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Abstract

Accurate coarse-scale soil moisture information is required for robust validation of current- and next-generation soil moisture

products derived from spaceborne radiometers. Due to large amounts of land surface and rainfall heterogeneity, such information

is difficult to obtain from existing ground-based networks of soil moisture sensors. Using ground-based field data collected during

the Soil Moisture Experiment in 2002 (SMEX02), the potential for using distributed modeling predictions of the land surface as an

upscaling tool for field-scale soil moisture observations is examined. Results demonstrate that distributed models are capable of

accurately capturing a significant level of field-scale soil moisture heterogeneity observed during SMEX02. A simple soil moisture

upscaling strategy based on the merger of ground-based observations with modeling predictions is developed and shown to be more

robust during SMEX02 than upscaling approaches that utilize either field-scale ground observations or model predictions in

isolation.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

No passive spaceborne soil moisture sensor in the

foreseeable future will have a ground spatial resolution

finer than 30-km. Current soil moisture observations
from the advanced microwave scanning radiometer

(AMSR) sensor aboard the NASA AQUA satellite,

for instance, are derived from radiometer observations

with a �3dB resolution of �60km. Given the magni-

tude of heterogeneity typically observed in surface soil

moisture fields [1,36,15,16], ambiguities associated with

upscaling point-scale observations to spaceborne radi-

ometer footprint scales have emerged as a major chal-
0309-1708/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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lenge in attempts to validate remote sensing soil

moisture retrievals [18,10].

Even extensive soil moisture networks like the Okla-

homa Mesonet, the Illinois Water Survey, and the

Southern Great Plains ARM-CART system have an
average site spacing greater than 30km and will provide,

at best, a single observation within a given footprint.

Networks with denser soil moisture sampling locations

typically cover only a fraction of a radiometer footprint

and will be vulnerable to extrapolation error in the pres-

ence of heterogeneous rainfall. Some of these difficulties

can be mitigated through optimized interpolation and

site selection approaches. Block-kriging techniques, for
instance, allow for the optimal interpolation of point-

scale measurements based on a spatial field�s auto-corre-
lation structure. This possibility has spawned interest in

accurately measuring and/or generalizing the spatial

structure of soil moisture fields under various hydrologic
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conditions [12,40,38,25]. There is also growing evidence

that surface soil moisture fields, due to the static influ-

ence of soil, vegetation, and topography, exhibit tempo-

rally persistent spatial patterns at local scales (<5km)

[37,18,26,22]. Such persistence, or time stability, can be

exploited by selecting measurement sites which consis-
tently reflect soil moisture conditions over a wider

geographic area. However, the upscaling skill of time-

stability methodologies is reduced by the impact of spa-

tially heterogeneous rainfall [10] which may reduce it�s
effectiveness when applied within coarser footprint

scales (>10km).

In addition to ground-based networks, an alternative

source of surface soil moisture is distributed land surface
modeling. Such models can synthesize spatially distrib-

uted rainfall, land use, soil, and topographic maps to

produce surface soil moisture predictions over large-spa-

tial areas. Because they are distributed in nature, these

predictions do not suffer from the same spatial support

and sampling density inadequacies as ground-based net-

works. However, the use of unconstrained model output

as a source of validation data is likely to be problematic.
Reasons for skepticism include well-known errors in

spatial patterns of observed rainfall [34] and soil texture

fields [44] typically used to force models, difficulties sur-

rounding proper model calibration and parameter iden-

tification [4,20,21], and the inability of current observing

systems to measure some key model inputs (e.g. wind

speed and relative humidity) at fine spatial scales

(<10km). In addition, absolute levels of modeled soil
moisture have been shown to be highly model dependent

[24,13]. This implies that model representation of rela-

tive space/time patterns may be more meaningful than

predictions of absolute soil moisture magnitudes. How-

ever, to date, relatively few validation studies have fo-

cused explicitly on evaluating spatially distributed

predictions from land surface models [19].

A third possibility are approaches based on a combi-
nation of distributed modeling and local soil moisture

observations. A range of possible strategies exist includ-

ing data assimilation and model calibration strategies.

But the basis of each is the presumption that model out-

put, at the very least, contains basic spatial information

about the relative relationship between soil moisture at a

given measurement location and spatially averaged soil

moisture within some larger regional area. If this is true,
the relative spatial patterns predicted by the model can

be integrated with sparse ground-based observations

to improve estimates of footprint-scale soil moisture

averages. Such integrated estimates will be more accu-

rate than unconstrained model predictions if the relative

patterns of soil moisture predicted by models prove

more robust to modeling uncertainty than predictions

of absolute soil moisture.
Intensive soil moisture sampling conducted during

the Soil Moisture Experiment in 2002 (SMEX02) be-
tween June 25 and July 12, 2002 in central Iowa pro-

vides an unique opportunity to test aspects of this

hypothesis and examine the potential role of land sur-

face modeling in upscaling local soil moisture observa-

tions. Specifically, this analysis will evaluate the degree

to which a land surface hydrology model can accurately
reproduce surface (0–6cm) soil moisture heterogeneity

and spatial patterns observed in extensive ground-based

soil moisture observations made during SMEX02. Basic

upscaling strategies that use TOPLATS simulations to

upscale local-scale observations to footprint-scale

(>30km) soil moisture means will be evaluated based

on their potential as validation strategies for coarse-

scale spaceborne soil moisture retrievals. As a first step,
this analysis will focus primarily on upscaling field-scale

(800m) soil moisture observations. However, prospects

for upscaling point-scale observations will also be

discussed.
2. Land surface modeling

Land surface modeling was based on TOPmodel-

based Land Atmosphere Transfer Scheme (TOPLATS)

[14,28] predictions over the 6378km2 regional domain

displayed in Fig. 1. A model grid size of 90-m, requiring

approximately 800,000 individual pixels, was used for all

simulations. Several modifications were made to the

model relative to the baseline version described in [28].

Most critically, the two-layer soil water balance was ex-
panded to four layers. Calculations of diffusive and

gravity drainage fluxes retain the same numerical form.

However, these fluxes are now calculated for each of

four soil layers and simultaneously balanced using a

semi-implicit numerical scheme. The modification re-

quires new user inputs of depths for the top three soil

layers (the fourth soil layer is bounded at the bottom

by a dynamic water table depth) and the specification
of areal rooting fractions in all four layers. Results for

the new four-layer version of TOPLATS are also re-

ported in [11].

A second modification was made to allow for the cal-

culation of separate soil and canopy contributions to

evapotranspiration within TOPLATS grid elements.

Previous versions of TOPLATS required that grid ele-

ments be characterized as either solely bare soil or solely
vegetated with direct soil evaporation neglected in vege-

tated pixels. In reality, soil evaporation plays a signifi-

cant role in determining surface soil moisture under

sparse canopies and between crop rows. To capture this,

total grid cell evapotranspiration (ET) was calculated as:

ET ¼ fvT þ ð1� fvÞE; ð1Þ
where fv is the vegetated fraction of the grid cell, T is the

transpiration calculated from the vegetated fraction of

grid cell, and E is direct soil evaporation from the bare



Fig. 1. Location of the TOPLATS modeling and SMEX02 regional sampling domain.
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soil portion of the grid cell. Vegetated fraction is calcu-

lated from normalized difference vegetation index

(NDVI) observations and the approach of [7] which

predicts:

fv ¼ 1� NDVI�NDVImin

NDVImax �NDVImin

� �p

: ð2Þ

Variables NDVImin and NDVImax are the maximum and

minimum NDVI values observed within a scene. Within

scene variability is assumed to be sufficient such that

these values accurately represent NDVI levels for full

vegetative cover (fv = 1) and bare soil (fv = 0) condi-

tions. The parameter p is formally defined as a function

of leaf angle distribution and solar radiation extinction

within the canopy, however it is often calibrated within
a typical range of between 0.5 and 0.7.

Bare soil evaporation (E) is calculated using the soil

resistance approach described in [28]. Transpiration

(T) is calculated as:

T ¼ Min T p;
X4
i¼i

qiTmaxi

 !
; ð3Þ

where Tmaxi is the maximum rate of transpiration sus-

tainable given the moisture status of soil layer i, qi is

the relative fraction of root area within layer i, and Tp

is the potential transpiration [41]. Based in part on ob-

served leaf area index (LAI) magnitudes, Tp is calculated
following the Jarvis-type approach presented in [28].

Following [14], Tmaxi is based on the approach of [42]:

Tmaxi ¼
wðhiÞ � wc

rsðhiÞ þ rp
; ð4Þ

where w is the soil water matrix potential at saturation h,
hi is the soil moisture in layer i, wc is the critical soil
moisture potential at which plant wilting begins, rs is

the soil resistivity to water flow into the roots, and rp
is the internal plant resistivity to water flow. Soil resis-

tivity (rs) is typically modeled as:

rs ¼ a=KðhiÞ; ð5Þ

where a is a root geometry parameter with dimensions

of length and K is the hydraulic conductivity of the soil.

Bare soil evaporation was modeled as described in [28]

except, following [32], an additional resistance term

was added to the aerodynamic resistance in the TOPL-

ATS bare soil evaporation (E) calculation (Eq. (15) in

[28]) to parameterize aerodynamic resistance immedi-
ately above the bare soil surface. As in [28], the expres-

sion of [27] was used to model bare soil resistance to

vapor flow:

Rvs ¼ a expð�bh1=hfcÞ; ð6Þ

where hfc is the soil field capacity (at �0.1bars), h1 is sur-
face (6cm) soil moisture, and a and b are calibrated

parameters that [27] recommend to be 3.8113 ·
104sm�1 and 13.515, respectively.

2.1. Model forcing data

Model forcing data (e.g. surface air temperature, rel-

ative humidity, wind speed, and air pressure) were de-
rived from regional meteorological stations shown in

Fig. 2. Interpolation of station observations was per-

formed using r�2 weighting, where r is the distance be-

tween a given station and a given pixel. Within the

Walnut Creek watershed sampling area, spatial precipi-

tation maps were calculated using r�2 spatial interpola-

tion of hourly observations from the Walnut Creek
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Intensive ground sampling and meteorological observations are

available within the Walnut Creek watershed area.
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watershed rain gauge network (see Fig. 2). Rain gauge

observations in the watershed are usually dense and

likely lead to higher rainfall accuracies than is typically

achievable in operational rainfall products within the

United States. In areas inside of the modeling domain

but outside of the watershed sampling area (see Figs. 1
and 2), 4-km Stage IV precipitation observations, de-

rived from merging ground-based weather radar obser-

vations and relatively sparse rain gauge measurements,

were used. A land cover classification for the region

was derived from 30-m Thematic Mapper (TM) imagery

acquired on May 14, July 1, and July 17, 2002. The clas-

sification was then aggregated from 30- to 90-m based

on the most common land cover within each 90-m pixel.
Road surfaces were neglected in this aggregation and no

attempt was made to model them. However, due to arti-

ficial widening of roadways in the original 30-m classifi-

cation, some 90-m pixels contained only surfaces

classified as road. In these cases, a (non-road) land cover

was randomly selected from one of the four cardinal

directions and used to replace the road classification.

High-resolution (30-m) NDVI maps of the areas were
calculated using cloud-free TM over passes on June 23

and July 1, 2002. These maps were aggregated to 90m

and georeferenced to the TOPLATS modeling grid. Soil

texture maps of the domain were acquired from the

Iowa Soil Properties and Interpretations Database cre-

ated by Iowa State University in cooperation with the
USDA and Iowa Department of Agriculture and Land

Stewardship. A topographic index map for the region

[3] was derived from a 90-m USGS digital elevation

map (DEM). Based on this DEM, the regional domain

was subdivided into 113 separate watersheds with an

average size of about 56km2. Separate distributed

TOPLATS simulations were run on a 90-grid within

each watershed. Soil moisture imagery was then recon-
structed by merging predictions from each watershed.

2.2. Model parameters

Like most land surface models, TOPLATS requires

the specification of a large number of model parameters

to run in a distributed manner. Fortunately, intensive

ground-based sampling of vegetation, soil, and micro-
meteorology during SMEX02 provides much better

guidance for parameter selection than would normally

be available. Corn and soybean land cover constitute

47% and 38% of the model domain, respectively. Vege-

tation characteristics within these classes were very dy-

namic during the course of SMEX02. To capture this,

corn and soybean leaf area index (LAI), plant height

(h), and effective rooting depth (Zeff) parameters used
for TOPLATS simulations were varied on a weekly

basis according to Fig. 3. LAI and h values were taken

from vegetation sampling performed within the Walnut

Creek Watershed during the course of the experiment.

Values of Zeff, defined as the depth above which 80%

of plant roots are found, were based on consideration

of corn and soybean growth stage during the experiment

and typical seasonal root development for both crops.
Relative fractions of rooting area in each of the model�s
four vertical layers were calculated by assuming an

exponential decay of root area density with depth. Fol-

lowing [17], the root spacing parameter a in (5) was cal-

culated using the empirical expression 0.0013/Zeff where

both a and Zeff are in meters. Roughness lengths for

momentum and heat transfer were assumed to h/10

and h/100 respectively, and zero plane displacement
height (D) was set to 2h/3 [23,2]. Fractional vegetation

covers (fv) were derived using (2) and TM NDVI obser-

vations. Since typical internal plant resistances (rp) for

crops vary between 5.0 · 108 and 1.0 · 109 s [41], an

averaged value of 7.5 · 108s was used for corn and

soybean.

Significant non-crop land cover types in the model

domain include grass (9% of total area) and tree (4%
of total area) cover types. Vegetation cover within

non-crop areas was parameterized as being static in time
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and having complete canopy coverage (fv = 1). Grass
areas were parameterized the same as crop areas except

that h was set to 0.50m and Zeff to 0.20m. Tree areas

were modeled with an h of 2.5m and a Zeff of 1.5m.

To reflect physiological differences relative to grasses

and crops, the rp of trees was raised to 1.5 · 109s. Smal-
ler amounts of open water and urban land cover types,

corresponding to �2% of the regional domain, were

modeled as unvegetated and impermeable.
The albedo and emissivity of all modeled land sur-

faces were set to 0.20 and 0.96, respectively. Potential

changes in total surface albedo due to canopy coverage

variations were neglected since little site-specific data

was available and the albedo range for corn and soybean

cover is nearly identical to typically cited values for

loamy soils (see albedos values reported in [5,35,30]). All

soil parameters were derived from the soil textural clas-
sification map and texture-based lookup tables [8].

Based on comparison with ground-based LAI measure-

ments during SMEX02, optimal values for NDVImax,

NDVImin, and p in (2) were found to be 0.93, 0.037,

and 0.606 respectively (M. Anderson, personal

communication).

Human modification to the landscape has substan-

tially altered the sub-surface hydrology of the SMEX02
region and requires careful consideration when parame-

terizing sub-surface flow within TOPLATS. Using TOP-

MODEL concepts [3], TOPLATS predicts a local water

table depth z to be:
z ¼ �z� f �1ðSTI� STIÞ; ð7Þ
where STI is the local soil topographic index of [33] and

the overbars signify averaging within a watershed. The
parameter f controls the sensitivity of variations in z

to topographic patterns. Areas of high STI are generally

prone to surface saturation. However, within the

SMEX02 site, widespread use of tile drains in high

STI areas prevents them from becoming saturated.

Within the TOPMODEL framework, low water tables

can be maintained in high STI areas by specifying a high

f value in (7). Since drainage tiles typically discharge di-
rectly into a surface drainage network, it is also neces-

sary to elevate model predictions of baseflow to

account for enhancements in lateral flow through the

drainage system. TOPLATS predicts baseflow Q to be:

Q ¼ Q0 expð�f�zÞ; ð8Þ
where Q0 is defined as the rate of baseflow at complete
saturation but is often treated as a calibrated parameter.

Based on these considerations, an f value of 9 and a Q0

value of 0.012ms�1 were used. Both values are larger

than values typically assigned to agricultural basins.

However, they produce a reasonable baseflow recession

and surface runoff response to rainfall during the

SMEX02 period (see Section 5).
3. Ground-based SMEX02 data

Watershed soil moisture sampling was performed at

31 field-scale sites in and around the 47km2 Walnut

Creek watershed south of Ames, Iowa (Fig. 2) during

SMEX02. Sampling of these sites consisted of theta

probe measurements at 14 separate sub-field locations
on a stratified grid and was designed to estimate field-

scale (800m) surface (0–6cm) soil moisture means. An

arbitrary field-scale of 800m was chosen by SMEX02

campaign organizers based both on consideration of

typical management unit sizes (i.e. patches of homoge-

nous vegetation) in the area and the ground resolution

of the airborne radiometers flown during SMEX02.

Likewise, a 6-cm sampling depth was employed to
approximate the measurement depth for remote L-band

radiometers. To filter the impact of micro-topography,

point-scale theta probe measurements at each of the 14

sub-field locations were actually based on the mean of

three individual measurements across a single crop

row. Watershed sampling was completed on 11 separate

days during the SMEX02 period (June 25, 26, 27, and

July 1, 5, 6, 7, 8, 9, 11, 12). An alternative methodology,
regional soil moisture sampling, was based on measure-

ments at 47 sites on a stratified grid covering a much lar-

ger domain within central Iowa (Figs. 1 and 2). As in

watershed sampling, surface (0–6cm) soil moisture at

each regional site was estimated from the mean of three

theta probe measurements across a single crop row.
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Regional sampling was designed to accurately estimate

soil moisture statistics within an area roughly equivalent

to two spaceborne AMSR-E footprints and completed

on 16 separate days during SMEX02 (June 25, 26, 27,

29, 30, and July 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12). Gravi-

metric soil moisture observations were taken at some re-
gional and watershed sites and used to calibrate theta

probe soil moisture observations. However, unless

otherwise noted, all soil moisture results presented here

are based on theta probe observations. Eddy correlation

flux tower observations of land surface energy fluxes are

also available at sites noted in Fig. 2 and 12 of the wa-

tershed sites were instrumented with fixed soil moisture

sensors (Stevens-Vitel Hydra probes) at a depth of 5cm.
4. Upscaling strategies

Based on 47 separate sampling points (Fig. 2), regio-

nal soil moisture sampling was designed to provide a

single soil moisture mean at a given sampling time i

for the entire domain in Fig. 1. These estimates can be
used to evaluate various strategies for upscaling surface

soil moisture. Domain-scale estimates made at sampling

time i are referred to as hi. Watershed sampling retrieved

spatial averages of soil moisture at finer field-scales

(�800m). Field-scale observations made at site j and

sampling time i are referred to as hi,j. Model predictions

are available at on a 90-m grid overlaying the entire do-

main. Predictions corresponding to sampling time i are
referred to as h0

i. Field-scale model predictions can be ex-

tracted by averaging 90-m grid cells that fall within the

watershed fields (squares) shown in Fig. 2. Model pre-

dictions of spatially-averaged surface soil moisture con-

ditions within site j for sampling time i will be referred to

as h0
i;j.

The central purpose of this analysis is the estimation

of hi based on model-derived predictions, h0
i, and a lim-

ited number of site observations, hi,j. The most direct

up-scaling strategy is the weighted averaging of observa-

tions taken at time i:

hi �
Xnsites
j¼1

wjhi;j; ð9Þ

where nsites is the number of sites where observations are

available. Values for wj sum to unity and can be derived

in the number of different ways. Simple spatial averag-

ing dictates wj ¼ n�1sites. More sophisticated approaches

based on block-kriging or time stability analysis retrieve

wj values based on the sampled auto-correlation of the

soil moisture field or knowledge of time-invariant pat-
terns. Ideally, observation sites will be distributed widely

enough such that regional heterogeneity in vegetation,

soil, and rainfall are adequately sampled. If not, sam-

pling errors may be large even if sophisticated interpola-

tion techniques are employed.
Spatially-averaged model predictions can also be

used to estimate hi:

hi � h0
i: ð10Þ

However, as noted in Section 1, model predictions of

absolute soil moisture levels are sensitive to parameteri-

zation ambiguities and prone to bias.

Rather then use observations or model predictions in

isolation, a third upscaling approach is some combina-

tion of model predictions and field-scale observations.

A simple form of this approach is to use comparisons
between instantaneous model predictions, h0

i;j, and ob-

served, hi,j, soil moisture for a small number of sites to

estimate (and eliminate) bias in domain-scale soil mois-

ture predictions, h0
i:

hi �
Xnsites
j¼1

wjðhi;j � h0
i;jÞ þ h0

i: ð11Þ

Here ground-based observations are sampled and com-

pared to local model predictions to estimate the do-

main-scale model bias, hi � h0
i, and not, as in (9), the

mean of the actual soil moisture field, hi. A possible

rationale for using (11) instead of (9) is that the spatially

distributed model bias field hi � h0
i may exhibit less

large-scale variability than the actual underlying soil

moisture field. If ground-based observations of soil

moisture are restricted to sparse locations, this will lead

to reductions in sampling errors for domain-scale esti-

mates. Likewise, a possible rationale for using (11) in-

stead of the model-only strategy in (10) is that model

predictions of relative soil moisture patterns may prove

more robust to parameterization uncertainties than pre-
dictions of absolute soil moisture levels.
5. Results

Modeling results are based on 90-m TOPLATS sim-

ulations (described in Section 2) run over the entire

modeling domain shown in Fig. 1 between 1 UTC 15
June 2002 and 23 UTC 13 July 2002. This encompasses

a period of intensive field observations undertaken as

part of the SMEX02 field campaign. Figs. 4 and 5 show

comparisons between model predictions and water flux

observations made during SMEX02. Stream discharge

observations shown in Fig. 4 are taken from USGS

streamflow observations at Colfax, Iowa (South Skunk

River), Mingo, Iowa (Indian Creek), and New Provi-
dence, Iowa (South Fork Iowa River). Model results

are derived only from the 60% of the original modeling

domain (Fig. 1) drained by these three streams. No

attempt was made to route TOPLATS predictions or

correct streamflow observations for human diversion,

impoundment, or hydrologic routing. Nevertheless,

TOPLATS is able to reproduce the baseflow recession
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Fig. 6. (a) Time series of modeled and observed regional domain-

averaged surface (6cm) soil moisture and (b) domain-averaged

precipitation. Error bars on observed regional averages represent one

standard deviation variability and are derived via application of the

central limit theorem.
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between June 15 and July 4 and the volume of runoff in

response to rainfall events between July 4 and 13 with

reasonable precision. Evapotranspiration observations

in Fig. 5 are from flux tower sites shown in Fig. 2.

TOPLATS does a good job capturing mean evapotrans-

piration rates for the period but demonstrates less skill

in capturing day-to-day variability.
Fig. 6 shows comparisons between regional soil mois-

ture, estimated from averaging all 47 regional-sampling

observations at sites shown in Fig. 2 (hi), and compara-

ble TOPLATS results estimated from averaging of all

90-m pixels in the same regional domain (h0
i). Plotted

error bars represent one-standard deviation (1r) vari-
ability in hi arising from random sampling and observa-

tion errors. Uncertainties were derived via application of

the central limit theorem (i.e. dividing the sampled spa-

tial variance of regional soil moisture observations by

the number of observations) and are based on an

assumption of unbiased sampling with sufficient spatial

coverage to guarantee independent sampling errors.
Rainfall observations within the domain are also plotted

for reference. While results indicate a relatively low

root-mean-square-error (RMSE) for regional-scale

TOPLATS predictions (0.032cm3cm�3), there is a gen-

eral positive bias in model results––especially during late

June (June 25–27) and mid-July (July 10–12) portions of

the experiment.

Figs. 4–6 represent typical model evaluation plots
that are often created in an attempt to validate spatially

distributed land surface model predictions. Soil moisture

observations during SMEX02, however, allow for a

more intensive evaluation of distributed soil moisture

predictions than is typically possible. For example,

ground-based watershed soil moisture sampling pro-

vides daily estimates of field-scale soil moisture. Fig. 7

plots the scatterplot of observed versus modeled
field-scale soil moisture for the entire SMEX02 period.
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Intercomparing TOPLATS and ground-based observa-

tions at the field-scale, as opposed to the domain-scale

as in Fig. 6, raises the RMSE of model results from

0.032cm3cm�3 to 0.043cm3cm�3. However, the presence

of statistically significant correlation in Fig. 7 suggests
that the model is accurately representing at least a por-

tion of the observed field-scale variability.

The remainder of this section uses the extensive soil

moisture data set collected during SMEX02 to evaluate

the potential value of distributed land surface model

predictions for the estimation of footprint-scale soil

moisture means required for validation of spaceborne

soil moisture retrievals. Specifically, Section 5.1 assesses
to what degree multi-scale soil moisture heterogeneity

observed during SMEX02 is accurately captured by

TOPLATS simulations. Then, using strategies intro-

duced in Section 4, Section 5.2 describes upscaling re-

sults based on the merger of field-scale model

observations with distributed TOPLATS predictions.

5.1. TOPLATS representation of soil moisture

heterogeneity

Here three diagnostic statistics are used to evaluate

the quality of spatially distributed TOPLATS soil mois-

ture predictions: multi-scale spatial standard deviations,

Spearman rank coefficients, and semivariograms. Spa-

tial standard deviation and Spearman rank results re-

flect model skill in predicting lumped spatial statistics
and relative spatial patterns, respectively. Semivario-

gram results demonstrate key changes in spatial sam-

pling prospects that arise from the integration of

model results.

The sampled spatial variance of a soil moisture field

varies as a function of the support scale for measure-
ments and the extent scale for the calculation of statis-

tics [40]. Measurement support is defined as the spatial

scale over which a given measurement or estimate inte-

grates spatial information. Spatial supports can be in-

creased through the aggregation of fields and

estimation of means at coarser spatial scales. The extent
scale is the spatial scale over which measurements are

sampled to obtain spatial statistics. Specification of both

scales is critical for efforts to precisely define spatial sta-

tistics for any geophysical field.

Fig. 8 contains comparisons of TOPLATS modeled

and observed soil moisture spatial standard deviations

at three different support and extent scale combinations.

Observation-based results in Fig. 8a (with point-scale
support and field-scale extent) are derived from estimat-

ing the variance of all 14 theta probe measurements

taken within each watershed field (Section 3) and line-

arly averaging the sub-field-scale variance for each field

across all 31 fields in the watershed. Model results are

based on a similar methodology applied to all 90-m

TOPLATS pixels within each watershed field. Observed

field-scale soil moisture estimates (required for the cal-
culation of Fig. 8b) are calculated through simple aver-

aging of all 14 sub-field theta probe observations within

each field. A sampled standard deviation is then calcu-

lated using estimated field-scale averages for all 31 wa-

tershed fields. The impact of sampling uncertainty

within estimated field-scale means is approximated using
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the central limit theorem, and used to correct the stan-

dard deviation of field-scale means for the sampling

error in the means themselves. Standard deviation

estimates in Fig. 8c are based on all 47 point-scale obser-

vations made at regional sampling sites (Section 3 and

Fig. 2) and all 90-m TOPLATS pixels in the regional
model domain. In general, TOPLATS predictions of soil

moisture variability are consistent with variability mea-

sured by ground-based observations. Notable excep-

tions include the model�s underestimation of field-scale

soil heterogeneity after July 10 in Fig. 8b and overesti-

mation of point-scale variability within the entire regio-

nal domain (Fig. 8c) prior to rainfall on July 4. The

sharp increase in both modeled and observed field-scale
variability in Fig. 8b on July 5 is due to spatially heter-

ogeneous rainfall on that date. Much of this heterogene-

ity is subsequently eliminated by more spatially

homogeneous rainfall on July 10. Limitations in the ex-

tent and spacing of SMEX02 ground observations pre-

vent comparisons at scale combinations other than

those plotted in Fig. 8.

More critical to the goal of upscaling soil moisture
than recovery of simple spatial statistics is evidence that

models can accurately capture relative spatial patterns in

soil moisture fields. Spearman rank correlation coeffi-

cients (SR) describe the strength of correlation between

the relative rankings of two random variables. To calcu-

late these coefficients, all 31 watershed fields are ranked

according to their moisture content. Separate rankings

are constructed based on both actual ground observa-
tions and TOPLATS soil moisture predictions. Spear-

man coefficients (SR) are then calculated as:

SR ¼ 1� 6
Xnsites
j

d2j=ðnsitesðn2sites � 1ÞÞ; ð12Þ

where dj is the difference in rank for a given field j when

ranking is performed using observations versus predic-

tions. The magnitude of these coefficients reflect the de-
gree to which model results are capable of reproducing

the relative ranking of fields according to observed soil

wetness. Fig. 9 contains a time series of SR values

between field-scale model output and observations for

all of the watershed sampling fields during the SMEX02

period. Rank correlation coefficients calculated during

individual days during SMEX02 are statistically signifi-

cant––at a 1r level––during all watershed sampling days
and significant at a 2r level for nine out of 11 days. The

highest rank coefficient is found on the day (July 5)

exhibiting the largest field-scale variability due to locally

heterogeneous rainfall (see July 5 in Fig. 8b). Relatively

lower rank coefficients on June 25–27 indicate that

TOPLATS results have less skill is reproducing relative

spatial patterns on these days despite its success in

reproducing observed spatial statistics (see June 25–27
in Fig. 8b).
Results in Fig. 9 demonstrate that TOPLATS exhib-

its a statistically significant level of skill in accurately

identifying relatively wet and dry areas with in the Wal-

nut Creek watershed area. This implies, but does not
guarantee, that subtracting TOPLATS predictions from

the actual soil moisture fields filters underlying spatial

variability. A better test is the direct intercomparison

of semivariograms for both the soil moisture observa-

tion, hi,j, and model/observation difference, hi;j � h0
i;j,

fields. Fig. 10 shows semivariograms for spatial pertur-

bations within both fields using field-scale model predic-

tions and observations for all 31 watershed sampling
sites. No spatial statistical inhomogeneity or anisotro-

phy is detectable in either field. However, variations in

spatial rainfall patterns introduce large temporal vari-

ability in calculated semivariograms. To ensure tempo-

ral stationarity, semivariograms shown in Fig. 10 are

calculated separately for three discrete time periods

(June 25–27, July 5–6 and July 7–8) that fall between

major rainfall events. Relative to the underlying soil
moisture observations, model/observed differences in

July are less spatially variable (i.e. have a lower semi-

variogram sill) and appear to demonstrate a smaller cor-

relation length. This suggests that the subtraction of the

modeled field h0
i;j from the observed field hi,j filters large-

scale spatial variability in the soil moisture field. Remov-

ing this variability leads to fields in which spatially

sparse or clumped observations can be upscaled to coar-
ser spatial scales with smaller sampling errors. It is this

ability to filter soil moisture variability which forms

the basis of the model-based upscaling procedure de-

scribed in Section 4. Earlier in the SMEX02 period,

however, evidence for model-based improvement is
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weaker. Due to low levels of background soil moisture

variability, the impact of subtracting model predictions

is much smaller during the June 25–27 period (top panel

Fig. 10).

5.2. Field-scale upscaling results

Results in Section 5.1 suggest that TOPLATS simula-
tions can reproduce a significant portion of the spatial

and temporal heterogeneity found in SMEX02 soil

moisture observations. One potential application of this

apparent skill is the development of model-based upscal-

ing strategies for soil moisture fields. Fig. 11 contains

intercomparisons between the three techniques pre-

sented in Section 4 for estimating mean soil moisture

within the modeling domain shown in Fig. 1. The first
approach, the observation-alone methodology presented

in (9), is based on the simple averaging of field-scale soil

moisture observations. The second model-alone ap-

proach in (10) is based on the averaging of all 90-m

model predictions within the entire regional domain.

The third combined approach in (11) integrates the first

two approaches by using observations to correct model
bias. As in Fig. 6, benchmark regional-scale soil mois-

ture values hi are obtained by averaging daily observa-
tions from all 47 regional soil moisture sites, and used

to evaluate the accuracy of upscaling methodologies.

As a first test case, upscaling procedures are applied

assuming ground-based observations are limited to a

single watershed field j (nsites = 1). For day i, this

assumption simplifies (9) to

hi � hi;j ð13Þ
and (11) to

hi � ðhi;j � h0
i;jÞ þ h0

i; ð14Þ

where hi,j and h0
i;j are the observed and modeled soil

moisture fields, respectively, and h0
i is the regional-scale

mean for modeled soil moisture. RMSE values for the

observation-alone and combined approaches are pooled

values obtained from applying this single-field method-

ology to all fields j. Using a single field-scale observation
and the observation-only approach to estimate the re-

gional-scale soil moisture leads to a daily RMSE for re-

gional-scale soil moisture estimates ranging between

0.028cm3cm�3 on June 27 to 0.087cm3cm�3 on July 5

with a pooled value for all days of 0.057cm3cm�3.
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Normalized RMSE plotted in Fig. 11a are the ratio of

the RMSE for regional-scale soil moisture estimates ob-

tained using a model-based approach and the RMSE

obtained when applying the observation-only approach.

All error quantities are calculated separately on a daily

basis. A normalized value less than one means that
information contained in modeled soil moisture fields

lowered the RMSE of regional-scale soil moisture esti-

mates on a given day. In Fig. 11a, normalized values

for the purely model-based approach (10) exhibit a great

deal of temporal variability. Reliance on unconstrained

model predictions yields improved results (i.e. normal-

ized error less than one) between July 2 and July 10,

but is less reliable all other days. In contrast, the com-
bined method (11) is more stable and yields improved

estimates, relative to observation-only results, on all

days except June 27. The positive impact of integrating

model results is also evident in pooled error statistics

(i.e. RMSE, bias, and correlation coefficients) listed in

Table 1 for both the observation-only and combined

observation/model upscaling approaches.

Poor normalized error results for the combined and
model-only approaches on June 27 in Fig. 11a are due

both to a low RMSE for the observation-only approach

on that day (used as a normalizing factor) and relatively

poor model performance during the tail end of a gradual

dry-down in late June (Fig. 6). The success of the obser-

vation-only approach is tied to a lack of field-scale soil

moisture variability during this period (top panel in

Fig. 10) which eases the severity of sampling problems
typically associated with observation-only upscaling.

Dry conditions during late June/early July also lead to

relatively poor model estimates of soil moisture and

may degrade the accuracy of model-based upscaling pro-

cedures. To examine this issue in detail, results in Fig. 11

can be plotted as normalized error versus mean soil mois-

ture to isolate any relationship between the accuracy of

model-based upscaling results and mean soil moisture
(not shown). Since the spatial structure of both observed

and modeled soil moisture is known to change with mean

soil moisture [29,12], the accuracy of model- and ob-
Table 1

Pooled error statistics (RMSE, bias, and correlation coefficient R2) for

regional-scale soil moisture estimates derived using the observation-

only (9) and combined observation/model (11) approaches

Upscaling strategy RMSE

[cm3cm�3]

Bias

[cm3cm�3]

R2

Observation-only (1 field) 0.057 �0.021 0.68

Combined observation/model

(1 field)

0.042 0.016 0.75

Observation-only (31 fields) 0.028 �0.021 0.96

Combined observation/model

(31 fields)

0.019 0.016 0.98

Results are based on field-scale soil moisture observations.
served-upscaling strategies may exhibit a similar depen-

dence––particularly if model results are prone to bias

in dry conditions. However, when limited to the 11 sam-

pling days available during SMEX02, no statistically sig-

nificant relationship between model-based upscaling

errors and mean soil moisture could be identified.
Future ground-based soil moisture networks may al-

low for observations at multiple field-scale sites. There-

fore, as a second test, upscaling strategies are applied

assuming the availability of field-scale observations at

all the Walnut Creek watershed sites in Fig. 2. For this

case, regional-scale estimates for the observation-only

and combined upscaling approaches are calculated by

inserting wj ¼ n�1sites and nsites = 31 into (9) and (11). Esti-
mating regional-scale soil moisture using simple linear

averaging of all available field-scale observations

reduces the pooled RMSE for observation-only results

to 0.028cm3cm�3 (Table 1). Fig. 11b is analogous to

Fig. 11a except that (9) and (11) upscale using the simple

linear average of observations and model/observation

differences from all 31 watershed fields as opposed to

just a single field. Absolute errors for the model-only
and combined approach are normalized by daily RMSE

associated with applying the observation-only approach

assuming the availability of data from all 31 watershed

fields. As in Fig. 11a, the purely model-based approach

(10) demonstrates very low normalized error on some

days but is unreliable during other days. The combined

approach in (11) is more robust to day-to-day variations

in hydrologic conditions and consistently improves the
accuracy of regional-scale soil moisture means. Pooled

error results for the observation-only and combined

cases are listed in Table 1 for comparison.

A key consideration for model-based approaches is

their sensitivity to model parameter uncertainty. Like

many land surface models, TOPLATS suffers from a

complex parameterization which requires a large num-

ber of specified parameters (see Section 2.2). To assess
the impact of parameter uncertainty on key results, five

key model parameters: surface albedo, saturated soil

hydraulic conductivity, the Brooks–Corey soil pore size

distribution index, the p parameter in (2) used to predict

fractional vegetation coverage, and the b parameter in

(6) used to predict soil resistance to evaporation were

individually multiplied by factors of both 0.80 and

1.20. Model-based upscaling results were then recalcu-
lated using these 10 perturbed parameter sets (5 param-

eters times 2 perturbation types). Plotted ranges in Fig.

12 indicate the absolute spread of normalized error asso-

ciated with upscaling field-scale observations for all 10

TOPLATS simulations. Even modest amounts of

parameter uncertainty (i.e. 20%) is capable of signifi-

cantly impacting the value of the model-only approach

(10) especially during dry parts of the simulations. In
contrast, results for the combined approach (11) demon-

strate less sensitivity to parameter variations.
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Fig. 12. Analogous in Fig. 11a, except normalized RMSE results are

displayed as the range of values encountered when key model

parameters are varied by ±20% relative to the baseline parameteriza-

tion described in Section 2.2.

Table 2

Pooled error statistics (RMSE, bias, and correlation coefficient R2) for

regional-scale soil moisture estimates derived using the observation-

only (9) and combined observation/model (11) approaches

Upscaling strategy RMSE

[cm3cm�3]

Bias

[cm3cm�3]

R2

Observation-only (1 point) 0.060 �0.011 0.68

Combined observation/model

(1 point)

0.060 0.023 0.66

Observation-only (12 points) 0.027 �0.012 0.95

Combined observation/model

(12 points)

0.023 0.019 0.98

Results are based on point-scale soil moisture observations.
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5.3. Point-scale upscaling results

The primary focus of soil moisture sampling during

SMEX02 was the estimation of field- and regional-scale

soil moisture means for the validation of airborne and

spaceborne soil moisture products. However, as noted

in Section 3, some fixed point-scale soil moisture obser-

vations are also available. Using time series data from
fixed soil moisture sensors active during SMEX02,

upscaling results in Section 5.2 can be repeated for the

case of point-scale (rather than field-scale) ground-based

observations. The upscaling procedure used is identical

to that employed for field-scale observations in Fig. 11

except hi,j in (9) and (11) now refers to point-scale (as

opposed to field-scale) observations and h0
i;j refers to

the single 90-m TOPLATS pixel whose center is closest
to the point-scale observation (rather than the average

of all 90-m TOPLATS pixels in a given field). Calcula-

tions of model-only predictions via (10) do no change.

Assuming the availability of a single point-scale obser-

vation, replotting Fig. 11a using this point-scale meth-

odology (not shown) reveals that the combined

approach (11) improves regional-scale soil moisture pre-

dictions, relative to observation-only results, on only six
of 13 days––as compared to 10 of 11 days for upscaling

field-scale observations. Table 2 contains error statistics

for regional-scale soil moisture means calculated based

on point-scale observations. Unlike field-scale results

in Table 1, there is no indication that TOPLATS mod-

eling improves the upscaling of a single point-scale soil

moisture observation. However, incorporating model

results does lead to a small improvement when upscaling
the mean of all twelve fixed point-scale measurements

(Table 2).
6. Discussion and conclusions

The spatial scaling properties of surface soil moisture

are linked to both temporal dry-down dynamics
[29,31,12] and spatially variable land surface properties

(e.g. soil texture [9] and topography [39,6]). By synthe-

sizing the appropriate distributed forcings (e.g. rainfall,

digital elevation models, and soil texture maps) soil

moisture predictions from a distributed land surface

model represent a best guess as to the impact of these

processes on the dynamic evolution of sub-footprint-

scale (<30km) soil moisture patterns. Sufficiently accu-
rate knowledge of these patterns allows for the linking

of local-scale soil moisture observations to footprint-

scale soil moisture means. This analysis is aimed at eval-

uating the potential for a model-based upscaling ap-

proach using soil moisture observations obtained

during the SMEX02 field experiment. Results in Figs.

6–10 demonstrate the ability of distributed TOPLATS

simulations to accurately reflect space/time patterns of
variability observed in ground-based soil moisture sam-

pling during SMEX02. Here this skill is exploited to up-

scale ground-based observations from the field-scale to

the regional modeling domain shown in Fig. 1. During

SMEX02, the combined model/observation upscaling

approach (11) is demonstrated to be superior to simple

averaging of ground-based observations using (9) for

all but one day (Fig. 11 and Table 1) and more robust
to parameter certainty and day-to-day variability in

hydrologic conditions than using pure model predictions

and (10) to estimate regional-scale soil moisture means

(Fig. 12). Improvements in model-based upscaling re-

sults stem from statistical differences between the model

bias field h � h 0 and the underlying soil moisture field h.
Subtracting model results from field-scale observations

removes spatially correlated variability in the soil mois-
ture field (Fig. 10). As a result, large-scale soil moisture

estimates are more accurate when derived from sparse



W.T. Crow et al. / Advances in Water Resources 28 (2005) 1–14 13
spatial sampling of the model bias field versus the origi-

nal soil moisture field. Taken as a whole, results suggest

that model-based upscaling procedures can improve the

estimation of large-scale soil moisture means required

for the validation of footprint-scale soil moisture retri-

evals from spaceborne radiometers.
The model-based upscaling procedure discussed in

Section 5.2 is based on point-scale ground-based obser-

vations that have been spatially averaged up to the

field-scale. Such field-scale estimates are not currently

available outside of intensive field campaigns since oper-

ational soil moisture networks typically consist of single-

point observations separated by 10�s of kilometers. For

this upscaling strategy to be of immediate value requires
that it be validated for point-scale observations. Unfor-

tunately, analysis of point-scale data during SMEX02

gives no indication that the procedure can be applied

successfully to point-scale data (Section 5.3 and Table

2). The most likely explanation for this is that, relative

to coarser field-scale heterogeneity, TOPLATS predic-

tions have less skill in predicting the spatial structure

of sub-field-scale variability that impacts point-scale
observations. Consequently, the benefits of model-based

upscaling emerge only when fine-scale variability is fil-

tered by averaging a sufficient sample of point-scale

observations up to a field-scale. Sufficiently dense soil

moisture probe networks within a single field are techni-

cally possible but may not prove practical. A potential

alternative to maintaining dense sampling networks

within individual fields is to rely on time stability strat-
egies capable of linking point-scale observations to field-

scale means (see e.g. [22]). A combination of a time-sta-

bility approach to upscale from the point- to field-scale

and then a model-based approach to upscale from the

field- to footprint-scale may be optimal as it would allow

each approach to focus on the spatial scales at which

they are the most effective.

Several additional points are worth noting when con-
sidering results presented here. First, all domain-scale

soil moisture estimates presented are based on simple

linear averaging of field-scale observations and/or

field-scale differences between modeled and observed

soil moisture. Block-kriging methodologies provide a

more sophisticated approach to aggregating these obser-

vations based on observed auto-correlation structure.

However, given the spatial shortcomings of current
ground-based systems (i.e. sparse sampling patterns

and limited spatial extents) it may be difficult to accu-

rately obtain such correlation information within many

footprints. Here, ground-based soil moisture informa-

tion was assumed to be limited to a series of field-scale

observations clustered in and around the Walnut Creek

watershed. This precluded the ability to estimate the

large-scale (>25km) correlation information required
to effectively implement kriging strategies.
In addition, hydrologic aspects of the SMEX02 site

may make it a poor case study for non-agricultural

watersheds. Accurate parameterizating of topographi-

cally-driven lateral flows is often cited as a key element

in predicting soil moisture spatial patterns at local hill-

slope scales (10–500m) [14,43]. However, in the
SMEX02 region the extensive use of tile drains to max-

imize land area available for cultivation has significantly

reduced the natural lateral redistribution of water.

Extensive artificial drainage is not uncommon in agricul-

tural watersheds and can be accommodated by modifi-

cations to TOPMODEL calibration parameters.

Nevertheless, it is unclear how relevant results derived

here are to landscapes where lateral hydrologic flows
are unimpeded.

Finally, a persistent problem for any analysis of soil

moisture heterogeneity has been that sufficiently inten-

sive soil moisture observations are typically limited to

small time and space windows. Limited temporal cover-

age is clearly a weak point of this analysis. Ground-

based sampling associated with the validation of current

(AMSR-E) and future spaceborne soil moisture mis-
sions (e.g. the NASA Hydrospheric States Mission) will

likely provide continued opportunities to evaluate and

refine distributed surface soil moisture predictions from

land surface models. Recently acquired soil moisture

data from the Soil Moisture Experiment in 2003

(SMEX03) within regional domains in Oklahoma,

Alabama, Georgia, and Brazil provides an immediate

goal for future research.
Acknowledgments

The authors would like to thank Bill Kustas (USDA

ARS) and Martha Anderson (University of Wisconsin)

for supplying SMEX02 surface energy flux and vegeta-

tion data. Mentioning of specific commercial names
does not constitute an endorsement of products by the

USDA.
References

[1] Bell KR, Blanchard BJ, Schmugge TJ, Witczak MW. Analysis of

surface moisture variations within large field sites. Water Resour

Res 1980;16:796–810.

[2] Betts AK, Beljaars ACM. Estimation of effective roughness length

for heat and momentum from FIFE data. Atmos Res

1993;30:251–61.

[3] Beven KJ, Kirkby MJ. A physically based variable contributing

area model of basin hydrology. Hydrol Sci Bull 1979;42:43–69.

[4] Beven KJ. Prophecy, reality, and uncertainty in distributed

hydrological modeling. Adv Water Resour 1993;16:41–51.

[5] Burman RD, Pochop AO. Evaporation, evapotranspiration, and

climatic data. New York: Elsevier; 1994. 181 pp.

[6] Charpentier MA, Groffman PM. Soil moisture variability within

remote sensing pixels. J Geophys Res 1992;97(D17):18987–95.



14 W.T. Crow et al. / Advances in Water Resources 28 (2005) 1–14
[7] Choudhury BJ, Ahmed NU, Idso SB, Reginato RJ, Daughtry C.

Relations between evaporation coefficients and vegetation indices

studied by model simulations. Remote Sens Environ

1994;50:1–17.

[8] Cosby BJ, Hornberger GM, Clapp RB, Ginn TR. A statistical

exploration of the relationships of soil moisture characteristics to

the physical properties of soils. Water Resour Res 1984;20:682–90.

[9] Cosh MH, Brutsaert B. Aspects of soil moisture variability in the

Washita �92 study region. J Geophys Res 1999;104(D16):19751–7.
[10] Cosh MH, Jackson TJ, Bindlish R, Prueger JH. Watershed scale

temporal persistence of soil moisture and its role in validating

satellite estimates. Remote Sens Environ 2004;92:427–35.

[11] Crow WT, Wood EF. The assimilation of remotely sensed soil

brightness temperature imagery into a land surface model using

ensemble Kalman filtering: a case study based on ESTAR

measurements during SGP97. Adv Water Resour 2003;26:137–49.

[12] Dubayah R, Wood EF, Lavalee D. Multiscaling analysis in

distributed modeling and remote sensing: an application using soil

moisture. In: Goodchild MF, Quattrochi DA, editors. Scale,

multiscaling, remote sensing, and GIS. Cambridge: Cambridge

University Press; 1997. p. 93–111.

[13] Entin JK, Robock A, Vinnikov KY, Zabelin V, Liu S, Namkhai

A. Evaluation of global soil wetness project soil moisture

simulations. J Meteor Soc Jpn 1999;77:183–98.

[14] Famiglietti JS, Wood EF. Multiscale modeling of spatially

variable water and energy balance processes. Water Resour Res

1994;30:3061–78.

[15] Famiglietti JS, Rudnicki JW, Rodell M. Variability in surface

moisture content along a hillslope transect: Rattlesnake Hill,

Texas. J Hydrol 1998;210:259–81.

[16] Famiglietti JS, Devereaux JA, Laymon CA, Tsegaye T, Houser

PR, Jackson TJ, et al. Ground-based investigation of soil

moisture variability within remote sensing footprints during the

Southern Great Plains (SGP97) Hydrology Experiment. Water

Resour Res 1999;35:1839–51.

[17] Feddes RA, Rijetma PE. Water withdrawal by plant roots. J

Hydrol 1972;17:33–59.

[18] Grayson RB, Western AW. Towards areal estimation of soil water

content from point measurements: time and space stability of

mean response. J Hydrol 1998;207:68–82.
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