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Abstract: Mechanical ventilation (MV) is a life-saving intervention for respiratory failure, including
decompensated congestive heart failure. MV can reduce ventricular preload and afterload, decrease
extra-vascular lung water, and decrease the work of breathing in heart failure. The advantages
of positive pressure ventilation must be balanced with potential harm from MV: volutrauma,
hyperoxia-induced injury, and difficulty assessing readiness for liberation. In this review, we will
focus on cardiac, pulmonary, and broader effects of MV on patients with decompensated HF, focusing
on practical considerations for management and supporting evidence.
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1. Introduction

Heart failure (HF) affects over 5 million Americans and is the single most expensive diagnosis in
the U.S. health system, accounting for 5% of the total U.S. healthcare budget [1,2]. In the U.S. annually,
congestive heart failure and cardiogenic shock account for over 365,000 admissions to an intensive care
unit (ICU), 80,000 of which require MV [2–4]. As the prevalence and cost of both heart failure (HF) and
mechanical ventilation (MV) rise, adroit and nuanced management of MV is becoming increasingly
important for intensivists, cardiologists, and hospitalists alike [1,5].

MV is a life-saving intervention for decompensated congestive heart failure, however,
management must be guided by a knowledge of both the advantages and dangers of invasive MV
in order to realize its benefits and avoid adverse effects. MV should be viewed as a tool that, if
appropriately used, is a key part of the armamentarium for managing acute decompensations (Table 1).

Table 1. Recommended ventilator settings for patients with heart failure with reduced ejection fraction.

Setting Recommended Initial Ventilator Settings

PEEP
Titrate to adequate oxygenation, work of breathing, and hemodynamics.
Recommend preferential use of PEEP for oxygenation if hemodynamically beneficial.

Tidal Volume 8 cc/kg predicted body weight
FiO2 Titrate to SpO2 90%–94%. Recommend rapid de-escalation of FiO2 after intubation.
Plateau pressure Maintain below 30 cm H2O. Consider alternative diagnoses if plateau rises above 30.

Respiratory rate
In conjunction with tidal volume, titrate to maintain normal pH (7.35–7.45) and pCO2
(35–45 mm Hg)

Inattention to changing needs
Provide the minimal ventilator support to support physiologic stability. MV requires
frequent re-evaluation and titration.
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2. Positive End-Expiratory Pressure

When utilized correctly in decompensated HF, the effects of MV—specifically positive end
expiratory pressure (PEEP), inspiratory support, and supplemental oxygen—can provide substantial
advantages in left ventricular (LV) dysfunction and recovery. In decompensated HF, MV provides
numerous benefits that include decreasing cardiac afterload leading to decreased left ventricular
oxygen demand and increased cardiac output, decreasing the work of breathing which decreases
cardiac output requirements, improving hypoxia-induced pulmonary vascular constriction, and
improving oxygenation of the myocardium (Figure 1) [6].
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2.1. Positive Effects of PEEP

The use of PEEP has a number of specific benefits in the setting of decompensated HF but must
be used cautiously in selected circumstances. Increased intrathoracic pressure from PEEP decreases
venous return and lowers preload. Mechanistically, the PEEP-mediated increase in intrathoracic
pressure is transmitted to the right atrium, increasing right atrial pressure and decreasing the gradient
for venous return from outside the thorax, which results in a drop in right ventricular (RV) preload
and a corresponding decrease in LV preload, left atrial pressure, and pulmonary venous congestion [7].
PEEP has also been shown to decrease extra-vascular lung water directly by exerting pressure at the
level of the alveoli and interstitium whereby increased intrathoracic pressure opposes pulmonary
venous hydrostatic forces, resulting in movement of fluid from the alveoli and interstitium back into
the vasculature [7].

PEEP can also augment cardiac output by decreasing LV afterload. LV afterload is proportional
to LV end-diastolic volume and LV systolic transmural pressure [7]. LV systolic transmural pressure
is defined as the gradient between the intrathoracic (largely determined by pleural pressure) and
intracardiac (LV systolic) pressures. Use of PEEP increases pleural pressure, thereby reducing
transmural pressure, with a resultant reduction in LV afterload. In healthy patients, the effects
of PEEP on reducing afterload are felt to have minimal effects on CO. In contrast, CO in patients with
LV systolic dysfunction is extremely sensitive to changes in afterload making the application of PEEP
an important component of afterload optimization [8]. Clinical studies support this theory in practice;
one study demonstrated that in patients with elevated pulmonary capillary wedge pressure (PCWP)
(especially those with PCWP of >18) the initiation of PEEP led to an increase in CO [9]. Grace and
colleagues showed improvement in RAP, PCWP, and cardiac index with the application of PEEP in
patients in the surgical ICU with post-CABG LV dysfunction requiring mechanical ventilation [10].
While multiple studies have shown improvements in surrogate hemodynamic markers with the use of
PEEP in patients with heart failure with reduced ejection fraction (HFrEF), data supporting the use
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of PEEP to improve hard clinical outcomes are somewhat limited. The clinical benefits of PEEP were
suggested in a case series of 28 patients with cardiogenic shock requiring intra-aortic balloon pump
support that found that the subset of patients that were intubated and mechanically ventilated with
10 cm H2O of PEEP were more likely to survive to discharge, had improved hemodynamic indices,
and required lower doses of dobutamine than those receiving oxygen supplementation alone [9].
The potential beneficial effects of PEEP in HF can also be inferred from randomized controlled trials
examining the use of non-invasive continuous positive airway pressure (CPAP). In a large, recent
meta-analysis that examined 15 randomized, controlled trials (RCT) comparing CPAP to standard
medical management alone in patients with acute decompensated HF, Vital et al. found a 53% reduction
in the need for endotracheal intubation, shorter ICU length of stay (−1 day), and a 40% decrease in
in-hospital mortality with the use of continuous positive airway pressure ventilation [10].

2.2. Negative Effects of PEEP

Despite evidence of the potential benefits of PEEP in patients with decompensated HF, the use of
PEEP needs to be weighed against potential harms. Increasing PEEP in patients with low end-diastolic
volume can decrease venous return, resulting in inadequate preload, reduced CO, and end-organ
hypoperfusion [7]. High levels of PEEP may also increase pulmonary vascular resistance, which
may be especially important in cases of biventricular failure or right heart-predominant cardiogenic
shock [8]. Patients with decompensated HF presenting with signs of hypo- or euvolemia, such as those
with acute myocardial infarction, may be particularly susceptible to PEEP-mediated reductions in
preload and so PEEP should be increased cautiously in these populations. In addition, rapid increases
in PEEP in the setting of aggressive diuresis may contribute to transient under-filling of either ventricle
which can also precipitate hypotension.

2.3. PEEP Summary

In the early years of clinical practice with mechanical ventilation, PEEP was believed to have
a negative effect on cardiac output and tissue perfusion based on data extrapolated from animal
models without cardiac disease [6]. Over the past two decades, however, numerous studies in animal
models of HF and in patients with decompensated HF have shown that PEEP can in fact can lead
to improved LV function, cardiac output, and oxygen delivery including in those with cardiogenic
shock [11]. Current evidence is convincing that if applied judiciously, the combined effects of PEEP can
be beneficial in the management of patients with decompensated HF [7,12,13]. To maximize potential
benefits of PEEP, we recommend starting with a PEEP of 5 cm H2O with incremental increases of
2–3 cm of H2O every 15–30 min as needed, guided by careful monitoring of hemodynamics and indices
of end-organ perfusion in order to identify the optimal, non-injurious PEEP level.

3. Inspiratory Support and Tidal Volume

The inspiratory support offered by MV is an often-overlooked advantage in patients with
decompensated heart failure and cardiogenic chock in particular. When patients are in respiratory
distress, respiratory muscles can require as much as 16% of the cardiac output [6,14]. Furthermore,
patients with heart failure may achieve less than 50% of the maximal cardiac output attained by
healthy individuals under stress [15]. The inspiratory support provided by MV can unload the work
of breathing required to ventilate a less compliant, edematous lung, allowing limited cardiac output to
better meet the metabolic needs of non-pulmonary organ systems. In this regard, even small amounts
of pressure support have been shown to have profound effects with as little as 5 cm H2O of pressure
support resulting in a decrease of over 30% in the work of breathing [16].

3.1. Pulmonary Edema

Cardiogenic pulmonary edema develops when the hydrostatic pressure gradient increases
between the pulmonary capillaries and surrounding interstitial space, leading to fluid accumulating in
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the extravascular space. With elevated interstitial hydrostatic pressure, fluid enters the alveoli [17,18].
Increased capillary hydrostatic pressure occurs in pulmonary venous hypertension (e.g., as with
LV failure) and with elevated pulmonary blood flow (e.g., as with fluid overload) [17,18]. The resulting
pulmonary edema leads to decreased lung compliance, hypoxemia, and increased work of
breathing [19]. In this regard, Perlman et al. demonstrated that fluid-filled alveoli decreased in
size, placing mechanical stress on the neighboring air-filled alveoli that substantially reduced overall
lung compliance [18]. The mechanical changes in pulmonary compliance resulting from interstitial
and alveolar edema highlight the importance of providing adequate amounts of inspiratory support
to offset the metabolic demands of the associated increased work of breathing. We suggest the use
of assist controlled modes of mechanical ventilation (e.g., assist control-volume control or assist
control-pressure control) in the early phases of mechanical ventilation to provide a guaranteed amount
of inspiratory support.

3.2. Tidal Volume

While there have been limited studies specifically addressing the selection of tidal volumes for
patients with decompensated HF receiving MV, numerous studies have shown the clinical benefits of
low tidal volume ventilation between 6–8 mL per kilogram of predicted body weight (PBW) in various
disease states including the acute respiratory distress syndrome (ARDS), intraabdominal surgery, high
risk cardiac surgeries, and trauma [20–23]. While the lifesaving advantages of MV for patients with
acute respiratory failure are clear, potentially injurious effects of MV (e.g., barotrauma, volutrauma,
atelectrauma) may place patients with even relatively “healthy” lungs at increased risk for adverse
outcomes from ventilator-induced lung injury (VILI) [24]. While previous authors have suggested that
a tidal volume of ≤10 mL per kilogram of PBW is acceptable for patients without risk factors for lung
injury, we feel that the weight of clinical evidence supports the use of a target tidal volume of 6–8 mL
per kilogram of PBW for all patients receiving MV unless contraindicated by special circumstances
(e.g., severe acidemia, increased intracranial pressure) [23,25,26].

Transpulmonary pressure (TPP) is defined as the alveolar pressure minus the intrapleural pressure,
and represents the alveolar distending pressure that is “felt” by the lung [27]. Since intrapleural
pressure is not currently practical to measure in most ICUs, plateau pressure—measured during a brief
end-inspiratory hold—is used as a surrogate for TPP and measures the total static recoil forces of
the respiratory system exerted by the lungs, pleural space, chest wall, and abdomen. It is important
to recognize that a number of extrapulmonary conditions common in patients with decompensated
HF can contribute to the plateau pressure and may render the metric a poor indicator of alveolar
distention, including pleural effusions, ascites, and anasarca. It is also important to recognize that
patient effort can lead to inaccurate measurement of plateau and bedside clinicians should ensure
that patient efforts during inspiratory holds do not result in erroneous measurements. In general,
maintaining plateau pressure below 25–30 cm H2O limits the risk of barotrauma, which can result in
pneumothorax and pneumomediastinum, and limits excessive alveolar distention, which can lead to
ventilator-induced lung injury [23,24].

4. Hypoxemic Vasoconstriction and Supplemental Oxygen

Alveolar hypoxia and acidemia reduce nitric oxide production, leading to pulmonary
vasoconstriction [28]. In healthy individuals, this allows better-ventilated areas of the lung to be
perfused, thereby limiting pulmonary shunting and improving ventilation/perfusion matching [8,15].
In decompensated heart failure, edema leads to alveolar hypoxia and spontaneous alveolar collapse,
which may trigger excessive hypoxic pulmonary vasoconstriction, and consequently increased PVR
and decreased RV stroke volume. MV recruits and oxygenates collapsed alveoli via PEEP, thereby
mitigating these adverse hemodynamic effects [8,28].

Increasing the amount of supplemental oxygen, controlled by the fraction of inhaled O2 (FiO2), is
the fastest intervention to improve acute hypoxemia. Similar to the management of PEEP and tidal
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volume, excessive supplemental oxygen can lead to adverse hemodynamic consequences including
ventilation-perfusion mismatch, impaired cardiac relaxation, and increased LV filling pressures in
patients with HF independent of their ventilation and sympathetic activity [29,30]. FiO2 in excess of
50% can lead to oxygen free radical formation, which has been shown to worsen cardiac apoptosis, lead
to intracellular calcium overload, and cause cardiac hypertrophy [31,32]. In animal models, FiO2 above
50% has been shown to cause coronary vasoconstriction, decreased stroke volume and cardiac output,
and foci of myocardial necrosis [33]. A study of post-cardiac arrest patients found hyperoxia (defined
as partial pressure of oxygen greater than 300 mm Hg within one hour of arrest) was associated with
higher in-hospital mortality, postulated to be due to an increase in sensitivity to oxygen toxicity during
reperfusion [34]. Careful titration of supplemental oxygen should be used target an oxygen saturation
of 92%–96% and FiO2 should ideally be ≤50% to avoid free radical damage (Table 1).

5. Neurohumoral Modulation

Neurohormonal modulation—the balance of sympathetic and parasympathetic activity regulating
vascular tone, heart rate, and contractility—in decompensated HF is regulated by receptors in both
the heart and the lung. Sympathetic stimulation predominates in HFrEF, leading to profound
systemic vasoconstriction mediated by the renin-angiotensin system and endogenous vasopressin and
norepinephrine [35]. Positive pressure mechanical ventilation can affect neurohumoral modulation
through a variety of mechanisms: parasympathetic activity from lung stretch receptors; increased
intrathoracic pressure affecting cardiac baroreceptors; and release of endogenous norepinephrine [36].

5.1. Hering–Breueur Reflex

The Hering–Breuer reflex (i.e., pulmonary stretch receptors in smooth muscle signal the respiratory
centers in the pons and medulla to inhibit further inhalation), recently proven to be in humans,
limits excessive tidal volumes [37]. These stretch receptors stimulate parasympathetic activity with
larger breaths. Recent experience with neurally-adjusted ventilatory assist (NAVA), a mechanical
ventilation mode that uses a diaphragmatic electromyogram to detect inspiratory effort and provide
ventilator assistance synchronized with patient effort, has proven the Hering–Breuer reflex is active
in humans [38]. While this may theoretically suggest that larger tidal volumes could be beneficial in
HFrEF, no clinical data exist to support such a practice, and it is likely that the recognized benefits of
low tidal volume ventilation with regard to prevention of ventilator-induced lung injury outweigh
any potentially favorable effects of large tidal volumes on neurohormonal regulation. Furthermore,
extreme tidal volumes of >15 mL/kg of PBW have been shown to dramatically decrease heart rate and
arterial vascular tone, leading to decreased cardiac output and shock via sympathetic withdrawal [39].

5.2. Autonomic Tone

Chronic heart failure is characterized by a net increase in sympathetic nerve activity from
numerous contributing factors (both advantageous and deleterious), the predominant contributor
being cardiopulmonary baroreflex mechanisms [40,41]. In patients with chronic HF, sympathetic
outflow from lung and ventricular stretch receptors and decreased lung compliance from pulmonary
edema lead more rapid, smaller breaths [42]. The stimulation of vagal afferent receptors in the lung
with larger tidal volumes and a higher functional residual capacity is postulated to be one of the
mechanisms for reduced sympathetic activity in positive pressure ventilation [43]. The addition of
continuous positive airway pressure, analogous to the use of PEEP, has been shown by Butler et al.
to increase heart rate variability through augmentation of parasympathetic activity [44]. Frazier et al.
implicated a role for decreasing sympathetic tone with fully supported MV by showing an increase in
serum catecholamines during the decrease in ventilator support associated with spontaneous breathing
trials [45]. While more research is clearly needed, these data highlight the potential impact of MV on
neurohormonal regulation in HF.
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6. Cheyne-Stokes Respiration

Cheyne-Stokes respiration (CSR) is common in heart failure with reduced ejection fraction (HFrEF)
with an incidence of 25%–40%, correlating with disease severity [46]. CSR is a centrally-mediated abnormal
breathing pattern marked by alternating hyper- and hypo-ventilation with a crescendo-diminuendo
pattern. The cardiovascular effects of CSR are complex. CSR may be beneficial when large tidal volumes
stimulate parasympathetic activity [47]. However, CSR has also been associated with increased
sympathetic tone, apnea-related hypoxemia leading to diastolic dysfunction and arrhythmias, impaired
REM sleep, and increased mortality [48,49].

Data regarding the management of mechanical ventilation in CSR are all derived from studies
of non-invasive positive pressure ventilation (NIPPV). Despite a number of randomized, controlled
trials, however, the role of non-invasive mechanical ventilation in the management of CSR remains
unclear. The CANPAP randomized, controlled trial of CPAP in patients with HFrEF and central sleep
apnea demonstrated improved left ventricular ejection fraction (2.2% ± 5.4%), improved nocturnal
oxygenation, and lower endogenous norepinephrine levels, but no change in survival [50]. Adaptive
servo ventilation (ASV) is a form of noninvasive positive pressure ventilation designed specifically for
CSR, augmenting ventilation during hypopnea and reducing ventilatory support during tachypnea.
Kasai et al. demonstrated improved treatment compliance with ASV compared to CPAP, as well
as improved sleep quality and improvement in left ventricular ejection fraction (32.0% ± 7.9% to
37.8% ± 9.1%; p < 0.001) [51]. The SAVIOR-C study compared ASV to standard medical therapy
(not CPAP) in patient with HFrEF and an LVEF < 40%. There were no significant differences in BNP
and left ventricular ejection fraction, but quality of life and functional status improved significantly [52].
More recently, the SERVE-HF randomized controlled trial of ASV in patients with CSA and HFrEF with
an LVEF < 45% found increases in all-cause (hazard ration 1.28) and cardiovascular mortality (hazard
ration 1.34), with no improvement in quality of life or functional status [53]. The SERVE-HF study
had higher minute ventilation (>10 L per minute) and higher inspiratory pressures than SAVIOUR-C,
potentially explaining the higher rates of arrhythmia and cardiovascular death [53]. Taken together,
these data argue against the routine use of ASV in patients with chronic HFrEF.

Cheyne-Stokes Respirations in Mechanically Ventilated Patients

For patients with CSR requiring invasive MV, there is a paucity of data to guide care. Extrapolating
the logic behind ASV to invasive MV management, it is our recommendation to use modes of MV that
provide a consistent level of inspiratory support (assist control-volume control, assist control-pressure
control, or pressure support ventilation). Dynamic pressure-targeted modes such as proportional assist
ventilation, volume support, and pressure-regulated volume control, should generally be avoided in
patients with CSR since constantly changing respiratory drive may result in inappropriate ventilator
settings and patient-ventilator asynchrony. Spontaneous breathing trials may be stopped prematurely
due to apnea; therefore, it is our recommendation that apnea alarm thresholds be elongated, assuming
no associated hemodynamic instability. While the optimal management of mechanical ventilation in
CSR remains unclear, it is important to remember that treatment of heart failure with standard medical
therapies will often improve CSR.

7. Liberation and Weaning from Mechanical Ventilation

While the rapid shallow breathing index and spontaneous breathing trials (SBT) are the most
ubiquitous indices to assess readiness for extubation, not all SBTs are performed with the same
ventilator settings. In clinical practice, there is a spectrum of PEEP and pressure support levels used
while performing SBTs; from T-piece trials (performed without PEEP or supplemental ventilator
support) to “minimal ventilator settings” (often with a PEEP of 5 cm H2O and pressure support ≤8 CM
H2O). While the latter can appear to be a trivial amount of support, in patients with decompensated
HF even small amounts of pressure support and PEEP can have significant hemodynamic effects.
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Removal of seemingly minimal amounts of PEEP can result in rapid deterioration of LV function
leading to pulmonary edema [54]. Similarly, even small amounts of pressure support can have large
effects on reducing the work of breathing. For example, the addition of 5 cm H2O of pressure support
decreases inspiratory work by 31% to 38%; 10 cm H2O of pressure support decreases work by 46% to
60% [16]. In this regard, Cabello et al. compared three different levels of SBT support in patients that
had failed a previous T-piece trial and in whom pulmonary artery catheters were felt necessary for
clinical management: pressure support ventilation (PSV) with PEEP, PSV without PEEP, and T-piece.
Most patients passed the PSV and PEEP tests, whereas all failed the T-piece trial. Swan-Ganz catheter
measurements in the T-piece group indicated higher pulmonary artery occlusion pressures during the
trial [55]. In 2014 a Cochrane review examined the success of minimal support SBT versus T-piece trials
in unselected patients undergoing MV [56]. Though the authors deemed that the quality of evidence
was low due to “limitations in the design of the studies and imprecision in the effect estimates,”
the overall conclusion was that there was no difference in success of ventilation weaning, need for
reintubation, or ICU mortality. While not supported as standard practice for all patients requiring MV,
patients with impaired cardiac function require a higher threshold for extubation. For this reason, we
frequently perform spontaneous breathing trials in patients with marginal cardiac function without
any supplemental support (i.e., T-piece trial) to assess the patient’s ability to tolerate fully unsupported
breathing. T-piece trials in this patient population may reveal acute pulmonary edema, arrhythmia, or
hemodynamic instability that were not evident during minimal support trials due to the favorable
effects of PEEP and/or pressure support on preload, afterload, and work of breathing. T-piece trials in
patients with impaired cardiac function may unmask the need for further optimization of preload and
afterload, both before and after extubation, in order to prevent re-intubation.

Despite passing a spontaneous breathing test, approximately 10%–20% of patients fail and need
reintubation [57]. Reintubation is independently associated with mortality and mortality rates range
from 25%–50% in patients requiring re-intubation [57,58]. Patients older than 65 years and those with
chronic respiratory or cardiac disease are at high risk for failure [59].

7.1. Predictors of Extubation Failure

Heart failure and fluid balance are predictors of failure and should be optimized prior to planned
extubation. Cabello and colleagues identified heart failure as the cause of 42% of failures of spontaneous
breathing trials in a large cohort of medical ICU patients [55]. Another study found positive fluid
balance the day before extubation, regardless of pre-existing HF, to predict extubation failure [58].
Brain natriuretic peptide (BNP) can be used as a surrogate for detecting SBT failure due to heart failure.
A study by Zapata et al. found a BNP greater than 263 nanograms per liter or an absolute change in BNP
by greater than 48 nanograms per liter to predict SBT failure [60]. A randomized clinical trial showed
a BNP-driven fluid management protocol decreased the duration of mechanical ventilation, especially
in patients with chronic HFrEF [61]. Papanikoloau and colleagues used Doppler echocardiography
and found that E/Em ratios greater than 7.8 predicted successful extubation [62]. Ultrasound is also
used in the lung to identify the presence of B-lines—a sign of interstitial edema—which is a validated,
sensitive measure of extra-vascular lung water. Lung ultrasound has a low accuracy, but high negative
predictive value (86%) for predicting extubation failure [63]. Another, simpler modality to evaluate
for optimization of fluid status prior to liberation is the passive leg raise (PLR). The PLR establishes
preload dependence and is positive if cardiac index (CI) increases by >10% during passively raising
the lower limbs by 45 degrees [64]. A recent trial showed a negative PLR prior to SBT predicted failure
due to cardiac dysfunction with a sensitivity of 97% and specificity of 81% [64].

7.2. Optimizing Peri-Extubation Care

To prevent extubation failure in HF, non-invasive positive pressure ventilation (NIPPV) can be
applied prophylactically. Nava et al. found amongst patients at risk of re-intubation, including those
with heart failure, that the prophylactic use of NIPPV for at least 8 h per day in the first 48 h following
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extubation lead to a 10% relative risk reduction in ICU mortality, likely mediated by a reduction in
the need of reintubation [65]. Ferrer et al. decreased extubation failure and ICU mortality with early
NIPPV in patients at high risk of extubation failure [66]. It is important to note that this benefit has not
been proven in an unselected population [57]. In contrast to the prophylactic use of NIPPV in patients
at high risk of extubation failure, use of NIPPV to rescue patients with post-extubation respiratory
failure should generally be avoided in favor of prompt re-intubation. In this regard, a clinical trial by
Esteban et al. randomized unselected patients with acute respiratory failure in the 48 h after extubation
to either standard therapy (supplemental oxygen, respiratory physiotherapy, bronchodilators) or to
NIPPV [67]. There was no difference in the rate of reintubation, but there was increased mortality in
the noninvasive ventilation group.

It is the authors’ opinion that patients requiring inotropic support in whom liberation from
mechanical ventilation is being considered merit particularly close attention due to restricted ability to
increase cardiac output under physiologic stress. For this reason, we frequently perform spontaneous
breathing trials in patients with marginal cardiac function without any supplemental support
(e.g., T-piece trial) to assess the ability to tolerate fully unsupported breathing. Careful optimization
of preload, afterload, and inotropic support (in selected patients) both before and after extubation is
paramount to preventing re-intubation.

8. Conclusions

The hemodynamic benefits of MV are often-overlooked in patients with decompensated
congestive heart failure and cardiogenic shock in particular. Favorable effects of MV in acute
decompensated HF include reducing ventricular preload and afterload, decreasing extra-vascular
lung water, and decreasing the work of breathing and its associated cardiac output requirements.
The appropriate use of MV should be seen as an important adjunctive therapy in the initial stabilization
and management of patients with decompensated HF and acute respiratory failure. Patients with acute
decompensated HF require special attention to ventilator weaning and liberation from MV since HF
is well recognized as a risk factor for extubation failure and the need for re-intubation. Spontaneous
breathing trials without ventilator support (i.e., T-piece trials) may reveal the need for further medical
optimization of preload, afterload, and contractility prior to planned extubation since removal of even
a seemingly trivial amount of support can result in hemodynamic instability, flash pulmonary edema,
and rapid decompensation. Prophylactic use of non-invasive positive pressure ventilation immediately
upon extubation may prevent re-intubation in patients with marginal cardiac function but non-invasive
ventilation should not be thought of as a rescue therapy for patients who develop acute respiratory
failure after extubation since this practice has been associated with increased mortality compared to
medical therapy alone with prompt re-intubation if needed. When carefully applied, both invasive
mechanical ventilation and non-invasive positive pressure ventilation should be considered important
tools in the successful management of respiratory failure in patients with acute decompensated HF.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sheldon, R. Congestive heart failure and noninvasive positive pressure ventilation. Emerg. Med. Serv. 2005,
34, 64–67. [PubMed]

2. Barrett, M.L.; Smith, M.W.; Elixhauser, A.; Honigman, L.S.; Pines, J.M. Utilization of Intensive Care Services,
2011. Available online: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb185-Hospital-Intensive-Care-
Units-2011.pdf (accessed on 23 August 2016).

3. Esteban, A.; Anzueto, A.; Frutos, F.; Alía, I.; Brochard, L.; Stewart, T.E.; Benito, S.; Epstein, S.K.; Apezteguía, C.;
Nightingale, P.; et al. Characteristics and outcomes in adult patients receiving mechanical ventilation:
A 28-day international study. JAMA 2002, 287, 345–355. [CrossRef] [PubMed]

4. Wunsch, H.; Wagner, J.; Herlim, M.; Chong, D.H.; Kramer, A.A.; Halpern, S.D. ICU occupancy and mechanical
ventilator use in the United States. Crit. Care Med. 2013, 41, 2712–2719. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/16274176
http://www.hcup-us.ahrq.gov/reports/statbriefs/sb185-Hospital-Intensive-Care-Units-2011.pdf
http://www.hcup-us.ahrq.gov/reports/statbriefs/sb185-Hospital-Intensive-Care-Units-2011.pdf
http://dx.doi.org/10.1001/jama.287.3.345
http://www.ncbi.nlm.nih.gov/pubmed/11790214
http://dx.doi.org/10.1097/CCM.0b013e318298a139
http://www.ncbi.nlm.nih.gov/pubmed/23963122


J. Cardiovasc. Dev. Dis. 2016, 3, 33 9 of 11

5. Wunsch, H.; Linde-Zwirble, W.T.; Angus, D.C.; Hartman, M.E.; Milbrandt, E.B.; Kahn, J.M. The epidemiology
of mechanical ventilation use in the United States. Crit. Care Med. 2010, 38, 1947–1953. [CrossRef] [PubMed]

6. Miller, J.D.; Smith, C.A.; Hemauer, S.J.; Dempsey, J.A. The effects of inspiratory intrathoracic pressure
production on the cardiovascular response to submaximal exercise in health and chronic heart failure. Am. J.
Physiol Heart Circ. Physiol. 2007, 292, H580–H592. [CrossRef] [PubMed]

7. Luecke, T.; Pelosi, P. Clinical review: Positive end-expiratory pressure and cardiac output. Crit Care. 2005, 9,
607–621. [CrossRef] [PubMed]

8. Wiesen, J.; Ornstein, M.; Tonelli, A.R.; Menon, V.; Ashton, R.W. State of the evidence: Mechanical ventilation
with PEEP in patients with cardiogenic shock. Heart 2013, 99, 1812–1817. [CrossRef] [PubMed]

9. Kontoyannis, D.A.; Nanas, J.N.; Kontoyannis, S.A.; Stamatelopoulos, S.F.; Moulopoulos, S.D. Mechanical
ventilation in conjunction with the intra-aortic balloon pump improves the outcome of patients in profound
cardiogenic shock. Intensive Care Med. 1999, 25, 835–838. [CrossRef] [PubMed]

10. Grace, M.P.; Greenbaum, D.M. Cardiac performance in response to PEEP in patients with cardiac dysfunction.
Crit. Care Med. 1982, 10, 358–360. [CrossRef] [PubMed]

11. Hevrøy, O.; Reikerås, O.; Grundnes, O.; Mjøs, O.D. Cardiovascular effects of positive end-expiratory pressure
during acute left ventricular failure in dogs. Clin. Physiol. 1988, 8, 287–301. [CrossRef] [PubMed]

12. Vital, F.R.; Ladeira, M.T.; Atallah, Á.N. Non-invasive positive pressure ventilation (CPAP or bilevel NPPV)
for cardiogenic pulmonary oedema. Cochrane Libr. 2013. [CrossRef]

13. Pinsky, M.R.; Summer, W.R.; Wise, R.A.; Permutt, S.; Bromberger-Barnea, B. Augmentation of cardiac function
by elevation of intrathoracic pressure. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 54, 950–955. [PubMed]

14. Harms, C.A.; Wetter, T.J.; McClaran, S.R.; Pegelow, D.F.; Nickele, G.A.; Nelson, W.B.; Hanson, P.; Dempsey, J.A.
Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise.
J. Appl. Physiol. 1998, 85, 609–618. [PubMed]

15. Piña, I.L.; Apstein, C.S.; Balady, G.J.; Belardinelli, R.; Chaitman, B.R.; Duscha, B.D.; Fletcher, B.J.; Fleg, J.L.;
Myers, J.N.; Sullivan, M.J. Exercise and heart failure: A statement from the American Heart Association
Committee on exercise, rehabilitation, and prevention. Circulation 2003, 107, 1210–1225. [CrossRef] [PubMed]

16. Tobin, M.J. Extubation and the Myth of “Minimal Ventilator Settings”. Am. J. Respir. Crit. Care Med. 2012,
185, 349–350. [CrossRef] [PubMed]

17. Chesnutt, M.S.; Prendergast, T.J. Pulmonary Disease. In Pathophysiology of Disease: An Introduction to Clinical
Medicine, 7th ed.; McGraw-Hill Education: New York, NY, USA, 2013.

18. Perlman, C.E.; Lederer, D.J.; Bhattacharya, J. Micromechanics of alveolar edema. Am. J. Respir. Cell Mol. Biol.
2011, 44, 34–39. [CrossRef] [PubMed]

19. Butterworth, J.F.I.V.; Mackey, D.C.; Wasnick, J.D. Chapter 57. Critical Care. In Morgan & Mikhail’s Clinical
Anesthesiology, 5th ed.; The McGraw-Hill Companies: New York, NY, USA, 2013.

20. Futier, E.; Constantin, J.-M.; Paugam-Burtz, C.; Pascal, J.; Eurin, M.; Neuschwander, A.; Marret, E.;
Beaussier, M.; Gutton, C.; Lefrant, J.Y.; et al. A trial of intraoperative low-tidal-volume ventilation in
abdominal surgery. N. Engl. J. Med. 2013, 369, 428–437. [CrossRef] [PubMed]

21. Arora, S.; Singh, P.M.; Trikha, A. Ventilatory strategies in trauma patients. J. Emerg. Trauma Shock. 2014, 7,
25–31. [PubMed]

22. Romagnoli, S.; Ricci, Z. Lung protective ventilation in Cardiac Surgery. Heart Lung Vessel. 2015, 7, 5–6.
[PubMed]

23. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with
traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med.
2000, 342, 1301–1308.

24. Slutsky, A.S.; Ranieri, V.M. Ventilator-Induced Lung Injury. N. Engl. J. Med. 2013, 369, 2126–2136. [CrossRef]
[PubMed]

25. Nieman, G.F.; Gatto, L.A.; Bates, J.H.T.; Habashi, N.M. Mechanical Ventilation as a Therapeutic Tool to
Reduce ARDS Incidence. Chest 2015, 148, 1396–1404. [CrossRef] [PubMed]

26. Lipes, J.; Bojmehrani, A.; Lellouche, F. Low Tidal Volume Ventilation in Patients without Acute Respiratory
Distress Syndrome: A Paradigm Shift in Mechanical Ventilation. Crit. Care Res. Pract. 2012, 2012, 1–12.
[CrossRef] [PubMed]

27. Murphy, B.A.; Durbin, C.G. Using ventilator and cardiovascular graphics in the patient who is
hemodynamically unstable. Respir. Care 2005, 50, 262–274. [PubMed]

http://dx.doi.org/10.1097/CCM.0b013e3181ef4460
http://www.ncbi.nlm.nih.gov/pubmed/20639743
http://dx.doi.org/10.1152/ajpheart.00211.2006
http://www.ncbi.nlm.nih.gov/pubmed/16997896
http://dx.doi.org/10.1186/cc3877
http://www.ncbi.nlm.nih.gov/pubmed/16356246
http://dx.doi.org/10.1136/heartjnl-2013-303642
http://www.ncbi.nlm.nih.gov/pubmed/23539555
http://dx.doi.org/10.1007/s001340050960
http://www.ncbi.nlm.nih.gov/pubmed/10447541
http://dx.doi.org/10.1097/00003246-198206000-00002
http://www.ncbi.nlm.nih.gov/pubmed/7042203
http://dx.doi.org/10.1111/j.1475-097X.1988.tb00271.x
http://www.ncbi.nlm.nih.gov/pubmed/3042273
http://dx.doi.org/10.1002/14651858.CD005351.pub3
http://www.ncbi.nlm.nih.gov/pubmed/6853301
http://www.ncbi.nlm.nih.gov/pubmed/9688739
http://dx.doi.org/10.1161/01.CIR.0000055013.92097.40
http://www.ncbi.nlm.nih.gov/pubmed/12615804
http://dx.doi.org/10.1164/rccm.201201-0050ED
http://www.ncbi.nlm.nih.gov/pubmed/22336673
http://dx.doi.org/10.1165/rcmb.2009-0005OC
http://www.ncbi.nlm.nih.gov/pubmed/20118224
http://dx.doi.org/10.1056/NEJMoa1301082
http://www.ncbi.nlm.nih.gov/pubmed/23902482
http://www.ncbi.nlm.nih.gov/pubmed/24550626
http://www.ncbi.nlm.nih.gov/pubmed/25861585
http://dx.doi.org/10.1056/NEJMra1208707
http://www.ncbi.nlm.nih.gov/pubmed/24283226
http://dx.doi.org/10.1378/chest.15-0990
http://www.ncbi.nlm.nih.gov/pubmed/26135199
http://dx.doi.org/10.1155/2012/416862
http://www.ncbi.nlm.nih.gov/pubmed/22536499
http://www.ncbi.nlm.nih.gov/pubmed/15691395


J. Cardiovasc. Dev. Dis. 2016, 3, 33 10 of 11

28. Schultz, M.J.; Haitsma, J.J.; Slutsky, A.S.; Gajic, O. What Tidal Volumes Should Be Used in Patients without
Acute Lung Injury? Anesthesiology 2007, 106, 1226–1231. [CrossRef] [PubMed]

29. Mak, S.; Azevedo, E.R.; Liu, P.P.; Newton, G.E. Effect of hyperoxia on left ventricular function and filling
pressures in patients with and without congestive heart failure. Chest 2001, 120, 467–473. [CrossRef] [PubMed]

30. Haque, W.A.; Boehmer, J.; Clemson, B.S.; Leuenberger, U.A.; Silber, D.H.; Sinoway, L.I. Hemodynamic effects of
supplemental oxygen administration in congestive heart failure. J. Am. Coll Cardiol. 1996, 27, 353–357. [CrossRef]

31. Jackson, R.M. Pulmonary oxygen toxicity. Chest 1985, 88, 900–905. [CrossRef] [PubMed]
32. Nakamura, K.; Murakami, M.; Miura, D.; Yunoki, K.; Enko, K.; Tanaka, M.; Saito, Y.; Nishii, N.; Miyoshi, T.;

Yoshida, M.; et al. Beta-Blockers and Oxidative Stress in Patients with Heart Failure. Pharmaceuticals 2011, 4,
1088–1100. [CrossRef] [PubMed]

33. Lodato, R.F. Effects of Normobaric hyperoxia on Hemodynamics and O2 Utilization in Conscious Dogs. In
Oxygen Transport to Tissue XII; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA,
1990; Volume 277, pp. 807–815.

34. Ball, J.; Ranzani, O.T. Hyperoxia following cardiac arrest. Intensive Care Med. 2015, 41, 534–536. [CrossRef]
[PubMed]

35. Shepherd, J.T. The lungs as receptor sites for cardiovascular regulation. Circulation 1981, 63, 1–10. [CrossRef]
[PubMed]

36. Floras, J.S. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J. Am.
Coll. Cardiol. 1993, 22, 72A–84A. [CrossRef]

37. Leiter, J.C.; Manning, H.L. The Hering-Breuer reflex, feedback control, and mechanical ventilation: The
promise of neurally adjusted ventilatory assist. Crit. Care Med. 2010, 38, 1915–1916. [CrossRef] [PubMed]

38. Terzi, N.; Pelieu, I.; Guittet, L.; Ramakers, M.; Seguin, A.; Daubin, C.; Charbonneau, P.; du Cheyron, D.; Lofaso, F.
Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress
syndrome: Physiological evaluation. Crit. Care Med. 2010, 38, 1830–1837. [CrossRef] [PubMed]

39. Shekerdemian, L.; Bohn, D. Cardiovascular effects of mechanical ventilation. Arch. Dis Child. 1999, 80,
475–480. [CrossRef] [PubMed]

40. Madamanchi, A. β-Adrenergic receptor signaling in cardiac function and heart failure. McGill J. Med. 2007,
10, 99–104. [PubMed]

41. Floras, J.S. Sympathetic nervous system activation in human heart failure: Clinical implications of an updated
model. J. Am. Coll. Cardiol. 2009, 54, 375–385. [CrossRef] [PubMed]

42. Goso, Y.; Asanoi, H.; Ishise, H.; Kameyama, T.; Hirai, T.; Nozawa, T.; Takashima, S.; Umeno, K.; Inoue, H.
Respiratory modulation of muscle sympathetic nerve activity in patients with chronic heart failure.
Circulation 2001, 104, 418–423. [CrossRef] [PubMed]

43. Bernardi, L.; Spadacini, G.; Bellwon, J.; Hajric, R.; Roskamm, H.; Frey, A.W. Effect of breathing rate on oxygen
saturation and exercise performance in chronic heart failure. Lancet 1998, 351, 1308–1311. [CrossRef]

44. Butler, G.C.; Naughton, M.T.; Rahman, M.A.; Bradley, T.D.; Floras, J.S. Continuous positive airway pressure
increases heart rate variability in congestive heart failure. J. Am. Coll. Cardiol. 1995, 25, 672–679. [CrossRef]

45. Frazier, S.K.; Moser, D.K.; Schlanger, R.; Widener, J.; Pender, L.; Stone, K.S. Autonomic tone in medical
intensive care patients receiving mechanical ventilation and during a CPAP weaning trial. Biol. Res. Nurs.
2008, 9, 301–310. [CrossRef] [PubMed]

46. Cowie, M.R.; Woehrle, H.; Wegscheider, K.; Angermann, C.; d’Ortho, M.P.; Erdmann, E.; Levy, P.;
Simonds, A.K.; Somers, V.K.; Zannad, F.; et al. Adaptive Servo-Ventilation for Central Sleep Apnea in
Systolic Heart Failure. N. Engl. J. Med. 2015, 373, 1095–1105. [CrossRef] [PubMed]

47. Naughton, M.T. Respiratory sleep disorders in patients with congestive heart failure. J. Thorac. Dis. 2015, 7,
1298–1310. [PubMed]

48. Naughton, M.T. Pathophysiology and treatment of Cheyne-Stokes respiration. Thorax 1998, 53, 514–518.
[CrossRef] [PubMed]

49. Lanfranchi, P.A.; Braghiroli, A.; Bosimini, E.; Mazzuero, G.; Colombo, R.; Donner, C.F.; Giannuzzi, P.
Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. Circulation 1999, 99,
1435–1440. [CrossRef] [PubMed]

50. Bradley, T.D.; Logan, A.G.; Kimoff, R.J.; Sériès, F.; Morrison, D.; Ferguson, K.; Belenkie, I.; Pfeifer, M.;
Fleetham, J.; Hanly, P.; et al. Continuous positive airway pressure for central sleep apnea and heart failure.
N. Engl. J. Med. 2005, 353, 2025–2033. [CrossRef] [PubMed]

http://dx.doi.org/10.1097/01.anes.0000267607.25011.e8
http://www.ncbi.nlm.nih.gov/pubmed/17525599
http://dx.doi.org/10.1378/chest.120.2.467
http://www.ncbi.nlm.nih.gov/pubmed/11502645
http://dx.doi.org/10.1016/0735-1097(95)00474-2
http://dx.doi.org/10.1378/chest.88.6.900
http://www.ncbi.nlm.nih.gov/pubmed/3905287
http://dx.doi.org/10.3390/ph4081088
http://www.ncbi.nlm.nih.gov/pubmed/26791643
http://dx.doi.org/10.1007/s00134-015-3660-1
http://www.ncbi.nlm.nih.gov/pubmed/25631813
http://dx.doi.org/10.1161/01.CIR.63.1.1
http://www.ncbi.nlm.nih.gov/pubmed/7002358
http://dx.doi.org/10.1016/0735-1097(93)90466-E
http://dx.doi.org/10.1097/CCM.0b013e3181ee355d
http://www.ncbi.nlm.nih.gov/pubmed/20724892
http://dx.doi.org/10.1097/CCM.0b013e3181eb3c51
http://www.ncbi.nlm.nih.gov/pubmed/20639752
http://dx.doi.org/10.1136/adc.80.5.475
http://www.ncbi.nlm.nih.gov/pubmed/10208959
http://www.ncbi.nlm.nih.gov/pubmed/18523538
http://dx.doi.org/10.1016/j.jacc.2009.03.061
http://www.ncbi.nlm.nih.gov/pubmed/19628111
http://dx.doi.org/10.1161/hc2901.093111
http://www.ncbi.nlm.nih.gov/pubmed/11468203
http://dx.doi.org/10.1016/S0140-6736(97)10341-5
http://dx.doi.org/10.1016/0735-1097(94)00427-R
http://dx.doi.org/10.1177/1099800408314707
http://www.ncbi.nlm.nih.gov/pubmed/18398225
http://dx.doi.org/10.1056/NEJMoa1506459
http://www.ncbi.nlm.nih.gov/pubmed/26323938
http://www.ncbi.nlm.nih.gov/pubmed/26380758
http://dx.doi.org/10.1136/thx.53.6.514
http://www.ncbi.nlm.nih.gov/pubmed/9713454
http://dx.doi.org/10.1161/01.CIR.99.11.1435
http://www.ncbi.nlm.nih.gov/pubmed/10086966
http://dx.doi.org/10.1056/NEJMoa051001
http://www.ncbi.nlm.nih.gov/pubmed/16282177


J. Cardiovasc. Dev. Dis. 2016, 3, 33 11 of 11

51. Kasai, T.; Kasagi, S.; Maeno, K.-I.; Dohi, T.; Kawana, F.; Kato, M.; Naito, R.; Ishiwata, S.; Ohno, M.;
Yamaguchi, T.; et al. Adaptive servo-ventilation in cardiac function and neurohormonal status in
patients with heart failure and central sleep apnea nonresponsive to continuous positive airway pressure.
JACC Heart Fail. 2013, 1, 58–63. [CrossRef] [PubMed]

52. Momomura, S.-I.; Seino, Y.; Kihara, Y.; Adachi, H.; Yasumura, Y.; Yokoyama, H.; Wada, H.; Ise, T.; Tanaka, K.
Adaptive servo-ventilation therapy for patients with chronic heart failure in a confirmatory, multicenter,
randomized, controlled study. Circ. J. 2015, 79, 981–990. [CrossRef] [PubMed]

53. Cowie, M.R.; Wegscheider, K.; Teschler, H. Adaptive Servo-Ventilation for Central Sleep Apnea in Heart
Failure. N. Engl. J. Med. 2016, 374, 690–691. [CrossRef] [PubMed]

54. Lemaire, F.; Teboul, J.L.; Cinotti, L.; Giotto, G.; Abrouk, F.; Steg, G.; Macquin-Mavier, I.; Zapol, W.M. Acute
left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 1988,
69, 171–179. [CrossRef] [PubMed]

55. Cabello, B.; Thille, A.W.; Roche-Campo, F.; Brochard, L.; Gómez, F.J.; Mancebo, J. Physiological comparison
of three spontaneous breathing trials in difficult-to-wean patients. Intensive Care Med. 2010, 36, 1171–1179.
[CrossRef] [PubMed]

56. Ladeira, M.T.; Vital, F.M.R.; Andriolo, R.B.; Andriolo, B.N.G.; Atallah, Á.N.; Peccin, M.S. Weaning from
mechanical ventilation using pressure support or a T-tube for a spontaneous breathing trial. Cochrane Database
Syst Rev. 2014, 5. [CrossRef]

57. Thille, A.W.; Richard, J.-C.M.; Brochard, L. The decision to extubate in the intensive care unit. Am. J. Respir.
Crit. Care Med. 2013, 187, 1294–1302. [CrossRef] [PubMed]

58. Frutos-Vivar, F.; Ferguson, N.D.; Esteban, A.; Epstein, S.K.; Arabi, Y.; Apezteguía, C.; González, M.; Hill, N.S.;
Nava, S.; D’Empaire, G.; et al. Risk Factors for Extubation Failure in Patients Following a Successful
Spontaneous Breathing Trial. Chest 2006, 130, 1664–1671. [CrossRef] [PubMed]

59. Thille, A.W.; Boissier, F.; Ben-Ghezala, H.; Razazi, K.; Mekontso-Dessap, A.; Brun-Buisson, C.; Brochard, L.
Easily identified at-risk patients for extubation failure may benefit from noninvasive ventilation:
A prospective before-after study. Crit. Care. 2016, 20, 48. [CrossRef] [PubMed]

60. Zapata, L.; Vera, P.; Roglan, A.; Gich, I.; Ordonez-Llanos, J.; Betbesé, A.J. B-type natriuretic peptides for
prediction and diagnosis of weaning failure from cardiac origin. Intensive Care Med. 2010, 37, 477–485.
[CrossRef] [PubMed]

61. Mekontso-Dessap, A.; Roche-Campo, F.; Kouatchet, A.; Tomicic, V.; Beduneau, G.; Sonneville, R.; Cabello, B.;
Jaber, S.; Azoulay, E.; Castanares-Zapatero, D.; et al. Natriuretic peptide-driven fluid management during
ventilator weaning: A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2012, 186, 1256–1263.
[CrossRef] [PubMed]

62. Papanikolaou, J.; Makris, D.; Saranteas, T.; Karakitsos, D.; Zintzaras, E.; Karabinis, A.; Kostopanagiotou, G.;
Zakynthinos, E. New insights into weaning from mechanical ventilation: Left ventricular diastolic
dysfunction is a key player. Intensive Care Med. 2011, 37, 1976–1985. [CrossRef] [PubMed]

63. Soummer, A.; Perbet, S.; Brisson, H.; Arbelot, C.; Constantin, J.M.; Lu, Q.; Rouby, J.J.; Bouberima, M.;
Roszyk, L.; Bouhemad, B.; et al. Ultrasound assessment of lung aeration loss during a successful weaning
trial predicts postextubation distress. Crit. Care Med. 2012, 40, 2064–2072. [CrossRef] [PubMed]

64. Dres, M.; Teboul, J.-L.; Anguel, N.; Guerin, L.; Richard, C.; Monnet, X. Passive leg raising performed before
a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Med. 2015, 41,
487–494. [CrossRef] [PubMed]

65. Nava, S.; Gregoretti, C.; Fanfulla, F.; Squadrone, E.; Grassi, M.; Carlucci, A.; Beltrame, F.; Navalesi, P.
Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit. Care Med.
2005, 33, 2465–2470. [CrossRef] [PubMed]

66. Ferrer, M.; Valencia, M.; Nicolas, J.M.; Bernadich, O.; Badia, J.R.; Torres, A. Early Noninvasive Ventilation Averts
Extubation Failure in Patients at Risk. Am. J. Respir. Crit. Care Med. 2006, 173, 164–170. [CrossRef] [PubMed]

67. Esteban, A.; Frutos-Vivar, F.; Ferguson, N.D.; et al. Noninvasive Positive-Pressure Ventilation for Respiratory
Failure after Extubation. N. Engl. J. Med. 2004, 350, 2452–2460. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jchf.2012.11.002
http://www.ncbi.nlm.nih.gov/pubmed/24621799
http://dx.doi.org/10.1253/circj.CJ-15-0221
http://www.ncbi.nlm.nih.gov/pubmed/25912560
http://dx.doi.org/10.1056/NEJMoa1506459
http://www.ncbi.nlm.nih.gov/pubmed/26886528
http://dx.doi.org/10.1097/00000542-198808000-00004
http://www.ncbi.nlm.nih.gov/pubmed/3044189
http://dx.doi.org/10.1007/s00134-010-1870-0
http://www.ncbi.nlm.nih.gov/pubmed/20352189
http://dx.doi.org/10.1002/14651858.CD006056.pub2
http://dx.doi.org/10.1164/rccm.201208-1523CI
http://www.ncbi.nlm.nih.gov/pubmed/23641924
http://dx.doi.org/10.1378/chest.130.6.1664
http://www.ncbi.nlm.nih.gov/pubmed/17166980
http://dx.doi.org/10.1186/s13054-016-1228-2
http://www.ncbi.nlm.nih.gov/pubmed/26926168
http://dx.doi.org/10.1007/s00134-010-2101-4
http://www.ncbi.nlm.nih.gov/pubmed/21152896
http://dx.doi.org/10.1164/rccm.201205-0939OC
http://www.ncbi.nlm.nih.gov/pubmed/22997204
http://dx.doi.org/10.1007/s00134-011-2368-0
http://www.ncbi.nlm.nih.gov/pubmed/21976188
http://dx.doi.org/10.1097/CCM.0b013e31824e68ae
http://www.ncbi.nlm.nih.gov/pubmed/22584759
http://dx.doi.org/10.1007/s00134-015-3653-0
http://www.ncbi.nlm.nih.gov/pubmed/25617264
http://dx.doi.org/10.1097/01.CCM.0000186416.44752.72
http://www.ncbi.nlm.nih.gov/pubmed/16276167
http://dx.doi.org/10.1164/rccm.200505-718OC
http://www.ncbi.nlm.nih.gov/pubmed/16224108
http://dx.doi.org/10.1056/NEJMoa032736
http://www.ncbi.nlm.nih.gov/pubmed/15190137
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Positive End-Expiratory Pressure 
	Positive Effects of PEEP 
	Negative Effects of PEEP 
	PEEP Summary 

	Inspiratory Support and Tidal Volume 
	Pulmonary Edema 
	Tidal Volume 

	Hypoxemic Vasoconstriction and Supplemental Oxygen 
	Neurohumoral Modulation 
	Hering–Breueur Reflex 
	Autonomic Tone 

	Cheyne-Stokes Respiration 
	Liberation and Weaning from Mechanical Ventilation 
	Predictors of Extubation Failure 
	Optimizing Peri-Extubation Care 

	Conclusions 



