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Abstract of the Dissertation 
 

Genome-wide analysis of NIPBL/cohesin binding in mouse and human cells: 

Implications for gene regulation and human disease 

by 

Daniel Newkirk 

Doctor of Philosophy in Biomedical Sciences 

 University of California, Irvine, 2014  

Professor Kyoko Yokomori, Chair  

 
 
 One of the most powerful tools to arrive in biology in the past decade is high-

throughput sequencing, such as Illumina sequencing.  These platforms have allowed an 

unparalleled look at protein-chromatin interactions, mRNA expression, chromatin 

topology, and a great deal more.  Our lab has successfully used these tools to better 

understand the distribution of cohesin and Nipbl binding in mouse and human cells, with 

the aim of further clarifying how cohesin and Nipbl regulate gene expression and what 

genes they regulate.  Moreover, we have been able to identify how this binding can 

change in disease, and correlate these changes with the corresponding gene expression 

changes taking place in vivo.  Careful analysis of ChIP-seq data (chromatin 

immunoprecipitation coupled with sequencing) has indicated that cohesin binding 

decreases genome-wide in mouse embryonic fibroblasts (MEFs) derived from a mouse 

model for Cornelia de Lange Syndrome (CdLS).  In fact, cohesin’s role in gene activation 

is most susceptible to Nipbl haploinsufficiency.  Moreover, we find that decreased 

cohesin binding is correlated with the gene expression changes taking place between 
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wildtype and mutant MEFs.  Enhancer-promoter interactions, one mechanism by which 

cohesin can regulate gene expression, are decreased in the mutant MEFs.  Our studies 

have helped characterize how Nipbl haploinsufficiency affects cohesin binding, and 

suggest how this effect on cohesin binding can affect gene expression in the context of 

CdLS. 

 

 Based on the increased severity of the disease phenotype of CdLS patients with 

mutations in NIPBL versus mutations in the cohesin subunits, it was postulated that 

NIPBL might have cohesin-independent functions in the cell.  To examine this, we have 

used ChIP-seq in human cells to identify the global distribution of NIPBL-chromatin 

interactions.  We found that, similar to cohesin, NIPBL is enriched at the promoter 

region.  In contrast to other studies however, we found that NIPBL is present at sites also 

bound by cohesin and CTCF.  While most NIPBL –bound regions are shared with 

cohesin, about 10% of these sites are free of cohesin and CTCF.  Further examination of 

the cohesin-free sites show 273 genes where NIPBL is bound at the promoter, and could 

be direct genes targets.  Of these, 73 are differentially expressed upon siRNA depletion of 

NIPBL, two of which were examined in detail to show that NIPBL normally represses 

the expression of these genes independently of cohesin, which is the first time any ability 

of NIPBL to repress gene expression has been shown.  Taken together, our data indicate 

that mutations in NIPBL may indeed effect expression of NIPBL target genes, suggesting 

that this may explain in part the differences in disease severity in CdLS patients. 
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 Over the past decade, our lab has examined the importance of intact 

heterochromatin on chromosome 4q in FSHD muscular dystrophy.  While we have 

shown that the loss of cohesin and H3K9me3 present at the D4Z4 repeat array on 

chromosome 4q is characteristic of the disease, and may underlie expression changes 

seen in patient myoblasts in vivo, the global differences in heterochromatin in FSHD 

have not been previously studied.  Therefore, we have used several sequencing 

techniques to identify the genome-wide changes to heterochromatin and gene expression 

in FSHD, with the intent of being able to identify disease-specific signatures and 

illuminate the interdependence of the two in disease.  
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Chapter 1 

Introduction 
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1.1 The cohesin complex 

The cohesin complex is an evolutionarily conserved, essential protein complex 

composed of the Structural Maintenance of Chromosomes proteins (SMCs) SMC1 and 

SMC3. It also contains the non-SMC subunits RAD21 and SA1 or SA2 (in the case of 

mammals; Saccharomyces only contain one homolog, Scc3).  The cohesin complex is 

highly conserved in eukaryotes, and has homologs in bacteria [1].  Structurally, the 

cohesin complex forms a ring-shape, allowing it to encircle chromatin.  Each SMC 

subunit is characterized by a long coiled-coil domain on either side of a central hinge 

domain, and an ATPase head domain; the protein folds in half at the hinge region, 

allowing the globular domains containing Walker A (N-terminal) and Walker B (C-

terminal) motifs to form the ATPase head domain [2-4].  The SMC1 and SMC3 proteins 

then form a heterodimer through interactions between their hinge domains.  The protein 

RAD21, which interacts with the head domains of SMC1 and SMC3, closes the ring 

while the SA subunits are bound to RAD21 (Figure 1.1). 

 

 Cohesin’s canonical role is to mediate sister chromatid cohesion.  It binds both 

sister chromatids along their entire length and holds the pair together.  Separation of the 

sister chromatids takes place in two steps.  In the first, more than 90% of the cohesin 

bound to chromosomes is released during prophase from the arms of the chromosomes.   

While it isn’t entirely clear how cohesin is released from the chromosome arms, data 

shows that the phosphorylation of the RAD21 and SA1/SA2 subunits by Plk1 is required 

for separation, and is also dependent on Aurora B kinase and WAPL.  Centromeric 

cohesin is protected from this phosphorylation by the Sgo1-PP2A complex.  For the 
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second step, cohesin’s RAD21 subunit is cleaved by the protease separase, and the 

remaining cohesin located at the centromere dissociates during anaphase.  Dissociation of 

cohesin is also dependent on the acetylation of SMC3.  Moreover, the dissociation of the 

cleaved form of RAD21 after cleavage by separase requires the deacetylation activity of 

HDAC8 [5]. 

 

  Inactivation of cohesin or regulators of cohesin results in precocious sister 

chromatid cohesion, while depletion of WAPL, SGO1, PLK1, HDAC8, and Aurora B 

kinase results in unresolved chromatids (Figure 1.3).  Sister chromatid cohesion defects 

can increase genome instability, and have been associated with some forms of disease, 

including cancer and Robert’s Syndrome.  As genome instability has been thought to be a 

hallmark of cancer, mutation of cohesin and other factors may be one of the critical 

components to cancer development and progression [6, 7]. 

 

1.1.1 Cohesin regulates gene expression 

While the canonical role for cohesin is sister chromatid cohesion, other roles for 

cohesin have been identified as well.  These include roles in DNA replication, DNA 

repair, and gene regulation (reviewed in [8]).  Many recent studies have focused on 

exploring cohesin’s role in gene regulation, and this work will also focus on this role 

primarily. 
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1.1.2 Cohesin as an activator and repressor 

Cohesin has been shown to affect gene expression in three different contexts: 

gene activation, gene silencing, and insulation.  Evidence for cohesin’s role in gene 

regulation stems from multiple organisms, from yeast to flies to humans, though there are 

differences in how cohesin functions from organism to organism.  The role of cohesin in 

each of these expression contexts can be cell-type specific and is critical for development.   

 

1.1.3 Cohesin regulates expression of genes with RNAPII pausing 

In the 1970s, studies began to show that elongation could be a rate-limiting step in 

gene expression.  They found that initiation of transcription did not always lead to 

elongation, suggesting that there was some sort of barrier present [9, 10].  In more recent 

years, this phenomenon has been further characterized as pausing of RNA Polymerase II 

(RNAPII), where initiation occurs normally, but the polymerase pauses downstream of 

the transcription start site (often within the first 100 nucleotides) [11-13].  Recent 

publications of genome-wide ChIP-seq data show uneven distributions of RNAPII along 

the gene body, with larger peaks near the transcription start site being common.  Factors 

such as the NELF complex (negative elongation factor) and Spt5 have been shown to be 

sufficient to induce pausing of RNAPII in purified systems.  Surprisingly, Nipbl has been 

found at—and predictive of—NELF bound genes in Drosophila [14].  Further study 

revealed that although cohesin was not required for RNAPII pausing, it regulated the 

expression of these genes; depletion of both NELF and cohesin showed increased 

transcript levels as compared to depletion of either alone, suggesting the two worked in 

concert [14].  Since cohesin depletion had no effect on either initiation or transcription of 
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these genes, it was thought that cohesin regulates expression after the pausing occurs.  

While there is good evidence for the interaction of cohesin and NELF in Drosophila, it is 

unclear yet how similar a role cohesin may play in mammals. 

 

1.1.4 Cohesin cooperates with CTCF at insulator boundaries 

Insulator boundaries serve to divide the genome into active and inactive domains 

in higher eukaryotes, can limit or regulate promoter and enhancer interactions, and can 

limit the spread of heterochromatin [15-18].  One protein that is central to insulator 

function is the zinc finger protein CTCF, a sequence-specific transcription factor that is 

ubiquitously expressed and essential [19] (reviewed in [18]).  CTCF has been shown to 

block the communication between enhancers and promoters and prevent transcriptional 

activation [15, 17, 20], and is capable of mediating chromatin looping between its 

binding sites [16, 21].  Intriguingly, cohesin was shown to overlap with CTCF at many of 

its binding sites [22-25], with CTCF able to directly interact with the SA1 subunit of 

cohesin and recruit cohesin to many of its binding sites genome wide.  Even though 

CTCF and cohesin may not always co-localize directly, the sequence-binding motif for 

CTCF can be found in at most cohesin binding sites [22]. 

 

Cohesin has been shown to be important for the insulator function of CTCF.   

More than merely co-localizing, CTCF may require cohesin’s ability to encircle 

chromatin and maintain chromatin interactions to establish its insulator function [22].  

Conversely, because cohesin does not appear to bind specific sequences on its own, it 

requires CTCF to recruit it to insulator boundaries for their establishment.  While CTCF 
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and cohesin are capable of establishing and maintaining insulator boundaries, the process 

of distant regions of chromatin coming into close three-dimensional proximity for this to 

occur remains an area of active investigation. 
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Figure 1.1. Cohesin structure and function 

A. Cohesin is composed of SMC1, SMC3, RAD21, and SA proteins. 

B. Two models for how cohesin interacts with chromatin, either the embrace model 

(left), or the handcuff model (right) 

C. The domain layout of the SMC proteins.  
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Figure adapted from Chien et. al. [8] 
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Figure 2.2. Cohesin can mediate long-range chromatin interactions. 

Cohesin has the ability to regulate gene expression through mediating long-distance 

chromatin interactions.  Two forms of these interactions, namely insulator loop formation 

(left) and enhancer and promoter interactions (right) are illustrated here. 
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Figure adapted from Dorsett et. al. [26] 
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1.2 NIPBL 

 

1.2.1 The Nipbl and Mau2 heterodimer 

NIPBL is a large, 315 kd protein whose canonical function is in loading cohesin 

onto chromatin.  The NIPBL gene contains 47 exons, with two primary isoforms (A and 

B), though others isoforms are likely to exist [27, 28].  MAU2 forms a heterodimer with 

NIPBL, and like NIPBL is required for loading of cohesin onto chromatin [29].  Both 

NIPBL and MAU2 are conserved across species, with orthologs of NIPBL in fission 

yeast (Mis4), drosophila (Nipped-B), and zebrafish (nipbl) [30-33]; some orthologs for 

Mau2 have also been more recently characterized [34, 35].  Mau2 interacts with the N-

terminal portion of NIPBL, and study of mutations in the NIPBL interaction region in 

disease—such as in the case of Cornelia de Lange Syndrome (CdLS)—suggest a 

detrimental effect of disrupting Nipbl-Mau2 interactions on cohesin loading [36]. 

 

 NIPBL contains other important domains aside from where it interacts with 

Mau2.  NIPBL contains a protein binding motif for HP1 [37], HDAC1/3 [38], and a 

series of HEAT repeats (cohesin and a related complex condensin also contain heat 

repeats) [28, 39].  These motifs are thought to be able to wrap around substrates and serve 

as scaffolding [40].  The varieties of proteins that contain these HEAT repeats suggest 

that they may be important for chromosome dynamics and function. 
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1.2.2 Nipbl and Mau2 load the cohesin complex onto chromatin 

 The cohesin complex is loaded at the end of telophase in mammals, and requires 

the heterodimer of Nipbl and Mau2 (Scc2-Scc4 in yeast) [29, 41].  Just how Nipbl and 

Mau2 facilitate the loading of cohesin is unclear.  Nipbl and Mau2 were shown to interact 

with cohesin in yeast [42, 43], and cohesin is unable to stably associate with chromatin 

when either of them is impaired—thereby preventing sister chromatid cohesion.  The 

heterodimer interacts with the cohesin complex at all four subunits, at places thought to 

be important for cohesin’s function [44]; interactions between Nipbl-Mau2 and the SMC 

subunits were less critical to cohesin loading than were those with the SA subunit.  Also 

necessary to cohesin’s loading was ATP hydrolysis, with either mutation of the Walker 

A/B motif or lack of ATP preventing interaction with DNA in vitro [42, 44]. 

 

 

 

 

 

 

 

 

 

 

 

 



	
   13	
  

1.3 Cornelia de Lange Syndrome 

Cornelia de Lange Syndrome (CdLS) (OMIM #122470, #300590 and #610759) is 

a multi-phenotypic developmental disorder that affects many different organ systems.  It 

occurs at a frequency of 1:10,000 to 1:30,000 individuals, and is characterized in part by 

craniofacial, neurological, gastrointestinal, and heart defects, as well as limb deformity 

[26, 28].  Initial descriptions of patients with CdLS occurred in the mid 19th century and 

early 20th [45, 46], with subsequent work categorizing the clinical phenotypes common to 

these patients.  Individuals with CdLS can show a wide range of severities (Figure 1.2), 

with some probands showing severe craniofacial defects, limb deformity, and behavioral 

issues, and others showing only minor facial and limb effects [47].  More than 65% of the 

studied cases of CdLS have mutations in NIPBL, SMC1, or SMC3 [47], with more recent 

research also implicating mutations in HDAC8 [5].  Mutations in the cohesin subunit 

RAD21 also result in CdLS-like phenotypes, particularly limb deformity, while having 

little to no cognitive defects [48].  Even after identification of these causative mutations, 

a substantial percentage of CdLS cases still have undefined causes. 

 

CdLS is caused by mutations in NIPBL in more than 65% of cases studied [28, 

39].  There are many different mutations that can occur in NIPBL (reviewed in [49]), with 

278 different heterozygous mutations having been discovered so far.  Since NIPBL is an 

essential protein, mutations are typically heterozygous, with mutations in both alleles 

believed to be embryonic lethal in humans and mice [50].  Typically, individuals with 

CdLS have less than a 30% reduction of NIPBL mRNA transcripts, but even a 15% 

reduction produces clinical phenotypes [28, 39].  The resulting effect is 
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haploinsufficiency, with the intact allele for NIPBL being unable to supply enough 

transcript/protein even after increased transcription to compensate [50]. 

 

 Mutations in proteins other than NIPBL are less frequent in CdLS patients than 

those in NIPBL itself.  The SMC proteins 1 and 3 have been found to have mutations 

(only one proband in the case of SMC3) in roughly 5% of cases.  Unlike mutations in 

NIPBL, patients with mutations in SMC1A show no difference in SMC1A transcript or 

protein levels [47, 51].  Moreover, inclusion of the mutated proteins into the holo-

complex is unaffected [52].  It has been suggested that the SMC1A mutations function as 

a dominant negative, with the complexes containing the mutant SMC1A subunits having 

higher affinity for chromatin, and the potential to interfere with biological processes [51].  

The SMC3 mutation is a small, in-frame deletion, and its pathogenic mechanism is 

unclear [49].  Lastly, patients with mutations in HDAC8 have been identified, with the 

mutated versions of HDAC8 incapable of deacetylating SMC3 during S-phase and 

thereby inhibiting cohesin availability after cell division [5]. 

 

1.3.1 Cornelia de Lange Syndrome is linked to gene dysregulation 

 Although NIPBL is important for the loading of cohesin onto chromatin, it was 

discovered early on that there was no significant effect of the NIPBL haploinsufficiency 

on sister chromatid cohesion [30, 50, 53, 54].  This led to the hypothesis that the 

developmental defects present in CdLS are a result of gene dysregulation.  This 

hypothesis was further supported by work done in a mouse model and in zebrafish [33, 

50].  Our own data suggests that it is primarily cohesin’s ability to affect gene activation 
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that is most susceptible to the NIPBL haploinsufficiency (Chapter 3).  Since cohesin is 

important for establishing long-range chromatin interactions, many of these genes may be 

disregulated by disruption of enhancer-promoter interactions, evidence of which has been 

shown in mice (Chapter 3, [55, 56]).  Other groups have studied the gene expression 

profiles of patients, indicating a large of number of genes are misregulated in patients in a 

manner consistent with that seen in the mouse model [54].  Intriguingly, the gene 

expression changes in either patients or in the mouse model are small, with less than ~4 

fold differences [50, 54].  This has led to the hypothesis that the phenotypic severity is 

not due to the dramatic differences in the expression of the cohesin target genes, but is a 

result of collective effects of subtle misregulation of many genes [50].  More on this 

discussion can be found in Chapter 3. 
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Figure 1.3. Patients with CdLS show a range of severity 

The figure below indicates the range of phenotypic severity in patients with CdLS.  Some 

patients show less severe craniofacial defects and limb deformity (E, F, G, H), whereas 

others show more severe effects (A, B, C, D). 
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Figure adapted from Mannini et. al. [49] 
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1.4 FacioScapuloHumeral Muscular Dystrophy 

FacioScapuloHumeral Muscular Dystrophy (FSHD) is one of the most common 

forms of muscular dystrophy in the United States, with a prevalence of between 1:14,000 

and 1:20,000 [57-60].  An autosomal dominant disease, it is characterized by the 

progressive atrophy of the facial and shoulder muscles, with severe cases showing 

atrophy of the trunk and leg muscles [61] (see figure 1.1).  The age of onset for FSHD 

ranges from infancy to middle age, with most patients presenting symptoms in their 

twenties to thirties [62, 63].  While the primary disease phenotype of FSHD is atrophy of 

skeletal muscle, secondary phenotypes including hearing loss and retinal vascular disease 

have been identified in rare cases [64-66]. 

 

There are two forms of FSHD.  The first is referred to as 4q-linked, or FSHD1 

(OMIM: 158900), and is characterized by a mono-allelic contraction of the D4Z4 

subtelomeric macrosatellite repeat array on chromosome 4q35 [67].  A majority of FSHD 

patients (~95%) have the 4q-linked form of the disease [68].  A minority of patients has 

an alternate form of FSHD termed phenotypic FSHD or FSHD2 (OMIM: 158901).  

FSHD2 is phenotypically indistinguishable from FSHD1, but does not have the D4Z4 

repeat contraction on chromosome 4q35.  Instead, 80% of FSHD2 cases in a particular 

study showed mutations in an SMC homolog SMCHD1 [68] (see section 1.2.1 for further 

discussion).  Under normal conditions, individuals have between 11-150 D4Z4 repeats, 

while in FSHD1 fewer than 10 repeats remain [67]; at least one repeat is required 

however.  Interestingly, there appears to be some correlation between the severity of the 

disease in FSHD1 patents and the number of remaining repeats; patients with 3 or fewer 
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repeats show more severe phenotypes, while those with more than 3 tend to have milder 

phenotypes [69]. 

 

1.4.1 DUX4 expression 

 The D4Z4 repeat array (hereafter just D4Z4) is composed of tandem 3.3 kb 

macrosatellite sequences, each of which contains a copy of the DUX4 retrogene (figure 

1.2.2).  DUX4 was shown to encode a transcription factor able to activate genes upstream 

of D4Z4 and elsewhere in the genome, and may be linked to differentiation defects, 

atrophy, and muscle defects when expressed in FSHD [67, 70-72].  While the presence of 

the DUX4 gene in D4Z4 has been known since the late 90s [73], its role in FSHD has 

only recently become clear.  Early work suggested that DUX4 might be important to the 

disease mechanism, but the inability to identify the low-abundance transcripts for DUX4 

in FSHD caused the field to look to other nearby genes [74, 75].  More recent work has 

gone on to show that DUX4 is often expressed in FSHD muscle [67], and is toxic and 

promotes apoptosis.   

 

Having a contraction of D4Z4 repeats is not enough to result in FSHD1.  

Individuals with the contraction must also have a specific genetic background, with the 

contraction co-occurring with a polymorphism after the last D4Z4 repeat on chromosome 

4q35 [67]. The polymorphism on this allele (referred to as A161) has been shown to 

encode a polyadenylation signal after the last repeat, allowing for polyadenylation of the 

DUX4 transcript —stabilizing its transcripts in vivo [67].  Importantly, the A161 allele is 

required in FSHD2 as well, with mutations in SMCHD1 resulting in epigenetic changes 
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that allow for expression of the DUX4 transcript [68].  Expression of DUX4 appears to be 

important to the disease mechanism in both FSHD1 and FSHD2. 

 

1.4.2: Mutations in SMCHD1 are associated with hypomethylation of D4Z4. 

 SMCHD1, or Structural Maintenance of Chromosomes hinge domain containing 

1, encodes a protein required for gene silencing and DNA methylation on the inactive X 

chromosome [76].  While SMCHD1 mutations were identified in connection with 

approximately 80 % of FSHD2 cases, some patients with FSHD1 also have mutations in 

SMCHD1; these patients show increased severity of the disease even though they have 

nine copies of D4Z4—typically leading to a less severe form of the disease [77].  

SMCHD1 therefore can serve as a modifier of FSHD1 disease severity.  Mutations in 

SMCHD1 correlated exactly with hypomethylation of D4Z4 DNA in patients, suggesting 

that SMCHD1 is also required for the hypermethylation at D4Z4 typical in normal 

individuals as well as that on the inactive X chromosome [68].  Depletion of SMCHD1 

results in upregulation of DUX4, connecting the mutation of SMCHD1 with the disease 

mechanism [68].  Interestingly however, SMCHD1 has recently been shown to be 

important for regulation of some gene clusters, including the protocadherin β cluster, and 

imprinted genes such as the H19/IGF2 imprinting locus [78].  Therefore, the effect of 

SMCHD1 mutations could extend beyond D4Z4 to impact the disease etiology.  

 

1.4.3: Loss of H3K9me3, HP1, and cohesin is common to both FSHD1 and FSHD2 

 FSHD has been characterized as an epigenetic abnormality disease [79], and 

D4Z4 as a metastable epiallele [68].  The term metastable epiallele refers to genes whose 
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variable expression is dependent on the probability of repression by other factors [80], in 

this case referring to the DNA methylation at D4Z4 and it’s requirement of SMCHD1 

(discussed shortly).  Both of these statements are derived from the supporting data that 

epigenetics undergirds the disease mechanism in FSHD.  Our lab previous showed in 

2009 that H3K9me3 is lost at D4Z4 in both FSHD1 and FSHD2 patient cells [79].   Upon 

loss of H3K9me3, both cohesin and HP1γ are lost at D4Z4 [79].  HP1γ is a 

transcriptional repressor that directly binds H3K9me3 through its chromodomain 

(reviewed in [81]).  In S. pombe, its homolog Swi6 has been known to recruit cohesin to 

the pericentromere [82, 83].  However, Weihua Zeng in our lab showed that cohesin and 

HP1γ were co-recruited to D4Z4 [79].  The discovery that H3K9me3 was lost in both 

FSHD1 and FSHD2 was very important, as it was the first time that a common molecular 

mechanism was shown for the two genetically distinct forms of the disease, suggesting 

that FSHD is an “epigenetic abnormality disease”.    
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Figure 1.4. Heterochromatin at D4Z4 

A. HP1γ, SMCHD1, and cohesin are recruited to D4Z4 by H3K9me3 

B. Heterochromatin formed by H3K9me3, HP1γ, SMCHD1, and cohesin represses 

expression of the DUX4 gene in normal individuals 

C. Loss of these heterochromatin components leads to upregulation of DUX4 

expression  
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Figure adapted from Zeng et. al. [84] 
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1.4.4: Loss of H3K9me3 impacts SMCHD1 binding at D4Z4 

 Our group has recently published an analysis of the D4Z4 homologs present on 

many chromosomes.  In particular, we found that the 4q/10q D4Z4 chromatin showed the 

characteristic loss of H3K9me3 in FSHD while the homologous regions on other 

chromosomes did not [84].  Moreover, we found that the open reading frames of the 

DUX4 transcripts in these homologs was disrupted, with either missing start codons, early 

stop codons, and frameshifts [84].  Even more strikingly, we found that the loss of 

H3K9me3 at D4Z4 results in SMCHD1 displacement and DUX4 upregulation in 

immortalized myoblasts, further solidifying the importance of H3K9me3 at D4Z4 to the 

disease mechanism [84].  The dependency of SMCHD1 on H3K9me3 for localization to 

D4Z4 suggests that SMCHD1 localization at D4Z4 is already affected in both FSHD1 

and FSHD2, and that the mutations in SMCHD1 further increase the severity of the 

disease.  This will require further validation in patient cells however. 
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2.1 Abstract 

High-throughput sequencing coupled to chromatin immunoprecipitation (ChIP-

Seq) is widely used in characterizing genome-wide binding patterns of transcription 

factors, cofactors, chromatin modifiers, and other DNA binding proteins. A key step in 

ChIP-Seq data analysis is to map short reads from high-throughput sequencing to a 

reference genome and identify peak regions enriched with short reads. Although several 

methods have been proposed for ChIP-Seq analysis, most existing methods only consider 

reads that can be uniquely placed in the reference genome, and therefore have low power 

for detecting peaks located within repeat sequences. Here we introduce a probabilistic 

approach for ChIP-Seq data analysis, which utilizes all, reads, providing a truly genome-

wide view of binding patterns. Reads are modeled using a mixture model corresponding 

to  enriched regions and a null genomic background. We use maximum likelihood to 

estimate the locations of the enriched regions, and implement an expectation-

maximization (E-M) algorithm, called AREM, to update the alignment probabilities of 

each read to different genomic locations. We apply the algorithm to identify genome-

wide binding events of two proteins: Rad21, a component of cohesin and a key factor 

involved in chromatid cohesion, and Srebp-1, a transcription factor important for 

lipid/cholesterol homeostasis. Using AREM, we were able to identify 19,935 Rad21 

peaks and 1,748 Srebp-1 peaks in the mouse genome with high confidence, including 

1,517 (7.6%) Rad21 peaks and 227 (13%) Srebp-1 peaks that were missed using only 

uniquely mapped reads. The open source implementation of our algorithm is available at 

http://sourceforge.net/projects/arem. 

 

K
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2.2 Introduction 

In recent years, high-throughput sequencing coupled to chromatin 

immunoprecipitation (ChIP-Seq) has become one of the premier methods of analyzing 

protein-DNA interactions [1]. The ability to capture a vast array of protein binding 

locations genome-wide in a single experiment has led to important insights in a number 

of biological processes, including transcriptional regulation, epigenetic modification and 

signal transduction [2–5]. Numerous methods have been developed to analyze ChIP-Seq 

data and typically work well for identifying protein-DNA interactions located within non-

repeat sequences. However, identifying interactions in repeat regions remains a 

challenging problem since sequencing reads from these regions usually cannot be 

uniquely mapped to a reference genome. We present novel methodology for identifying 

protein-DNA interactions in repeat sequences.  

 

ChIP-Seq computational analysis typically consists of two tasks: one is to identify 

the genomic locations of the short reads by aligning them to a reference genome, and the 

second is to find genomic regions enriched with the aligned reads, which is often termed 

“peak finding”. Eland, MAQ, Bowtie, and SOAP are among the most popular for 

mapping short reads to a reference genome [6–9] and provide many or all of the potential 

mappings for a given sequence read. Once potential mappings have been identified, 

significantly enriched genomic regions are identified using one of several available tools 

[10–18]. Some peak finders are better suited for histone modification studies, others for 

transcription factor binding site identification. These peak finders have been surveyed on 

several occasions [19–21]. 
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Many short reads cannot be uniquely mapped to the reference genome. Most peak 

finding workflows throw away these non-uniquely mapped reads, and as a consequence 

have low power for detecting peaks located within repeat regions. While each experiment 

varies, only about 60% [in house data] of the sequence reads from a ChIP-Seq 

experiment can be uniquely mapped to a reference genome. Therefore, a significant 

portion of the raw data is not utilized by the current methods. There have been proposals 

to address the non-uniquely mapped reads in the literature by either randomly choosing a 

location from a set of potential ones [22, 23] or by taking all potential alignments [12], 

but most peak callers are not equipped to deal with ambiguous reads. 

 

We propose a novel peak caller designed to handle ambiguous reads directly by 

performing read alignment and peak-calling jointly rather than in two separate steps. In 

the context of ChIP-Seq studies, regions enriched during immunoprecipitation are more 

likely the true genomic source of sequence reads than other regions of the genome. We 

leverage this idea to iteratively identify the true genomic source of ambiguous reads. 

Under our model, the true locations of reads and binding peaks are treated as hidden 

variables, and we implement an algorithm, AREM, to estimate both iteratively by 

alternating between mapping reads and finding peaks.  

 

Two ChIP-Seq datasets were used in this study: 1) cohesin, a new dataset 

generated in house, and 2) Srebp-1, a previously published dataset [5]. To generate the 

cohesin dataset, ChIP-Seq was performed using mouse embryonic fibroblasts and an 

antibody targeting Rad21 [24], a subunit of cohesin. Cohesin is an essential protein 
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complex required for sister chromatid cohesion. In mammalian cells, cohesin binding 

sites are present in intergenic, promoter and 3’ regions-especially in connection with 

CTCF binding sites [25, 26]. It was found that cohesin is recruited by CTCF to many of 

its binding sites, and plays a role in CTCF-dependent gene regulation [27, 28]. Cohesin 

has been shown to bind to repeat sequences in a disease-specific manner [24], making it a 

particularly interesting candidate for our study. 

 

The second dataset is Srebp-1, a transcription factor important in allostatic 

regulation of sterol biosynthesis and membrane lipid composition [29]. This particular 

dataset [5] examines the genomic binding locations for Srebp-1 in mouse liver. 

Regulation of expression by Srebp-1 is important for regulation of cholesterol and repeat-

binding for this TF has not been previously shown [30, 29]. We choose these datasets 

because both proteins have well characterized regulatory motifs, allowing us to directly 

test the validity of our peak finding method directly. 

 

On a 2.8Ghz CPU, AREM takes about 20 minutes and 1.6GB RAM to call peaks 

from over 12 million alignments and about 30 minutes and 6GB RAM to call peaks from 

nearly 120 million alignments. Each dataset takes less than 40 iterations to converge. 

AREM is written in Python, is open-source, and is available at 

http://sourceforge.net/projects/arem.  
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2.3 Results 

Building on the methodology of the popular peak-caller MACS [13], we 

implement AREM, a novel peak caller designed to handle multiple possible alignments 

for each sequence read. AREM’s peak caller combines an initial sliding window 

approach with a greedy refinement step and iteratively aligns ambiguous reads. We use 

two ChIP-Seq datasets in this study: Rad21, a subunit of the structural protein cohesin, 

contained 7.2 million treatment reads and 7.4 million control reads (manuscript in 

preparation). Srebp-1, a regulator of cholesterol metabolism, had 7.7 million treatment 

reads and 6.4 million control reads [5]. 

 

Using AREM, we identify 19,935 Rad21 peaks covering more than 10 million 

base pairs at a low FDR of 3.7% and 1,474 Srebp-1 peaks covering nearly 1 million bases 

at a moderate FDR of 8%. For comparison, we also called peaks using MACS and 

SICER [15], another popular peak finding program. To compare our results, we use FDR 

and motif presence as indicators of bona fide binding sites. 

 

2.3.1 AREM identifies additional binding sites 

We seek to benchmark both AREM’s peak-calling and its multiread methodology. 

To benchmark peak-calling, we limit all reads to their best alignment and run AREM, 

MACS and SICER. In the Rad21 dataset, AREM identifies 456 more peaks than MACS 

and 1,920 more peaks than SICER but retains a similar motif presence (81.6% MACS, 

82.5% SICER, 81.3% AREM) and has a lower FDR (2.8% MACS, 12.7% SICER, 1.9% 

AREM) (see Table 2.1). For Srebp-1, AREM identifies more than double the number of 
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peaks compared to MACS and 816 more than SICER, though the FDR is slightly higher 

(4.85% MACS, 9% SICER, 8% AREM) and motif presence slightly lower (46.6% 

MACS, 59% SICER, 39% AREM). In both datasets, AREM appears to be more sensitive 

to true binding sites, picking up more total sites with motif instances, although it trades 

off some specificity in Srebp-1. 

 

To see if AREM can identify true sites that are not significant without multireads, 

we performed peak-calling with multireads, removing peaks that overlapped with those 

identified using AREM without multireads. Up to 1,546 (8.1%) and 272 (18.9%) 

previously unidentified peaks were called from Rad21 and Srebp-1, respectively. These 

new peaks have a similar motif presence compared to previous peaks but overlap with 

annotated repeat regions more often. 

 

2.3.2 AREM’s sensitivity is increased with ambiguous reads 

Several methods for dealing with ambiguous reads have been proposed, including 

retaining all possible mappings, retaining one of the mappings chosen at random, and 

distributing weight equally among the mappings. The first option will clearly lead to false 

positives, particularly in repeat regions as the number of retained mappings increases. We 

compare the latter two methods to our E-M implementation, varying the number of 

retained reads and summarize the results in Table 2.1. Although both random selection 

and fractionating reads increases the number of peaks called, our E-M method 

outperforms them, yielding 1546 more peaks for Rad21, and 272 for Srebp-1 with 

comparable quality. As the number of retained alignments increases, the disparity gets 
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smaller. AREM shows fairly consistent results across datasets with a large increase in 

total number of alignments (nearly 40-fold for Rad21, over 10-fold for Srebp-1). 

 

For a given sample, the iterations show a continued shift of the max alignment 

probabilities to either 1 or 0. This shift is consistent across datasets with larger numbers 

of max alignments (data not shown), but does depend on other parameters. What is 

apparent is that AREM’s E-M heuristic performs well, allowing for significant shift 

toward a ”definitive” alignment; at the same time, it does not force a shift on reads with 

too little information, preventing misalignment and resulting spurious peak-calling. 

 

2.3.3 AREM is sensitive to repeat regions 

An important parameter in our model is the minimum enrichment score for all K 

regions. Since repeat regions have such similar sequence content, many reads will share 

the same repetitive elements. If one of the shared repeat elements has a slightly higher 

enrichment score by chance, the E-M method will iteratively shift probability into that 

repeat region, snowballing the region into what appears to be a full-fledged sequence 

peak. To distinguish repetitive peaks arising by small enrichment fluctuations from true 

binding sites within or adjacent to repetitive elements, we impose a minimum enrichment 

score on all regions. Lower threshold scores will be sensitive to these random fluctuations 

but true binding peaks may be missed if the score is too high. 

 

To explore the effect of varying the minimum enrichment score, we varied the 

minimum score from 0.1 to 2, keeping the maximum number of alignments fixed at 20. 
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For Rad21, we see a declining number of discovered peaks ranging from 28,305 to 

19,634 peaks respectively. In addition to a decline in discovered peaks as minimum 

enrichment score increases, we also see a decrease in the reported FDR and the percent of 

peaks in repeat regions from 11.28% to 2.95% FDR and 71.56% to 59.02%. Lastly, the 

percent of peaks with motif increases from 63.64% to 81.12%. These additional peaks 

appear to be of lower quality: motifs are largely absent from them and the FDR is much 

higher, see Figure 2.2. 

 

For our method, detecting peaks near repeat regions is a tradeoff between 

sensitivity and specificity. As the minimum score increases, the method approaches the 

uniform or ”fraction” distribution, in which only the initial mapping quality scores (and 

not the enrichment) affect alignment probabilities. The fraction method is explored 

explicitly, showing increased power compared to unique reads only, but decreased 

sensitivity to true binding sites compared to other AREM runs. 
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2.4 Discussion 

Repetitive elements in the genome have traditionally been problematic in 

sequence analysis. Since sequenced reads are short and repetitive sequences are similar, 

many equally likely mappings may exist for a given read. Our method uses the low-

coverage unique reads near repeat regions to evaluate which potential alignments for each 

read are the most likely. Sensitivity to repeat regions is adjustable, however there is a 

tradeoff: increasing sensitivity may introduce false positives. Further refinement of our 

methodology may lead to increased specificity. 

 

Our results imply that functional CTCF binding sites exist within repeat regions, 

revealing an interesting relationship between repetitive sequence and chromatin structure. 

Another application of our method would be to explore the relationship between 

repetitive sequence and epigenetic modifications such as histone modifications. 

Regulation of and by transposable elements has been linked to methylation marks [31], 

and transposable elements have a major role in cancers [32]. Better identification of 

histone modifications in regions of repetitive DNA increases our understanding of key 

regulators of genome stability and diseases sparked by translocations and mutations. 
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Table 2.1 
 
Three peak callers (MACS, SICER, and AREM) were run on both datasets. For AREM, 

the maximum number of retained alignments per read is varied (from 1 to 80). The total 

number of peaks and bases covered by peaks is reported as well as the FDR by swapping 

treatment and control. For both datasets, AREM’s minimum enrichment score was fixed 

at 1.5 with 20 maximum alignments per read. For comparison, the motif background rate 

of occurrence was 4.5% (CTCF) and 27% (Srebp-1) in 100,000 genomic samples, sized 

similarly to Rad21 MACS peaks and Srebp-1 MACS peaks, respectively. 
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Table 2.1 
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Figure 2.1 
 
(A) AREM workflow diagram.  
(B–E) de novo discovery of motifs. From top to bottom: 

(B) CTCF in MACS peaks from uniquely mapping reads,  
(C) CTCF in AREM’s peaks with multireads,  
(D) Srebp-1 in MACS peaks from uniquely mapping reads and  
(E) Srebp-1 in AREM peaks with multireads. 
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Figure 2.1 
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Figure 2.2 
 
Graphs displaying varying parameters and number of possible alignments per read. 

(A) Total number of peaks discovered.  

(B) Percentage of peaks with repetitive sequences.  

(C) False discovery rate.  

(D) Percentage of peaks with motif. 
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2.5 Methods 

 

2.5.1 Notations 

Let  denote a set of reads from a ChIP-Seq experiment with read, 

, where ,  is the length of each read, and denotes the number 

of reads. Let  denote the reference sequence to which the reads will be mapped. In 

real applications, the reference sequence usually consists of multiple chromosomes. For 

notational simplicity, we assume the chromosomes have been concatenated to form one 

reference sequence.  

 
We assume that for each read we are provided with a set of potential alignments 

to the reference sequence. Denote the set of potential alignments of read  to  by

, where lij  and  denote the starting location and the 

confidence score of the -th alignment, and  is the total number of potential 

alignments. We assume  for all , and use it to account for both sequencing 

quality scores and mismatches between the read and the reference sequence. There are 

several programs available to generate the initial potential alignments and confidence 

scores. 

 

2.5.2 Mixture model 

We use a generative model to describe the likelihood of observing the given set of 

short reads from a ChIP-Seq experiment. Suppose the ChIP procedure results in the 

enrichment of  non-overlapping regions in the reference sequence . Denote the 

R = {r1,...,rN}

ri ∈Σl Σ = {A,C,G,T} l N

S ∈ΣL

ri S

Ai = {(lij ,qij ) : j = 1,...,ni} qij

j ni

qij ∈[0,1] j

K S K
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enriched regions (also called peak regions) by , where  and  

represent the start and the width, respectively, of the –th enriched region in . Let 

denote the set of locations in the enriched region  that can 

potentially generate a read of length . Let ,  denote the start and width of region 

. We will use  to denote all locations in  that are not covered by  ∪ k=1
K Ek . 

 
We use variable zi ∈{1,...,ni}  to denote the true location of read , with 

representing that  originates from location lij  of . In addition, we use variable 

ui ∈{0,1,...,K}  to label the type of region that read  belongs to. ui = k  represents that 

read  is from the non-enriched regions of  if k = 0 , and is from k -th enriched region 

otherwise. Both zi  and ui  are not directly observable, and are often referred to as the 

hidden variables of the generative model. 

 

Let P(ri | zi = j,ui = k)  denote the conditional probability of observing read  

given that  is from location lij  and belongs to region k . Assuming different reads are 

generated independently, the log likelihood of observing R  given the mixture model is 

then 

 
ℓ = log P(ri | zi = j,ui = k)P(zi = j)P(ui = k)

k=0

K

∑
j=0

ni

∑⎡
⎣
⎢

⎤

⎦
⎥

i=1

N

∑ , 

 

where P(zi )  and P(ui )  represent the prior probabilities of the location and the region 

type, respectively, of read . P(zi )  is set according to the confidence scores of different 

alignments 

{(sk ,wk ) : k = 1,...,K} sk wk

i S

Ek = {sk ,..., sk +wk − l} k

l Ek
s Ek

w

k E0 S

ri zi = j

ri S

ri

ri S

ri

ri

ri
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P(zi = j) =
qij
qikk=1

ni∑
.     (1) 

 

P(ui )  depends on both the width and the enrichment ratio of each enriched region. 

Denote the enrichment ratio of the ChIP regions vs. non-ChIP regions by α , which is 

often significantly impacted by the quality of antibodies used in ChIP experiments. We 

parameterize the prior distribution on region types as follows 

 

P(ui = k) = 1
(α −1) wj + Lj∑ ×

L − wj   if k = 0
j∑

αwk  o.w.

⎧
⎨
⎪

⎩⎪
   (2) 

 

2.5.3 Parameter estimation 

The conditional probability P(ri | zi = j,ui = k)  can be modeled in a number of 

different ways. For example, bell-shaped distributions are commonly used to model the 

enriched regions. However, for computational simplicity, we will use a simple uniform 

distribution to model the enriched regions. If read  comes from one of the enriched 

regions, i.e., k ≠ 0 , we assume the read is equally likely to originate from any of the 

potential positions within the enriched region, that is, 

 

P(ri | zi = j,ui = k) =
1

wk − l +1
IEk (lij ) ,   (3) 

 

where IA(x)  is the indicator function, returning 1 if x ∈A  and 0 otherwise. 

 

ri
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If the read is from non-enriched regions, i.e., k = 0 , we use pi
b  to model the 

background probability of an arbitrary read originating from location i  of the reference 

sequence. (We assume pi
b  has been properly normalized such that pi

b
i=1

L∑ = 1 .) Then the 

conditional probability P(ri | zi = j,ui = k)  for the case of k = 0  is modeled by 

 

 P ri | zi = j,ui = 0( ) = IE0 lij( ) plijb    (4) 

 

Numerous ChIP-Seq studies have demonstrated that the locations of ChIP-Seq reads are 

typically non-uniform, significantly biased toward promoter or open chromatin regions 

[1]. The pi
b ’s takes this ChIP and sequencing bias into account, and can be inferred from 

control experiments typically employed in ChIP-Seq studies. 

 

Next we integrate out the ui  variable to obtain the conditional probability of 

observing  given only zi  

     P ri | zi = j( ) = P ui = 0( ) IE0 lij( ) plijb +
P ui = k( )
wk = l +1

IEk lij( )
k=1

K

∑ .  (5) 

 

Note that because E0,E1,...,EK  are disjoint, only one term in the above summation can be 

non-zero. This property significantly reduces the computation for parameter estimation 

since we do not need to infer the values of ui  variables any more. 

 

The log likelihood of observing R  given the mixture model can now be written as 

ri
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ℓ r1,...,rn;Θ( ) = log P ri | zi = j( )P zi = j( )

j=0

ni

∑⎡
⎣
⎢

⎤

⎦
⎥

i=1

N

∑ ,  (6) 

 

where Θ = (s1,w1,..., sK ,wK ,α )  denotes the parameters of the mixture model. We estimate 

the values of these unknown parameters using maximum likelihood estimation 

 

    
 
Θ̂ = argmax

Θ
ℓ(r1,...,rn;Θ) .    (7) 

 

2.5.4 Expectation-maximization algorithm 

We solve the maximum likelihood estimation problem in Eq. (7) through an 

expectation-maximization (E-M) algorithm. The algorithm iteratively applies the 

following two steps until convergence: 

 

Expectation step: Estimate the posterior probability of alignments under the current 

estimate of parameters Θ(t ) : 

 

   Q(t )(zi = j | R) = 1
C
P(ri | zi = j,Θ(t ) )P(zi = j) ,  (8) 

 

where C  is a normalization constant. 

 

Maximization step: Find the parameters Θ(t+1)  that maximize the following quantity, 
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        Θ(t+1) = argmax
Θ

Q(t )

j=0

ni

∑
i=1

N

∑ zi = j | R( )logP ri | zi = j,Θ( ) . (9) 

 

 
2.5.5 Implementation of E-M updates 

 

The mixture model described above contains 2K +1  parameters. Since K , the 

number of peak regions, is typically large, ranging from hundreds to hundreds of 

thousands, exactly solving Eq. (9) in the maximization step is nontrivial. Instead of 

seeking an exact solution, we identify the K  regions from the data by considering all 

regions where the number of possible alignments is significantly enriched above the 

background. 

 
For a given window of size w  starting at s  of the reference genome, we first 

calculate the number of reads located within the window, weighted by the current 

estimation of posterior alignment probabilities, 

 

 f (s,w) = Q(t )

j=1

ni

∑
i=1

N

∑ (zi = j | R)I[s,s+w−l ](lij )    (10) 

 

We term this quantity the foreground read density. As a comparison, we also calculate a 

background read density b(s,w) , which is estimated using either reads from the control 

experiment or reads from a much larger extended region covering the window. Different 

ways of calculating background read density are discussed in [13]. 

 
Provided with both background and foreground read densities, we then define an 
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enrichment score φ(s,w)  to measure the significance of read enrichment within the 

window starting at position s  with width w . For this purpose, we assume the number of 

reads is distributed according to a Poisson model with mean rate b(s,w) . If f (s,w)  is an 

integer, the enrichment score is defined to be φ(s,w) = − log10 (1− g( f ,b)) , where 

 

     g(x,λ) = e−λ λ k

k!k=0

x

∑      (11) 

 

denotes the chance of observing at least x  Poisson events given the mean rate of λ . 

However, if f (s,w)  is not an integer, the enrichment score cannot be defined this way. 

Instead, we use a linear extrapolation to define the enrichment score 

 φ(s,w) = − log10 (1− !g( f ,b)) , where function  !g  is defined as 

 

   
 
!g x,λ( ) = g x⎢⎣ ⎥⎦,λ( ) + g x⎡⎢ ⎤⎥,λ( )− g x⎢⎣ ⎥⎦,λ( )⎡⎣ ⎤⎦ x − x⎢⎣ ⎥⎦( ) .  (12) 

 
If two potential alignments of a read have the same confidence score and are 

located in two peak regions with equal enrichment, the update of posterior alignment 

probabilities in Eq. (8) will assign equal weight to these two alignments. This is so 

because we have assumed that peak regions have the same enrichment ratio as described 

in Eq. (2), which is not true as some peak regions are more enriched than others in real 

ChIP experiments. To address this issue, we have also implemented an update of the 

posterior probabilities that takes the calculated enrichment scores into account as 
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Qt (zi = j | R)← [φ(Ek
s

k=1

K

∑ ,Ek
w )P(zi = j)IEk (zi )]   (13) 

 

which is then normalized. In practice, we found this implementation usually behaves 

better than the one without using enrichment scores. 

 

We use entropy to quantify the uncertainty of alignments associated with each 

read. For read i , the entropy at iteration t  is defined to be 

 

Hi
t = − Qt

j=1

ni

∑ (zi = j | R)logQt (zi = j | R) .   (14) 

 

We stop the E-M iteration when the relative square difference between two consecutive 

entropies is small, that is, when 

(Hi
t − Hi

t−1)2
i=0

N∑
(Hi

t−1)2
i=0

N∑
< ε ,   (15) 

 

where ε = 10−5 for results reported in this paper. 

 

AREM seeks to identify the true genomic source of multiply-aligning reads (also 

called multireads). Many of the multireads will map to repeat regions of the genome, and 

we expect repeats to be included in the K potentially enriched regions. To prevent repeat 

regions from garnering multiread mass without sufficient evidence of their enrichment, 

we impose a minimum enrichment score. Effectively, unique or less ambiguous 
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multireads need to raise enrichment above noise levels for repeat regions to be called as 

peaks. The minimum enrichment score is a parameter of our model and its effect on 

called peaks is explored in the results. 

 

 
2.5.6 Alignment 
 

Alignment was performed using Bowtie [7]. We used the Burrows-Wheeler index 

provided by the Bowtie website to align reads; the index is based on the unmasked MM9 

reference genome from the UCSC Genome Browser [33]. The first base of all raw reads 

was clipped to remove sequencing artifacts and a maximum of two mismatches were 

allowed in the first 28 bases of the remaining sequence. We generated several alignment 

collections for both Srebp-1 and Rad21 by varying k, the maximum number of reported 

alignments. We restricted our study to search the 1, 10, 20, 40, and 80 best alignments. 

Table 2.1 shows that the total number of alignments was only starting to plateau at k=80, 

indicating that many sequences have more than 80 possible alignments, for practicality 

we restricted our search as above. Map confidence scores were calculated from Bowtie 

output as in [8]. We also provide an option for using the aligner’s confidence scores 

directly rather than recalculating them from mismatches and sequence qualities. During 

preparation of the sequencing library, unequal amplification can result in biased counts 

for reads. To eliminate this bias, we limit the number of alignments to one for each start 

position on each strand. In particular, we choose the best alignment (based on quality 

score) for each position; in the event that all alignments have the same quality score, we 

choose a random read to represent that particular position. 
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2.5.7 Peak Finding 

Our peak finding method is an adapted version of the MACS [13] peak finder. 

Like MACS, we empirically model the spatial separation between +/- strand tags and 

shift both treatment and control tags. We also continue MACS’ conservative approach to 

background modeling, using the highest of three rates as the background (in this study, 

genome-wide or within 1,000 or 10,000 bases). As a divergence from MACS, we use a 

sliding window approach to identify large potentially enriched regions then use a 

smoothened greedy approach to refine called peaks. We call peaks within this large 

region by greedily adding reads to improve enrichment, but avoid local optima by always 

looking up to the full sliding window width away. The initial large regions correspond to 

the K regions used for the E-M steps of Section 2.5.5. During the E-M steps, local 

background rates are used as during final peak-calling. Peaks reported in this study are 

above a p -value of 10e-5. All enrichment scores and p -values are calculated using the 

Poisson linear interpolation described in equation 12. Once E-M is complete on the 

treatment data and peaks are called, we reset the treatment alignment probabilities, swap 

treatment and control and rerun the algorithm, including E-M steps, to determine the 

False Discovery Rate (FDR). For all algorithms tested in this study, we define the FDR as 

the ratio of peaks called using control data to peaks called using treatment data. This 

method of FDR calculation is common in ChIP-Seq studies (e.g., [13, 15]). 

 

2.5.8 Motif finding 

Motif presence helps determine peak quality, as shown in [34]. To determine if 

our new peaks were of the same quality as the other peaks, we performed de novo motif 
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discovery using MEME [35] version 4.4. Input sequence was limited to 150 bp (Rad21) 

and 200 bp (Srebp-1) around the summit of the peaks called by MACS from uniquely 

mapping reads. All sequences were used for Srebp-1, while 1,000 sequences were 

randomly sampled a total of 5 times for Rad21. The motif signal was strong in both 

datasets and the discovered motif position weight matrix (PWM) was extracted for 

further use. We also used performed the motif search using Srebp-1 and CTCF motifs 

catalogued in Transfac 11.3, and found similar results. For the CTCF motif, we did 

genomic sampling (100,000 samples) to identify a threshold score corresponding to a z-

score of 4.29. For Srebp-1, we used the threshold score reported by MEME. See Figure 

2.1. 
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Chapter 3 

The effect of Nipbl haploinsufficiency on genome-wide cohesin binding and target 

gene expression: modeling Cornelia de Lange Syndrome 
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3.1 Abstract 

Cornelia de Lange Syndrome (CdLS) is a multisystem developmental disorder 

frequently associated with heterozygous loss-of-function mutations of Nipped-B-like 

(NIPBL), the human homolog of Drosophila Nipped-B. NIPBL loads cohesin onto 

chromatin. Cohesin mediates sister chromatid cohesion important for mitosis, but is also 

increasingly recognized as a regulator of gene expression. In CdLS patient cells and 

animal models, the presence of multiple gene expression changes with little or no sister 

chromatid cohesion defect suggests that disruption of gene regulation underlies this 

disorder. However, the effect of NIPBL haploinsufficiency on cohesin binding, and how 

this relates to the clinical presentation of CdLS, has not been fully investigated. We 

examined genome-wide cohesin binding and its relationship to gene expression using 

mouse embryonic fibroblasts (MEFs) from Nipbl +/- mice that recapitulate the CdLS 

phenotype. We found a global decrease in cohesin binding, including at CCCTC-binding 

factor (CTCF) binding sites and repeat regions. Cohesin-bound genes were found to be 

enriched for histone H3 lysine 4 trimethylation (H3K4me3) at their promoters; were 

disproportionately downregulated in Nipbl mutant MEFs; and displayed evidence of 

reduced promoter-enhancer interaction.  The results suggest that gene activation is the 

primary cohesin function sensitive to Nipbl reduction. Over 50% of significantly 

dysregulated transcripts in mutant MEFs come from cohesin target genes, including 

genes involved in adipogenesis that have been implicated in contributing to the CdLS 

phenotype. 
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3.2 Introduction 

CdLS (OMIM 122470, 300590, 610759) is a dominant genetic disorder estimated to 

occur in 1 in 10,000 individuals, characterized by facial dysmorphism, hirsutism, upper 

limb abnormalities, cognitive retardation, and growth abnormalities [1, 2]. Mutations in 

the NIPBL gene are linked to more than 55% of CdLS cases [3, 4]. NIPBL is an 

evolutionarily conserved, essential protein that is required for chromatin loading of 

cohesin [5]. Cohesin is a multiprotein complex, also conserved and essential, which 

functions in chromosome structural organization important for genome maintenance and 

gene expression [6-8]. Mutations in the cohesin subunits SMC1 (human SMC1 (hSMC1), 

SMC1A) and hSMC3 were also found in a minor subset of clinically milder CdLS cases 

(~5% and <1%, respectively) [9-11]. More recently, mutation of HDAC8, which 

regulates cohesin dissociation from chromatin in mitosis, was found in a subset of CdLS 

patients (OMIM 300882) [12]. Mutations in the non-SMC cohesin component Rad21 

gene have also been found in patients with a CdLS-like phenotype (OMIM 606462), with 

much milder cognitive impairment [13]. Thus, mutations of cohesin subunits and 

regulators of cohesin’s chromatin association cause related phenotypes, suggesting that 

impairment of the cohesin pathway makes significant contributions to the disease [2, 14].  

 

Because the most common cause of CdLS is NIPBL haploinsufficiency [2, 15, 16], 

Nipbl heterozygous mutant (Nipbl +/-) mice have been developed as a CdLS disease 

model. These mice exhibit wide-ranging defects characteristic of the disease, including 

small size, craniofacial anomalies, microbrachycephaly, heart defects, hearing 

abnormalities, low body fat, and delayed bone maturation [17]. The mutant mice display 



	
   64	
  

only a 25-30% decrease in Nipbl transcripts, presumably due to compensatory 

upregulation of the intact allele [17]. A similar partial decrease is found in NIPBL- 

haploinsufficient CdLS patients, and even a 15% decrease in expression can cause mild 

CdLS [18, 19]. These results indicate a high sensitivity of mammalian development to 

Nipbl gene dosage. Although a canonical function of cohesin is sister chromatid cohesion 

critical for mitosis [8], a role for cohesin in gene regulation has been argued for based on 

work in multiple organisms [20, 21]. The partial decrease of Nipbl expression in CdLS 

patients and Nipbl +/- mice was not sufficient to cause a significant sister chromatid 

cohesion defect or abnormal mitosis [17, 22-24]. Instead, a distinctive profile of gene 

expression changes was observed, strongly suggesting that transcriptional dysregulation 

underlies the disease phenotype [17, 19]. In Nipbl +/- mutant mice, gene expression 

changes are pervasive, though mostly minor, raising the possibility that small expression 

perturbations of multiple genes collectively contribute to the disease phenotype [17]. This 

hypothesis was further tested by combinatorial gene depletion in zebrafish, successfully 

recapitulating some aspects of the CdLS-like phenotype [25]. However, to what extent 

Nipbl and cohesin directly regulate affected genes in this CdLS mouse model has not yet 

been determined. 

 

Cohesin is recruited to different genomic regions and affects gene expression in 

different ways in mammalian cells [6, 7]. In mammalian cells, one major mechanism of 

cohesin-mediated gene regulation is through CTCF [26-29]. CTCF is a zinc finger DNA-

binding protein and was shown to act as a transcriptional activator/repressor as well as an 

insulator [30]. Genome-wide chromatin immunoprecipitation (ChIP) analyses revealed 
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that a significant number of cohesin binding sites overlap with those of CTCF in human 

and mouse somatic cells [26, 27]. Cohesin is recruited to these sites by CTCF and 

mediates CTCF’s insulator function by bridging distant CTCF sites at, for example, the 

H19/IGF2, IFNg, apolipoprotein, and b-globin loci [26, 27, 29, 31-34]. While CTCF 

recruits cohesin, it is cohesin that plays a primary role in long-distance chromatin 

interaction [32]. A more recent genome-wide Chromosome Conformation Capture 

Carbon Copy (5C) study revealed that CTCF/cohesin tends to mediate long-range 

chromatin interactions defining megabase-sized topologically associating domains 

(TADs) [35], indicating that CTCF and cohesin together play a fundamental role in 

chromatin organization in the nucleus. Cohesin also binds to other genomic regions and 

functions in a CTCF-independent manner in gene activation by facilitating promoter-

enhancer interactions together with Mediator [31, 35-37]. Significant overlap between 

cohesin at non-CTCF sites and cell type-specific transcription factor binding sites was 

found, suggesting a role for cohesin at non-CTCF sites in cell type-specific gene 

regulation [38, 39]. In addition, cohesin is recruited to heterochromatic repeat regions 

[40, 41]. To what extent these different modes of cohesin recruitment and function are 

affected by NIPBL haploinsufficiency in CdLS has not been examined.  

 

Here, using MEFs derived from Nipbl+/- mice, we analyzed the effect of Nipbl 

haploinsufficiency on cohesin-mediated gene regulation and identified cohesin target 

genes that are particularly sensitive to partial reduction of Nipbl. Our results indicate that 

Nipbl is required for cohesin binding to both CTCF and non-CTCF sites, as well as repeat 

regions. Significant correlation was found between gene expression changes in Nipbl 
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mutant cells and cohesin binding to the gene regions, in particular promoter regions, 

suggesting that even modest Nipbl reduction directly and significantly affects expression 

of cohesin-bound genes. Target genes are enriched for developmental genes, including 

multiple genes that regulate adipogenesis, which is impaired in Nipbl +/- mice [17]. The 

results indicate that Nipbl regulates a significant number of genes through cohesin. While 

their expression levels vary in wild type cells, the Nipbl/cohesin target genes tend on the 

whole to be downregulated in Nipbl mutant cells, indicating that Nipbl and cohesin are 

important for activation of these genes. Consistent with this, these genes are enriched for 

H3 lysine 4 trimethylation (H3K4me3) at the promoter regions. The long-distance 

interaction of the cohesin-bound promoter and a putative enhancer region is decreased by 

Nipbl reduction, indicating that reduced cohesin binding by Nipbl haploinsufficiency 

affects chromatin interactions. Collectively, the results reveal that Nipbl 

haploinsufficiency globally reduces cohesin binding, and its major transcriptional 

consequence is downregulation of cohesin target genes.  
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3.3 Results 

 

3.3.1 Nipbl haploinsufficiency leads to a global reduction of cohesin binding to its 

binding sites 

In order to investigate how Nipbl haploinsufficiency leads to CdLS, cohesin binding 

was examined genome-wide by ChIP-seq analyses using antibody specific for the cohesin 

subunit Rad21, in wild type and Nipbl +/- mutant MEFs derived from E15.5 embryos 

[17] (Figure 3.1A). MEFs derived from five wild type and five mutant pups from two 

litters were combined to obtain sufficient chromatin samples for ChIP-seq analysis. Nipbl 

+/- mutant MEFs express approximately 30-40% less Nipbl compared to wild type MEFs 

[17] (Table 3.2). MEFs from this embryonic stage were chosen in order to match with a 

previous expression microarray study, because they are relatively free of secondary 

effects caused by Nipbl mutation-induced developmental abnormalities compared to 

embryonic tissue [17]. Consistent with this, there is no noticeable difference in growth 

rate and cell morphology between normal and mutant MEFs [17]. This particular anti-

Rad21 antibody was used previously for ChIP analysis and was shown to identify holo-

cohesin complex binding sites [26, 31, 41, 42]. This is consistent with the close 

correlation of the presence of other cohesin subunits at identified Rad21 binding sites 

[43] (Figure 3.1B).  

 

Cohesin binding sites were identified using AREM [44], with a significance cut-off 

based on a p-value less than 1x10-4, resulting in a FDR below 3.0% (Figure 3.1A). 

Cohesin binding peaks ranged from ~200bp to ~6kb in size with the majority less than 
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1kb in both wild type and mutant cells (median value of 499 bp in wild type and 481 bp 

in mutant cells) (Figure 3.1C). Approximately 35% fewer cohesin binding sites were 

found in Nipbl +/- mutant MEFs compared to the wild type MEFs (Figure 3.1A). This is 

not due to variability in sample preparation since no significant difference in the histone 

H3 ChIP-seq was observed between the wild type and mutant cell samples (R-

value=0.96) (Figure 3.1D).  Since the total read number for mutant ChIP-seq was ~15% 

less than for wild type ChIP-seq (Figure 3.1A), we examined whether the difference was 

in part due to a difference in the number of total read sequences between the two Rad21 

ChIP samples. To address this, we randomly removed reads from the wild type sample to 

match the number of reads in the mutant sample, and ran the peak discovery algorithm 

again on the reduced wild type read set. This was repeated 1,000 times. We found that the 

wild type sample still yielded ~39% more peaks than the mutant, indicating that 

identification of more peaks in the wild type sample is not due to a difference in the 

numbers of total read sequences (Figure 3.1E). Thus, cohesin appears to bind to fewer 

binding sites in Nipbl haploinsufficient cells.  

 

The above results might suggest that a significant number of binding sites are unique 

to the wild type cells (Figure 3.1A). When we compared the raw number of reads located 

within wild type peaks and the corresponding regions in mutant MEFs, however, we 

noted a reduced, rather than a complete absence of, cohesin binding in mutant cells 

(Figure 3.1F). Those regions in mutant cells corresponding to the “WT only” regions 

consistently contain one to three tags in a given window, which are below the peak cut-

off. However, the signals are significant compared to the negative control of preimmune 
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IgG (Figure 3.1F).  Furthermore, even for those sites that are apparently common 

between the control and mutant MEFs, the binding signals appear to be weaker in mutant 

cells (Figure 3.1F). To validate this observation, we segmented the genome into 

nonoverlapping 100bp bins, and plotted a histogram of the log ratios of read counts 

between the wild type and mutant samples in each bin, with read counts normalized using 

reads per kb per million total reads (RPKM) [45]. The plot indicates that the read counts 

for the mutant bins are generally less than those for the wild type bins, even for the 

binding sites common to both wild type and mutant cells (Figure 3.1G). Signal intensity 

profiles of the Rad21 ChIP-seq in the selected gene regions also show a general decrease 

of Rad21 binding at its binding sites in Nipbl+/- MEFs compared to the control MEFs 

(see below, Figure 3.6B). Decreased cohesin binding was further confirmed by manual 

ChIP-qPCR analysis of individual cohesin binding sites using at least three independent 

control and mutant MEF samples supporting the reproducibility of the results (see below, 

Figure 3.3). Decreased cohesin binding was also observed at additional specific genomic 

regions in Nipbl+/- MEFs [46].  Taken together, the results indicate that cohesin binding 

is generally decreased at its binding sites found in wild type MEFs, rather than re-

distributed, in mutant MEFs. 
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Figure 3.1. Global decrease of cohesin binding to chromatin in Nipbl heterozygous 

mutant MEFs. 

A. Cohesin binding sites identified by ChIP-sequencing using antibody specific for 

Rad21 in control wild type and Nipbl +/- MEFs.  

Peak calling was done using AREM [44]. The p-value and false discovery rate (FDR) are 

shown.  

B. Heatmap comparison of Rad21 ChIP-seq data with those of SMC1, SMC3, SA1 and 

SA2. Rad21 peaks in the wild type MEFs are ranked by strongest to weakest, and 

compared to the ChIP-seq data of SMC1, SMC3, SA1 and SA2 in MEFs (GSE32320) 

[43] in the corresponding regions. The normalized (reads per million) tag densities in a 4 

kb window around each Rad21 peak are plotted, with peaks sorted from the highest 

number of tags in the wild type MEFs to the lowest. 

C. Histogram of cohesin peak widths in wild type and mutant MEFs, indicating the 

number of peaks in a given size range. The segmentation of the histogram is at 100bp 

intervals. The median value is indicated with a vertical black line and labeled. 

D. Scatter plot of H3 ChIP-Seq data in both wild type and Nipbl +/- MEFs for 500 bp 

bins over the genome. The values are plotted in log reads per million (RPM).  

E. Histogram showing the distribution of total peaks called. A comparable number of 

reads to the Nipbl+/- mutant dataset (i.e. 4,740,463) were sub-sampled from the wild type 

dataset, and peaks called using only the sub-sampled reads. This process was performed 

1000 times to produce the histogram above. Mean values with standard deviations are 

shown.  
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F. Heatmap analysis of cohesin binding in wild type (WT) MEFs and corresponding peak 

signals in Nipbl +/- MEFs. The normalized (reads per million) tag densities in a 4 kb 

window around each peak are plotted, with peaks sorted from the highest number of tags 

in the wild type to the lowest. Peaks are separated into two categories, those that are 

found only in wild type (“WT only”) and those that overlap between wild type and Nipbl 

+/- (“common”). The color scale indicates the number of tags in a given region. 

G. Histogram of the ratio between normalized (reads per million total reads) wild type 

and mutant reads in peaks common to both. Positive values indicate more wild type tags. 

The black line indicates the mean ratio between wild type and mutant tag counts. 
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3.3.2 The relationship of cohesin binding sites with CTCF binding sites and CTCF 

motifs 

It has been reported that cohesin binding significantly overlaps with CTCF sites and 

depends on CTCF [26, 27]. A study in mouse embryonic stem cells (mESCs) showed, 

however, that there is only a limited overlap between CTCF- and Nipbl-bound cohesin 

sites, suggesting that there are two categories of cohesin binding sites, and the latter may 

be particularly important for gene activation [36]. Other studies also revealed that ~20-

30% of cohesin sites in different human cancer cell lines and up to ~50% of cohesin sites 

in mouse liver appear to be CTCF-free [38, 39]. Some of these non-CTCF sites overlap 

with sequence-specific transcription factor binding sites in a cell type-specific manner, 

highlighting the apparent significance of CTCF-free cohesin sites in cell type-specific 

gene expression [38, 39]. De novo motif discovery by MEME identified the CTCF motif 

to be the only significant motif associated with cohesin binding sites in our MEFs (Figure 

3.2A). Comparing our cohesin peaks with experimentally determined CTCF binding 

peaks in MEFs [36], we found that approximately two-thirds of cohesin binding sites 

detected by Rad21 ChIP overlapped CTCF binding sites (Figure 3.2B). This is 

comparable with what was initially observed in mouse lymphocytes [26] and HeLa cells 

[27] using antibodies against multiple cohesin subunits. In contrast to recent studies 

reporting that almost all the CTCF binding sites overlap with cohesin [39], our results 

show that less than 60% of CTCF binding sites are co-occupied with cohesin (Figure 

3.2B). This is consistent with the fact that CTCF binds and functions independently of 

cohesin at certain genomic regions [30, 37, 47, 48].  
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Presence of a CTCF motif closely correlates with CTCF binding: over 90% of 

cohesin binding sites overlapping with CTCF peaks contain CTCF motifs (Figure 3.2C). 

In contrast, less than half of cohesin binding sites harbor CTCF motifs in the absence of 

CTCF binding. Cohesin binding sites without CTCF binding tend to be highly deviated 

from a CTCF motif, reflecting a CTCF-independent mechanism of recruitment (Figure 

3.2D). Interestingly, a small population of cohesin-CTCF overlapping sites that also lack 

any CTCF motif, suggesting an alternative way by which cohesin and CTCF bind to 

these regions (Figure 3.2C and D).  

 

3.3.3 Nipbl reduction affects cohesin binding at CTCF-bound sites and repeat 

regions 

In mESCs, it was proposed that Nipbl and CTCF recruit cohesin to different genomic 

regions, implying that cohesin binding to CTCF sites may be Nipbl-independent [36]. We 

noticed that when we ranked cohesin binding sites based on the read number in wild type 

peaks, they matched closely with the ranking of cohesin binding sites in mutant MEFs, 

indicating that the decrease of cohesin binding is roughly proportional to the strength of 

the original binding signals (Figure 3.2E). This suggests that most cohesin binding sites 

have similar sensitivity to Nipbl reduction. Importantly, CTCF binding signals also 

correlate with the ranking of cohesin binding, indicating that CTCF-bound sites are in 

general better binding sites for cohesin (Figure 3.2E). Because of this, they satisfy the 

peak definition despite the decrease of cohesin binding in mutant cells (Figure 3.1F and 

G, and Figure 3.6B). This explains why CTCF-bound cohesin sites are apparently 

enriched in the sites that are common to both wild type and mutant cells (Figure 3.2F).  
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Based on the above data, Yen-Yun Chen in our lab further clarified the role of Nipbl 

in cohesin binding to CTCF sites. She compared the effect of Nipbl reduction on cohesin 

binding to representative sites, which have either CTCF binding or a CTCF motif or both 

(Figure 3.3A). Decreased cohesin binding was observed at all sites tested by manual 

ChIP-qPCR in Nipbl mutant MEFs, correlating with the decreased Nipbl binding (Figure 

3.3A). Consistent with the genome-wide ChIP-seq analysis (Figure 3.1D), control histone 

H3 ChIP-qPCR revealed no significant differences at the corresponding regions, 

indicating that the decreased cohesin binding is not due to generally decreased ChIP 

efficiency in mutant MEFs compared to the wild type MEFs (Figure 3.3C). Similar 

results were obtained using a small interfering RNA (siRNA) specific for Nipbl (Figure 

3.3A, bottom), which reduced Nipbl to a comparable level as in mutant cells (western 

blot in Figure 3.3D and RT-qPCR results in Table 3.2). This demonstrates the specificity 

of the Nipbl antibody and confirms that the decreased cohesin binding seen in Nipbl 

mutant MEFs is the direct consequence of reduced Nipbl (Figure 3.3A). Thus, Nipbl also 

functions in cohesin loading at CTCF sites. 
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Figure 3.2. Most of cohesin binding sites contain CTCF motifs.  

A. De novo motif search of cohesin binding sites using MEME. The CTCF motifs 

identified at the cohesin binding sites in WT and mutant MEFs are compared to the 

CTCF motif obtained from CTCF ChIP-seq data in MEFs (GSE22562) [36]. E-values are 

5.5e-1528 (cohesin binding sites in WT MEFs), 6.6e-1493 (cohesin binding sites in Nipbl 

MEFs), and 2.6e-1946 (CTCF binding sites in MEFs), respectively. 

B. Overlap of cohesin binding sites with CTCF binding sites. The number in the 

parenthesis in overlapping regions between cohesin and CTCF binding represents the 

number of CTCF binding peaks.  

C. Presence of CTCF motifs in cohesin only and cohesin/CTCF binding sites. Shaded 

area represents binding sites containing CTCF motifs defined in (A) (FDR 4.7%).  

D. The CTCF motif score distribution for all cohesin peaks that overlap with a CTCF 

peak (top) and that don't overlap with a CTCF peak (bottom). Note that the X axis is 

discontinuous and scores less than 200 are placed in the single bin in each figure. For 

peaks that contained multiple CTCF motifs, we report the maximum score for the peak. 

The score threshold (900 with FDR 4.7%) is marked in each figure. 

E. Heatmap comparison of cohesin ChIP-seq tags in WT MEFs and Nipbl mutant MEFs 

with CTCF ChIP-seq tags at the corresponding regions in wild type MEFs [36] as 

indicated at the top. The normalized (reads per million total reads) tag densities in a 4 kb 

window (±2kb around the center of all the cohesin peaks) are plotted, with peaks sorted 

by the number of cohesin tags (highest at the top) in WT MEFs. Tag density scale from 0 

to 20 is shown. 
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F. Percentages of CTCF binding in cohesin binding sites common or unique to WT 

MEFs 
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Figure 3.3. Nipbl reduction decreases cohesin binding. 

A. Manual ChIP-q-PCR of cohesin binding sites using anti-Rad21 antibody in mutant and 

wild type MEFs (top panel) and Nipbl or control siRNA-treated MEFs (bottom panel) as 

indicated. Representative examples of Nipbl ChIP are also shown. “+” indicates CTCF 

binding and “*” indicates the presence of motif. Depletion efficiency and specificity of 

Nipbl siRNA was examined by RT-q-PCR (Table 3.1).  

B. Similar manual ChIP-q-PCR analysis as in (A) of repeat regions in wild type and 

Nipbl mutant MEFs (top) and control and Nipbl siRNA-treated MEFs (bottom). 
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Provided by Yen-Yun Chen 
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3.3.4 Cohesin distribution patterns in the genome and enrichment in promoter 

regions 

In order to gain insight into how the weakening of cohesin binding may affect gene 

expression in mutant cells, the distribution of cohesin binding sites in the genomes of 

both wild type and mutant MEFs were examined. Approximately 50% of all cohesin 

binding sites are located in intergenic regions away from any known genes (Figure 3.4A). 

However, there is a significant enrichment of cohesin binding in promoter regions, and to 

a lesser extent in the 3’ downstream regions, relative to the random genomic distribution 

generated by sampling from pre-immune ChIP-seq reads (Figure 3.4B). Similar promoter 

and downstream enrichment has been observed in mouse and human cells [26, 27, 36, 38, 

43] as well as in Drosophila [49]. Promoter enrichment is comparable in both wild type 

and Nipbl mutant MEFs, constituting ~10% of all the cohesin binding sites (Figure 3.4A). 

Thus, there is no significant redistribution or genomic region-biased loss of cohesin 

binding sites in Nipbl mutant cells. 

 

3.3.5 Cohesin-bound genes are sensitive to Nipbl haploinsufficiency 

Based on the significant enrichment of cohesin binding in the promoter regions, we 

next examined the correlation between cohesin binding to the gene regions and the 

change of gene expression in mutant MEFs using a KS test. This is a nonparametric test 

for comparing peak binding sites with gene expression changes in the mutant MEFs 

(Figure 3.5). Genes that displayed the greatest expression change in mutant MEFs 

compared to the wild type MEFs showed a strong correlation with cohesin binding to the 

gene region, indicating that direct binding to the target genes is the major mechanism by 
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which cohesin mediates gene regulation in a Nipbl dosage-sensitive fashion (Figure 3.5A, 

left). Random sampling of a comparable number of simulated peaks in the gene regions 

yielded no correlation (Figure 3.5D, left). Interestingly, cohesin binding to the gene 

region correlates better with decreased gene expression than increased expression in 

mutant cells, indicating that gene activation, rather than repression, is the major mode of 

cohesin function at the gene regions (Figure 3.5A, middle). 

 

When analyzed separately, cohesin binding to the promoter regions (+2.5kb to -0.5kb 

of transcription start sites (TSS) (Figure 3.5A, right)) showed the highest correlation (p-

value=3.3e-09) compared to the gene body and downstream (Figure 3.5B). Thus, cohesin 

binding to the promoter regions is most critical for gene regulation. Similar to the entire 

gene region, cohesin binding correlates more significantly with a decrease in gene 

expression in mutant cells, which is particularly prominent at the promoter regions 

compared to gene bodies or downstream, indicating the significance of cohesin binding to 

the promoter regions in gene activation (Figure 3.5C). Although cohesin and CTCF 

binding closely overlapped at promoter regions in HeLa cells [27], the overlap of CTCF 

binding with cohesin in MEFs is lower in the promoter regions (54%) than that in the 

intergenic regions (67%) [36]. Consistent with this, there is no significant correlation 

between CTCF binding in the promoter regions and gene expression changes in Nipbl 

mutant MEFs (p-value=0.28) by KS test (Figure 3.5C, right), further indicating the 

cohesin-independent and Nipbl-insensitive function of CTCF in gene regulation. Taken 

together, the results suggest that cohesin binding to gene regions (in particular, to 
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promoters) is significantly associated with gene activation that is sensitive to Nipbl 

haploinsufficiency.  

 

3.3.6 Identification of cohesin target genes sensitive to Nipbl haploinsufficiency 

The results above indicate that cohesin-bound genes sensitive to a partial loss of 

Nipbl can be considered to be Nipbl/cohesin target genes. Among 218 genes that changed 

expression significantly in mutant cells compared to the wild type (>1.2-fold change, p-

value < 0.05) [17], we found that more than half (115 genes) were bound by cohesin, and 

thus can be considered Nipbl/cohesin target genes (Table 3.3). This is a conservative 

estimate of the number of direct target genes since cohesin binding sites beyond the 

upstream and downstream cut-offs (2.5 kb) were not considered for the analysis.  

Consistent with the KS test analysis (Figure 3.5), ~74% of these cohesin target genes 

were downregulated in mutant cells, indicating that the positive effect of cohesin on gene 

expression is particularly sensitive to partial reduction of Nipbl (Table 3.3).  
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Figure 3.4. Cohesin binding site distribution in the genome in MEFs. 

A. Percentage distribution of cohesin peaks in genomic regions. “Promoter” and 

“Downstream” is defined as 2500bp upstream of the transcription start site (TSS) and 500 

bp downstream of the TSS, and “Downstream” represents 500 bp upstream of 

transcription termination site (TTS) and 2500 bp downstream of TTS. The 3’ and 5’ 

untranslated regions (UTRs) are defined as those annotated by the UCSC genome 

browser minus the 500 bp interior at either the TSS or TTS. When a peak overlaps with 

multiple regions, it is assigned to one region with the order of precedence of promoter, 5’ 

UTR, Intron, Exon, 3’UTR, downstream, and intergenic. 

B. Enrichment of cohesin peaks across genomic regions as compared to randomly 

sampled genomic sequence. A comparable number of peaks (25,407 and 16,528 peaks in 

wild type and mutant MEFs, respectively), with the same length as the input set, were 

randomly chosen 1000 times and the average used as a baseline to determine enrichment 

in each genomic region category. 
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Figure 3.5. Correlation of cohesin binding and gene expression changes in mutant 

MEFs. 

A. KS test indicating the degree of cohesin binding to genes changing expression in Nipbl 

+/- MEFs. X-axis represents all 13,587 genes from the microarray data [17] ranked by 

absolute fold expression changes from biggest on the left to the smallest on the right in 

the left panel. Fold changes are shown in different colors as indicated on the side. In the 

middle panel, gene expression changes were ranked from negative to positive with the 

color scale shown on the side. Both color scales apply to the rest of the Figure. The Y-

axis is the running enrichment score for cohesin binding (see EXPERIMENTAL 

PROCEDURES for details). Distribution of cohesin-bound genes among 13,587 genes 

examined is shown as a beanplot [79] at the top, and the number of cohesin-bound genes 

and p-values are shown underneath. The schematic diagram showing the definition of the 

gene regions, promoter (2.5kb upstream and 0.5kb downstream of TSS), gene body, and 

downstream (2.5kb downstream and 0.5kb upstream of TTS) regions is shown on the 

right. 

B. Similar KS test analysis as in (A), in which cohesin binding to the promoter, gene 

body, and downstream regions are analyzed separately.  

C. Genes are ranked by expression changes from positive on the left to negative on the 

right. Fold changes are shown by different colors as indicated on the right. CTCF binding 

to promoter regions (GSE22562) [36] was analyzed for a comparison. 

D. Lack of correlation between the mutant expression changes and randomly chosen 

genes are shown on the right as a negative control. 
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Many of these Nipbl/cohesin-target genes contain cohesin binding sites in more than 

one region (promoter, gene body and/or downstream), suggesting their collaborative 

effects (Figure 3.6A).  In particular, the promoter binding of cohesin is often 

accompanied by its binding to the gene body. However, binding pattern analysis revealed 

no significant correlation between a particular pattern and/or number of cohesin binding 

sites and gene activation or repression (Figure 3.6A).  Rad21 ChIP-seq signal intensity 

profiles of several cohesin target genes (as defined above) reveal decreased cohesin 

binding in mutant cells at the binding sites originally observed in the wild type cells, 

supporting the notion that gene expression changes are the direct consequence of the 

reduced cohesin binding (Figure 3.3A; Figure 3.6B, top).  There are other genes, 

however, that did not change expression significantly in mutant MEFs, but nevertheless 

also have reduced cohesin peaks nearby (Figure 3.6B, bottom), suggesting that cohesin 

binding is not the sole determinant of the gene’s expression status and that its effect is 

context-dependent.   

 

Gene ontology analysis revealed that the target genes bound by cohesin at the 

promoter regions and affected by Nipbl deficiency are most significantly enriched for 

those involved in development (Table 3.4). The results suggest a direct link between 

diminished Nipbl/cohesin and the dysregulation of developmental genes, which 

contributes to the CdLS phenotype.  

 

 

 



	
   89	
  

3.3.8 Cohesin binding correlates significantly with H3K4me3 at the promoter 

To investigate the genomic features associated with cohesin target genes, we 

examined the chromatin status of the target gene promoters. We found that cohesin peaks 

closely overlap with the peaks of H3K4me3, a hallmark of an active promoter, in a 

promoter-specific manner (Figure 3.8A). In contrast, there are only minor peaks of 

H3K27me3 and even less H3K9me3 signal at cohesin-bound promoters, consistent with 

the results of the KS-test revealing the significant association of cohesin binding to the 

promoter regions with gene activation rather than repression (Figure 3.5C). Interestingly, 

however, promoter binding of cohesin was found in genes with different expression 

levels in wild type MEFs, revealing no particular correlation with high gene expression 

(Figure 3.8B). Cohesin target genes defined above (Table 3.3) also exhibit variable 

expression levels in wild type MEFs (Figure 3.8B). Thus, their expression is altered in 

Nipbl mutant cells regardless of the original expression level in wild type cells, indicating 

that cohesin binding contributes to gene expression but does not determine the level of 

transcription per se.  

 

When cohesin-bound genes were categorized in five different groups based on the 

gene expression status in wild type MEFs, significant H3K4me3 enrichment was 

observed even in the cohesin-bound promoters of genes with low expression, compared 

to cohesin-free promoters of genes with a similar expression level (Figure 3.8C). Bivalent 

(H3K4me3 and H3K27me3) modifications are also enriched in the lowest gene 

expression category (Figure 3.8C). Taken together, the results reveal that there is a close 
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correlation between cohesin binding and H3K4me3 in the promoter regions regardless of 

the expression levels of the corresponding genes.  
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Table 3.1. The list of PCR primers 
 

 
Unique regions ChIP primers 

 
pax2-F CTGGCACTGACATCTTGTGG 

 
pax2-R TGGGACCTGTAGTCCTGACC 

 
anapc13-F TCCTAAGCCGTCCTGTAGTCC 

 
anapc13-R GGGTGTCCATCATCTGAGTCC 

 
alox8-F GTATGAGGTGGGCCTGAGTG 

 
alox8-R AAGCCCTGCCTAAATGTGTG 

 
ebf1-F AACTGAGCCTTAGGGGAAGC 

 
ebf1-R TCAGGGTTCAATCTCCAAGG 

 
cebpb-F AGAGTTCTGCTTCCCAGGAGT 

 
cebpb-R GGAAACAGATCGTTCCTCCA 

 
il1R2-F TGGAGGCAGTGGAAGAATCA 

 
il1R2-R ATCCTTGGCAGTGAACCAGA 

 
fez1-F GAGGGTGGGACGTATTTCAGT 

 
fez1-R CAGCCTTCTTTCCCTCACAA 

 
pcdhb22-F GCAGTAATGCCAGCAATGG 

 
pcdhb22-R TCCAGTTGGTTGGGTTTCAT 

 
RT-qPCR primers 

 
 

Rnh1-F (Housing keeping gene) TCCAGTGTGAGCAGCTGAG 

 
Rnh1-R (Housing keeping gene) TGCAGGCACTGAAGCACCA 

 
Nipbl-F AGTCCATATGCCCCACAGAG 

 
Nipbl-R ACCGGCAACAATAGGACTTG 

 
Rad21-F AGCCAAGAGGAAGAGGAAGC 

 
Rad21-R AGCCAGGTCCAGAGTCGTAA 

 
Cebpb-F GCGGGGTTGTTGATGTTT 

 
Cebpb-R ATGCTCGAAACGGAAAAGG 

 
Cebpd-F ACAGGTGGGCAGTGGAGTAA 

 
Cebpd-R GTGGCACTGTCACCCATACA 

 
Ebf1-F GCGAGAATCTCCTTCAAGACTTC 

 
Ebf1-R ACCTACTTGCCTTTGTGGGTT 

 
Il6-F TAGTCCTTCCTACCCCAATTTCC 

 
Il6-R TTGGTCCTTAGCCACTCCTTC 

 
Avpr1a-F TGGTGGCCGTGCTGGGTAATAG 

 
Avpr1a-R GCGGAAGCGGTAGGTGATGTC 

 
Lpar1-F ATTTCACAGCCCCAGTTCAC 

 
Lpar1-R CACCAGCTTGCTCACTGTGT 

 
Adm-F TATCAGAGCATCGCCACAGA 

 
Adm-R TTAGCGCCCACTTATTCCAC 

 
Cebpb 3C primers 

 
 

cebpb-promoter ACTCCGAATCCTCCATCCTT 

 
cebpb-region-b CCTGCCCTGTATCAAAGCAT 

 
cebpb-region-a CTGCCCAAATCAGTGAGGTT 

 
cebpb-region-c CCTCTGTGAGGTCTGGTCGT 
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cebpb-promoter-R GGTGGCTGCGTTAGACAGTA 

 
cebpb-region-a-R GTTGTATCCCAAGCCAGCTC 

 
cebpb-region-b-R CTCCCCACTCTGTTCAGGAC 

 
cebpb-region-c-R TAACAGCAGGGATGGGTTCT 
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Table 3.2. Nipbl and Rad21 depletion levels in mutant and siRNA-treated MEFs 
 

Gene Nipbl+/- mutant Nipbl siRNA Rad21 siRNA 
Nipbl 0.68±0.003 0.68±0.001 1.04±0.051 
Rad21 0.94±0.021 0.99±0.021 0.26±0.018 
CTCF 0.95±0.050 0.96±0.066 0.84±0.074 
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Table 3.3. Gene expression changes and cohesin binding status 
 

 Total 
Cohesin binding 
Gene region Promoter Gene body Downstream None 

Total 218 115 61 83 20 103 

Up-regulated 62 30 14 22 6 32 

Down-regulated 156 85 47 61 14 71 
           (Fold 
change>1.2, p-value<0.05) 
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Table 3.4. Ontology analysis of cohesin target genes. 
Biological processes enriched in cohesin target genes with cohesin binding at either promoters or gene 
regions.  “Gene number” is the number of cohesin target genes that belong to a specific category; 
“Expected number” is the expected gene numbers that belong to a specific category at random. 

 
Altered gene expression in Nipbl+/- MEFs associated with cohesin binding to the promoters 
 
Biological  
process 

Gene  
number 

Expected  
number Enrichment P value Genes 

development 18 7.55 2.38 2.96E-04 

Avpr1a, Dner, Fgf7, Thbd, Hoxa5,Hoxb5, Cebpa, 
Cebpb, Rcan2, Lama2, Ebf1, Klf4, Hunk, Tgfb3, 
Irx5, Odz4, Ptpre, Lpp 

metabolism 33 22 1.50 2.90E-03 

Dner, Acvr2a, Hoxa5, Hoxb5, Trib2, Satb1, Cebpa, 
Cebpb, Gstm2, Amacr, Cd55, Dhrs3, Grk5, Ell2, 
Serpinb1a, Cyp1b1, Chst1, Hsd3b7, Aldh1a7, 
Npr3, Man2a1, Klf4, Hunk, Prkd1,Prdx5, Ercc1, 
Irx5, Odz4, Sox11, Ptpre, Ccrn4l, Rgnef, Bcl11b 

cell 
communicati
on 21 11.53 1.82 2.96E-03 

Dner, Acvr2a, Trib2, Cd55, Grk5, Hunk, Odz4, 
Ptpre, Rgnef, Avpr1a, Fgf7, Thbd, Fam43a, Rcan2, 
Socs3, Lama2, Cxcr7, Tpcn1, Rerg, Tgfb3, Lpp 

immune 
system 14 6.81 2.06 6.44E-03 

Dner, Cd55, Hunk, Ptpre, Thbd, Lama2, Cxcr7, 
Cebpa, Cebpb, Gstm2, Klf4, Prdx5, Fcgrt, Cd302 

 
Altered gene expression in Nipbl+/- MEFs associated with cohesin binding to the gene regions 
Biological  
process 

Gene  
number 

Expected  
number Enrichment P value Genes 

immune 
system 30 12.83 2.34 6.60E-06 

Klf4, Dner, Thbd, Cd55, Lama2, Cd302, Cxcr7, 
Hunk, Cebpa, Cebpb, Gstm2, Fcgrt, Prdx5, Fmod, 
Crlf1, Prelp, Svep1, Plac8, Heph, Swap70, Mxra8, 
Sdc2, Colec12, Pcolce2, Flt4, Gbp1, Hck, Dusp14, 
Cd109, Ptpre 

cell adhesion 19 6.22 3.05 1.33E-05 

Dner, Cd55, Lama2, Fmod, Prelp, Svep1, Plac8, 
Heph, Mxra8, Sdc2, Colec12, Pcolce2, Flt4, Hck, 
Ptpre, Rerg, Vcan, Odz4, Rgnef 

cell 
communicati
on 41 21.72 1.89 1.65E-05 

Dner, Cd55, Lama2, Fmod, Prelp,  Svep1, Heph, 
Sdc2, Colec12, Pcolce2, Flt4, Hck, Ptpre, Rerg, 
Vcan, Odz4, Rgnef, Thbd, Cxcr7, Hunk, Crlf1, 
Dusp14, Cd109, Rcan2, Socs3, Fam43a, Trib2, 
Grk5, Tpcn1, Avpr1a, Fgf7, Acvr2a, Figf, Myh3, 
Tob1, Acvrl1, Moxd1, Tgfb3, Lpp, Wnt4 

development 30 14.22 2.11 4.81E-05 

Dner, Lama2, Fmod, Prelp, Heph, Sdc2, Colec12, 
Pcolce2, Flt4, Ebf1, Hck, Ptpre, Vcan, Odz4, Thbd, 
Hunk, Crlf1, Rcan2, Socs3, Avpr1a, Fgf7, Figf, 
Myh3, Tgfb3, Lpp, Klf4, Cebpa, Cebpb, Hoxa5, 
Hoxb5, Irx5 
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metabolism 57 41.44 1.38 1.91E-03 

Dner, Heph, Pcolce2, Flt4, Hck, Ptpre, Odz4, 
Hunk, Klf4, Cebpa, Cebpb, Hoxa5, Hoxb5, Irx5, 
Cd55, Svep1, Rgnef, Dusp14, Cd109, Trib2, Grk5, 
Acvr2a, Acvrl1, Moxd1, Prdx5, Swap70, Satb1, 
Amacr, Dhrs3, Ell2, Npr3, Man2a1, Prkd1, 
Cyp1b1, Serpinb1a, Chst1, Hsd3b7, Aldh1a7, 
H6pd, Serpine2, Cyp7b1, P4ha2, Larp6, Mrps11, 
Aox1, Hdac5, Cpxm1, Eno2, Sox11, Prkcdbp, 
Ccrn4l, Ercc1, Pqlc3, Bcl11b 
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Figure 3.6. Enrichment of H3K4me3 at the promoters of cohesin-bound genes. 
A. Density of histone modifications within 10kb of cohesin peaks found in the promoter 

or downstream regions. Histone methylation data was downloaded from NCBI (GEO: 

GSE26657). Tags within a 10 kb window around cohesin peaks located in a promoter 

region were counted and normalized to the total number of tags (reads per million) and 

used to generate a density plot. 

B. Expression status of cohesin target genes. Genes are ranked by their expression status 

(shown as a z-score) in wild type MEFs (lane 2), and those genes with cohesin binding at 

the promoter regions are indicated by yellow lines (lane 1). The expression status of the 

corresponding genes in Nipbl mutant cells is also shown (lane 3), and the cohesin target 

genes (Table 3.2) (either upregulated (lane 4) or downregulated (lane 5) in mutant cells) 

are indicated by black lines. Genes in the adipogenesis pathway are indicated with arrows 

on the right. Five clusters (I through V) of two hundred cohesin-bound genes each in wild 

type MEFs according to the expression levels are indicated on the left, which were used 

for the analysis in (C) and (D).  

C. The numbers of cohesin target genes containing histone marks in the promoter were 

tallied for the categories I through V from (B). As a control, the cohesin-free gene 

directly below each cohesin target gene was also tallied and plotted. H3K4me3, 

H3K9me3, H3K27me3, bivalent (H3K4me3 and H3K27me3), and the promoters with 

none of these marks (“None”) are indicated. There is almost no signal of H3K9me3 in 

these categories. 

D. Enrichment plot of H3K4me3, H3K27me3, and bivalent (H3K4me3 and K27me3) in 

promoters of cohesin-bound genes versus cohesin-free genes in the five expression 

categories as in (C) is shown.  
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3.4 Discussion 

 In this study, we used MEFs derived from Nipbl heterozygous mutant mice to analyze 

the effect of Nipbl haploinsufficiency (the primary cause of CdLS) on cohesin binding 

and its relationship to gene expression. We found a genome-wide decrease in cohesin 

binding even at CTCF sites and repeat regions, indicating the high sensitivity of cohesin 

binding to even a partial reduction of the Nipbl protein. Importantly, the expression of 

genes bound by cohesin, particularly at the promoter regions, is preferentially altered in 

response to Nipbl reduction. While some genes are activated, the majority of cohesin-

bound genes are repressed by decreased cohesin binding, indicating the positive role of 

cohesin in this context. This is consistent with the significant enrichment of H3K4me3 at 

the promoters of cohesin-bound genes. Our results indicate that more than 50% of genes 

whose expression is altered significantly in Nipbl haploinsufficient cells are cohesin 

target genes directly influenced by decreased cohesin binding at the individual gene 

regions. One consequence of reduced cohesin binding at the promoter region is a 

decrease of a specific long-distance chromatin interaction, raising the possibility that 

cohesin-dependent higher-order chromatin organization in the nucleus may be globally 

altered in CdLS patient cells.  

 

3.4.1 Nipbl functions in cohesin loading at both CTCF and non-CTCF sites 

In mESCs, it was suggested that Nipbl is involved in cohesin binding to only a subset 

of cohesin binding sites, which are largely distinct from CTCF-bound sites [36]. 

However, we found that Nipbl binds to, and its haploinsufficiency decreased cohesin 

binding to, CTCF sites in MEFs. A similar decrease of cohesin binding was observed at 
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both CTCF insulators and non-CTCF sites in the b-globin locus in Nipbl +/- fetal mouse 

liver [31]. Furthermore, during differentiation in mouse erythroleukemia cells, both Nipbl 

and cohesin binding is concomitantly increased at these sites [31]. Therefore, while 

cohesin was suggested to slide from the Scc2 (Nipbl homolog)-dependent loading sites in 

yeast [50, 51], Nipbl is present and appears to directly affect cohesin loading at CTCF 

sites in mammalian cells. Nipbl, rather than cohesin, interacts with Mediator and HP1, 

and appears to recruit and load cohesin onto genomic regions enriched for Mediator and 

HP1 for gene activation and heterochromatin assembly, respectively [36, 41]. In contrast, 

cohesin, and not Nipbl, primarily interacts with CTCF [41, 52]. Thus, for cohesin binding 

to CTCF sites, we envision that cohesin initially recruits Nipbl that in turn stably loads 

cohesin onto CTCF sites.  

 

A recent study indicated that almost all CTCF sites are bound by cohesin in primary 

mouse liver [39]. In MEFs, however, we found that ~42% of CTCF-bound sites appear to 

be cohesin-free. Furthermore, there is less overlap of cohesin and CTCF in the promoter 

regions compared to the intergenic regions, and little correlation between CTCF binding 

to the promoter and gene expression changes in Nipbl mutant cells was observed.  Thus, 

in contrast to the cooperative function of cohesin and CTCF at distantly located insulator 

sites [32], cohesin and CTCF appear to have distinct functions at gene promoters. 

Distinct gene regulatory functions of CTCF and cohesin have also been reported in 

human cells [37].  Further study is needed to understand the recruitment specificity and 

functional relationship of cohesin and CTCF in gene regulation. 
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3.4.2 How does Nipbl haploinsufficiency affect cohesin target gene expression? 

Cohesin binding to the gene body regions is found at many of the cohesin target 

genes.  This may represent the cohesin binding at intragenic enhancer elements or may be 

related to Pol II pausing [53].  While cohesin was shown to facilitate Pol II elongation in 

Drosophila [54-56], cohesin together with CTCF in the intragenic region was found to 

cause Pol II pausing at the PUMA gene in human cells [57], suggesting that cohesin can 

have both positive and negative effects on transcriptional elongation in a context-

dependent manner.  Furthermore, not all the cohesin-bound genes changed expression in 

Nipbl+/- MEFs, echoing this notion that the effect of cohesin binding on gene expression 

is context-dependent.  What determines the effects of cohesin binding at individual 

binding sites on gene expression requires further investigation. 

 

3.4.3 The role of cohesin in the maintenance of gene expression 

While there is now strong evidence for cohesin’s role in chromatin organization and 

gene activation, whether cohesin is involved in initiation or maintenance of gene 

activation is less clear. Enrichment of cohesin binding at the transcription start sites and 

termination sites was observed previously in mouse immune cells with no significant 

correlation to gene expression [26]. Our genome-wide analysis also revealed that cohesin 

binding to the gene regions has no obvious relationship to the level of gene expression in 

wild type MEFs. And yet, a decrease in cohesin binding is associated with a tendency to 

downregulate these genes, indicative of the positive role of cohesin on gene expression, 

consistent with the enriched presence of H3K4me3 in promoter regions. We speculate 

that cohesin may not be the primary determinant of gene activation, but rather cohesin 
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binding may be important for maintaining gene expression status initially determined by 

sequence- and cell type-specific transcription factors. Similarly, enrichment of bivalent 

histone modifications in the promoters of cohesin-bound genes with very low expression 

suggests that cohesin also contributes to the maintenance of the poised state of these 

genes. 

 

3.4.4 Nipbl haploinsufficiency vs. cohesin mutation 

There are two different cohesin complexes in mammalian somatic cells that differ by 

one non-SMC subunit (i.e., SA1 (STAG1) or SA2 (STAG2)) [58, 59]. A recent report on 

SA1 knockout mice revealed some phenotypic similarity to what is seen in mice with 

Nipbl haploinsufficiency [43]. Interestingly, the SA1 gene is one of the cohesin target 

genes that is slightly upregulated in Nipbl mutant cells [17]. Thus, together with the 

compensatory increase of Nipbl expression from the intact allele, there appears to be a 

feedback mechanism that attempts to balance the expression of Nipbl and cohesin in 

response to Nipbl mutation. The fact that upregulation was observed with the SA1, but not 

SA2, gene may reflect the unique transcriptional role of SA1 [43]. Interestingly, however, 

only 10% of 215 genes altered in Nipbl mutant MEFs are changed significantly in SA1 

KO MEFs [43]. This discrepancy may, as observed in Drosophila [60], reflect the 

different effects of decreased binding versus complete knockout of a cohesin subunit on 

target gene expression. It could also be a result of the decreased binding of the second 

cohesin complex, cohesin-SA2.  
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Cohesin binding was relatively uniformly decreased genome-wide in Nipbl 

haploinsufficient cells with no significant redistribution of cohesin binding sites. Point 

mutations of different subunits of cohesin cause CdLS and CdLS-like disorders with both 

overlapping and distinct phenotypes compared to CdLS cases caused by NIPBL 

mutations [9, 10, 13]. Non-overlapping effects of downregulation of different cohesin 

subunits have been reported in zebrafish [20, 25]. This may reflect an unequal role of 

each cohesin subunit in gene regulation and it is possible that some of the cohesin target 

genes may be particularly sensitive to a specific cohesin subunit mutation. For example, 

similar to the TBP-associating factors (TAFs) in TFIID [61], cohesin subunits may 

provide different interaction surfaces for distinct transcription factors, which would 

dictate their differential recruitment and/or transcriptional activities. Furthermore, recent 

studies provide evidence for cohesin-independent roles of NIPBL in chromatin 

compaction and gene regulation [62, 63].  Thus, disturbance of cohesin functions as well 

as impairment of cohesin-independent roles of NIPBL may collectively contribute to 

CdLS caused by NIPBL mutations.  

 

Our results demonstrate that cohesin binding to chromatin is highly sensitive genome-

wide (both at unique and repeat regions) to partial Nipbl reduction, resulting in a general 

decrease in cohesin binding even at strong CTCF sites. Many genes whose expression is 

changed by Nipbl reduction are actual cohesin target genes. Our results suggest that 

decreased cohesin binding due to partial reduction of NIPBL at the gene regions directly 

contributes to disorder-specific gene expression changes and the CdLS phenotype. This 

work provides important insight into the function of cohesin in gene regulation with 
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direct implications for the mechanism underlying NIPBL haploinsufficiency-induced 

CdLS pathogenesis. 
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3.5 Methods 
 

3.5.1 Cells and antibodies 

Mouse embryonic fibroblasts (MEFs) derived from E15.5 wild type and Nipbl mutant 

embryos were used as described previously [17]. In brief, mice heterozygous for Nipbl 

mutation were generated (Nipbl +/-) from gene-trap-inserted ES cells. This mutation 

resulted in a net 30-50% decrease in Nipbl transcripts in the mice, along with many 

phenotypes characteristic of human CdLS patients [17]. Wild type and mutant MEF cell 

lines derived from the siblings were cultured at 37°C and 5% CO2 in DMEM (Gibco) 

supplemented with 10% fetal bovine serum and penicillin-streptomycin (50U/mL). 

Antibodies specific for hSMC1 and Rad21 were previously described [64]. Rabbit 

polyclonal antibody against the NIPBL protein was raised against a bacterially-expressed 

recombinant polypeptide corresponding to the C-terminal fragment of NIPBL isoform A 

(NP_597677.2) (amino acids 2429–2804) and antigen affinity-purified. CTCF antibody 

was from Millipore (07-729) and histone H3 from Abcam (ab1791). 

 

3.5.2 ChIP-sequencing (ChIP-seq) and ChIP-PCR 

ChIP was carried out as described previously [31]. Approximately 50 mg DNA was 

used per IP. Cells were crosslinked 10 mins with 1% formaldehyde, lysed, and sonicated 

using the Bioruptor from Diagenode to obtain ~200bp fragments using a 30 sec on/off 

cycle for 1 hr. Samples were diluted and pre-cleared for 1 hr with BSA and Protein A 

beads. Pre-cleared extracts were incubated with Rad21, Nipbl, and preimmune antibodies 

overnight. IP was performed with Protein A beads with subsequent washes. DNA was 

eluted off beads, reversed crosslinked for 8 hrs, and purified with the Qiagen PCR 
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Purification Kit. Samples were submitted to Ambry Genetics (Aliso Viejo, CA) for 

library preparation and sequencing using the Illumina protocol and the Illumina Genome 

Analyzer (GA) system. The total number of reads before alignment were: preimmune 

IgG, 7,428,656; Rad21 in control WT, 7,200,450; Rad21 in Nipbl+/-, 4,668,622; histone 

H3 in WT, 26,630,000; and histone H3 in Nipbl+/-, 24,952,439. Sequences were aligned 

to the mouse mm9 reference genome using Bowtie (with parameters–n2, -k20, —best, —

strata, —chunkmbs 384) [65]. ChIP-seq data is being submitted to GEO. PCR primers 

used for manual ChIP confirmation are listed in Table 3.1. Primers corresponding to 

repeat sequences (major and minor satellite, rDNA, SINEB1 and B2 repeats) were from 

Matens et al. [66]. For manual ChIP-PCR analysis of selected genomic locations, ChIP 

signals were normalized with preimmune IgG and input DNA from each cell sample as 

previously described [31, 41, 67].  The experiments were repeated at least three times 

using MEF samples from different litters, which yielded consistent results. PCR reactions 

were done in duplicates or triplicates. 

 

3.5.3 Peak Finding 

Peaks were called using AREM (Aligning ChIP-seq Reads using Expectation 

Maximization) as previously described [44]. AREM incorporates sequences with one or 

many mappings to call peaks as opposed to using only uniquely mapping reads, allowing 

one to call peaks normally missed due to repetitive sequence. Since many peaks for 

Rad21 as well as CTCF can be found in repetitive sequence [44, 68], we used a mixture 

model to describe the data, assuming K + 1 clusters of sequences (K peaks and 

background). Maximum likelihood is used to estimate the locations of enrichment, with 
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the read alignment probabilities iteratively updated using EM. Final peaks are called for 

each window assuming a Poisson distribution, calculating a p-value for each sequence 

cluster. The false discovery rate for all peaks was determined relative to the pre-immune 

sample, with EM performed independently for the pre-immune sample as well. Full 

algorithm details are available, including a systematic comparison to other common peak 

callers such as SICER and MACS [44]. Overlap between peaks and genomic regions of 

interest were generated using Perl and Python scripts as well as pybedtools [69, 70]. 

Figures were generated using the R statistical package [71]. Visualization of sequence 

pileup utilized the UCSC Genome Browser [72, 73]. 

 

3.5.4 Motif Analysis 

De Novo motif discovery was performed using Multiple Expectation maximization 

for Motif Elicitation (MEME) version 6.1 [74]. Input sequences were limited to 200 bp in 

length surrounding the summit of any given peak, and the number reduced to 1000 

randomly sampled sequences from the set of all peak sequences. Motif searches for 

known motifs were performed by calculation of a log-odds ratio contrasting the position 

weight matrix with the background nucleotide frequency. Baseline values were 

determined from calculations across randomly selected regions of the genome. Randomly 

selected 200bp genomic regions were used to calculate a false discovery rate (FDR) at 

several position weight matrix (PWM) score thresholds. We chose the motif-calling score 

threshold corresponding to a 4.7% FDR. The p-values were derived for the number of 

matches above the z-score threshold relative to the background using a hypergeometric 

test. 
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3.5.5 Expression data analysis 

Affymetrix MOE430A 2.0 array data for mouse embryonic fibroblasts (10 data sets 

for the wild type and nine for Nipbl+/- mutant MEFS) were previously published [17]. 

Expression data were filtered for probe sets with values below 300 and above 20,000, 

with the remainder used for downstream analysis. Differential expression and associated 

p-values were determined using Cyber-t, which uses a modified t-test statistic [75]. Probe 

sets were collapsed into genes by taking the median value across all probe sets 

representing a particular gene. Raw expression values for each gene are represented as a 

z-score, which denotes the number of standard deviations that value is away from the 

mean value across all genes. Gene ontology analysis was performed using PANTHER 

[76, 77] with a cutoff of p < 0.05. 

 

3.5.6 KS test 

Genes were sorted by their fold-change and any adjacent ChIP binding sites were 

identified. We performed a Kolmogorov-Smirnov (KS) test comparing the expression-

sorted ChIP binding presence vs. a uniform distribution of binding sites, similar to Gene 

Set Enrichment Analysis [78]. If ChIP binding significantly correlates with the gene 

expression fold-change, the KS statistic, d, will also have significant, non-zero 

magnitude. To better visualize the KS test, we plotted the difference between the 

presence of cohesin binding at (expression-sorted) genes in Figure 3.5. The x axis of this 

Figure 3.is the (fold-change-based) gene rank, and the y axis is the KS statistic d, which 

behaves like a running enrichment score and is higher (lower) when binding sites co-

occur more (less) often than expected if there were no correlation between ChIP binding 
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and expression fold-change. The KS test uses only the d with the highest magnitude, 

which is indicated in the plots by a vertical red line. To better visualize ChIP binding 

presence, we further plot an x-mirrored density of peak presence at the top of each plot; 

the gray "beanplot" [79] at the top of the plots are larger when many of the genes have 

adjacent ChIP binding sites. 

 

3.5.7 siRNA depletion 

Wild type MEFs were transfected using HiPerFect (Qiagen) following the 

manufacturer’s protocol with 10mM siRNA. A mixture of 30µl HiPerFect, 3µl of 20µM 

siRNA, and 150µl DMEM was incubated for 10 mins and added to 2 x 106 cells in 4 ml 

DMEM. After 6 hrs, 2ml fresh DMEM with 10% FBS was added. Transfection was 

repeated the next day. Cells were harvested 48 hrs after the first transfection. SiRNAs 

against Nipbl (Nipbl-1: 5’-GTGGTCGTTACCGAAACCGAA-3’; Nipbl-2: 5’-

AAGGCAGTACTTAGACTTTAA-3’) and Rad21 (5’-

CTCGAGAATGGTAATTGTATA-3’) were made by Qiagen. AllStars Negative Control 

siRNA was obtained from Qiagen. 

 

3.5.8 RT-q-PCR 

Total RNA was extracted using the Qiagen RNeasy Plus kit. First-strand cDNA 

synthesis was performed with SuperScript II (Invitrogen). Q-PCR was performed using 

the iCycler iQ Real-time PCR detection system (Bio-Rad) with iQ SYBR Green 

Supermix (Bio-Rad). Values were generated based on Ct and normalized to control gene 

RNH1. PCR primers specific for major satellite, minor satellite, rDNA, SINE B1 and 
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SINE B2 were previously described [66]. Other unique primers are listed in Table 3.1. 

The RT-qPCR analyses of the wild type and mutant cells were done with two biological 

replicates with consistent results. The gene expression changes after siRNA treatment 

were evaluated with two to three biological replicates with similar results.  
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Chapter 4 

Cohesin-independent gene regulation by NIPBL in HeLa cells 
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4.1 Abstract 

 The cohesin complex is an evolutionarily conserved, essential protein complex with 

critical functions in sister chromatid cohesion, DNA repair, and gene regulation.  In Cornelia de 

Lange Syndrome (CdLS), a developmental disorder affecting many different organ systems, 

patients fail to show significant sister chromatid cohesion defects.  Instead, recent work in a 

mouse model for CdLS implicates widespread gene dysregulation as a probable cause for the 

disease.  While mutations in cohesin subunits can result in mild forms of CdLS, a majority of 

cases are due to mutations in NIPBL, the cohesin’s loading factor.  In order to better understand 

the chromatin binding patterns of NIPBL in mammalian cells, with implications for CdLS, we 

performed chromatin immunoprecipitation with sequencing (ChIP-sequencing) of NIPBL. We 

found that a majority of NIPBL binding sites overlap with cohesin and CTCF.  Moreover, there 

exists a subset of NIPBL binding sites that are free of cohesin and that are enriched at the 

promoter region of genes.  A subset of the genes bound by NIPBL is regulated independently of 

cohesin, being upregulated upon depletion of NIPBL.  Using microarray analysis, we found that 

76 genes differentially expressed upon NIPBL depletion are bound by NIPBL at the promoter 

region.  Finally, NIPBL binding sites in HeLa show significant enrichment for the YY1 and 

HCFC1 transcriptional regulators.  Our data suggests that part of the phenotypic diversity present 

in CdLS patients is due to dysregulation of genes upon loss of NIPBL binding in a cohesin-

independent manner. 
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4.2 Introduction 

 The cohesin complex has been studied heavily in recent years as researchers have 

discovered cohesin’s importance in DNA repair, replication, and gene regulation (reviewed in 

[1]).  One of the more recent findings, that of gene regulation, has important implications for 

disease in particular; there are, in fact, a surprising number of genes that cohesin may regulate 

across the genome (Chapter 3, [2-6]). In conjunction with gene regulation, cohesin has been 

shown to play an important role in establishing and maintaining long-range chromatin 

interactions, which were found to be important for IgH diversity [7], regulated gene expression at 

the IGF2-H19 imprinted locus [5], the β-globin locus [2], and stem cell maintenance in mouse 

embryonic stem cells (MESs) [3].  Since cohesin may target so many genes, pathways, and 

systems, proper localization to its binding sites is critical. 

 

 Cornelia de Lange Syndrome (CdLS) is a developmental disorder characterized by an 

array of phenotypes, including limb deformity, cranial-facial defects, heart defects, and 

neurological delay [8].  Interestingly, these phenotypes can have a wide range of severity in 

patients.  CdLS was shown to be caused primarily by mutations in NIPBL [8], with fewer cases 

due to mutations in either SMC1 [9, 10] or SMC3 [10](cohesin), or HDAC8 [11](which regulates 

cohesin re-loading after mitosis).  Mutations in the RAD21 subunit of cohesin show CdLS –like 

phenotypes, with similar skeletal and craniofacial defects, but milder cognitive impairment [12]. 

Various mutations in patients with CdLS had been recorded and their subsequent impact was 

analyzed in a recent review [13]. These data indicated that there are phenotypic differences in the 

patients with NIPBL mutations in comparison to those with mutations in cohesin, with NIPBL 

mutations producing a wider variety and more severe phenotypes [13].  The larger array of 
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phenotypes in particular suggests that NIPBL may be important for the disease mechanism 

beyond its ability to load cohesin.  It was also posited that there might be cohesin-independent 

functions for NIPBL [13]. 

 

 Previous work in our lab (see Chapter 3) has better characterized the relationship between 

Nipbl haploinsufficiency and the widespread gene dysregulation in the CdLS mouse model seen 

by our collaborators [14].  We found that Nipbl mutations resulted in a decreased level of 

cohesin binding across the genome, with many sites occurring near genes that were differentially 

expressed in the mutant mice.  While these data suggest one mechanism by which Nipbl can 

affect gene expression through cohesin, it does not answer the question whether or not Nipbl can 

affect gene expression independently of cohesin within these mice (or by extension, within 

patients with CdLS).  To answer this question, we have performed NIPBL ChIP-sequencing in a 

human cervical cancer cell line HeLa to identify where NIPBL is localized across the genome.  

Furthermore, we generated global expression data from HeLa cells depleted of either NIPBL or 

RAD21 (cohesin) to identify genes that are impacted only NIPBL and cohesin levels in the cell.  

By correlating these data with one another, we have been able to identify a set of genes bound by 

NIPBL and whose expression has been altered by NIPBL depletion but remain unaffected by 

RAD21 depletion.  Lastly, we also identified transcriptional regulators that may cooperate with 

NIPBL to regulate expression of target genes.  Our data provide evidence that NIPBL is indeed 

able to regulate expression of genes independently of cohesin, suggesting that the phenotypic 

diversity of CdLS patients with NIPBL mutations may be partly due to the impairment of 

cohesin-independent gene regulatory function of NIPBL. 
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4.3 Results 

 

4.3.1 NIPBL peaks overlap with both cohesin and CTCF 

A former graduate student in our lab, Weihua Zeng, performed chromatin 

immunoprecipitation coupled with high-throughput sequencing (ChIP-sequencing) using an 

antibody directed against the C-terminal portion of NIPBL in asynchronous HeLa.  In order to 

verify the specificity of our antibody, Weiwha Zeng depleted NIPBL in HeLa and performed 

ChIP at positive and negative sites based on the ChIP-sequencing results (Figure 4.1D), with 

positive sites showing a decrease in NIPBL binding upon NIPBL depletion.  After read mapping 

and peak calling (see methods), a total of 10,223 peaks were found for NIPBL, with the average 

peak width for these peaks being 536 bp (Figure 4.3).  Using ChIP-sequencing data from the 

ENCODE project, I mapped reads and called peaks for RAD21, SMC3 (subunits of the cohesin 

complex), and CTCF (see methods).  We found 67,000 peaks for RAD21, 54,000 peaks for 

SMC3, and 58,000 peaks for CTCF (Figure 4.1).  This is in contrast to what has been seen in 

mouse embryonic stem cells (ESCs) [3], where it was shown that few NIPBL binding sites 

overlap with CTCF.  Recent studies in HB2 cells (human mammary epithelial cells) [15] also 

indicate that NIPBL does not overlap with either cohesin or CTCF in cell populations enriched 

for the G1 phase of the cell cycle.   
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Figure	
  4.1.	
  NIPBL	
  overlaps	
  with	
  cohesin	
  and	
  CTCF.	
  
	
  

A. Heatmap	
  of	
  tag	
  densities	
  for	
  all	
  NIPBL	
  peaks,	
  sorted	
  from	
  highest	
  density	
  to	
  lowest	
  density.	
  	
  Tag	
  
densities	
  for	
  cohesin,	
  CTCF,	
  and	
  hCAPG	
  are	
  also	
  shown.	
  

B. Table	
  showing	
  the	
  number	
  of	
  peaks	
  and	
  sample	
  source	
  for	
  each	
  of	
  NIPBL,	
  cohesin,	
  CTCF,	
  and	
  
hCAPG.	
  

C. Overlap	
  between	
  NIPBL	
  and	
  cohesin,	
  CTCF	
  and	
  hCAPG.	
  	
  P-­‐value	
  is	
  determined	
  from	
  a	
  
hypergeometric	
  test	
  after	
  measuring	
  overlap	
  of	
  randomly	
  sampled	
  “peaks.”	
  

D. ChIP	
  confirmation	
  of	
  peaks	
  in	
  the	
  NIPBL	
  ChIP-­‐sequencing	
  data	
  before	
  and	
  after	
  depletion	
  of	
  
NIPBL.	
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Figure	
  4.1 
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4.3.2 A subset of NIPBL peaks is free of cohesin and CTCF 

After examining the degree of overlap between NIPBL and other proteins, we clustered 

the NIPBL peaks based on whether or not they overlap with either cohesin or CTCF.  When 

examining the set of NIPBL peaks that contain 5 or fewer tags in the NIPBL peak region for 

RAD21, we found them to be free of SMC3 and CTCF as well, suggesting these peaks are 

indeed cohesin-free (Figure 4.2).  A total of 1,224 NIPBL peaks meet these criteria, about 10% 

of the total number of NIPBL binding sites.  We also examined the number of cohesin-free 

NIPBL peaks in the promoter region, with about 10% of NIPBL peaks found at the promoter 

being cohesin-free.   

 

4.3.3 Cohesin-free NIPBL sites are enriched at the promoter 

 Since we found that a subset of peaks is free of cohesin, we wanted to determine whether 

these peaks were enriched in specific genomic regions.  Using gene locations from the UCSC 

Genome Browser, we found that 25-27% of NIPBL peaks were found in the promoter region 

(defined as 2,500 bp upstream and 500 bp downstream of the transcription start site) (Figure 4.3).  

The proportion of NIPBL peaks in the promoter was the same for NIPBL peaks with or without 

cohesin (Figure 4.3).  When compared to random sampling of the genome, sampling of the same 

number of genomic regions as NIPBL peaks with or without NIPBL indicates that these peaks 

are only enriched at the promoter region (Figure 4.3).  This apparent enrichment of NIPBL 

binding peaks in the promoter regions raise the possibility that NIPBL may affect the expression 

of the corresponding genes. 
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 NIPBL peaks are not only found at the promoter region, but they sit close to the 

transcription start site (Figure 4.3).  A higher proportion of NIPBL peaks appear to be present 

near the TSS of genes when bound with cohesin (Figure 4.3).  NIPBL was previously shown to 

be present at enhancers and core promoters of genes bound by both cohesin and Mediator [3], 

and similar levels of promoter enrichment were seen in HB2 cells [15]. 

 

4.3.4 NIPBL affects expression of genes 

 Since NIPBL is enriched near the promoter region of many genes, we chose to examine 

the expression of cohesin-free, NIPBL-bound genes upon depletion of NIPBL and RAD21 

(cohesin).  Using siRNA, we depleted either RAD21 or NIPBL (Figure 4.4A) in HeLa.  Two 

genes NSFP1 and FBXL16 showed upregulated expression upon depletion of NIPBL, but not 

RAD21 (Figure 4.4C), indicating that NIPBL, but not RAD21, regulates their expression. ChIP-

PCR for NIPBL and RAD21 at the promoter of these genes confirmed the presence of NIPBL, 

but not cohesin (Figure 4.4B).  Concomitant with the lack of cohesin, there is a lack of CTCF at 

these locations, but the presence of RNA Polymerase II (RNAPII) and H3K4me3, a histone 

modification associated with active genes.   
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Figure	
  4.2.	
  Some	
  NIPBL	
  binding	
  sites	
  are	
  free	
  of	
  cohesin.	
  
	
  

A. Heatmap	
  of	
  tag	
  densities	
  at	
  NIPBL	
  peaks	
  with	
  or	
  without	
  RAD21	
  (see	
  results).	
  	
  Tag	
  densities	
  of	
  
SMC3	
  and	
  CTCF	
  are	
  also	
  plotted.	
  

B. Heatmap	
  of	
  tag	
  densities	
  at	
  NIPBL	
  peaks	
  in	
  a	
  promoter	
  region	
  of	
  a	
  gene,	
  with	
  or	
  without	
  RAD21.	
  
Tag	
  densities	
  of	
  SMC3	
  and	
  CTCF	
  in	
  these	
  peaks	
  are	
  also	
  plotted.	
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Figure	
  4.2 
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Figure	
  4.3.	
  NIPBL	
  is	
  enriched	
  near	
  the	
  transcription	
  start	
  site.	
  
	
  

A. Pie	
  charts	
  indicating	
  the	
  genomic	
  distribution	
  of	
  NIPBL	
  peaks;	
  either	
  all	
  peaks,	
  peaks	
  with	
  
cohesin,	
  or	
  peaks	
  without	
  cohesin	
  are	
  shown.	
  

B. Histogram	
  of	
  NIPBL	
  peak	
  widths.	
  
C. Bar	
  graph	
  comparing	
  the	
  number	
  of	
  NIPBL	
  binding	
  sites	
  in	
  a	
  given	
  genomic	
  region	
  and	
  randomly	
  

sampled	
  peaks.	
  	
  
D. Density	
  plot	
  showing	
  the	
  distance	
  of	
  peaks	
  to	
  the	
  TSS	
  of	
  the	
  nearest	
  gene.	
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Figure	
  4.3 
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4.3.5:  NIPBL is bound to the promoter of many genes with altered expression after NIPBL 

depletion 

Using Affymetrix Human Gene ST arrays, we interrogated the global gene expression in 

HeLa after depletion of either NIPBL or RAD21.  Since NIPBL is enriched at the promoter 

region, we looked at the expression of genes that are bound by NIPBL at the promoter.  In order 

to compare differences between the effect of RAD21 and NIPBL depletion, we examined the 

expression pattern of the 273 genes bound by NIPBL at the promoter; while many genes have 

altered expression upon depletion of NIPBL, few genes are affected by RAD21 depletion (Figure 

5A), further suggesting that NIPBL can regulate gene expression in a manner independent from 

cohesin.  After filtering genes by absolute fold change greater than 1.2 and p-values of less than 

0.05, 76 genes of the 273 NIPBL bound genes are differentially expressed (Tables 4.1). 

 

4.3.5 NIPBL is enriched with YY1 motifs 

Previous studies have shown that NIPBL is enriched with motifs of transcription factors 

such as such as NFYA, SP-1, IRF3, and PBX3 in HB2 cells [15].  We chose to undertake a 

similar analysis in two ways.  First, we searched for motifs de novo using MEME [16], followed 

by scanning the NIPBL peak region with a collection of position weight matrices at a threshold 

z-score of 4.0.  400 bp around the peak summit for NIPBL were used to detect enriched motifs 

around NIPBL binding sites.  In both cases we find an enrichment of the YY1 motif in NIPBL 

peaks (Figure 6A), but no enrichment of NFYA, SP-1, IRF3, or PBX3.  These results suggest 

that NIPBL is able to interact with other transcriptional regulators in a cell-type dependent 

manner.  The enrichment of YY1 motifs is present in NIPBL sites with and without cohesin 

(Figure 6A).  A recent study profiled YY1 binding in HeLa, showing variants of the binding 
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sequence associated with either THAP11 or ZNF143 in conjunction with HCF-1 and YY1 [17].  

Using the ChIP-sequencing data from this study, we found there to be significant overlap of 

NIPBL binding sites with YY1 binding in HeLa (Figure 6B).  Combined, these data suggest that 

NIPBL may act in concert with YY1 to regulate gene expression. 
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Figure	
  4.4.	
  NIPBL	
  regulates	
  gene	
  expression	
  independently	
  of	
  cohesin.	
  
	
  

A. Western	
  blot	
  showing	
  depletion	
  efficiency	
  of	
  NIPBL	
  and	
  RAD21	
  in	
  HeLa.	
  
B. ChIP	
  of	
  NIPBL	
  and	
  cohesin	
  at	
  NSFP1	
  and	
  FBXL16	
  
C. RT-­‐qPCR	
  results	
  showing	
  expression	
  of	
  NSFP1	
  and	
  FBXL16	
  before	
  and	
  after	
  depletion	
  of	
  both	
  

NIPBL	
  and	
  RAD21.	
  
D. UCSC	
  genome	
  browser	
  image	
  depicting	
  the	
  presence	
  of	
  NIPBL	
  but	
  not	
  cohesin,	
  CTCF	
  at	
  the	
  

promoter	
  of	
  both	
  NSFP1	
  and	
  FBXL16.	
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Figure	
  4.4 
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Figure	
  4.5.	
  NIPBL	
  regulates	
  many	
  genes	
  in	
  HeLa.	
  
	
  

A. Expression	
  heatmap	
  showing	
  fold	
  change	
  of	
  NIPBL-­‐bound	
  genes	
  after	
  depletion	
  of	
  NIPBL	
  and	
  
RAD21.	
  

B. Volcano	
  plot	
  showing	
  the	
  fold	
  change	
  and	
  associated	
  p-­‐value	
  of	
  expression	
  for	
  genes	
  bound	
  by	
  
NIPBL	
  at	
  the	
  promoter	
  region.	
  Points	
  in	
  cyan	
  have	
  an	
  absolute	
  fold	
  change	
  greater	
  than	
  1.2	
  and	
  
p-­‐value	
  less	
  than	
  0.05.	
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Figure	
  4.5 
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Table 4.1. Differentially expressed genes bound by NIPBL 
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Figure	
  4.6.	
  NIPBL	
  peaks	
  overlap	
  with	
  YY1,	
  HCF-­‐1.	
  
	
  

A. MEME	
  motifs	
  for	
  YY1	
  and	
  HCF-­‐1	
  found	
  near	
  NIPBL	
  summits	
  with	
  and	
  without	
  cohesin	
  binding.	
  
B. All	
  NIPBL	
  peaks	
  clustered	
  based	
  on	
  the	
  presence	
  of	
  cohesin,	
  CTCF,	
  YY1,	
  and	
  HCF-­‐1.	
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Figure	
  4.6 
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4.4 Discussion 

 

4.4.1 Characterizing NIPBL binding using ChIP-seq 

 In the past, characterizing NIPBL binding sites has been difficult.  Previous groups have 

identified NIPBL binding sites, but there is disagreement as to how well the antibodies used were 

able to capture all potential binding sites for NIPBL across the genome [3, 15].  Our study adds 

to the available data and helps to further clarify the nature of NIPBL binding using our in-house 

affinity-purified antibody, which was previously used successfully for ChIP-PCR analyses in 

human and mouse cells [2, 18].  Specific findings, such as the significant overlap between CTCF 

and NIPBL, and the overlap of NIPBL with YY1 but not NFYA/B, serve to augment our 

understanding and may not be in direct conflict to previous studies; instead, our data ought to be 

considered in addition to work from previous studies. This would suggest that usage of multiple 

antibodies or a tagged form of NIPBL would be necessary to identify the complete range of 

NIPBL binding sites and all potential target genes across the genome.  

 

4.4.2 NIPBL can bind to chromatin in a cohesin-independent manner 

 Relatively little has been known about NIPBL’s potential for functions apart from 

cohesin loading.  However, phenotypic differences in patients with CdLS having mutations in 

NIPBL as opposed to mutations in the cohesin subunits has suggested that NIPBL might regulate 

gene expression apart from cohesin [13].  In brief, patients with mutations in NIPBL show a 

wider range and more severe set of phenotypes, especially neurological defects and limb 

deformity compared to those with mutations in SMC1, SMC3 or Rad21 [13].  While our 

previous work in Nipbl +/- mice (see Chapter 3) has suggested that a wide range of genes were 
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affected by Nipbl haploinsufficiency, many are not considered cohesin target genes.  While some 

of these genes are likely affected indirectly by the alteration of upstream cohesin target genes, 

others suggested that NIPBL may play a direct role in their expression changes (ref).  Our data, 

along with data from the Wendt laboratory [15], supports this hypothesis—that NIPBL can 

regulate a variety of genes in concert with other sequence-specific transcription factors.  Further 

investigation is necessary to identify how many genes are directly targeted by NIPBL in order to 

better understand the impact of NIPBL haploinsufficiency in CdLS. 

 

 NIPBL contains a variety of protein binding domains, such as the HEAT repeats, an HP1 

binding domain, and an interaction domain for Mau2 [19].  NIPBL’s recruitment to many genes 

may be cell-type specific and depends on interactions with a variety of transcription factors.  It 

has been previously established that NIPBL interacts with Mediator, to recruit RNA Polymerase 

II to the promoter of many genes, although those studies were considered in a cohesin-dependent 

context [3, 20].  More research will be required to understand how NIPBL interacts with 

different transcription factors to regulate gene expression, and to elucidate the function of 

cohesin-independent NIPBL in non-promoter regions.   

 

4.4.3 Can NIPBL and YY1/HCF-1 collectively regulate gene expression? 

 In this study, we found that there is significant overlap between NIPBL and YY1 and 

HCF-1 binding sites in HeLa cells.  Many of these NIPBL binding sites also contain CTCF, 

which has been known to interact directly with YY1 in the context of X inactivation [21].  

Cohesin has also been shown to interact with YY1 based on mass spec data, with both working 

in concert with other factors to regulate IgH rearrangement [22].  It is interesting then to find that 
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YY1 can co-localize with NIPBL independently from either cohesin or CTCF.  While YY1’s 

interactions with cohesin (and condensin) at the IgH locus have been important for establishing 

chromatin interactions necessary for rearrangement ([22], and reviewed in [23]), NIPBL’s co-

localization with YY1 and HCF-1 may be important for regulation of gene expression through 

interactions at promoter regions or through regulation of miRNA expression.  In particular, YY1 

may be necessary for recruitment of NIPBL to specific genomic regions in the absence of CTCF 

or other sequence-specific transcription factors.  Further study will be necessary to identify how 

NIPBL and YY1/HCF-1 interact at specific loci, and whether their co-localization is required for 

the proper expression of their target genes. 
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4.5 Methods 

 

Cell Culture 

HeLa were grown at 37° C and 5% CO2 in DMEM (Life Technologies). DMEM was 

supplemented with 10% fetal bovine serum (FBS) and penicillin/streptomycin at 50 units/ml. 

 

Antibodies 

Antibodies directed against NIPBL, RAD21, hCAPG, and preimmune were previously 

described [2, 24].    

 

ChIP-sequencing from other groups 

The GEO accession numbers for ChIP-sequencing data used were:  

Protein GEO Accession Number 

RAD21, SMC3, CTCF, RNAPII GSE31477 

YY1, HCF-1, THAP11, ZNF143 GSE31417 

 

Chromatin Immunoprecipitation 

Chromatin Immunoprecipitation was performed as previously described [2].  For each 

ChIP experiment, about 50 mg of DNA was used.  Cells were crosslinked for 10 minutes using 

1% formaldehyde diluted in cell culture media, lysed, and sonicated using a Bioruptor sonicator 

(Diagenode) to a fragment size around 200 bps.  Samples were pre-cleared for 1 hr using BSA 

and Protein A sepharose beads (GE Healthcare).  Pre-cleared extracts were incubated with 

NIPBL and Preimmune antibodies overnight.  IP was performed with Protein A beads and then 
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washed.  DNA was eluted off of the beads, reverse-crosslinked overnight, and then purified 

using a PCR purification kit (Qiagen). Samples were submitted to Ambry Genetics (Aliso Viejo, 

CA) for library preparation and sequencing using the Illumina protocol and the Illumina Genome 

Analyzer (GA) system. 

 

siRNA depletion 

HeLa were depleted for 24 (RAD21) or 48 (NIPBL, Control) hours with one allotment of 

siRNA (RAD21, day 2), or two allotments of siRNA (NIPBL, Control, day 1 and day 2).  Cells 

were transfected using 40 µl Hyperfect (Qiagen) and 2 µl of 20 µM siRNA.  AllStars control 

siRNA (Qiagen) was used for the control.   Media containing the transfection reagent and siRNA 

was left on the cells until being split on day 2 of transfection to improve depletion.  Cells were 

harvested on Day 4 after initial depletion. 

 

Microarray 

Affymetrix Human Gene ST 2.0 microarrays (Affymetrix) were used to interrogate the 

global gene expression in control, NIPBL depleted, and RAD21 depleted HeLa.  Two biological 

replicates were used for each experiment, for a total of 6 samples/arrays.  Samples were 

processed according to manufacturer instructions by the University of California, Irvine 

Genomics and High-Throughput Core Facility.  Data were normalized using Plier, and 

differential gene expression analysis performed using cyber-t [25]. 
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Sequence processing 

Pre-processing of the sequenced reads was performed to remove low quality sequence 

and remove adapter sequence. In order to remove adapter sequence, the adapter sequence used 

for each library was removed from each read using CutAdapt (Python script, 

https://code.google.com/p/cutadapt/).  After adapter removal, sequences are trimmed for low 

quality sequence (Phred score <= 20) using FastX.  If trimmed sequences are less than 20 bp in 

length, they are removed entirely.  Sequences were mapped back to the human genome draft 19 

(hg19) from the UCSC genome browser [26].  Mapping was performed using Bowtie version 1.0 

[27], with parameters –n 2 –m 3.   

 

Peak calling 

Peak calling was performed using AREM [28] using settings -no-EM, accepting only 

reads mapping to fewer than 3 locations, and –pval X, where X is adjusted to produce a FDR 

lower than 5%.  For histone modifications, SICER [29] was used to call peaks with width 300, 

gap size of 600, and FDR less than 0.1%.  All other settings were as recommended in the user 

manual.  

 

Data comparison 

All other data processing occurred through the R statistical package [30] and Perl and 

Python scripts coded by the author.  Peak overlap was determined using pybedtools [31]. 
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Chapter 5 

Epigenomic characterization of Facioscapulohumeral Muscular Dystrophy: 

 A resource for future research 
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5.1 Abstract 

 Facioscapulohumeral muscular dystrophy (FSHD) is a common type of muscular 

dystrophy characterized by progressive atrophy of muscle in the upper body.  Recent 

studies by several groups have identified disease-specific epigenetic differences to 

heterochromatin at chromosome 4q35 near the D4Z4 repeat array, a region shown to be 

critical for both forms of the disease.  Our group showed a specific loss of H3K9me3, 

HP1γ, and cohesin at D4Z4, while others have shown a hypomethylation of DNA near 

D4Z4.  SMCHD1, a protein known for its role in maintaining DNA methylation on the 

inactivated X chromosome, is bound to D4Z4 and it’s binding reduced upon loss of 

H3K9me3, affecting the degree of DNA methylation.   These changes, in concert with 

altered expression of many genes including that of DUX4—whose expression tends to be 

upregulated in FSHD—suggest that epigenetics may underlie the disease phenotype. 

 

 While much is known about the changes taking place at D4Z4, little is known 

about the genome-wide changes taking place in FSHD.  Many genes and miRNAs appear 

to be differentially expressed in FSHD, studies show some disagreement on which 

genes/miRNAs might be differentially expressed.  Moreover, how those gene expression 

differences are connected to the changes at D4Z4 and elsewhere in the genome remains 

unclear.  To address these questions, we have undertaken a large high-throughput 

sequencing approach to characterize the global differences in gene expression, 

heterochromatin, and cohesin binding using myoblasts derived from normal and affected 

individuals.  This study will allow us to more directly identify the correlation between the 
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epigenetic changes and gene expression changes, and to potentially identify a disease-

specific signature for FSHD. 
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5.2 Introduction 

 FacioScapuloHumeral Muscular Dystrophy (FSHD) is one of the most common 

forms of muscular dystrophy in the United States.  It is characterized by a progressive 

atrophy of the facial and shoulder muscles, and in some cases the trunk and foot 

musculature [1].  There are two forms of the disease: 4q-linked (FSHD1) and phenotypic 

(FSHD2). The most common form of the disease, FSHD1 (95% of cases, [1]), is 

characterized by a mono-allelic contraction of the D4Z4 repeat array on chromosome 4q.  

Normal individuals have 11-100 tandem repeats [2], while individuals with the disease 

have 10 or fewer [3].  Contained within each repeat is the DUX4 retrogene, whose 

expression has been correlated with the disease [4].    

 

 The less common form of the disease, FSHD2 (< 5%) has been connected to 

mutations in the gene SMCHD1 in some individuals [5],  with other cases of FSHD2 

having an unknown cause.  Individuals with mutations in SMCHD1 still have similar 

phenotypes as those patients with the monoallelic contraction on chromosome 4q 

however. 

 

 Previous work from our lab has characterized the chromatin at D4Z4 [6].  In 

patients with either FSHD1 or FSHD2, there is a specific loss of H3K9me3, cohesin, and 

HP1γ at D4Z4 on chromosome 4q (and the homologous regions on chromosome 10q).  

Loss of H3K9me3 at D4Z4 results in the upregulation of DUX4 in KD3 myoblasts [7], 

and also affects the recruitment of SMCHD1 to D4Z4 [7].  However, it is unclear 
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whether or not other epigenetic changes occur globally, or whether these differences in 

H3K9me3 are unique to D4Z4. 

 

 In order to investigate FSHD1 and FSHD2, we have performed Chromatin 

Immunoprecipitation coupled with high-throughput sequencing (ChIP-sequencing) to 

examine the genomic localization of chromatin marks and protein complexes, and RNA-

sequencing (sequencing of mRNA transcripts) to identify genes that have altered 

expression in either form of the disease.  In order to find miRNAs that are differentially 

expressed in FSHD, we have used Nanostring (company info) to study expression of 800 

different miRNAs in primary myoblasts. 

 

 As a part of this study, we have performed ChIP-sequencing for: cohesin, 

heterochromatin protein 1 gamma (HP1γ), histone H3 lysine 9 tri-methylation 

(H3K9me3), histone H3 lysine 27 tri-methylation (H3K27me3), and RNA Polymerase II 

(RNAPII).  We have two primary myoblast samples derived from unaffected individuals, 

and 3 samples each from individuals with FSHD1 and FSHD2 (Table 1).   

 

 The results that are presented here are for the benefit of those researching FSHD.  

They encompass the most current data obtained from a more extensive project that is 

ongoing.  While covering a wide range of topics, these data help provide a more coherent 

picture regarding the epigenetic landscape in FSHD and how it changes in comparison to 

normal individuals.  Moreover, the analysis of expression data will aid in determining 

how the epigenetic changes taking place at D4Z4 and elsewhere in the genome affect the 
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expression of genes in FSHD, and further characterize the disease etiology.  Many 

advances in our understanding of the disease have occurred in the last few years, and our 

lab hopes that this project will further refine and extend these. 
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5.3 Results 

 

5.3.1 H3K9me3 patterns are altered between normal and FSHD 

 Our lab previously identified the specific loss of H3K9me3 at D4Z4, and the 

concomitant loss of HP1γ and cohesin in the same region just upstream of the DUX4 

transcript [6].  This loss, combined with the DNA hypomethylation present at D4Z4 in 

FSHD [8], suggests that FSHD is an “epigenetic abnormality disease [6].”  Since most 

studies of FSHD have focused on the marks at or near D4Z4, little is known about the 

epigenetic differences that are present genome wide in FSHD.  To answer this question, 

Michelle Chen in our lab performed ChIP-Sequencing of H3K9me3 and H3K27me3 in 

myoblasts from two normal individuals, myoblasts from three patients with FSHD1, and 

myoblasts from three patients with FSHD2. 

 

 After alignment and peak calling using SICER [9], we found 43,000 – 63,000 

peaks per sample for H3K9me3 (Table 5.1).  Since H3K9me3 is lost at D4Z4 in FSHD1 

and FSHD2, we first looked at those peaks that were not present (no called peak) in 

FSHD.  We overlapped the peaks in the both forms of FSHD and normal myoblasts to 

identify the 546 peaks that only occur in normal myoblasts.  To better understand how 

these peaks might relate to gene expression, we used the GREAT analysis tool [10] with 

a threshold of 1 Mb to identify nearby genes to these regions with no H3K9me3 peaks 

called in FSHD, and to calculate the enrichment of different categories of genes.  We 

found that the 548 peaks present only in normal myoblasts are enriched for gene ontology 

(GO) terms including immune response, FGF receptor expression, and skeletal muscle 
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development.  However, when we examined the expression of the genes in each of these 

categories, they were not differentially expressed.  It is possible that the loss of H3K9me3 

at these locations has an impact on differentiation of the myoblasts later on, while not 

having an impact at the current cell state. 

  

 We then examined how much change exists for H3K27me3 between normal and 

FSHD myoblasts.  Here we found 12,000 – 55,000 peaks for H3K27me3.  As all samples 

but FSHD1 sample 10 had more than 35,000 peaks, we excluded it from the downstream 

analysis.  After identifying the peaks from normal myoblasts that had no overlapping 

peaks in FSHD myoblasts—a total of 1,498—we performed the same analysis using 

GREAT as we had with the H3K9me3 peaks.  This time, we found no enrichment for any 

GO terms, in contrast to H3K9me3.  This suggests that the enrichment of specific GO 

terms in the H3K9me3 set is specific, while also suggesting that H3K27me3 functions 

separately in FSHD. 

 

 To further this analysis, understanding that peaks may potentially have increased 

H3K9me3 as well as decreased H3K9me3, we used the combined sets of all H3K9me3 

ChIP-seq reads to call peaks and then determine the number of reads contributed from 

each.  After normalization (see methods), the matrix of read counts was used as input to 

edgeR [11] to determine the differentially methylated regions (DMRs).  A total of 238 

DMRs were identified in FSHD1, 210 of which had decreased methylation, and 28 of 

which had increased methylation.  In agreement with what is seen at D4Z4, most regions 

appear to lose H3K9me3.  The set of 238 DMRs serve as a subset of the 548 peaks 
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previously described, with higher stringency required when using edgeR and low 

between-sample variance to call a region differentially methylated.  Unlike FSHD1, only 

1 DMR was found in FSHD2 (decreased methylation); the FSHD2 samples show much 

higher between-sample variance than those of FSHD1, thereby preventing edgeR from 

calling many regions as being differentially methylated. 

  

 We again used the GREAT tool to identify genes nearby these DMRs and found 

that they were enriched near regulatory sequences.  Further examination showed that 5 of 

the 238 regions sat upstream of D4Z4 and 2 upstream of a D4Z4 homolog on 

chromosome 10.  In both instances, we find a 2 – 4 fold decrease of H3K9me3 upstream 

of the repeat arrays.  However, no specific GO terms were enriched in this smaller set of 

DMRs.  The loss of H3K9me3 upstream of D4Z4 led us to ask the question of whether or 

not we see other clusters of DMRs elsewhere in the genome.  We plotted the presence of 

these regions across the genome on an ideogram and found several other clusters, with 

the one on chromosome 6 being the most dense (Figure 5.1).  Visualization of this 2 Mb 

region shows a complete loss of H3K9me3 in FSHD1, while only 1 out of three samples 

lose H3K9me3 in FSHD2.  In contrast, there is little signal for H3K27me3 for either 

FSHD1 or FSHD2 samples in this region.  Genes within this region do not appear to be 

differentially expressed in the patient myoblasts, though they may be misregulated at 

other points such as differentiation into myotubes.  More research will have to be done to 

identify the effect of loss of H3K9me3 in these regions. 
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 One exception to this is found upstream of D4Z4, with the upregulation of FRG1 

in FSHD1.  While several genes lie upstream of D4Z4, including TUB4Q, FRG1, and 

FRG2, only FRG1 is upregulated.  Unlike these other genes, we identified DUX4 binding 

sites at FRG1; DUX4 expression in FSHD is a likely explanation for FRG1 upregulation, 

as it was identified as a transcriptional activator with potential to regulate many genes 

differentially expressed in FSHD [4].   
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Table 5.1. Sequencing Summary 

 

 

Notation: Total Reads/Reads after mapping/Peaks 
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Figure 5.1. Ideogram showing the genomic placement of differentially methylated 

peaks. 
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5.3.2 Genes involved in skeletal muscle development are down regulated 

 In order to identify gene expression changes between normal and FSHD 

myoblasts, Michelle Chen performed RNA-seq analysis of all samples listed in Table 1.  

After alignment of reads, RSEM [12] was used to calculate the estimated counts for each 

transcript (see methods for details).  Normalized counts were input into edgeR, and the 

list of differentially expressed genes (DEGs) for FSHD1 and FSHD2 were determined.  A 

total of 812 genes were differentially expressed in FSHD1, and 128 genes were 

differentially expressed in FSHD2.  Similar to what is seen in the H3K9me3 ChIP-seq 

data, the between sample variance was higher in FSHD2, producing fewer DEGs.  Of the 

gene sets for each, 76 overlap (Figure 5.2).  Using the DAVID bioinformatics website 

[13], we looked at the enrichment of GO terms in each gene set.  For the set of 483 genes 

downregulated in FSHD1, we find enrichment for genes involved in muscle development 

(Figure 5.3).  Upregulated genes are enriched for those involved in protein folding and 

cell migration.  For FSHD2, we do not find any enriched GO terms.  Sample variability is 

likely hindering the identification of specific gene categories for FSHD2. 

5.3.3: Upregulated genes in myoblast differentiation are downregulated in FSHD 

  

 In order to identify genes potentially involved in differentiation defects present in 

FSHD, Michelle Chen performed RNA-seq in undifferentiated and differentiated KD3 

myoblasts.  KD3 immortalized myoblasts [14], which are easier to culture than primary 

myoblasts and differentiate more efficiently, were used due to the low differentiation 

efficiency of the primary myoblasts in our hand.  After using eXpress [15] to calculate 

the estimated counts, we determined the number of DEGs using edgeR.  Interestingly, a 
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heatmap of genes differentially expressed upon differentiation shows a general decrease 

of these genes in FSHD1 and FSHD2 (Figure 5.4).  A t-test indicates that these 

differences are statistically significant.  Two possibilities emerge to explain this. For the 

first, the genes important for differentiation may be downregulated in FSHD as a result of 

shifts in epigenetic marks and transcriptional regulators. The lower expression prior to 

differentiation may then inhibit efficient differentiation.  Conversely, the decreased 

expression of these genes could be due to lower rates of already [spontaneously] 

differentiating primary myoblasts in the cultures.  What specifically is triggering the 

general decrease of these genes in FSHD is a question for future study. 

 

5.3.4 miRNAs are differentially expressed in FSHD 

 Previous studies by other groups have sought to identify whether or not miRNAs 

might be differentially expressed in FSHD [16-18].  However, the results from each 

group showed no overlap with those of any other group, whether those miRNAs found to 

be differentially expressed either in patient muscle or myoblasts.  In order to correlate the 

miRNA expression differences with our RNA-seq and ChIP-seq data, we used 

Nanostring against a panel of 800 known miRNAs to identify miRNAs in all of the 

samples in Table 1.  This data set grants us a comprehensive look at the gene and miRNA 

expression changes in FSHD, allowing us to identify how the epigenetic changes in 

FSHD might impact them.  Weihua Zeng performed the Nanostring protocol and 

generated the count information (with replicates) for each of the 8 samples examined.  A 

matrix of the normalized counts was used as input to edgeR, allowing us to identify 

differentially expressed miRNAs (DEMs). 
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 We found that miRs 206 and 145 were upregulated in FSHD1, with miR 145 

being upregulated in both FSHD1 and FSHD2.  miR-206, a so called “myo-miR,” was 

downregulated in FSHD1 in both replicates.  Other miRNAs, such as mir-133a/b were 

also seen to be downregulated, though with more variation between replicates.  Our data 

also do not overlap with that of other groups, though the disruption of miRNAs known 

for their role in muscle developmental processes does correlate nicely with the gene 

expression changes previously discussed. 
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Figure 5.2. Differentially expressed genes in FSHD1 and FSHD2 

A. Overlap between genes differentially expressed in FSHD1 and FSHD2 

B. GO terms enriched in differentially expressed genes for FSHD1 
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Figure 5.3. Genes upregulated upon differentiation are downregulated in FSHD 

Top left: Upregulated gene heatmap for KD3 

Top right: Boxplot and significance of upregulated genes in KD3 

Bottom left: Downregulated gene heatmap for FSHD 

Bottom right: Boxplot and significance of genes downregulated in FSHD 
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Figure 5.4. miRNA expression in FSHD 

A. (left) miRNA expression between normal and FSHD1 

(right) miRNA expression between normal and FSHD2 

B. Putative target expression for miR-145 

C. Heatmap of expression of putative targets in FSHD1 and FSHD2 
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5.4 Discussion 

 

 While incomplete, our initial work in this study has revealed a number of novel 

findings.  Although we had previously known that the loss of H3K9me3, HP1γ, and 

cohesin occurred at D4Z4, little was known about other regions on other chromosomes.  

The decrease of H3K9me3 at many sites throughout the genome, particularly near genes 

that are associated with skeletal muscle development, supports the hypothesis that FSHD 

is indeed an epigenetic abnormality disease.  However, it remains unclear how this 

H3K9me3 decrease occurs.  One hypothesis is that the heterochromatin formation at 

these regions is dependent on direct interaction with D4Z4; upon loss of heterochromatin 

at D4Z4 and loss of interactions mediated by cohesin, the heterochromatin at these 

regions could be compromised.  While few genes in these regions are differentially 

expressed, their proper expression could be hindered by their accessibility later on, with 

expression at inappropriate times preventing efficient differentiation and other 

developmental defects.  Research on these questions is ongoing. 

 

 The expression and miRNA profiling of the normal and FSHD primary myoblasts 

is the first comprehensive study performed in the same cells along with the profile of 

heterochromatin state.  Our epigenomics approach can allow us to correlate the 

epigenetic changes taking place genome-wide with altered expression.  We have initially 

found many genes to be differentially expressed in FSHD, and two important miRNAs; 

both are promising results.  New samples being sequenced will give us more statistical 

power to better characterize the expression patterns in the disease in our ongoing work. 
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5.5 Methods 

 

RNA-sequencing 

Total RNA from patient-derived, primary myoblasts was extracted using a Qiagen 

RNeasy kit (Qiagen, Germany).  Library construction was performed using the Illumina 

protocol.  Libraries were sequenced using an Illumina Hi-Seq sequencer housed in the 

University of California, Irvine Genomics High-Throughput Core Facility.   

 

Antibodies 

ChIP was performed using antibodies directed against RAD21 (cohesin, [6]), 

HP1γ (Abcam, #10480), RNAPII (Millipore, 8WG16), H3K9me3 (in-house, FAB 

fragment), and H3K27me3 (Abcam, ab6147).   

 

Chromatin Immunoprecipitation 

Chromatin Immunoprecipitation was performed as previously described [19].  For 

each ChIP experiment, chromatin from 1E07 cells was used.  Cells were crosslinked for 

10 minutes using 1% formaldehyde diluted in cell culture media, lysed, and sonicated 

using a Bioruptor sonicator (Diagenode) to a fragment size around 200 bps.  Samples 

were pre-cleared for 1 hr using BSA and Protein A sepharose beads (GE Healthcare).  

Pre-cleared extracts were incubated with the antibodies overnight, and the IP was 

performed with Protein A beads and then washed.  DNA was eluted off of the beads, 

reverse-crosslinked overnight, and then purified using a PCR purification kit (Qiagen). 

ChIP library construction was performed using the Myers protocol (Protocol.pdf ). 
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Samples were submitted to the UCI Genomics and High-Throughput Facility for 

sequencing using the Illumina protocol and the Illumina Genome Analyzer (GA) system. 

 

Preprocessing 

Pre-processing of the sequenced reads was performed to remove low quality 

sequence and remove adapter sequence. In order to remove adapter sequence, the adapter 

sequence used for each library was removed from each read using the tool CutAdapt 

(Python script, https://code.google.com/p/cutadapt/).  After adapter removal, sequences 

are trimmed for low quality sequence (Phred score <= 20) using FastX.  If trimmed 

sequences are less than 20 bp in length, they are removed entirely.  Sequences were 

mapped back to the human genome draft 19 (hg19) from the UCSC genome browser 

[20].  Mapping was performed using Bowtie version 1.0 [21], with parameters –n 2 –m 3.   

 

Peak calling 

Peak calling was done using AREM [22] with settings -no-EM, accepting only 

reads mapping to fewer than 3 locations, and –pval X, where X is adjusted to produce a 

FDR lower than 5%.  For peak calling of histone modifications, SICER [9] was used to 

call peaks with width 300, gap size of 600, and FDR less than 0.1%.  All other settings 

were as recommended in the user manual for each package.  

 

 

 

 



	
   171	
  

Data comparison 

All other data processing occurred through the R statistical package [23] and Perl 

and Python scripts written by the author.  Peak overlap was calculated using pybedtools 

[24]. 

 

Transcript analysis 

In order to determine transcript abundance, reads were mapped to a transcriptome 

constructed from the refFlat files available from the UCSC genome browser using 

bowtie. Settings for bowtie include –n 2 –k 20 –best –strata -S.  Output from bowtie 

(SAM format) was input into RSEM [12] or eXpress [15] using default parameters to 

generate normalized transcript counts.  Data were quantile normalized using 

Bioconductor and R.  Differentially expressed transcripts were found using edgeR with 

default methods. 

 

Nanostring 

Total RNA was extracted and prepared according to manufacturers instructions.  

RNA was run against sample sets, to identify expression of up to 800 miRNAs.  Data was 

normalized to the top 100 expressed miRNAs, with 2 biological replicates for each 

sample.  Differentially expressed miRNA was determined using the normalized counts 

input into edgeR. 
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Chapter 6 

Conclusion 
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6.1 AREM is able to identify cohesin peaks in repetitive sequence. 

 One of the early challenges in analysis of ChIP-chip and ChIP-sequencing data 

was the design of algorithms to determine regions of enrichment (protein binding to 

chromatin).  While many groups had successfully developed tools to identify peaks for 

transcription factors, histone modifications, and other types of ChIP-sequencing data, one 

area largely unexplored was that of identifying peaks in repetitive sequence.  To address 

this need, we developed AREM, a tool capable of assigning a probability of each read 

belonging to a peak region, and thereby allowing the users to identify peaks in and near 

repetitive sequence.  Using this data, we showed that we could find more peaks with a 

minimal increase in the FDR (Table 1 Chapter 2) using the wildtype Rad21 ChIP-seq 

data later examined in Chapter 3.  Importantly, we also showed that cohesin generally 

binds to the same types of repetitive regions (Figure 3, Chapter 3), with decreased 

binding in Nipbl (+/-) mutant cells.  This data, along with the rate of the CTCF motif 

contained within the cohesin binding sites, helps validate our approach and shows the 

utility of being able to call peaks in repetitive regions.   

  

6.2 Cohesin binding decreases genome-wide in Nipbl (+/-) MEFs. 

 Although other groups had previously shown that many genes in CdLS patients 

and the CdLS mouse model were misregulated, it was unclear which genes might be 

directly regulated by cohesin, which Nipbl is required to load.  We were able to 

successfully identify cohesin target genes using ChIP-sequencing of Rad21 in both 

wildtype and mutant MEFs.  To do this, we began by characterizing the cohesin binding 

sites genome-wide (Figure 1, Chapter 3).  Rather than a complete loss of cohesin at many 



	
   177	
  

locations across the genome, we found that cohesin decreases genome-wide by plotting 

the density of reads at each wildtype cohesin binding site in both the wildtype and mutant 

samples.  Similar to other groups, we found that cohesin binding sites often contain the 

CTCF motif (Figure 2, Chapter 3).  However, peaks called in both wildtype and mutant 

had the highest frequency of containing the motif.  Again similar to previous studies, 

cohesin was found to be enriched at the promoter region, suggesting that it might have a 

more direct impact on gene expression—potentially through enhancer-promoter 

interactions. 

 

6.3 Cohesin binding is correlated with expression changes in Nipbl (+/-) MEFs. 

Using a KS plot, we showed the tendency for genes that have altered expression 

in mutant MEFs to be bound by cohesin in the gene region (Figure 4, Chapter 3).  In 

particular, cohesin binding at the promoter was the most enriched.  Moreover, genes 

downregulated in the mutant were most highly associated with cohesin binding, which 

suggests that cohesin’s role in gene activation is most affected by Nipbl 

haploinsufficiency.  Greater than 50% of the differentially expressed genes in CdLS were 

bound by cohesin (Figure 5, Chapter 3), indicating that many of the gene expression 

changes in CdLS may be directly mediated by a decrease of cohesin binding due to Nipbl 

haploinsufficiency, with others perhaps being regulated by other factors (such as Nipbl as 

we later show) or indirectly upon the misregulation of transcription factors directly 

regulated by cohesin. 

 

 



	
   178	
  

6.4 Decreased cohesin binding affects chromatin interactions. 

 One of the ways that cohesin can mediate gene expression is through the 

establishment of long-range chromatin interactions.  Since we see a decrease of cohesin 

binding in the Nipbl (+/-) MEFs, it was important to ask whether this could affect these 

interactions.  We found indeed that these interactions decrease both in the mutant MEFs 

and upon depletion of Nipbl in wildtype MEFs.  This suggests that the effect of Nipbl 

haploinsufficiency could be substantial rearrangement of chromatin topology, impacting 

gene regulation and other nuclear processes. 

 

6.5 NIPBL binds to chromatin near both cohesin and CTCF. 

 In light of recent studies into NIPBL, the nature of NIPBL binding patterns across 

the genome was not clear.  In MEFs, it was shown that cohesin, CTCF and Nipbl 

colocalize, while in HeLa neither cohesin nor CTCF colocalize with NIPBL.  This 

contradiction was partially explained by the differences in antibodies used in the most 

recent study.  We have successfully identified NIPBL binding sites in HeLa using an in-

house antibody and shown that NIPBL does in fact bind near cohesin and CTCF in most 

cases (as is expected by NIPBL’s role in cohesin loading).  About 10% of NIPBL binding 

sites are free of cohesin and CTCF.  In either case, NIPBL is enriched in the promoter, 

particularly near the TSS. 

 

6.6 NIPBL can regulate gene expression independently of cohesin. 

 After identification of NIPBL binding sites across the genome, we tested whether 

or not NIPBL could regulate the expression of genes where NIPBL—but not cohesin—
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was bound.  We showed that 72 of the 273 genes bound by [only] NIPBL were 

differentially expressed upon depletion of NIPBL.  Moreover, two genes, NSFP1 and 

FBXL16, were upregulated upon depletion of NIPBL but not upon depletion of cohesin.  

This data supports the notion that NIPBL can regulate expression of genes independently 

of cohesin, and that NIPBL can repress as well as activate gene expression upon binding 

to the promoter of different genes. 

 

6.7 H3K9me3 decreases at many genomic regions in FSHD. 

 Using ChIP-seq to examine differences in heterochromatin between normal and 

FSHD myoblasts, we identified over 200 regions with a decrease of cohesin binding 

across the genome.  These regions are enriched near genes important for myoblast 

differentiation, though the genes contained in these regions are not necessarily 

upregulated as a result.  Instead, these genes may be “poised” for expression at a time 

when the appropriate factors are present, such as DUX4 at FRG1.  Our intial findings 

suggest that the loss of H3K9me3 may serve as a hallmark of FSHD, both at D4Z4 and 

elsewhere in the genome. 

  

6.8 Can tag enrichment on tandem repeats be identified?  

 While we have been able to gather data supporting many of our hypotheses, there 

are many more questions that remain.  We have been able to develop an algorithm that is 

able to efficiently identify cohesin binding sites in repetitive sequence, with known 

limitations surrounding large, tandem repeats such as exist at D4Z4.  Better approaches to 

identify binding in these regions will hopefully be developed, though third generation 
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sequencing techniques may preclude a need for this due to the length of the sequencing 

reads and the ability to sequence much longer input DNA sequences.  

 

6.9 How does decreased cohesin binding affect each stage of development in CdLS? 

 Our lab has been able to identify many different cohesin binding sites in MEFs, 

and to show both correlation and actual regulation of gene expression through specific 

long range interactions.  How CdLS progresses during development, and how different 

tissues are affected by Nipbl haploinsufficiency still remains unknown in many instances, 

and further work can be done to identify how the cohesin target genes shift between cell 

types.  Also, predicated on our findings with our in-house antibodies, a better 

understanding of the global distribution of Nipbl on chromatin in these MEFs may yield a 

better understanding about what genes Nipbl may target in these MEFs independently of 

cohesin. 

 

6.10 HCF-1 and YY1 may interact with NIPBL. 

 The presence of HCF-1 and YY1 near NIPBL binding sites may suggest 

interactions occur between the two, allowing them to work in concert to regulate gene 

expression in HeLa and other cell types.  Since HCF-1 is known to bind so many 

different chromatin modifiers, with this recruitment being context-dependent, much more 

work needs to be done to further identify which genes are bound by these factors, and 

what chromatin modifiers are recruited when.  Upon NIPBL depletion in HeLa, we see 

both upregulation and downregulation of target genes, indicating that this recruitment 

could be complex. 
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6.11 Further characterization of myoblasts in FSHD is needed. 

 Our results characterizing the decrease of H3K9me3 at locations throughout the 

genome, and their occurrence near genes involved in skeletal muscle development, along 

with identifying disease-specific expression patterns, is just a first step.  We intend to 

continue characterizing the epigenomic changes taking place in FSHD using sequencing 

techniques to examine DNase Hypersensitivity Sites, and further identify expressed genes 

using ATAC-seq.  By having a comprehensive epigenomic and expression profile in 

these myoblast samples, we hope to better understand the underlying mechanism for 

FSHD. 

 

	
   Beyond the epigenetic signatures of FSHD, we hope to understand the role of 

cohesin in FSHD.  While we know that cohesin is lost at D4Z4 in FSHD, it’s not clear if 

or how cohesin binding patterns may change globally.  The loss of cohesin binding could 

result in a decreased interaction of D4Z4 with other regions of the genome and affect 

gene expression.  Conversely, the loss of H3K9me3 could precipitate loss of cohesin 

binding in other regions in a D4Z4-independent manner through some other mechanism.  

To explore this, we are performing RAD21 ChIP-seq to correlate with the H3K9me3 

distribution in normal and FSHD myoblasts.   
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