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Abstract 

Sobel, Tenenbaum & Gopnik (2004) investigated the 
development of causal inferences in preschoolers in three 
experiments with tasks adapted from conditioning literature 
(backwards blocking and screening-off) and concluded from 
this indirect evidence that children develop a mechanism for 
Bayesian structure learning. It is proposed that (a) the 
differential performances in the two tasks are more likely due 
to differential memory demands, and (b) the observed 
developmental differences between 3½ and 4½-year old 
children may be due to maturation of the memory system, 
with higher retroactive interference in younger children and 
lower retroactive interference in older children. This account 
is supported by simulations with Ans & Rousset's (1997, 
2000) memory self-refreshing neural networks architecture. 
The implications of the account proposed here on a theory of 
causal relation learning are discussed. 

Keywords: causal inference; retroactive interference; 
backwards blocking; screening-off; memory limitations; 
preschoolers; developmental maturation; memory 
self-refreshing; artificial neural networks. 

Introduction 
Early knowledge of the causal structure of the world is 
thought to result from innate abilities or from interactions 
with the environment during early childhood. In the latter 
framework, a learning mechanism must be specified in order 
to delineate a theory of causal relation learning. Sobel, 
Tenenbaum & Gopnik (2004) have recently proposed such a 
theory, suggesting that children construct "a ‘causal graph’ 
– an abstract representation of the causal structure of a set of 
variables – based on evidence about the conditional 
probability of those variables" (Sobel et al., 2004, p. 306). 
In particular, they proposed that children use Bayesian 
reasoning to construct the causal graph, and tested these 
claims in two experiments. In both, children were told that 
only certain objects (called blickets) cause a device (a 
blicket-detector) to be activated. In the “indirect screening-
off” task, the children were shown that the detector is 
activated when two objects (A and B) are placed on it, and 
that it does not activate when object A is placed on it by 
itself. Then, they were asked if each object was a blicket. In 
the “backwards blocking” task, the detector is activated 
when two objects (A and B) are placed on it, and also when 

object A is placed on it by itself. Sobel et al. found that 
4½-year old children, and to a lesser extent, 3½-year old 
children, were both able to make the expected inferences, 
that is that object B is a blicket in the indirect screening-off 
task, but not in the backwards-blocking task. Sobel et al. 
(2004) used these results to argue that children’s responses 
are based on Bayesian structure learning rather than on 
learning of cause-consequence associations. 

Though attractive and nicely formalized, the Bayesian 
account has two problematic limitations. First, there is a 
conceptual problem. A Bayesian inference structure cannot 
operate without an initial core of knowledge. If the theory 
aims to explain the origins of this core of knowledge, one is 
faced with a chicken and egg problem: children are 
supposed to apply their statistical knowledge in order to 
enhance some pre-existing knowledge "database", but this 
cannot explain where the initial core of knowledge comes 
from. Second, the tasks used by Sobel et al. (2004) are 
adapted from conditioning literature, and are designed to tap 
into the memory system. To use these tasks as measures of 
causal reasoning, one has to assume that memory demands 
are the same for both groups of children. This assumption is 
erroneous: Both the indirect screening-off and backwards-
blocking results may be shown to be memory artifacts rather 
than instances of causal reasoning. Further, the performance 
difference between the 4½ and 3½-year-olds can be 
explained as a maturation of the memory system rather than 
the development of a Bayesian mechanism. Our critique is 
based on the simulation of memory as a “self-refreshing 
neural network”. 

Memory as a self-refreshing neural network 
A common problem with neural network models of memory 
is that of catastrophic forgetting. The memory of a neural 
network resides in connection weights that are adjusted to 
improve the network’s performance on the current training 
set. Consequently, training on a new set S2 tends to 
overwrite the effects of prior training on set S1 (McCloskey 
& Cohen, 1989; Ratcliff, 1990).  The problem can be 
avoided if sequential learning (i.e. first S1 then S2) is 
transformed into concurrent learning (S1 and S2 trained 
together). As concurrency is implausible for sequential 
learning (e.g. Blackmon et al., in press), it can be 
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approximated by having the network “internally” generate 
“pseudo-exemplars” representative of its previous training 
exemplars and intersperse these with exemplars from S2. 
This approach, introduced by Robins (1995), can be 
implemented in a model with two complementary networks, 
NET1 and NET2 (Ans & Rousset, 1997, 2000; Ans, 
Rousset, French & Musca, 2002, 2004; French, 1997). Each 
network consists of an input layer connected both to an 
auto-associative target and to a hetero-associative target. 

Ans & Rousset's (1997, 2000) dual-reverberated self-
refreshing network (DRSR) is used here. This model works 
as follows. (1) NET1 is trained on S1 exemplars to criterion. 
The auto-associative part learns the structure of the inputs, 
while the hetero-associative part learns the mapping to the 
outputs. Training ends when the criterion has been reached 
on both parts. (2) A random input is presented to NET1’s 
input layer, cycled R times through the auto-associative part, 
then propagated through the network and mapped to a 
hetero-associative output. This input-output pair is called a 
“reverberated pseudo-pattern” (PP). Many such PPs are 
generated and used to train NET2; thus NET2 learns a 
generalization of the auto- and hetero-associative map learnt 
by NET1. (3) When NET1 has to learn S2, its training 
involves exemplars from S2 interspersed with PPs generated 
by NET2. In effect, NET1 learns new items from the 
environment and the old items from NET2. As a result, 
NET1 learns a combination of S1 and S2. A memory 
consolidation parameter, C, determines the relative 
frequency of PPs to new exemplars in the NET1 training. If 
C is low, learning is biased toward the new material 
(causing more retroactive interference, RI); if C is high, 
learning is biased toward the old material (causing more 
proactive interference). 

Simulations 
In the DRSR model used in our simulations, NET1 and 
NET2 were feedforward backpropagation networks trained 
with a gradient descent algorithm that minimizes the cross-
entropy error function (Hinton, 1989). Both NET1 and 
NET2 had 20 input nodes, 8 hidden nodes, and 21 output 
nodes (20 auto-associative nodes and 1 hetero-associative 
node)1 and were trained with a learning rate of 0.01 and a 
momentum of 0.7. After each phase of training (described 
below), 104 PPs were generated by NET1 and used to train 
NET2. In all the simulations presented below R = 5, and C 
was manipulated. C was set to 0.25 (low parameter value, 
high RI) to simulate the performance of 3½-year-olds, and 
to 10 (high parameter value, low RI) to simulate the 
performance of 4½-year-olds. 

Simulation 1 and Simulation 2 
These simulations correspond to the "indirect screening-off" 
and the "backwards blocking" conditions of Experiment 1 in 

                                                           
1 Unless otherwise stated, training ends when the criterion has been 
reached on both the auto-associative and the hetero-associative 
parts of a DRSR network. 

Sobel et al. (2004). In the experiment, the following 
protocol was used: 

(1) The children were familiarized with the task of using 
novel names for objects; they were shown a knob (or a tee-
joint) and told that it was a “dax” (or a “wug”). 

(2) The blicket-detector was demonstrated to the children 
using two blocks. Each was placed on the detector, and the 
child’s attention was drawn to the fact that one block (a 
“blicket”) activated the detector, while the other (a non-
blicket) did not. 

(3) Two training trials ensured that the children 
understood the function of the detector; each block was 
placed on the detector and the child was asked whether it 
was a blicket or not. 

(4) The experimental phase consisted of two trials using 
two new objects, A and B. This consisted of either the 
indirect screening-off or the backwards-blocking condition. 

The stimuli for the simulations were created to match the 
above experimental conditions. Sixteen 10-bit binary 
vectors were generated, each of which was made up of five 
zeros and five ones (randomly placed within the 10 
dimensions of the vector). From these, 10 input stimuli – 4 
demonstration items, 4 training items, and 2 experimental 
items –  were selected at random. A single stimulus (e.g. A) 
always consisted of the concatenation of a 10-bit nil vector 
and of the 10-bit vector for stimulus A. A compound 
stimulus (e.g. AB) consisted of the concatenation of the 
10-bit vector for stimulus A and the 10-bit vector for 
stimulus B (note that the leftmost 10 bits of the input layer 
are nonzero only when there is a compound stimulus). 
Finally, four 10-bit vectors (two with four ones and two 
with three ones) were generated; these corresponded to the 
knobs and tee-joints in the familiarization phase of the 
experiment. 

The training of the network proceeded in four phases. At 
the end of each phase, PPs were generated using NET1, and 
NET2 was trained on these PPs. Except for the first phase, 
NET1 was trained on the current inputs and the PPs 
generated by NET2 (one may think of NET2 as providing a 
summary of the training history for the ongoing learning by 
NET1). 

Phase 1: The “knob” and “tee-joint” inputs were 
presented to NET1 and the auto-associative part of the 
network was trained on them. This “familiarized” the 
network with the input space (however, this phase is not 
essential for the overall results). 

Phase 2: The “demonstration” and “training” items were 
presented to the network (in the experiment, the “training” 
trials were interactive, consisting of responses and feedback. 
In the simulation, these were treated as additional 
demonstration trials). There were 8 items in all (4 blickets 
and 4 non-blickets); each was individually presented to the 
network with the hetero-associative target set to 1 for a 
blicket and 0 for a non-blicket. 
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Phase 3: This was the first “experimental” trial. The 
network was simultaneously presented with A and B and a 
target output of 1. This input-output pairing is henceforth 
denoted as AB → 1. 

Phase 4: This was the second “experimental” trial. In the 
“indirect screening-off” condition (Simulation 1), the 
network was presented with only A and a target of 1 
(A → 1); in the “backwards blocking” condition 
(Simulation 2), the network was presented with A → 0. 
Other than this difference in Phase 4, Simulations 1 and 2 
were the identical in all other respects. 

Training proceeded until the RMS error for the (new) 
training exemplars fell under 0.1 or for a maximum of 104 
epochs. The training exemplars were presented in random 
order. Each PP from NET2 was generated “on the fly” and 
used only once. 

After the completion of Phase 4, the network was 
separately presented with the A and B inputs, and the 
activation of the output unit was taken to index a “blicket” 
response (possibly based on a task-specific decision 
threshold). Finally, the results for each simulation were 
averaged over 16 replications (on each replication, the 10 
input stimuli were drawn at random from the pool of 16 
10-bit vectors).  

Figure 1 shows the results for Simulation 1, and Figure 2 
the results for Simulation 2 (note that the vertical scale in 
Figure 2b goes from 0.7 to 1.0). Both simulations 
qualitatively match the behavioral results. Simulation 1 
results are free from the ceiling effect that is observed on 
stimulus B, and of the floor effect observed on stimulus A at 
age 4½. 

 

 
 

Figure 1:  Indirect screening-off condition: a) behavioral results (from Table 1 in Sobel et al., 2004, p. 312); b) simulations 
with DRSR, with the memory consolidation parameter (C)  manipulated. 

 
 

 
 

Figure 2:  Backwards blocking condition: a) behavioral results (from Table 1 in Sobel et al., 2004, p. 312); b) simulations 
with DRSR, with the memory consolidation parameter (C) manipulated. 
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Simulation 3 
The simulation corresponds to Experiment 3 in Sobel et al. 
(2004)2. Children were given a close variant of the 
backwards blocking task in Experiment 1, but preceded by a 
phase where the frequency of the blickets was manipulated. 
In this phase, a child was presented with 10 different blocks 
of which (a) 9 were identified as blickets and 1 as a non-
blicket (the “common” condition), or (b) 1 was identified as 
a blicket and 9 as non-blickets (the “rare” condition). 
Children in the “common” condition were more likely to 
say that B was also a blicket. 

The stimuli were those from Simulation 2, except for two 
additional vectors made up of five zeros and five ones. Out 
of these 18 10-bit vectors, 16 input stimuli (2 demonstration 
items, 2 training items, 10 frequency-training items, 2 
experimental items) were selected at random. The same 
Phase 1 procedure as in Simulation 2 was used. Phase 2 
consisted of the presentation of “demonstration” items A′ 
and B′ (the network was presented {A′B′ → 1}, then 
{A′ → 1} and then {B′ → 0}) and of “training” items A′′ 
and B′′ (the network was presented {A′′B′′ → 1}, then 
{A′′ → 1} and then {B′′ → 0}). This was followed by 
additional training that manipulated the blicket frequency. 
The network was presented with 10 new input stimuli with 9 
identified as blickets and 1 as a non-blicket (the “common” 
condition), or with 1 identified as a blicket and 9 as non-
blickets (the “rare” condition). After this training, Phases 3 
and 4 proceeded as before. Finally, the results for each 
simulation (the activation of the output unit in response to a 
B input) were averaged over 25 replications (on each 
replication, the 16 input stimuli were drawn at random from 
the pool of 18 10-bit vectors). 

The results presented in Figure 3 concern the response to 
stimulus B only. The simulation results match very well the 
behavioral results, except for the “rare” conditions in 
3½-year-olds (note that the vertical scale in Figure 3b goes 
from 0.3 to 1.0). However, it is surprising that when blickets 
are rare stimulus B is called more often a blicket than when 
blickets are neither common nor rare (81% blicket response 
for stimulus B in the “rare” condition in 3½-year-olds in 
Experiment 3 as compared to 50% blicket response for 
stimulus B in 3½-year-olds in Experiment 2). We thus 
propose that the discrepancy arises from a bias for 
responding blicket in the “rare” condition of Experiment 3 
in 3½-year-olds. 

Discussion 
Considering that only one parameter was manipulated and 
the networks were initialized with random weights, the 
behavioral results of Sobel et al. (2004) were simulated 
surprisingly well. The reasons for the model’s success are 
quite straightforward – the self-refreshing mechanism tends 

                                                           
2 Experiment 2 does not investigate the difference in performance 
between 3½-year-olds and 4½-year-olds, but replicates the results 
found in Experiment 1 with 4½-year-olds. For this reason, no 
additional simulation has been conducted for Experiment 2. 

to transform sequential learning into concurrent learning. 
With this simplification, two-network self-refreshing 
memory may be understood by analogy to a three unit 
network with two input units (X and Y) connected to an 
output unit (O), with a linear activation function and weight 
update governed by the delta rule (Widrow & Hoff, 1960), 
dwij = ε · acti · (target – actual). Note that the delta rule 
imposes a fixed point – if the net input is less than the 
target, then weights from the active input units are 
increased; if the net input is greater, the weights are 
decreased. The “A” and “B” inputs are presented by 
clamping input units X and Y (respectively) to 1.0. 

For the indirect screening-off condition, imagine that the 
3-unit network is trained on {AB → 1} until the weights 
stabilize at 0.5 each. The second, new trial, is {A → 0}. In 
accordance with idea of a self-refreshing memory, the 3-unit 
network would be trained on both {AB → 1} and {A → 0}. 
Each time the network is presented {A → 0}, the weight 
from X is decremented slightly; when {AB → 1} is 
presented, both weights increase. Over several training 
epochs, the weight from X slowly goes to 0 and that from Y 
goes to 1.0. With C < 1, {A → 0} is presented more often, 
so the X-weight decreases faster and the Y-weight increases 
to compensate. Hence, in Figure 1b there is a slight 
advantage for the B responses with C = 0.25 over C = 10. 

For the backwards-blocking condition, again imagine that 
the 3-unit network is trained on {AB → 1} until the weights 
stabilize at 0.5. Then the network would be trained on both 
{AB → 1} and {A → 1}. When {A → 1} is presented, the 
weight from X increases slightly. As a result, when 
{AB → 1} is presented, the net input is greater than the 
target output of 1.0. Because of the delta rule, weights from 
both X and Y are slightly decremented. If {AB → 1} is 
presented less often (C < 1), the weight from Y decreases 
slowly. If {AB → 1} is presented more often (C > 1), the 
weight from Y decreases much more quickly. Hence, in 
Figure 2b, there is a substantial advantage for the B 
responses with C = 0.25 over C = 10. 

The results of Simulation 3 may be understood by 
assuming that the 3-unit network has a “bias” unit that is 
connected to the output unit and whose activity is fixed at 
1.0. If there are a variety of inputs and the target output is 
1.0 most of the time (as in the training for the “common” 
condition) the bias weight will be positive and relatively 
large. When the network is subsequently trained with 
{AB → 1} and {A → 1}, it is already predisposed to 
respond “1”, so the error will be small and the weights from 
X and Y would not change much. The “common” 
conditions in Figure 3c (for both C = 0.25 and C = 10) 
reflect this predisposition of the network to respond “1”. In 
the “rare” condition, the target output during the frequency-
training is usually 0.0, so the weight from the bias unit 
would either be negative or close to zero. Consequently, the 
changes in the weights from X and Y would be very similar 
to those in the Simulation 2, viz. there would be a 
substantial advantage for the B responses with C = 0.25 
over C = 10. 
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Figure 3:  Backwards blocking preceded by a manipulation of blickets' frequency: a) behavioral results (from Table 5 in 
Sobel et al., 2004, p. 325); b) simulations with DRSR, with the memory consolidation parameter (C) manipulated. 

 
The main import of the above discussion is that the 

network’s ability to match the data is not due to a complex 
associative architecture. It stems from a straightforward 
combination of a Rescorla-Wagner-type learning rule with 
interleaved exposure. The DRSR architecture is a 
sophisticated and general way of managing the interleaving 
in the absence of the old training exemplars, but it is not 
essential for the current purposes. Critically, children's 
developmentally different performances were simulated by 
manipulating the memory consolidation parameter that 
affects the level of retroactive interference. This suggests 
that the results presented by Sobel et al. (2004) in support of 
the idea of a Bayesian structure learning mechanism may be 
explained by a memory limitation in young children that 
fade away as they grow older. The network model also 
allows us to make more fine-grained predictions regarding 
the children’s performance. One consequence of a 
distributed representation for the inputs is that learning 
cannot be separated from generalization. If all the items 
shown to the network as “blickets” in Phase 1 and 2 share 
certain properties (e.g. color, gross shape), then the network 
would be more susceptible to classifying similar objects 
(and more resistant to classifying dissimilar objects) as 
blickets in future trials. This can be tested in the experiment: 
say all the objects classified as blickets in the demonstration 
and training trials are bright red, and in the trials for indirect 
screening-off (where {A → 0}) the “A” object is also bright 
red. This might bias the child to respond that “A” is a 
blicket, even though the causal reasoning may suggest 
otherwise. In general, it is not clear whether children 
classify “blickets” as an abstract category (determined 
purely by the detector) because this would go against the 
everyday experience in which objects belonging to a 
category usually have common features or at least have 
“family resemblances”. Thus there may be exposure-
dependent or similarity-based learning occurring in this 
experiment which a purely “causal reasoning” account may 
not capture. 

Finally, we must note one point of concern regarding rate 
of learning. In the simulation, the model received extensive, 
repeated training on the same two patterns, while in the 
experiment the children are able to perform the task after 
seeing the patterns only once. However, there may have 
been “internal” training or repetition as part of a cognitive 
rehearsal process. Such a rehearsal is needed even in a 
symbolic process (e.g. Bayesian inference over a causal 
graph), since the cognitive system needs some way of 
sustaining the symbols in memory as the symbolic processes 
unfold. Therefore we feel that the learning rate issue does 
not by itself disqualify the model as an account of the 
children’s cognitive performance. 

 

Conclusion 
The main conclusion from our simulation is not a critique of 
Bayesian causal reasoning per se, but whether such 
reasoning is necessary to account for the children’s 
performance in Sobel et al. (2004). Our simulations have 
shown that pure “memory operations” are sufficient to 
account for indirect screening-off, backwards blocking, and 
the effect of prior frequency. This suggests that for young 
children (and maybe in general) the memory and reasoning 
systems are intertwined in highly complex ways. In 
particular, the “nodes” in the causal graph, which Sobel et 
al. take as a starting point for reasoning, may actually be the 
end result of highly sophisticated cognitive processing to 
isolate and abstract certain parts of the world (analogous to 
how our concepts of “circle” and “equilateral triangle”, 
while starting points for geometric reasoning, are actually 
the result of sophisticated cognitive abstraction). Possibly, 
as children get older, they get socialized into a similarly 
sophisticated cause and effect view. In other words, we 
suggest that a child’s developmental interaction with the 
environment gradually coalesces as a core of knowledge. 
The Bayesian structure learning proposed by Sobel et al. 
(2004) may be appropriate for describing the operation and 
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development of rational processes that operate on this core 
knowledge, but it does not appear to explain how that 
knowledge arises to begin with.  

Though we did not specifically address this question here, 
we would like to speculate on a possible explanation of the 
origins of causal reasoning. It is our sentiment that 
associative learning of cause-consequence patterns is at the 
root of this ability. However, contrary to a model of 
associative learning of the kind proposed by Rescorla & 
Wagner (1972), we suggest that the learning of cause-
consequence patterns is achieved very gradually in a 
memory system where a memory self-refreshing mechanism 
becomes efficient through a developmental maturation 
process during early childhood. 
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