GMM estimators do not contain enough information to pin
down the true break fraction exactly, even asymptotically. This
asymptotic embedding mirrors the small sample problem with
substantial uncertainty about the true break date. The proposition
establishes that for local alternatives, where correspondingly, the
true value γpost differs by the order T−1/2 from the hypothesized
value γpost,0, the asymptotic properties of ϕ̂∗ are just like those of
ϕ∗ in the limiting problem discussed in Section 2.3.2. So in partic-
ular, by Proposition 3, the test ϕ̂∗ has asymptotic level α∗

≃ 5%,
and it has asymptotic weighted average power of π∗
≃ 49%. Fur-

thermore, ϕ̂∗ is consistent in this scenario against any alternative
where γpost is outside the T−1/2 neighborhood of the hypothesized
value.

These results rely on the high level condition (19). The se-
quence of statistics {γ̂pre(l), γ̂post(l), ω̂pre(l), ω̂(l)} are a special case
of partial sample GMM estimators analyzed by Andrews (1993). In
particular, his primitive Assumption 1 with an appropriate modifi-
cation to account for parameter time variation of order T−1/2 imply
(19)—see the Appendix for details. Alternatively, the approach of Li
and Müller (2009) could be amended to yield (19) under a differ-
ent set of assumptions. Also, for the special case of maximum like-
lihood estimation, Condition 1 and the identification Condition 3
in the Appendix can be shown to imply (19) for both the average
Hessian and outer product of scores covariance estimators Ω̂pre and
Ω̂post . The conclusions of part (i) thus hold for awide range ofmod-
els.

Part (ii) of Proposition 5 establishes the asymptotic properties
of ϕ̂∗ when the break is (very) large relative to the sample infor-
mation about γ . This is the situation that the majority of the lit-
erature on breaks has considered, where breaks are large enough
that their date can effectively be treated as known for purposes
of asymptotic inference about β . The test again controls size and
is consistent against any non-local alternative. Under local alter-
natives βT = β ≠ 0, it asymptotically corresponds to a two-
sided t-test about the mean of a unit variance Gaussian variate
with non-centrality parameterβ

√
0.98 − ⌊100ρ⌋/100 and critical

value 2.01, at least as long ρ ≠ Rgrid.6 In comparison, the two-sided
5% level t-test based on post break data (assuming the break date
was known) converges to ϕρ(G) = 1[| G(1)−G(ρ)

√
1−ρ | > 1.96], and thus

has non-centrality parameter β
√
1 − ρ. With β ∼ N (0, 22) as in

the weighting function F of Section 2.3.2, the average asymptotic
power loss of ϕ̂∗ relative to ϕρ over ρ ∈ [0.15, 0.85] is approxi-
mately 1.7 percentage points, with a largest difference of 3.6 per-
centage points occurring at ρ near 0.83.

The results in part (ii) of Proposition 5 require two sets of as-
sumptions. On the one hand, the statistics {γ̂pre(l), ω̂2

pre(l)} and
{γ̂post(l), ω̂2

post(l)} have to behave in the usual way over the stable
pre and post break periods, respectively, and be asymptotically inde-
pendent. Note that the limiting variancemay change at the param-
eter break date; this accommodates, say, changes in the variance
of the AR(1) coefficient estimator that are induced by a non-local
break in the AR(1) coefficient. One can again invoke the primitive
conditions of Andrews (1993) to justify these convergences. On the
other hand, the estimators γ̂pre(l) and γ̂post(l)must diverge from the
T−1/2 neighborhood of the pre and post parameter values γpre and
γpost for two values of l that involve a positive fraction of post and
pre break data, respectively.7 For a non-local but shrinking break
magnitude |γpre −γpost | → 0 and T 1/2(γpre −γpost) → ±∞, γ̂pre(l)
typically estimates the average parameter value in the first l% of
the sample, that is

γ̂pre(l)− γpre

γpost − γpre

p
→ 1[l > ⌊100ρ⌋]

l − ⌊100ρ⌋

l
≠ 0, (22)

and similarly for γ̂post(l), which is clearly sufficient for the purposes
of Proposition 5 (ii). The convergence (22) can be shown to hold, for
instance, under the high-level Condition 1 of Li and Müller (2009)

6 This qualification is necessary because ifρ ∈ Rgrid, l̂ potentially takes on the two
values ⌊100ρ⌋ + 1 and ⌊100ρ⌋ + 2 with positive probability, even asymptotically,
despite the diverging break magnitude T 1/2(γpre − γpost ).
7 Note, however, that nothing is assumed about the behavior of the variance

estimators {ω̂pre(l), ω̂post (l)} that involve subsets of unstable periods.
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Table 3
Small sample size and power in location model.

ρ Size (β = 0) Power (β = 4) Power (β = −4)
δ δ δ

1 4 8 16 1 4 8 16 1 4 8 16

ϕ̂ρ , t-test with break date known

0.25 0.06 0.06 0.06 0.06 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
0.50 0.07 0.07 0.07 0.07 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
0.75 0.09 0.09 0.09 0.09 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

t-test with least-squares break date, standard critical value

0.25 0.22 0.19 0.14 0.10 0.66 0.73 0.78 0.78 0.62 0.58 0.56 0.57
0.50 0.22 0.17 0.10 0.07 0.63 0.66 0.74 0.80 0.66 0.77 0.85 0.85
0.75 0.22 0.23 0.16 0.11 0.63 0.56 0.54 0.56 0.65 0.67 0.65 0.61

t-test with least-squares break date, asymptotic uniform critical value

0.25 0.00 0.00 0.00 0.00 0.10 0.09 0.08 0.08 0.11 0.12 0.11 0.08
0.50 0.00 0.00 0.00 0.00 0.10 0.07 0.06 0.06 0.11 0.11 0.09 0.07
0.75 0.00 0.00 0.01 0.00 0.13 0.15 0.08 0.04 0.08 0.05 0.04 0.03

ϕ̂0.85 , t-test with last 15% of data

0.25 0.11 0.11 0.11 0.11 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.50 0.11 0.11 0.11 0.11 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.75 0.11 0.11 0.11 0.11 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

ϕ̂∗ , test of this paper

0.25 0.06 0.06 0.05 0.04 0.46 0.57 0.78 0.90 0.48 0.64 0.90 0.93
0.50 0.06 0.06 0.06 0.05 0.45 0.53 0.69 0.76 0.48 0.67 0.82 0.79
0.75 0.06 0.05 0.06 0.07 0.45 0.44 0.44 0.45 0.46 0.43 0.41 0.50

Notes: The variance of sample means is estimated with a Newey and West (1987) estimator with four lags. The tests are the same as those in Table 1, except that the oracle
test ϕ̂ρ is based on the actual post break data. Power is not size-corrected. Based on 10,000 replications.
by proceeding as in their Theorem 1 as long as no break in the nui-
sance parameter γ̃ is an order ofmagnitude larger than the break in
the parameter of interest γ . For a fixed breakmagnitude γpost−γpre,
the distortionary effects of the break becomes even stronger, of
course, and barring pathological cancellations, one would expect
the condition in Proposition 5(ii) to be satisfied. We refrain from a
detailed discussion of sufficient primitive conditions for the sake
of brevity.

Finally, part (iii) of Proposition 5 shows that the test ϕ̂∗ con-
trols size uniformly in large samples—for T large enough, no choice
of θ ∈ Θ0 leads to a rejection probability substantially above 5%.
This result is established under the assumption that for local breaks
δT = O(1), the convergences in part (i) hold for all converging
sequences (ρT , δT ) → (ρ, δ). We show in the Appendix that the
primitive assumptions of Andrews (1993) are again sufficient. For
non-local breaks, caremust be taken for the case ρT → ρ ∈ Rgrid. If
ρT → ρ = l0/100 ∈ Rgrid withρT < ρ, then γ̂pre(l0) is an estimator
from an unstablemodel, with a shrinking fraction of the data stem-
ming from the post break model. Depending on the rate at which
δT → ±∞, this contamination shifts the center of the asymptotic
distribution of γ̂pre(l0) by νpre(l0)—typically, given the arguments
above (22), one would expect νpre(l0) ∈ R if δT (ρT − ρ) → ξ ∈ R,
and it is sufficient for the last assumption in Proposition 5(iii) to
assume that when (ρT , δT ) → (ρ, δ) ∈ Rgrid × {−∞ + ∞}, (20)
holds except for (21) for all sequences δT (ρT − ρ) → ξ ∈ R ∪

{−∞,+∞}.8

8 Inspection of the proof of Proposition 5 shows that these assumptions are only
needed to ensure that ({γ̂pre(l)}

l0
l=1, ∆̂post (l0+1)) are asymptotically independent of

{γ̂post (l), ω̂2
post (l)}

l0+2
l=l0+1 , as this independence is enough to establish that themixture

of the two t̂post statistics with l̂ = l0 + 1 and l̂ = l0 + 2 controls size. The
condition could dispensed with entirely by increasing the critical value of t̂post to
2.07, since P(|Z1| < 2.07 and |Z2| < 2.07) > 0.95 for all bivariate normal Z1, Z2
with Z1 ∼ Z2 ∼ N (0, 1) and correlation of at least

√
15/16, so that no mixture of

the two t̂post -statistics can induce overrejections.
4.3. Small sample properties

We now turn to the small sample properties of the test ϕ̂∗ sug-
gested here, and compare it to the infeasible test ϕ̂ρ that corre-
sponds to standard inference using actual post break data only.
We consider three Monte Carlo designs: inference about the post
breakmean of an otherwise stationary scalar time series, inference
about the post break value of the moving average parameter of a
scalar time series, and inference on a linear regression estimator in
a problem where there is endogeneity but instruments are avail-
able. The first and third examples are GMM problems, the second
is a maximum likelihood problem.

For inference about the mean, we design the data generating
process to mimic the productivity growth example of the intro-
duction. The data does not exhibit significant autocorrelation, and
the sample kurtosis is 3.24. Accordingly, we set T = 143, and draw
the data {xt}Tt=1 from

xt = βT−1/2
+ δT−1/21[t ≤ ρT ] + ut

where ut is i.i.d. student-t with 29 degrees of freedom, and scaled
to be of unit variance. Table 3 reports size and power of various
5% nominal tests of the null hypothesis that β = 0 (this choice
is without loss of generality, as the testing problem is translation
and scale invariant). The results correspond closely to the asymp-
totic properties of the corresponding tests discussed in Section 2.3,
and similar comments apply. The test developed in this paper, ϕ̂∗,
has close to nominal rejection probability for all values of the break
magnitude, in contrast to the (usual) t-test on post break data with
a break date determined by minimizing the sum of squared resid-
uals. The mild overrejections of ϕ̂∗ are caused by the variance esti-
mation, and are smaller than those of the oracle test ϕ̂ρ with known
break date.

In the MA(1) design, we generate data from the model

xt = µ+ εt + 1[t ≤ ρT ]ψpreεt−1 + 1[t > ρT ]ψpostεt−1

with εt ∼ i.i.d.N (0, σ 2) and T = 480 (think of 40 years of
monthly data).We test the hypothesisH0 : ψpost = 0, which corre-
sponds to the null hypothesis of no current predictability of xt . This
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Table 4
Small sample size and power of suggested test in MA(1) model.

ρ Size (ψpost = 0) Power (ψpost = 0.2)
ϕ̂∗, ψpre ϕ̂ρ ϕ̂∗, ψpre ϕ̂ρ

0.1 0.3 0.5 0.7 −0.1 0.1 0.3 0.5

0.25 5.7 5.6 5.0 5.2 5.2 60.3 85.5 96.9 96.9 97.5
0.50 6.0 7.1 8.4 8.3 5.9 61.3 85.4 88.6 89.1 89.7
0.75 5.7 8.9 12.0 13.3 7.0 53.6 51.0 56.7 66.6 64.4

Notes: All entries are based on asymptotic critical values. The variance of the unconditional maximum likelihood estimators ψ̂ is estimated by (1− ψ̂2)/⌊rT⌋ in a sample of
size ⌊rT⌋. Based on 10,000 replications.
Table 5
Small sample size and power of suggested test in an instrumental variable model.

δ Size (H0 : β = 0) Power (β = 3) Power (β = −3)
ρ ρ ρ

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

1 4.3 4.4 4.6 30.1 30.3 31.8 26.3 26.4 22.3
4 4.5 4.9 5.9 38.3 37.6 33.5 46.9 44.4 20.2
8 4.6 5.3 7.5 57.2 48.2 34.8 69.8 52.4 20.3

16 3.9 4.1 6.2 65.6 50.6 31.2 68.6 48.4 25.0
32 5.2 5.1 6.0 72.2 57.6 38.5 70.9 50.7 23.7
64 5.2 5.1 5.8 72.5 57.6 38.5 71.4 50.8 23.7

Notes: All entries are based on asymptotic critical values. The variance of the
2SLS estimator is estimated by the usual (heteroskedasticity robust) GMM formula.
Based on the based on 10,000 replications.

design is outside the linear regression framework for which least-
squares methods have been developed, so with unknown break
date, ϕ̂∗ seems to be the only known way of performing this infer-
ence. Table 4 reports the null and alternative rejection probabilities
of ϕ̂∗ and the oracle test ϕ̂ρ , where the parameters are estimated
by maximum likelihood. Small sample size distortions are mostly
larger for ϕ̂∗ compared to ϕ̂ρ , but remain modest for most con-
sidered parameter values. We experimented with smaller sample
sizes and found worse size control, sometimes substantially so.
Goodproperties of ϕ̂∗ rely on reasonable accuracy of the usual large
sample approximations over all partial sample estimators. Butwith
small sample sizes T , the estimators over, say, the first and last 15%
are based on very few observations, which leads to well known
problems with the MA(1) maximum likelihood estimator.

For the instrumental variables example we follow the design
of Hall et al. (2012), although we allow the position and the size of
the break to vary. The data is generated by

x1t = 1[t ≤ ρT ](x2tγpre + γ̃pre)

+ 1[t > ρT ](x2tγpost + γ̃post)+ ut (23)

where x2t = 1+0.5
4

i=1 x3t,i+vt , x3t ∼ i.i.d.N (0, I4) and (ut , vt)
is i.i.d. normal with mean zero, variances equal to one and
covariance equal to one half. The 4 × 1 vector x3t is observed and
serves as an instrument. A calculation shows that the full sample
GMM(=2SLS) estimator ofΓ = (γ , γ̃ )′ from the stablemodel (23)
has asymptotic variance I2. We consider tests of H0 : γpost = 0. The
true values of the parameters are γpre = γ̃pre = T−1/2(β + δ) and
γpost = γ̃post = T−1/2β , so both parameters break by the common
value δ. This model satisfies the assumptions of Proposition 5, as
we detail in the Appendix. Table 5 reports small sample rejection
probabilities for T = 480. Size is generally well controlled for both
small and large breaks, although some moderate size distortions
arise when the break is near the end of the sample.

5. Conclusion

Models with discrete breaks in the parameters at an unknown
or uncertain date have become popular in empirical work. This
paper shows that inference about pre and post break parameters
using the standard approach of using the estimated break date as
the true break date leads to substantially oversized tests and con-
fidence intervals as long as the break magnitude is not very large
relative to the sampling uncertainty about the parameters. For the
important special case of a single break at an unknown date and
a single parameter of interest, we derive an alternative test with
uniform asymptotic size control that demonstrably comes close to
maximizing a weighted average power criterion.

The method applies to a very wide range of econometric
models—those that can be written as a GMM problem. This in-
cludes breaks in means and variances, in coefficients in linear and
nonlinear regressions, and maximum likelihood models with dif-
ferentiable likelihood (where the first order condition becomes
the GMM problem). The required regularity conditions are similar
to those in Andrews (1993). And while the derivation of the test
statistic is somewhat complicated, its application is fairly straight-
forward: it only involves the estimation of four standard GMM ob-
jects (parameter estimates and their covariance matrices) over 71
specific subsamples, irrespective of the sample size.

Appendix

Proof of Proposition 1. Let Θℓ
= (θ1, . . . , θℓ) ⊂ Θ be an arbi-

trary set of ℓ < ∞ values of θ . By Definition 9.1 in van der Vaart
(1998), we need to show that {ln LRT (θ)}θ∈Θℓ ⇒ {ln fθ (G)}θ∈Θℓ ,
where XT and G are generated under any θ0 ∈ Θ .

We first show the convergence {ln LRT (θ)}θ∈Θℓ ⇒

ln fθ

(W )

θ∈Θℓ

where XT is generated from the stable model. As in the
proof of Lemma 1 in Li and Müller (2009), note that by an exact
Taylor expansion, for large enough T to ensure that ΓT ,t ∈ B0 for
θ ∈ Θℓ,

ln LRT (θ) = T−1/2
T

t=1

B(t/T ; θ)′sT ,t(Γ0)

+
1
2T

−1
T

t=1

B(t/T ; θ)′hT ,t(Γ̃T ,t)B(t/T ; θ)

where Γ̃T ,t is on the line segment between Γ0 and Γ0 + T−1/2

B(t/T ; θ). To show the desired convergence, it therefore suffices
to show that (i) T−1T

t=1 B(t/T ; θ)′hT ,t(Γ̃T ,t)B(t/T ; θ)
p

→ −
 1
0 B

(λ; θ)′HB(λ; θ)dλ for all θ ∈ Θℓ and (ii)

T−1/2T

t=1 B(t/T ; θ)′

sT ,t(Γ0)

θ∈Θℓ

⇒

 1
0 B(λ; θ)′H1/2dW (λ)


θ∈Θℓ

. From Condi-
tion 1(iii),

T−1
T

t=1

∥hT ,t(Γ̃T ,t)− hT ,t(Γ0)∥

≤ T−1
T

t=1

sup
Γ ∈BT

∥ht(Γ )− ht(Γ0)∥
p

→ 0.
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Table 6
Base distributions for approximate least favorable distribution.

i a, b + 1 µδ σ 2
δ

1 15, 20, 75, 83, 85, 86 0, 2, . . . , 20 300
2 15, 20, 75, 83, 85, 86 0, 2, . . . , 16 50
3 15, 20, 75, 83, 85, 86 0, 2, . . . , 22 10
4 15, 20, 75, 83, 85, 86 0, 2, . . . , 22 3
5 15, 20, 30, 45, 60, 70, 75, 80, 83, 85, 86 0, 2, . . . , 22 10
6 83, 84, 85, 86 0, 1

2 , . . . , 18 1
7 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 83, 85, 86 0, 1, . . . , 22 10

Note: The algorithm described in Section 2.3.2 is initialized with (a, b, µδ, σ 2
δ ) ∈ {(15, 24, 28, 200), (75, 85, 28, 200), (15, 85, 20, 4), (85, 85, 3, 4), (15, 85, 0, 300)} and

goes through 7 rounds in total, indexed by i. Each round increases the set of baseline distributions by the indicated values for (a, b, µδ, σ 2
δ ), with (a, b + 1) equal to all

consecutive pairs of values in the second column.
Thus, in combination with Condition 2, for any fixed θ ∈ Θℓ,
the assumptions of Lemma 4 of Li and Müller (2009) are satisfied,
implying the following convergence in probability

T−1
T

t=1

B(t/T ; θ)′hT ,t(Γ̃T ,t)B(t/T ; θ)

= T−1tr
T

t=1

hT ,t(Γ̃T ,t)B(t/T ; θ)B(t/T ; θ)′

p
→ −tr

 1

0
HB(λ; θ)′B(λ; θ)dλ = −

 1

0
B(λ; θ)′HB(λ; θ)dλ.

For part (ii), note that
 1

0 B(λ; θ)′H1/2dW (λ)

θ∈Θℓ

is a ℓ dimen-
sional normal vector. Thus, by the Cramer–Wold device, it suffices
to show that for all v ∈ Rℓ with v′v = 1, T−1/2T

t=1

ℓ
i=1 vi

B(t/T ; θi)
′

sT ,t(Γ0) ⇒

 1
0 Bv(λ)′H1/2dW (λ), where Bv(·) =

ℓ
i=1

viB(·; θi). Let qT ,t = Bv(t/T )′st(β0). Then {qT ,t , FT ,t} is amartingale
difference array, and

T−1
T

t=1

E[|qT ,t |2+ν |FT ,t−1]

≤ sup
0≤λ≤1

∥Bv(λ)∥2+νT−1
T

t=1

E[∥sT ,t(β0)∥
2+ν

|FT ,t−1] (24)

which is Op(1) by Condition 1(ii) and Condition 2. Also

T−1
T

t=1

E[q2T ,t |FT ,t−1]

= T−1
T

t=1

Bv(t/T )′E[sT ,t(β0)sT ,t(β0)
′
|FT ,t−1]Bv(t/T )

= trT−1
T

t=1

E[sT ,t(β0)sT ,t(β0)
′
|FT ,t−1]Bv(t/T )Bv(t/T )′

p
→ tr

 1

0
HBv(λ)Bv(λ)′dλ =

 1

0
Bv(λ)′HBv(λ)dλ (25)

where the convergence in probability follows from a column-wise
application of Lemma 4 in Li and Müller (2009). But (24) and (25)
are sufficient for the central limit theorem Corollary 3.1 in Hall and
Heyde (1980), so that

T−1/2
T

t=1

qT ,t

⇒ N


0,
 1

0
Bv(λ)′HBv(λ)dλ


∼

 1

0
Bv(λ)′H1/2dW (λ)

concluding the argument for {ln LRT (θ)}θ∈Θℓ ⇒ {ln fθ (W )}θ∈Θℓ
under the stable model.
For the convergence under θ ∈ Θ , by the very argument just
given, we also have the joint convergence


ln LRT (θ0),


ln LRT (θ)

θ∈Θℓ


⇒


ln fθ0(W ), {ln fθ (W )}θ∈Θℓ


in the stable model. Fur-

thermore, since E[fθ0(W )] = 1, by LeCam’s First Lemma (cf.
Lemma 6.4 in van der Vaart (1998)) the model with parameter
θ0 is contiguous to the stable model. Thus, by a general version
of LeCam’s Third Lemma (cf. Lemma 3.1 in van der Vaart (2002)),
{ln LRT (θ)}θ∈Θℓ also converges weakly in the model with θ = θ0,
and the limiting distribution is given by {ln fθ (G)}θ∈Θℓ , with G gen-
erated under θ = θ0.

Proof of Proposition 2. By Proposition 1 and Theorem 15.1 of van
der Vaart (1998), there exists a test ϕ0 in E0 such that Eθ [ϕ0(G)] =

π(θ). Since ϕT is of asymptotic level α, π(θ) ≤ α for all θ ∈ Θ0.
The claims now follow from the assumptions about ϕ∗ and π̄ .

Definition of ϕ∗:
See Box II.

Proof of Proposition 4. (i) Note that if (b, d, ρ) ∈ R × R × [0.15,
0.85] are distributed F , then (bv, dv, ρ) ∈ Rk

× Rk
× [0.15, 0.85]

are distributed Fv . Thus,

h(G) =


fθ (G)dFv(θ)

=


exp


δ′G(ρ)+ β ′G(1)

−
1
2 (β

′β + 2ρβ ′δ + ρδ′δ)

dFv(θ)

=


exp


dv′G(ρ)+ bv′G(1)

−
1
2 (b

2
+ 2ρbd + ρd2)


dF(b, d, ρ).

Further, letΛ∗
v be the distribution of (bv, dv, ρ)when (b, d, ρ) are

distributedΛ∗. Then similarly
fθ (G)dΛ∗

v(θ) =


exp


dv′G(ρ)−

1
2ρd

2 dΛ∗(b, d, ρ).

Thus, the best test to discriminate between H1:‘‘G has density
h’’ againstH0:‘‘Ghas density


fθ (G)dΛ∗

v(θ)’’ rejects for large values
of

h(G)
fθ (G)dΛ∗

v(θ)

=


exp


dv′G(ρ)+ bv′G(1)−

1
2 (b

2
+ 2ρbd + ρd2)


dF(b, d, ρ)

exp

dv′G(ρ)−

1
2ρd

2

dΛ∗(b, d, ρ)

. (26)

Note that conditional on (b, d, ρ), v′G(s) = W1(s) + bs +

dmin(ρ, s), whereW1 = v′W is a scalar standard Wiener process.
Thus, the distribution of (26) is just as in the scalar case underlying
Proposition 3, and the same power bound applies.

(ii) The claim about power follows from the same argument as
in part (i). For the claim about size control, note that v′G(s) =

v′W (s) + v′βs + v′δmin(ρ, s), which under the null hypothesis
of v′β = 0 is a simple reparameterization of the scalar problem.
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ϕ∗(G) = 1[supF0 > 90]1[|t̂0| > 2.01] + 1[supF0 ≤ 90]1[LR0 > 2.41], where

supF0 = max
16≤l≤85

100
99


(100 − l)G

 l−1
100


− (l − 1)


G(1)− G

 l
100

2
(100 − l)(l − 1)

S0(l) =
100


100G

 l
100


− lG(1)

2
l(100 − l)

+ 1002


lG
 l−1
100


− (l − 1)G

 l
100

2
l(l − 1)

l̂0 = arg max
16≤l≤85

S0(l)

t̂0 =
G(1)− G(min(l̂0 + 1, 85)/100)

1 − min(l̂0 + 1, 85)/100

LR0 =

85
l=15

v(l, σ 2
pre)

−1/2v(100 − l, σ 2
β )

−1/2 exp


1
2
σ 2
preG(l/100)

2

v(l,σ 2
pre)

+
1
2

σ 2
β (G(1)−G(l/100))2

v(100−l,σ 2
β )


18
j=1

bj
l=aj

pj
bj−aj+1v(l, σ

2
δ,j)

−1/2 exp

−

1
2

µ2
δ,j l

100v(l,σ 2
δ,j)

+
1
2

σ 2
δ,jG(l/100)

2

v(l,σ 2
δ,j)


cosh


µjG(l/100)

v(l,σ 2
δ,j)


and v(l, σ 2) = 1 + σ 2l/100, σ 2

pre = 378, σ 2
β = 22, and pj, aj, bj, σ 2

δ,j and µj are defined in Table 2.
Box II.
Proof of Proposition 5. (i) The CMT, and, in the case of l̂, some
tedious algebra, imply that l̂ ⇒ l̂0 and supF ⇒ supF0 with l̂0 and
supF0 as defined the definition of ϕ∗ above (note that replacing G
by G0 leaves l̂0 and supF0 unchanged).

(i.a) Since G(s) = G0(s)+ βs, the result follows from the CMT.

(i.b) We have t̂post/βT ⇒ 1/

1 − min(l̂0 + 1, 85)/100 and a

calculation yieldsβ−2
T ln LR p

→ c > 0, so that P(|t̂post | > 2.01) → 1
and P(LR > 2.41) → 1.

(ii) Define l0 = ⌈100ρ⌉. Note that δ−2
T T


γ̂post(l0)− γ̂pre(l0 −1)

2
p

→ω2 > 0, T ω̂2
post(l0)

p
→ω2/(1 − l0/100) > 0, and T ω̂2

pre(l0 − 1)
p

→ 100ω2
pre/(l0 − 1) > 0 so that P(supF > 90) → 1. Let

Ŝ(l) =

l−1
j=1

(∆̂pre(j)− γ̂pre(l − 1))2 +

100
j=l+1

(∆̂post(j)− γ̂post(l))2

where ∆̂pre(j) = γ̂pre(15) for j ≤ 15 and ∆̂post(j) = γ̂post(85) for
j > 85. Note that l̂ = argmin16≤l≤85 Ŝ(l), because

l
j=1 ∆̂pre(j) =

lγ̂pre(l) and
100

j=l+1 ∆̂post(j) = (100 − l)γ̂post(l). If ρ ∉ Rgrid, then
Ŝ(l0) = Op(T−1), and for all l ≠ l0, P(T Ŝ(l) > M) → 1 for anyM ∈

R, so that l̂
p

→ l0. Part (ii.b), and part (ii.a) for ρ ∉ Rgrid, now follow
from the CMT.

Consider thus the proof of part (ii.a) if ρ ∈ Rgrid. By the same
argument, P(l̂ ∉ {l0, l0 + 1}) → 0. Define tpost(l0 + 1) = (W (1)−

W ( l0+1
100 ))/


1 −

l0+1
100 ∼ N (0, 1) and tpost(l0 + 2) = (W (1) −

W ( l0+2
100 ))/


1 −

l0+2
100 ∼ N (0, 1), and consider

Ŝ(l0)− Ŝ(l0 + 1) = Apre + ∆̂post(l0 + 1)2 − (100 − l0)γ̂post(l0)2

+ (99 − l0)γ̂post(l0 + 1)2

⇒ ∆S(l0) = a · tpost(l0 + 1)2

+ tpost(l0 + 1)B(l0)+ C(l0)

where Apre is a function of {γ̂pre(l)}
l0
l=15, the convergence follows

from the CMT, a is a positive constant, and B(l0) and C(l0) are ran-
dom variables that are independent of tpost(l0 +1) and tpost(l0 +2).
Thus, by a further application of the CMT, we obtain

t̂post ⇒ 1[∆S(l0) ≥ 0]1[|tpost(l0 + 2)| > 2.01]

+ 1[∆S(l0) < 0]1[|tpost(l0 + 1)| > 2.01]. (27)
Consider now the rejection probability of the r.h.s. of (27) condi-
tional on B(l0) = b and C(l0) = c. Noting that∆S(l0) is a quadratic
function of tpost(l0+1)with positive coefficient on the square term,
one obtains that the rejecting probability is bounded fromabove by
the replacement of 1[∆S(l0) ≥ 0] by 1[tpost(l0 + 1) < −2.01], for
any value of b, c . A numerical calculation now shows that the con-
ditional rejection probability remains below 5% even in that case
for all l0 = 15, . . . , 83, and the result follows.

(ii.b) Immediate from P(l̂ ∉ {l0, l0 +1}) → 0 and β−1
T (γ̂post(l)−

γpost,0)/ω̂post(l)
p

→
√
1 − l/100/ω > 0 for all l ≥ l0.

(iii) Let θT be a parameter sequence such that lim supT→∞ EθT
[ϕ̂∗(XT )] = lim supT→∞ supθ∈Θ0

Eθ [ϕ̂∗(XT )]. Pick a subsequence
T ′ of T such that limT ′→∞ EθT ′ [ϕ̂

∗(XT ′)] = lim supT→∞ EθT [ϕ̂
∗(XT )].

Since Θ̄0 = Θ0 ∪ {(0, ρ, δ) : ρ ∈ [0.15, 0.85], δ ∈ {+∞,−∞}} is
compact under an appropriate metric, there exists a further subse-
quence θT ′′ of θT ′ such that θT ′′ → θ̃ = (0, ρ̃, δ̃) ∈ Θ̄0. If ρ̃ ∉ Rgrid,
then the result follows as in parts (i) and (ii). If ρ̃ ∈ Rgrid, then by
assumption, there is a further subsequence such that (20) holds,
except for (21). Proceeding as in the proof of part (ii.a) now again
yields the result (and for the case νpre(l0) ∈ {+∞,−∞} or νpost(l0)
∈ {+∞,−∞}, P(|Ŝ(l0) − Ŝ(l0 + 1)| < M) → 0 for all M , so that
1[∆S(l0) ≥ 0] in (27) is replaced by either zero or one).

Condition 3. In the stable model with parameter Γ0, for all
s ∈ [0.15, 0.85] and ϵ > 0 there exists K(s, ϵ) > 0 such that
P(sup∥Γ−Γ0∥≥ϵ

T−1⌊sT⌋

t=1 (lT ,t(Γ ) − lT ,t(Γ0)) < −K(s, ϵ)) → 1
and P(sup∥Γ−Γ0∥≥ϵ

T−1T
t=⌊sT⌋+1(lT ,t(Γ )− lT ,t(Γ0)) < −K(s, ϵ))

→ 1.

Justification of (19) via Andrews (1993):
The true parameters are given by ΓT ,t = Γpost + T−1/21[τ ≤

100ρT ]∆T , where ∆T = −(ωδT , ωδ̃
′

T )
′

→ ∆0 ∈ Rk and ρT →

ρ0 ∈ [0.15, 0.85], so that E[g(XT ,t ,ΓT ,t)] = 0. Write gt(Γ ) for
g(XT ,t ,Γ ), and define Υt(Γ ) = ∂gt(Γ )/∂Γ ′. Our set-up corres-
ponds towhat Andrews (1993) refers to as ‘pure’ structural change.
We now show that under Assumption 1 of Andrews (1993), with
the assumption in part (b) E[gt(Γ0)] = 0 replaced by E[gt(ΓT ,t)]
= 0, (19) holds. These computations closely correspond to what
is derived in Section 5.4 of Andrews (1993), with two differences:
(i) we do not assume that maxt≤T sup∥Γ−Γpost∥≤T−1/2K ∥E[Υt(Γ )] −

Ῡ ∥ → 0 for some K > 0 (cf. first line on page 832), where in his
Assumption 1(f), Ῡ is defined as the unique limit T−1⌊·T⌋

t=1 EΥt
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(Γpost)
p

→ ·Ῡ ; (ii) we consider sequences for ∆T and ρT , so that
(∆T , ρT ) → (∆0, ρ0). (We note that there is a typo in Assumption
1-LP of Andrews (1993); it should read supπ∈Π ∥

√
TEm̄T (θ0, π)−

µ(π)∥ → 0 in his notation.)
Define ηT : [0, 1] → Rk as ηT (x) = 1[x ≤ ρT ]∆T for T =

0, 1, . . .. By the argument in Andrews’ proof of his Theorem 4(a),
it suffices to show that sup0≤s≤1 ∥T−1/2E[

⌊sT⌋

t=1 gt(Γpost)− Ῡ
 s
0 η0

(l)dl]∥ → 0. Now clearly sup0≤s≤1 ∥ limT→∞ T−1⌊sT⌋

t=1 ηT (t/T )− s
0 η0(l)dl∥ → 0. Also,

T−1/2E[

⌊sT⌋
t=1

gt(Γpost)− T−1/2Ῡ ηT (t/T )]

= T−1/2E[

⌊min(s,ρT )T⌋
t=1

gt(Γpost)− T−1/2Ῡ ηT (t/T )]

= (E[Υ̃T (min(s, ρT ))] − Ῡ )∆T

where Υ̃T (r) is equal to T−1⌊rT⌋

t=1

 1
0 Υt(Γpost +λT−1/2∆T )dλ. Fur-

thermore,

sup
0≤s≤1

∥E[Υ̃T (min(s, ρT ))− Υ̃T (min(s, ρ0))]∥

≤ T−1E
⌊max(ρ0,ρT )T⌋

t=⌊min(ρ0,ρT )T⌋

∥

 1

0
Υt(Γpost + λT−1/2∆T )dλ∥

≤ (⌊max(ρ0, ρT )T⌋ − ⌊min(ρ0, ρT )T⌋) sup
t≤T

E[ sup
Γ ∈G0

∥Υt(Γ )∥]

→ 0

where the convergence follows, since by Andrews’ Assumption
1(f), supt≤T E[supΓ ∈G0

∥Υt(Γ )∥] = O(1) for some neighborhood
G0 ofΓpost . Finally, sup0≤s≤1 ∥E[Υ̃T (min(s, ρ0))]− Ῡ ∥ → 0 follows
from the same reasoning as below Andrews’ equation (A.11).

Instrumental variables example of Section 4.3
We show that the instrumental variables example satisfies the

assumptions of Proposition 5, establishing that the test controls
size asymptotically and is consistent for this example. First, define
x̃2t = (x2t , 1)′ and x̃3t = (x′

3t , 1)
′,Σ33 = E[x̃3t x̃′

3t ] and Σ23 =

E[x̃2t x̃′

3t ]. Note that for each l ∈ {15, 16, . . . , 100}(Σ̂23(l), Σ̂33(l))
=

T−1⌊lT/100⌋

t=1 x̃2t x̃′

3t , T
−1⌊lT/100⌋

t=1 x̃3t x̃′

3t

 p
→( l

100Σ23,
l

100Σ33)

by a standard LLN for i.i.d. data. Similarly,

T−1T

t=⌊lT/100⌋+1 x̃2t x̃
′

3t ,

T−1T
t=⌊lT/100⌋+1 x̃3t x̃

′

3t


= (Σ̂23(100) − Σ̂23(l), Σ̂33(100) − Σ̂33

(l))
p

→

(1−

l
100 )Σ23, (1−

l
100 )Σ33


for l ∈ {15, 16, . . . , 85}. With

the 2SLS weighting matrices V̂pre(⌊lT/100⌋) = Σ̂33 (l/100)−1, and
K̂(l) = Σ̂23 (l) Σ̂33 (l)−1 Σ̂23 (l)′, we obtain for the GMM estimator

Γ̂pre(⌊lT/100⌋) = K̂ (l)−1 Σ̂23 (l) Σ̂33 (l)−1 T−1
⌊lT/100⌋

t=1

x̃3tx1t (28)

with associated GMM covariance matrix estimator

TΩ̂pre(⌊lT/100⌋)

= K̂ (l)−1 Σ̂23 (l) Σ̂33 (l)−1 P̂pre (l) Σ̂33 (l)−1 Σ̂23(l)′K̂ (l)−1 (29)

wherewe define P̂pre (l) = T−1⌊lT/100⌋
t=1 x̃3t x̃3t û2

t,pre (l) and ût,pre (l)
= x1t − x̃′

2t Γ̂pre (⌊lT/100⌋). The form of the post estimators fol-
lows similarly, with P̂post (l) = T−1T

t=⌊lT/100⌋+1 x̃3t x̃3t û
2
t,post (l)

and ût,post (l) = x1t − x̃′

2t Γ̂post (⌊lT/100⌋) in the place of P̂pre (l).
It follows from the limit results above that Ξ̂ (l) = K̂ (l)−1 Σ̂23 (l)
Σ̂33 (l)−1 p

→
1

l/100 (Σ23Σ
−1
33 Σ

′

23)
−1Σ23Σ

−1
33 =

1
l/100Ξ .
First, consider (19), where T 1/2(Γpre(l)−Γpost) = ∆ = δe2 with
e2 = (1, 1)′ and δ ∈ R. From (28), we find

T 1/2(Γ̂pre(l)− Γpost) = Ξ̂ (l)


T−1/2

⌊lT/100⌋
t=1

x̃3tut


+ Ξ̂ (l) Σ̂ ′

23T
−1(min(⌊lT/100⌋, ⌊ρT⌋))∆

⇒
1

l/100
ΞΣ

1/2
33 W2


l

100


+

1
l/100

min


l
100

, ρ


∆ (30)

from the continuous mapping theorem jointly in l ∈ {15, . . . , 85},
since ΞΣ ′

23 = I2, and T−1/2⌊·T⌋

t=1 x̃3tut ⇒ Σ
1/2
33 W2(·) with W2(·)

a standard 2× 1 vector Brownian motion. Noting that the 1–1 ele-
ment of ΞΣ33Ξ

′ is equal to one, we find that the first element on
the r.h.s. of (30) is distributed 1

l/100W
 l
100


+

1
l/100 min

 l
100 , ρ


δ,

which establishes T 1/2(γ̂pre(l) − γpost) ⇒ ω
G0(l/100)

l/100 of (19) with
ω = 1. The convergence for T 1/2(γ̂post(l) − γpost) follows entirely
analogously.

We now show that P̂pre (l)
p

→
l

100Σ33, so that TΩ̂pre(⌊lT/100⌋)
p

→
1

l/100 (Σ23Σ
−1
33 Σ

′

23)
−1

=
1

l/100 I2, implying the required conver-
gence for T ω̂2

pre(l). Let τT = min(⌊lT/100⌋, ⌊ρT⌋). We have

P̂pre (l) = T−1
⌊lT/100⌋

t=1

x̃3t x̃′

3t û
2
t,pre (l)

= T−1
⌊lT/100⌋

t=1

x̃3t x̃′

3t(ut − (Γ̂pre(l)− Γpost)
′x̃2t

+ T−1/2∆′x̃2t1[t ≤ ⌊ρT⌋])2

= T−1
⌊lT/100⌋

t=1

x̃3t x̃′

3tu
2
t + T−2

τT
t=1

x̃3t x̃′

2t∆
′∆x̃2t x̃′

3t

+ T−1
⌊lT/100⌋

t=1

x̃3t x̃′

2t(Γ̂pre(l)− Γpost)(Γ̂pre(l)− Γpost)
′x̃2t x̃′

3t

+ 2T−3/2
τT
t=1

x̃3t∆′x̃′

2t(Γ̂pre(l)− Γpost)
′x̃2t x̃′

3t

+ 2T−1
⌊lT/100⌋

t=1

x̃3t x̃′

2t(Γ̂pre(l)− Γpost)ut x̃′

3t

+ 2T−3/2
τT
t=1

x̃3t x̃′

2t∆ut x̃′

3t .

It follows directly from a standard LLN that T−1(lT/100)
t=1 x̃3t x̃′

3tu
2
t

p
→ E[x̃3t x̃3tu2

t ] =
l

100Σ33, so that it suffices to show that the re-
maining terms converge to zero. For the second term after the third
equals sign in the above expression,we have that vec


T−2τT

t=1 x̃3t
x̃′

2t∆∆
′x̃2t x̃′

3t


= T−2τT

t=1


x̃3t x̃′

2t ⊗ x̃3t x̃′

2t


vec(∆∆′) which con-

verges to zero as E

x̃3t x̃′

2t ⊗ x̃3t x̃′

2t


is finite and vec(∆∆′) are con-

stants. Similarly for the third term we have vec

T−1⌊lT/100⌋

t=1 x̃3t
x̃′

2t(Γ̂pre(l)−Γpost)(Γ̂pre(l)−Γpost)
′x̃2t x̃′

3t


= (T−1⌊lT/100⌋

t=1


x̃3t x̃′

2t⊗

x̃3t x̃′

2t


)vec((Γ̂pre(l) − Γpost)(Γ̂pre(l) − Γpost)

′) which converges to

zero as Γ̂pre(l)
p

→Γpost from above. A similar calculation gives the
same result for the fourth term. For the second last term, we have
vec(T−1⌊lT/100⌋

t=1 x̃3t x̃′

2t(Γ̂pre(l) − Γpost)ut x̃′

3t) = (T−1⌊lT/100⌋
t=1

x̃3tut ⊗ x̃3t x̃′

2t


)vec(Γ̂pre(l) − Γpost). Again since E


x̃3tut ⊗ x̃3t x̃′

2t


is finite, T−1⌊lT/100⌋

t=1 [x̃3tut ⊗ x̃3t x̃′

2t ] can be at most Op(1), so this
term converges to zero via Γ̂pre(l)

p
→Γpost . For the last term we
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have vec(T−1τT
t=1 x̃3t x̃

′

2t∆ut x̃′

3t) = T−1τT
t=1


x̃3tut ⊗ x̃3t x̃′

2t


∆

where again this is at most Op(1), hence the division by T−1/2 en-
sures this term is op(1).

For the assumption of Proposition 5 part (ii), the first two sets
of conditions in (20) follow from the same set of arguments just
employed. For the last condition, since ∆ = ∆T = T−1/2e2δT for
some δT → ∞, δ−1

T T 1/2∆T → e2. Let l∗ = ⌊100ρ⌋ + 1. We have

T 1/2(Γ̂pre(l∗)− Γpre) = Ξ̂

l∗

T−1/2

⌊lT/100⌋
t=1

x̃′

3tut + Ξ̂

l∗

T−1

×

⌊l∗T/100⌋
t=⌊(l∗−1)T/100⌋+1

x̃3t x̃′

2te2δT .

From results above we have that the first term is Op(1), and
Ξ̂ (l∗) T−1⌊l∗T/100⌋

t=⌊(l∗−1)T/100⌋+1 x̃3t x̃
′

2t
p

→
1
l∗ I2, so that δ−1

T T 1/2

Γ̂pre(l∗)

−Γpre


=
1
l∗ e2+op(1). Thus P(T 1/2

|γ̂pre−γpre| > M) = P(|δ−1
T T 1/2

γ̂pre(l∗)− γpre

| > Mδ−1

T ) → 1. A similar argument applies to the
post break estimator.
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