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ABSTRACT OF THE DISSERTATION

Context-dependent calcium dynamics in the C. elegans nervous system

by

Zachary Cecere

Doctor of Philosophy in Neurosciences with a specialization in Computational Neurosciences

University of California San Diego, 2020

Professor Sreekanth Chalasani, Chair
Professor Nicholas Spitzer, Co-Chair

Organisms must adapt their behavior to different environmental contexts. A smart behavior

in one environment may be a very dumb behavior in another. Many different parts of the nervous

system exhibit context-dependent behavior. Sensory neurons adapt their response properties to

efficiently encode the organism’s environment. Sensorimotor neurons consider both the stimulus

history and the recent history of organismal actions when deciding what motor commands to

issue. Both of these concepts are studied using large-scale calcium imaging in the Caenorhabditis

elegans nervous system. State-space models are used to understand how C. elegans sensory

neurons change their response properties as a function of recent stimulus history. A variety of
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models are used to study the combined effects of recent stimulus history and recent motor activity

on C. elegans motor command neurons.
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Chapter 1

Introduction

An organism’s response to identical stimuli may vary dramatically depending on the

context of its past experiences and actions. For instance, while my dog Sebastian will happily

accept a treat in most circumstances, he will be too afraid to do so if the toaster has been recently

taken out of its storage location. His recent experience (whether he has seen the toaster being

moved) provides a context that frames his responses (whether he will accept a treat). The effect

of context on neural processing pervades many different Neuroscience disciplines.

One of the earliest studies of context effect on sensory processing is ED Adrian’s work

in the rabbit olfactory bulb [2]. When the rabbit is under anaesthesia, its olfactory bulb exhibits

consistent odorant responses. As the anaesthesia wears off, the consistency of bulb neuron

responses goes away; rhythmic activity dominates at the expense of simple odor encoding.

Similarly, in anesthetized mice, many olfactory bulb neurons respond to odorants in a simple

and consistent manner. The majority of these neurons cease to exhibit this simple responsiveness

when the animal is awake [47]. The fact that wakefulness state has such a profound influence on

sensory processing surprised the sensory neuroscience community. In light of these studies, the

neuroscience field has become much more cognizant of the environmental context in which it

does its experiments.
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Adaptation can be thought of as a subset of context-dependent neural behavior. The

field of adaptation studies how recent stimuli affect the way a sensory system experiences new

stimuli. In this case, the recent stimuli is the context. Responses of sensory neurons to new

stimuli depend on this context. Many studies have found that neurons adapt their responses

to represent stimuli with optimally efficient coding strategies [55] [49] [17]. For instance, fly

H1 neurons modulate their gain in accordance with the standard deviation of Gaussian stimuli

[7]. This standard deviation adaptation maximizes information transmission about the Gaussian

stimuli. Sensory neurons adapt to more complex stimuli in a similar manner [50].

Attention can also be framed as a context-dependent neural behavior. The attentional state

of a nervous system affects the response properties of its sensory neurons [44]. For instance,

visual system neurons detect visual features at lower contrasts when an organism is attending

to an image [20] [44] [56]. The attentional state is the context that informs neuronal sensitivity.

Even more interesting, attentional state is correlated with neural state. For instance, in monkeys,

frontal and parietal cortices synchronize at lower firing frequencies when the monkey is attending

[9]. This introduces a very important concept: the global activity state of an organism encodes

context. Thus, study of global activity state of a nervous system may reveal what kinds of

contextual information are important to an organisms. Moreover, the relationship between global

brain state and the response properties of individual neurons can elucidate the mechanisms of

context-dependent neural behaviors.

Since neural response properties are mediated by global brain-state, it makes sense to

view as much of the nervous system as possible. With this in mind, researchers have turned

to large-scale imaging of simpler organisms [53]. With their smaller number of neurons, these

organisms make for an easier target for state analyses. Large-scale calcium imaging studies of

larval zebrafish have identified a number of network states correlating with different behaviors

[14] [15]. Interestingly, the neuronal dynamics of one region of the zebrafish brain depend on

the state of other brain regions. For instance, the state of the zebrafish’s inferrior olive controls
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the fish’s motor command gain in a number of brain regions [4]. Thus, the firing properties in a

subset of fish neurons depend on the network state of the larger fish brain.

1.1 Context-dependent behavior in C. elegans

Caenorhabditis elegans is an excellent candidate for large-scale state analysis. C. elegans

is a translucent, soil-dwelling nematode [8]. With only 302 neurons, a large percentage of the

worm’s neurons can be analyzed simultaneously. Despite its small number of neurons, C. elegans

exhibits a number of context-dependent behaviors.

Habituation is perhaps the best studied context-dependent behavior in C. elegans [48]. C.

elegans swim backwards in response to taps on their petri dish. This ‘tap withdrawal’ response

habituates to repeated taps. The rate of habituation and recovery depends on the interstimulus

interval. Interestingly, C. elegans can learn contextual associations to tapping. If a worm initially

habituates in the presence of an odorant, the rate of later habituations is increased by presence of

the same odorant.

C. elegans primary sensory neurons also exhibit habituation. The response magnitude

of primary sensory cells diminishes with repeated stimulus exposure [28]. This decrease in

responsiveness persists across multiple stimulus pulses.

In another example of history-dependent information processing, C. elegans search

behavior is modified by food experience [10] [22]. When removed from food, C. elegans enter

their local search behavior. The local search behavior is characterized by an elevated number of

reorientation events [22]. After ten to fifteen minutes, the worm transitions from local to global

search behavior, reducing its reorientation event probability. Interestingly, the size of the food

patch affects worm reorientation probability during local search [10].

Overall, C. elegans exhibit a number of history and state dependent behaviors. The ease

with which the worm can be imaged makes it a prime target for identifying neural correlates of
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this history dependence.

1.2 Modeling context-dependence

Although visualizing a greater percentage of the nervous system theoretically helps to

elucidate neuronal encoding properties, it adds complexity to encoding analyses. Understanding

neuronal encoding is a core goal of computational neuroscience. Any method for understanding

encoding must be simultaneously tractable, flexible, and interpretable. Fulfilling all three of these

requirements is difficult.

Early methods derived neuronal receptive fields using reverse correlation and spike-

triggered covariance methods [46] [13]. These simple methods give ‘rigorously interpretable

results only for gaussian distributions of inputs’ [49]. For more complex stimulus distributions,

first and second moments are no longer sufficient to capture the distribution. Information theoretic

methods allow for the derivation of receptive fields for stimuli with higher order moments [49].

These information theoretic methods are made tractable by averaging over multiple presentations

of the same stimulus [49] [31]. This averaging is problematic if one assumes contexts like network

state and recent stimulus history are important.

Another way to handle complex input distributions is to assume a spiking model. This

has become common practice with the success of generalized linear models [38] [39] [40]. These

methods model neuronal spiking as a combination of linear and nonlinear components. Recent

stimuli are passed through an optimizable linear filter. The scalar output of this filter is then

passed through a nonlinearity: a logistic function for modeling spike probabilities or a Poisson

function for modeling spike rates [40]. Generalized linear models are particularly attractive

because of their convex objective functions. Moreover, these models have successfully captured

contextual information. In [40], the authors added additional linear filters to capture the spiking

activity of nearby neurons. The inclusion of these filters significantly improved the generalized
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linear model’s ability to predict spikes in a target neuron.

Generalized linear models capture state-dependence by linearly combining spike infor-

mation from adjacent neurons with spatiotemporal stimulus filters. It is unclear whether this

assumption of linearity is appropriate. For instance, it is possible that network state fundamentally

changes the way in which a given neuron processes information. Input-driven hidden markov

models have become increasingly popular for modeling network state dependent receptive fields

[16] [32]. These models introduce latent (hidden) states. They learn both the transition probabili-

ties between states and the receptive fields for each hidden state. These input-driven HMMs are

flexible enough to model neurons with receptive fields that vary drastically across network states.

Switching linear dynamical systems (a generalization of input-driven HMMs) have suc-

cessfully modeled C. elegans calcium activity [33]. It was found that fourteen latent states best

capture C. elegans network activity. In other words, there are at least fourteen network states

in the worm. In each of these states, the network exhibits different linear dynamics. Thus, C.

elegans network behavior varies significantly depending on network state context. It is clear that

any reasonable analysis of C. elegans network dynamics must capture the effect of network state

on individual neurons.
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Chapter 2

Large-scale imaging in C. elegans

2.1 Introduction

Information flows through nervous systems in a brain state dependent manner. For

instance, monkey frontal and parietal cortices exhibit different oscillatory behavior when the

animal is attending to a stimulus versus when it is not [9]. This change in oscillatory behavior is

coupled with an increased sensitivity to low contrast stimuli in sensory neurons [44] [45]. Hence,

brain state controls the information processing properties of individual neurons within a neural

network. It also affects organismal performance on behavioral tasks [44].

Given the important contextual information of brain state, it makes sense to visualize as

much of the brain as possible. While imaging technology has advanced considerably over the past

two decades, current imaging technology is still limited to the study of hundreds or thousands of

neurons [3]. With this in mind, many scientists have turned to invertebrates (section 2.5.1). With

their comparatively small number of neurons, invertebrates like Drosophila, larval Zebrafish, and

C. elegans provide a much easier imaging target. Nearly all of the neurons in the heads of each of

these organisms can be imaged with sub-second resolution.

Post-processing techniques have improved alongside advances in calcium imaging tech-
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nology. Motion correction and image segmentation algorithms have improved to the point that

calcium transients from nearby cells can be disentangled. This enables the high fidelity visualiza-

tion of a huge portion of an invertebrate’s total calcium activity (section 2.5.3). It has become

possible to resolve how an invertebrate organism’s calcium state affects its information processing.

Kato et al [28] is the first C. elegans ‘full brain’ imaging study. The authors image

immobilized C. elegans. A principal components analysis of the worm’s neuronal calcium

traces finds the first three components capture 65% of the neuronal variance. This is likely an

underestimate as every trace shown in the paper looks like a noisified version of one of three cells:

RME, AVA, or SMDV (section 2.5.4). A number of C. elegans mutants are created to find the

behavioral correlates of RME and AVA rise activity [28]. AVA and its correlated partner neurons

rise to their upper baseline value during worm reversals. The RME cell cluster, on the other

hand, rises to its upper baseline during forward locomotion. These appear to be the command

neuron clusters associated with forward and backward locomotion. Perhaps the most interesting

finding of this paper is that C. elegans motor commands continue to operate in immobilized

worms. Overall, Kato et al identify four neuronal classes: neurons correlated with AVA, neurons

correlated with RME, neurons correlated with SMDV, and oxygen-sensing sensory neurons.

The SMDV neurons identified by Kato et al control ventral turning in the worm. Kaplan

et al [27] study SMDV and SMDD neurons in more detail. The authors find SMDV and SMDD

control ventral and dorsal head casting. Overall, imaging of C. elegans in microfluidic chips

unveils forward-backward and dorsal-ventral motor commands. Perhaps the most surprising

finding is how little other activity there appears to be. The C. elegans nervous system is operating

in a very low dimensional space in these experiments.

The question becomes: how does the worm’s motor command state affect information

processing? There are a few questions embedded in this larger goal. What are the different worm

command neuron states? What are the possible state transitions? How does command neuron

state affect stimulus processing?
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2.2 Results

The NeuroPAL (section 2.5.5) (OH15500) strain and another pan-neuronal GCaMP strain

(ZIM294) are exposed to a variety of pulse-based stimulus patterns. Food (OP50) is used as the

stimulus in all trials (section 2.4.3) [10]. Neuronal calcium traces are acquired using non-negative

matrix factorization (section 2.5.3). The same six cell types appear in every worm: ‘On’ cells,

‘Off’ cells, anti-correlated moderately fast cells, and anti-correlated bistable cells. The ‘On’ and

‘Off’ cells track the stimulus exactly. The ‘On’ cells are positively correlated with the stimulus,

while the ‘Off’ cells are anti-correlated with the stimulus.

The moderately fast, anticorrelated cell types always appear on opposite sides of the

worm. One set of cells can be found on the ventral side of the worm, while the opposing cell

type is invariably found on the dorsal side. Cells on the same side of the worm exhibit nearly

identical calcium transients. The combination of this spatial and waveform information strongly

suggests these cells are SMDV and SMDD [27]. Indeed, where NeuroPAL landmarks are easy to

make out, these cells can be positively identified as the SMDV and SMDD pairs [57]. Moreover,

the stereotyped waveform and spatial locations enable SMDV and SMDD identification in

non-NeuroPAL strains.

The RME cell is invaluable for bistable cell identification. It can be easily identified in

NeuroPAL and non-NeuroPAL worms as it appears in relative isolation just in front of the nerve

ring [57]. The RME cell cluster is defined as the cells whose calcium transients correlate with

the RME calcium transient at 85% or greater. The cell most anti-correlated with RME is used to

identify the anti-RME cluster. All cells correlated with this cell at a rate greater than 85% are

members of the anti-RME cluster. When AVA identification is possible, it invariably appears in

the anti-RME cluster. Hence, the anti-RME cluster is referred to as the AVA cluster throughout

the paper. Kato et al [28] identify the same cell types. Moreover, no other cell types could be

identified in either the ZIM294 or OH15500 worms. Putative cells not appearing in one of the
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aforementioned six cell types typically resemble noise or noisier versions of the six primary cell

types.

Given the extreme correlation within the SMDV, SMDD, RME, and AVA clusters, averag-

ing within each of the clusters loses very little information. Thus, all subsequent sections use

cluster-averaged representations to simplify model structure.

Worm

Food

Buffer

Valve

MicroController

Computer

Airyscan

Chip

Figure 2.1: Figure 1. Imaging setup schematic. A worm is loaded into a microfluidic chip.
Food and buffer are always flowing in two different chip channels. Non-dashed lines indicate
food-exposure mode. In this mode, the valve is set so that food flows to the nose of the worm.
The buffer flows away from the worm. Triggering the valve causes the buffer to flow to the
nose of the worm and food to flow away from the worm. The computer controls the valve and
receives images from the Airyscan, allowing for the synchronization of image acquisition and
flow control.

2.3 Discussion

In a microfluidic chip, the C. elegans neural network operates in low dimensional space.

Like in [28], nearly every calcium trace belongs to one of the following cell clusters: forward-

backward locomotion controllers, left-right head casting controllers, and sensory neurons. Notably,

there do not appear to be any neurons dedicated to encoding statistical features of the stimulus.

Thus, it is unlikely that classical receptive field analyses will find anything of interest in the worm.

As in [28], a large number of neurons in each worm correlate with AVA and RME. The
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C

Figure 2.2: Figure 2. Large-scale calcium imaging in C. elegans uncovers six cell types. A:
Sample fluorescence traces for the six cell types for a single in a single worm. Gray bars indicate
food stimulus is flowing to the nose of the worm. Top: Average fluorescence traces across On
and Off sensory cells for single worm. Middle: Average fluorescence traces across SMDV
(purple) and SMDD (magenta) for the same worm. Bottom: Average fluorescence traces across
AVA (green) and RME (yellow) cell clusters. B: Fluorescence traces for the On, Off, SMDV,
SMDD, AVA, and RME cell clusters. Colors match those of A. AVA trace in A is the average of
the AVA traces shown in B. C-left: number of cells in each cell cluster identified across worms
for OH15500 strain. C-right: sample Neuropal imaging z-slice. A RME cell is annotated.

benefit of this redundancy is unclear. Perhaps this cluster will split into subclusters if multiple

independent signals are presented to the worm. Building a setup capable of controlling several

stimuli independently is the most obvious chip-based extension to this work. It is also expected

that more cell clusters will appear as analysis of freely-moving C. elegans matures.

There are several natural questions to ask of this dataset. The sensory cells follow the

stimulus nearly perfectly. What are the dynamics of these cells? Do they habituate? The other

natural questions focus on the motor command neuron clusters. Kato et al [28] discuss how none

of these cell clusters have an obvious relationship to oxygen stimulus. They lack an obvious
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relationship to food stimulus as well. Part of the complexity is that these motor command clusters

activate spontaneously. But, perhaps they are driven by food stimulus in a probabilistic manner.

Moreover, it seems likely that they are controlled in a state-dependent manner.

2.4 Methods

2.4.1 Full-head imaging

Day 1 adult C. elegans expressing GCaMP5k (Zim294) or GCaMP6s (OH15500) are

imaged using a Zeiss Airyscan. Imaging is done in 2 micron z steps. In ‘Fast’ mode, the Airyscan

images the entire head of the adult worm at about 1.5 volumes per second.

2.4.2 Microfluidic Chip

Worms are loaded into a microfluidic chip for airyscan imaging [11]. The microfluidic

chip accomplishes two goals. First, it controls odor exposure to the worm’s head. Secondly,

it constrains worm movement, keeping the worm’s head in a single imaging volume for long

trials. Here, worms are typically imaged for about ten minutes. All microfluidic chip channels

are loaded with M9 solution. The movement of untreated worms proved too difficult to motion

correct. To compensate, 1.5 mMol of tetramisole hydrochloride is added to the loading channel.

The combination of the chip and the tetramisole paralytic eliminates most perceivable worm

movement.

2.4.3 Food Imaging

C. elegans are raised on OP50 lawns. On day 1 of adulthood, they are washed in M9 and

loaded into a microfluidic chip. Each worm is left to sit in the loading chamber for 10 minutes

before the beginning of an imaging trial. The microfluidic chip is used to expose the worm to
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OP50 in order to study food responses. OP50 is prepared for food stimulus imaging according to

[10]. Briefly, two week old OP50 is spun down in a centrifuge. The pellet is then resuspended in

M9 solution. All resuspension is done in a 1:1 ratio, meaning that the final volume of resuspended

OP50 matched the initial volume of OP50.

2.4.4 Precise Food Exposure Patterns

An arduino is used to control the pattern of food exposure to the worm. The arduino sends

ttl pulses to a valve controller. This controller dictates whether the food solution is routed to the

nose of the trapped worm or away from the worm. In this way, worms are exposed to binary

patterns of food stimuli. Multiple patterns are used in this study. The patterns vary in correlation

lengths and transition probabilities.

2.5 Related Work

2.5.1 Imaging Simpler Organisms

Although large-scale calcium imaging has improved significantly in the last two decades,

it is still mostly limited to studies of hundreds or thousands of neurons [3]. It also has depth

limitations due to light scattering [24]. One approach to ease the multi-neuron calcium imaging

task is to use smaller, less-complex organisms. Many simpler organisms have been studied over

the years, including leech [30], and crab [23]. However, in recent years, the imaging field has

coalesced around three simpler organisms: Drosophila, larval Zebrafish, and Caenorhabditis

elegans. Drosophila and C. elegans are particularly appealing due to the extensive genetic toolkits

developed for these organisms. Although zebrafish genetics are not as well understood, the fish

perhaps promises a greater reward due to its complex behavioral repertoire.

The simplicity of these invertebrate species enables current imaging technologies to
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capture information from many neurons at the same time. The small size and translucent cuticle

of C. elegans allow off-the-shelf technologies to be used for ‘whole-brain’ worm imaging.

Spinning-disc confocal appears to be sufficients for imaging both trapped [28] and moving [36]

C. elegans. Also, it is becoming increasingly common for scanning confocal microscopes like the

Zeiss Airyscan to scan multiple lines simultaneously. As a result, these off-the-shelf microscopes

are becoming fast enough to capture C. elegans ‘whole-brain’ data with sufficient temporal

resolution.

Other imaging technologies promise worm imaging at even faster speeds. Prevedel et al

successfully use light-field imaging to capture volumetric images from C. elegans at extremely

fast sampling rates [43]. According to Ahrens and Engert, ‘the temporal resolution [of light-field

imaging] is limited only by the camera and photon count’ [3]. The translucent C. elegans cuticle

enables the usage of light-sheet microscopy. Light-sheet microscopy uses multiple objectives to

quickly obtain imaging slices with excellent spatial resolution.

On top of the increasing availability of microscopes with high spatial and temporal

resolution, genetically encoded calcium indicators have improved significantly since the early

days of GCaMP [3]. GCaMP is increasingly sensitive at faster temporal resolutions. Moreover,

the well-understood genetics of C. elegans have allowed further GCaMP improvements. The

fusion of nuclear localization tags to GCaMP have significantly aided in C. elegans imaging

analysis [43]. The nuclear-localized gcamp signal limits the signal overlap between adjacent

neurons, easing the task of image segmentation.

2.5.2 Microfluidic Chips

Although simpler organisms provide an easier imaging target, they can be difficult to

prepare for imaging. At this point it is difficult to acquire high quality calcium imaging data from

moving simple organisms and there is no way to head-fix a worm of a fish. Fortunately, microflu-

idic chips for both worms and fish have progressed significantly in recent years. According to
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[1], ‘microfluidic devices evolved from the microfabrication methods used for electronic chips’.

These devices are typically fabricated by shaping a silicone elastomer with a mold. This process

creates channels in the silicone through which fluids can flow. The Bargmann lab has developed a

number of standard molds for C. elegans calcium imaging [11]. The chips created using these

molds typically have a number of different flow channels. A loading channel allows worms to be

loaded into a chip. Odor and buffer channels allow for the precise exposure of odorants to the tip

of the worm’s nose.

Microfluidic chips have a number of benefits on top of the ability to precisely deliver

stimulus. The chip channels are shaped to trap the worm. The constraining of worm movement

is important for limiting motion artifacts. It also allows for a smaller imaging volume, enabling

faster volumetric acquisition. The chip also allows for the continuous flow of salts required for

hospitable worm environments. Finally, it allows for the continual flow of paralytic to the worm,

further reducing motion artifacts and allowing for long imaging sessions.

2.5.3 Post-Processing

Commensurate with microscopy and calcium indicator improvements, post-processing of

neuronal imaging data has seen several recent improvements. Post-processing of calcium imaging

data can be separated into two stages: motion-correction (also referred to as registration) and

image segmentation. Piece-wise rigid registration has been successfully applied to in vivo mouse

imaging data [41]. The use of rigid registration is particularly appealing due to its stability and

simplicity. The piece-wide modification to rigid registration allows the algorithm to account for

local non-rigid movements. This is particularly important for animals like C. elegans that lack

both skull and exoskeleton. Even with limited motion, the worm will often squeeze through small

spaces, producing thoroughly non-rigid motion artifacts.

Mukamel et al successfully combine independent components analysis (ICA) with image

segmentation to obtain separate calcium traces from Purkinje cells [34]. Using both temporal
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(ICA) and spatial information is critical. Even with nuclear-localized indicators, it is common for

the fluorescence signals of nearby neurons to spatially overlap. Temporal information can be used

to separate these cells if they fire independently. The use of spatial information is also important

as calcium imaging data (and neural data in general) is often composed of many statistically

dependent signals. Nonnegative matrix factorization (NNMF) has been successfully used to

segment in vivo imaging data [42]. This approach factorizes imaging slices into two positive

matrices: a spatial matrix and a temporal matrix. Pnevmatikakis et al claim their constrained

NNMF strategy handles overlapping spatial fields better than the PCA/ICA approach [42].

2.5.4 C. elegans Cell Identification

This manuscript, along with most C. elegans papers, repeatedly refers to C. elegans cells

by three or four lettered identifiers. This is largely due to the Nobel prize winning work of

Sulston et al [51]. The authors traced the entire cell lineage of the worm from zygote to newly

hatched larva. Sulston et al found cell fates to be highly invariant within the N2 worm strain.

This invariance is made possible by the fact that C. elegans reproduce via self fertilization in

the lab setting. Every studied worm for a particular strain is nearly genetically identical (with

some genetic drift through generations). Promoters have been identified for cell-specific genetic

expression for most C. elegans cells. Thus, when a study refers to the SMDV cell, for instance,

they are referring to a specific cell that has been mapped from embryogenesis and is identified by

some set of promoters.

2.5.5 NeuroPAL

Large-scale calcium imaging studies rarely expend significant effort generalizing findings

across animals. Due to the expense of generating, housing, and analyzing these datasets, large-

scale calcium imaging studies rarely have data from more than a few animals. Early C. elegans
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large-scale imaging studies only consider a handful of worms. The Kato et al [28] dataset includes

data from 5 worms. However, as technology advances, it is becoming easier to image and analyze

large numbers of worms. Thus, it is becoming more important to combine data across worms.

Smartly combining data across animals will increase the statistical power of any findings. It will

also allow for the discovery of general ‘worm properties’.

The NeuroPAL strain is a very promising tool for combining data across worms [57]. The

NeuroPAL strain expresses various fluorophores under a number of different promoters. The

fluorophore-promoter combinations are chosen so that each neuron exhibits a fluorescence profile

different from its neighbors. This is made possible by the position stereotypy of C. elegans

neurons. The NeuroPAL strain enables cell identification. If the same cell is assumed to have the

properties across worms (within a strain), data can easily be combined across worms.
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Chapter 3

Adaptation in sensory neurons

3.1 Introduction

Organisms have a finite capacity to represent information. They cannot efficiently repre-

sent the full set of possible stimuli. Instead they only encode stimulus features relevant to their

current environment. C. elegans, with its limited nervous system, must make especially good

choices about how it represents its surroundings. For instance, the worm will sense odorants

at drastically different concentrations over its lifetime. Dedicating a set of neural responses to

each possible concentration is clearly infeasible. Instead, the worm’s sensory neurons adapt to its

recent stimulus exposure.

Kato et al [29] fit an adaptation model to C. elegans On and Off sensory cells. Their

model (the cascade model) assumes the calcium dynamics of C. elegans sensory cells can be

approximated as the difference between the solution to two ordinary differential equations (ODEs)

of the form:
dx
dt

= τ∗ (Inp(t)− x(t)) (3.1)

τ is the time constant. It determines the stimulus response waveform. Taking the difference of

the solutions to two ODEs of this form produces a cancellation model. That is, in response to a
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stimulus step change, the calcium level will briefly increase before returning to its baseline value.

In this way, the cascade model assumes that C. elegans sensory neurons encode changes relative

to a locally averaged representation of their environment. The relative timescales in the model

dictate the time over which the environment is averaged.

This simple model achieves reasonable performance for sparser stimulus patterns but

struggles with more correlated pulse patterns [29]. Kato et al hypothesized that using more ODE

equations could remedy these fit issues. It is also possible that some of the fitting difficulties

stem from the extreme nonlinearity of the cascade model. It is possible that an autoregressive

model might ease some of these difficulties. The autoregressive model linearly relates the current

stimulus value and the recent stimulus history to instantaneous changes in calcium level. Within a

stimulus pulse, C. elegans neurons behave like first order ODEs. Thus, linearly regressing the

autoregressive covariates against an approximation of the calcium derivative provides a good

initial estimate of parameters. A good initial estimate is crucial to fitting highly nonlinear models.

3.2 Results

3.2.1 Core Model

Both On and Off sensory cells are assumed to follow simple ordinary differential equation

kinetics. The change in calcium is linear in terms of the stimulus input and the current calcium

level.
dx
dt

=~α ·~s(t)−βx(t) (3.2)

Where~s(t) refers to the stimulus terms. The stimulus terms are composed of the current stimulus

value as well as the several recent windows over which the stimulus is averaged. These window

terms are designed to capture the adaptation effect. ~α and β are the parameters to be optimized.

There are two parts to the GCaMP model: the nonlinear transformation and the linear
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convolution. First, the calcium value is passed through a nonlinearity and taken to the power of p.

This transformation is designed to capture both the nonlinear binding kinetics of GCaMP and the

limited range of GCaMP. The transformation is very similar to the one used in Kato et al [29].

Finally, the transformed calcium is convolved with the cell-specific GCaMP filter discussed in

section 3.4.1.

The model is fit to training data by successive approximation. Initial parameter values

are estimated using linear regression (section 3.4.4). The parameter estimates are refined using

the combination of an Unscented Kalman Filter (UKF) and a random search algorithm (sections

3.4.2, 3.4.4, 3.4.5).

3.2.2 Model Performance

The model has four hyperparameters: the GCaMP nonlinearity power p, the observation

noise variance r, the calcium noise variance q, and the pulse-correlated noise variance eta

(section 3.4.3). Values for these hyperparameters are determined using cross-validation. For

each hyperparameter combination, the model is fit to the first half of trials for a subset of the

cells. The fit models are then used to simulate a number of outcomes for the second half of

each trial. Hyperparameter sets are chosen separately for On and Off cells such that the average

mean squared error between the simulated and observed fluorescence values is minimized. The

GCaMP nonlinearity parameter p has the strongest effect. For any reasonable combination of the

noise hyperparameters, changing the value of p from 1 to 3 reduces the cross-validation error by

25% in primary On cells. Using 1 for the value of p overestimates the adaptation effect in On

cells. High values for the noise parameters (> 1e−4) tend to cause the model to vastly overshoot.

Using different values below 1e− 4 for these hyperparameters affected small changes in the

cross-validation error.

For the remaining set of cells, the model was fit to the first half of the trial and simulated

on the second half of the trial. The hyperparameters gleaned from the cross-validation experiment
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are used for these fits. Figure 3.1 shows the simulation results for several sample cells. The mean

adaptation model produces reasonable results for both On and Off cells. It performs well across

a variety of different stimulus patterns. The combination of the low error and low model noise

suggests there is relatively little noise in the imaging setup; that worm movement is negligible

and the stimulus delivery is consistent.

Figure 3.2 shows the generated calcium and fluorescence values for the same trials as 3.1.

Each subplot compares the calcium and fluorescence traces for a single simulation. The most

obvious trend is that the observed fluorescence values dramatically overstate the calcium range of

the On cells. The time course, on the other hand, is similar between calcium and fluorescence.

This is because the volumetric sampling rate is slow relative to the dynamics of GCaMP5k.

Figure 3.3 shows the distribution of window average coefficients across worms. It should

be noted that this figure does not include the coefficients for the current input effect, which are

obviously strongly positive for On cells and strongly negative for Off cells. On cell window

average coefficients exhibit a strong inhibitory bias while Off cell coefficients follow an excitatory

trend. This excitatory trend (referred to as the rebound effect) causes both habituation of the

inhibitory signal and strong rebound after stimulus removal. These findings match the expectation

for a mean adaptation model. That is, the cell’s response to a pulse will equilibrate back towards

zero over a long enough time period. The On and Off cells differ in their timecourses. The On

cells tend to be unaffected by activity within the last ten timepoints ( 7 seconds), while the Off

cells are strongly excited by activity within the last ten timepoints. The inhibition of On cells,

overall, stems from activity over the last 7 to 100 seconds.

3.3 Discussion

Overall, the autoregressive model captures much of primary sensory cell behavior. Thus,

On and Off cells are well described by mean adaptation. The autoregressive model shows that
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Off cell rebound is faster than On cell habituation. These findings roughly match those of Kato et

al [29].

The autoregressive model warns about underestimating GCaMP effects. Using a nonlinear

filter to describe GCaMP improves cross-validation performance in the On cells. Smaller values

for the GCaMP nonlinearity hyperparameter p cause the model to overestimate the strength of

habituation. This can be seen most clearly in figure 3.2. For the fastest stimulus pattern (top-left),

the On cell never accumulates very much calcium. As a result, the On cell is always operating

in the insensitive GCaMP range, and the fluorescence dynamics look very small. This contrasts

with the slowest stimulus pattern (one down - left) where calcium is able to accumulate. Cell

fluorescence responses to these patterns look very different, while the inferred calcium responses

actually operate over a similar range. Overall, it is easy to make mistakes about cell dynamics

just by looking at fluorescence traces.

GCaMP inactivation confounds some of the findings for On cells. There is little evidence

of permanent photobleaching as the majority of cells return to baseline fluorescence after a period

of time. However, it is possible that GCaMP becomes temporarily inactivated as modeled by

Kato et al. It is possible the model overstates the level of habituation in the On cells. That being

said, GCaMP inactivation does not explain why On cell habituation tends to be slower than Off

cell rebound. Similarly, Off cell rebound is incongruous with GCaMP inactivation. In fact, if

anything, the model likely underestimates the effect of stimulus history on Off cells.

Although one could try to explicitly model GCaMP inactivation, it is unlikely to make

any difference. The only way to conclusively account for GCaMP inactivation is experimentally.

The best way to do this would be to image and electrophysiologically record from neurons at

the same time. Unfortunately, this is very difficult in C. elegans. Another way one could get at

this question would be to test whether primary sensory cell habituation affects the way primary

sensory cells drive downstream neurons.

The usage of the Unscented Kalman Filter enables analysis of the noise in C. elegans
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sensory cells. The observation and process noise appear to be very small. However, the fluores-

cence value reached in response to a particular pulse is difficult to predict. It might be the result

of some deterministic process (better modeled by autoregressive terms) or it might be simply

unpredictable (better modeled by eta noise process). This study addresses this tradeoff. However,

this tradeoff can be analyzed further by regularizing the autoregressive terms and assessing the

effect of regularization through cross-validation. This experiment is an important follow up.

One of the benefits of the autoregressive model is that it can easily incorporate signals

from downstream neurons. This enables the asking of questions like: are On cells more sensitive

when RME is in its high state? This is an important long term goal.

3.4 Methods

3.4.1 Estimating GCaMP Parameters

The GCaMP filter is modeled as a difference of exponentials with parameters matching

Chen et al [12]. This procedure is complicated by the volumetric nature of the imaging data. For

example, imagine a cell in slice 0 and a cell in slice 7 have identical response kinetics. The cell in

slice 7 will appear to have much faster response kinetics due it being acquired over half a second

later than the cell in slice 0. Thus, the slice in which the cell appears needs to be considered in

the creation of its GCaMP filter:

f (t) =
∫ t2

t1
g(x)dx

t1 = (t +
z
nz
)

t2 = (t +
z+1

nz
)
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g(x) refers to the difference of exponentials and nz refers to the number of z-slices. The normalized

f (t) filter is used in a convolution to map from calcium to fluorescence.

3.4.2 Incorporating GCaMP

Calcium dynamics are assumed to follow a linear, differential equation where the inputs

are the various stimulus window terms. At each timepoint, 3.2 is solved using Euler’s method.

Gaussian noise is added to the ODE solution. The varianceof this Gaussian noise is the q

hyperparameter. The noisified calcium is run through the relu transform and taken to the p power.

Finally, the transformed state along with the transformation of the recent states are convolved

with the GCaMP filter. Gaussian additive noise is again added to the fluorescence estimate. The

variance of this distribution is the r hyperparameter.

x0(t) = soln(
dx
dt

)+nq

xi(t) = xi−1(t−1)

yi(t) = relu(xi(t))p +nr

f (t) = ∑ fiyi(t)

3.4.3 Eta Noise

The core model has two sources of noise: calcium noise controlled by the q hyperparameter

and observation noise controlled by the r hyperparameter. Neither of these noise sources are

temporally correlated. This is problematic given the appearance of the primary sensory neuron

traces. These neurons exhibit very little deviance when at baseline. They also appear fairly stable

at their peaks. There is, however, some variability in the saturation point across stimulus pulses.

That is, a given primary sensory neuron saturates at different fluorescence values within a trial.

Some of this can likely be explained by the adaptation terms but some of the variability may
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simply be noise.

The pulse-correlated noise system requires the introduction of the input delta covariate.

The input delta term is 1 when the stimulus turns on, -1 when it turns off, and 0 everywhere else.

At pulse onset, noise is injected into the pulse-noise state. The variance of this noise is equal

to the hyperparameter eta. The pulse-noise state is updated according to xn(t) = xn(t−1) until

pulse offset is detected. At pulse offset, the pulse-noise state returns to 0. The pulse-noise state

is combined with the stimulus terms to drive the calcium state x(t). Thus, if the noise term is

positive, the calcium response will saturate at a higher value.

3.4.4 Initial Fit

The combination of the linearity of the differential equation and the linearity of the

GCaMP filter enables a simple initial estimate. This is important because even linear, Gaussian

state space models have many local minima. Thus, having a good initial parameter estimate limits

the size of the search space for the final nonlinear optimization. The Richardson-Lucy algorithm

is used to deconvolve the normalized fluorescence signal [18]. The deconvolved fluorescence is

taken to the (1/p) power to get an estimate for the underlying calcium value.

The calcium derivative is approximated by finite differences. A linear regression is

performed between this approximate derivative, the associated calcium value (giving the initial

beta estimate), and the various stimulus terms. This regression is done across all worms using

a mixed effects formulation. There is assumed to be a mean worm (the fixed effects). The

coefficients for each worm are assumed to be the sum of the mean worm’s coefficients and its

own regularized coefficients. The regularization strength is chosen to be the maximum strength

where the model performance is within 95% of that of the unregularized model performance.
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3.4.5 UKF and Random Search Fitting

The initial fit produces mediocre results when simulated. This is because the linear model

does not account for error accumulation. The simulated model is fit to the observed fluorescence

traces using a random search procedure. First, the procedure searches the parameter space near

the initial estimate for the N parameter sets that produce the smallest mean error between a

noiseless version of the model and the observed fluorescence traces. Then, the Unscented Kalman

Filter (UKF) is used to assess the log-likelihood of each of these parameter sets. The set that

produces the maximum log-likelihood is chosen. The fitting of the noiseless version of the model

is done because simulating the noiseless model is faster than running the UKF. Thus, a much

larger region of parameter space can be explored. It was found that the mean error of the noiseless

fit correlates with the log-likelihood calculated by the UKF.

3.5 Related Work

3.5.1 C. elegans Sensory Neurons

C. elegans primary sensory cells are the best studied C. elegans neurons. Their ability

to track odorant stimuli with high fidelity makes them good candidates for study. It is common

practice to characterize a worm’s response to an odorant by computing the change in fluorescence

of its primary sensory cells to odor onset [10] [31]. Interestingly, the majority of these studies only

consider the fluorescence change for a single pulse of odorant. This is done because C. elegans

primary sensory cells habituate to odorants. Their responsiveness decreases with successive

odorant exposure. The dynamics of this habituation are still only partially understood.

C. elegans encode stimuli using both ‘On’ and ‘Off’ primary sensory cells. The ‘On’

cells are excited by stimuli. The ‘Off’ cells are inhibited by stimuli. The ‘Off’ cells also exhibit

a strong rebound effect. Calcium levels in these cells often rise well above baseline when a
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stimulus is removed [31]. Historically, it was thought that each primary sensory cell encodes

a single stimulus (labeled-line coding). Leinwand et al found that several odors are encoded

combinatorially [31]. Leinwand et al also showed primary sensory cells cannot be identified

solely through pulse-based calcium imaging. The AWB neuron appears to be a primary sensory

neuron for benzaldehyde. It exhibits a robust and transient response to benzaldehyde removal.

However, this response requires signalling from ASE. Hence, this study focuses on ‘sensory’

cells: cells that strongly correlated with stimulus or with removal of stimulus. Some of these cells

may be secondary encoders.

3.5.2 Modeling GCaMP

The cascade model highlights one of the biggest difficulties in modeling calcium activity:

the nonlinear binding properties of GCaMP. GCaMP fluoresces when it is hit with light while

binding four calcium ions. The nonlinear binding kinetics of GCaMP make events more obvious

while complicating their analysis. For instance, Chen et al, finds that a nonlinear model is

necessary to map from spikes in mouse neurons to calcium transients [12]. Unfortunately, it

becomes difficult to say whether this effect is due to nonlinearities in the calcium transduction

pathway or due to the nonlinear binding kinetics of GCaMP.

GCaMP is also problematic for analyzing sub-baseline activity. It cannot track calcium

activity at low calcium concentrations with much fidelity. Kato et al handled the nonlinearity and

range limitations of GCaMP by pushing the output of the cascade model through an exponential

nonlinearity. Thus, calcium in their model can go well below zero while the model’s fluorescence

value is strictly positive. In fact, this nonlinearity is crucial to the functionality of their model.
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3.5.3 Noise and the Unscented Kalman Filter

Any model of C. elegans fluorescence activity must battle multiple sources of noise. These

sources include observation noise inherent to the microscope. They also include more complex

noise like worm movement and imperfect odorant flow in the microfluidic chip. These latter

sources of noise are more complex as they are likely to create noise structures that are correlated

in time. For instance, if the chip becomes partially blocked, odorant exposure to the nose of the

worm may be decreased for a period of time. This, in turn, will decrease primary sensory cell

responsiveness for a period of time.

State-space models explicitly model noise. State-space models probabilistically describe

the relationship between latent states and an observed state. Basic state-space models are built on

the following two equations [54]:

xk+1 = F(xk,vk)

yk = H(xk,nk)

F is the transition equation and H is the observation equation. vk is the process noise and nk is the

observation noise.

The process of estimating the current latent state from the history of observations is

referred to as filtering. More specifically, filtering estimates p(xt |y0, ...yt). Assuming x̂k−1 and yk

are Gaussian Random Variables, the following recursion provides the optimal estimate [54].

x̂k = x−k +Kk[yk− y−k ] (3.3)
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where

x−k = E[F(x̂k−1,vk−1)]

Kk = Pxk,ykP−1
ỹk,ỹk

y−k = E[H(x−k ,nk)]

Where v and n are the process and observation noise terms respectively and ỹk is the difference

between the optimal observation prediction and the true observation. When F and H are linear,

the Kalman Filter optimally infers the latent state. Unfortunately, there is no reasonable linear

model of GCaMP dynamics.

The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) generalize

the Kalman Filter for nonlinear models. The EKF linearizes the dynamics equations in order

to estimate the posterior covariance matrices. It is the de facto system for a number of well

understood nonlinear state space models. The UKF represents the state distribution as a Gaussian

Random Variable. It draws a set of sigma points from this distribution and propagates these

points through the nonlinear transition function. The mean and variance are then calculated for

the transformed points, producing the updated Gaussian distribution. A similar procedure is used

for the observation transformation. The approximate mean and covariance matrices are used to

find the optimal state using the above Kalman gain equations. The UKF often gives more robust

estimates than the EKF [54] [26].

The combined usage of the autoregressive model and the Unscented Kalman Filter allow

for the simultaneous analysis of dynamics and noise of the C. elegans sensory cells.
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Figure 3.1: Test set performance of autoregressive sensory neuron model. In all subplots, blue
is the observed fluorescence. Yellow is a single model simulation on the test set. Red is the
average across a number of model simulations. All cells in the left column are On sensory cells.
All cells in the right column are Off sensory cells. Each row corresponds to a different stimulus
paradigm. The top two rows correspond to random pulse protocols with different block sizes.
The bottom two rows correspond to correlated pulse protocols.
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Figure 3.2: Comparison of model-inferred calcium to model-inferred fluorescence. There is a
1:1 correspondence between the traces in figure 1 and the traces in figure 2. Yellow traces are
inferred fluorescence. Green traces are inferred calcium.
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Figure 3.3: Distribution of autoregressive coefficients across sensory cells. Timewindow refers
to the time period over which the stimulus is averaged. For instance, the -20 to -6.6 timewindow
refers to the average stimulus from 20 seconds before a target timepoint to 6.6 seconds before.
The lines connect coefficients derived for the same cell. Only a subset of the lines are shown for
clarity. Timewindows are truncated to integers for clarity. The actual values for the timewindow
endpoints are -166.67, -100, -33.33, -20, -6.67, and 0.
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Chapter 4

State dependence in C. elegans command

neurons

4.1 Introduction

Changes in C. elegans calcium levels are context dependent. C. elegans On sensory cells

habituate to stimulus as a function of recent stimulus presentations. Similarly, the worm’s Off

sensory cells rebound more strongly with more stimulus exposure (section 3.2.2). C. elegans

neuronal calcium fluctuations also depend on the network state. Some trivial examples follow

from the boundedness of certain cell types. For instance, the RME cell cannot decrease in its

low stable state and it cannot increase in its high stable state. Less trivially, a switching linear

dynamical systems analysis found the C. elegans neuronal network occupies fourteen distinct

states. In each of these states, the network obeys different dynamical rules [33]. Knowing both

the state of the C. elegans nervous system and its stimulus exposure history is crucial to predicting

C. elegans circuit behavior.

The goal of this section is to understand how a specific neuron’s dynamics depend on the

calcium activity of the whole C. elegans network; how changes in some sets of neurons cause
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calcium changes in a target neuron. Calcium imaging of a restrained worm is limited in its ability

to resolve this communication. The true dimensionality of the data is small compared to the

number of observed cells [28] [33]. The RME and AVA cells have many, strongly correlated

partners (seciton 2.2). RME and AVA are strongly anticorrelated. Do they act on each other

directly? Do they communicate through one of their correlated partner neurons? The calcium

data in the restrained worm is ill posed to answer these questions. It is much better equipped to

answer how the RME cell cluster is related to the AVA cell cluster.

There are six cell clusters in restrained C. elegans imaging data: On sensory cells, Off

sensory cells, SMDV, SMDD, the RME cluster, and the AVA cluster. The cell clusters that do

not contain sensory cells, correlate with worm movements (section 2.2). While the RME and

AVA cell clusters correlate with forward and backward locomotion respectively [28], the SMDV

and SMDD cells correlate with ventral and dorsal head movements respectively [27]. Notably,

each of these cell clusters exhibits stereotyped waveforms. The AVA and RME cell clusters are

both bistable and nearly perfectly anticorrelated. The SMDV and SMDD cells are also heavily

anticorrelated. Though, they each have one, low stable state.

The specific relationship between the SMDV/D cell cluster and the AVA/RME cell cluster

is unclear. For instance, It is unclear whether changes in one cell cluster cause direct changes

in another or whether they alter the probability of changes. This work seeks to predict event

probabilities due to it being more general than assuming local linear relationships.

In this chapter, a number of modeling techniques are used to assess the functional re-

lationship between cell clusters. All techniques model cell cluster fluctuation probability as a

function of network state. The methods (generalized linear models, neural networks, and soft

decision trees), vary in complexity. Some methods model network state as being linearly related

to cell cluster fluctuation probability. Some allow the relationship between two cell clusters’

calcium fluctuations to vary dramatically as a function of network state. All of the models allow

for heterogeneity across worms via fixed or random effects (section 4.4.3).
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4.2 Results

The primary goal is to understand how changes in the RME, AVA, and SMDV/D cell

clusters depend on network state. The initial approach is to predict whether these cell clusters

increase or decrease as a function of recent network history. To this end, the data is binned in units

of 5 imaging volumes (˜3 seconds). A timebin length of 5 is reasonable because of the profile of

stimulus pulse durations. Most worms are only exposed to stimulus pulses with a multiple of 5

imaging volumes for a duration. Therefore, if one assumes cell cluster event timing is in some

way tied to stimulus timing, relatively little information will be lost. Moreover, estimating the

change in fluorescence over 5 volumes is less noisy than calculating the change in fluorescence

over a single volume.

The various cell clusters have, at best, a weak correlation with the input stimulus. Since

some stimulus onsets produce no obvious network change, it is more likely that stimulus affects

the probability of a network change. With this in mind, a logistic regression model is developed

to predict network change. Logistic regression requires discrete outcomes. A blind thresholding

system is used to convert changes in cell cluster fluorescence over a timebin to discrete data

(section 4.4.1). The goal of the model becomes predicting the probability of a given cell cluster

increasing above a threshold (or decreasing below a threshold) as a function of recent network

history.

Two different strains are imaged. The NeuroPAL (OH15500) strain is designed to allow

for cell identification and pan-neuronal imaging simultaneously [57]. A different pan-neuronal

GCaMP strain is also imaged (ZIM294) [43]. The OH15500 animals have lower brood sizes.

They also move much less in the microfluidic chip. Given these differences, the two strains should

be analyzed separately. It is possible that they obey different rules.
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4.2.1 Making generalized linear models context-dependent

C. elegans calcium imaging data poses two difficult problems: it is inherently nonlinear

and it combines data from possibly dissimilar worms. The nonlinearity stems from the fact

that worm neurons behave differently in different network contexts. In order to capture this

nonlinearity, a clustering approach is used (section 4.4.2). A Gaussian Mixture Model is used

to divide network states into different clusters. Based on the preceding 16 seconds of network

activity, each timebin is assigned to a single cluster. The one-hot encoding of cluster identity

enables the linear logistic regression module to capture nonlinear features.

Depending on the number of clusters, there may be substantial network variation within

a cluster. Consider a cluster in which RME is decreasing. The probability of whether RME

will continue to decrease depends heavily on the fluorescence value of RME just before the

target timebin. If RME is closer to its high stable state, the probability of it decreasing is high.

If it is close to its low stable state, the probability will be low. One could divide this cluster

into two more clusters, but it is also possible that there is a linear relationship between network

state and RME decrease probability within the cluster. Within each network state cluster, the

network state is projected onto the top N eigenvectors of the cluster’s covariance matrix. In this

way, the network history space is effectively divided into different subspaces on which Principal

Components Analysis is performed. Each timebin only has access to the eigenvector projections

corresponding to a single cluster (the cluster to which it is assigned). The balance between the

number of clusters and the number of eigenvectors controls the degree of nonlinearity in the

model. The linear combination of the eigenvectors scaled by the coefficients learned by the model

is referred to as the receptive field. There is a receptive field associated with each cluster.

Worm to worm variability is likely small compared to more complex organisms. In the

lab setting, C. elegans reproduce through self-fertilization [51]. All members of the same strain

are nearly genetically identical. With that being said, different worms may still have different

sensitivities and different neuronal connectivities. Random effects are added to the logistic
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regression module through a regularization system (section 4.4.3). Each model coefficient is able

to vary across worms. The degree of variation is controlled by L2 regularization.

Overall, the model is governed by four hyperparameters: the number of clusters, the

number of eigenvectors per cluster, the inter-worm variation regularization strength, and an

additional regularization parameter for all coefficients. In general, the model will be fit and

cross-validated using only network history. Then, the stimulus will be added to assess model

performance improvement.

4.2.2 The RME cell cluster fluctuates in a state dependent manner

A cross-validation approach is used to study the tradeoff between the number of clusters

and the number of eigenvectors in predicting RME cluster decrease probability. This is initially

done while ignoring the stimulus and with only OH15500 animals. For a number of cluster -

eigenvector combinations, the out-of-sample bootstrap is used to assess model generalization [52].

This approach specifically measures the out-of-sample log-likelihood. It should also be mentioned

that different regularization strengths are tested for each cluster - eigenvector combination. For

each cluster - eigenvector combination, the regularizers that produce the highest average out-

of-sample log likelihood are chosen. Figure 4.1 shows the log-likelihoods for these chosen

regularizers. The model performance is fairly similar as long as it uses more than one cluster and

at least twenty-four eigenvectors.

It is difficult to understand how well the model is performing from log-likelihood alone.

The logistic regression scores are assessed for each of these hyperparameter combinations. The

scores range from 80% success (with 1 cluster) to low 90%s for the better hyperparameter

combinations. Thus, RME cell cluster decrease can be predicted fairly well without knowledge

of the stimulus. This finding is likely the result of the stereotyped waveform of RME. RME

is restricted to certain, predictable calcium trajectories. The stimulus may be able to influence

how RME moves through its trajectories but it cannot produce significant changes in RME’s
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waveform.

RME cell cluster fall probability is modulated by recent RME and AVA activity. The red

cluster is the only cluster that increases RME fall probability (figure 4.1). It is also the only cluster

in which the RME cell cluster is in its high state and is decreasing. Interestingly, this cluster is

also the only cluster where neither SMDV nor SMDD are increasing. The blue cluster has the

strongest inhibitory effect. This is unsurprising as RME is in its low state in this cluster. There is

an interesting comparison between the green and purple clusters. In both clusters, the RME cell

cluster is increasing towards its high stable state. One might expect the green cell cluster to be

associated with a high probability of RME decrease because RME is higher in the green cluster

than in the purple cluster. The fact that this is not the case suggests that either RME transitions

can be interrupted or that SMDV and SMDD might have some effect.

The latter hypothesis is confirmed by the receptive fields (figure 4.1). The receptive

fields are nearly identical across network history clusters. For every cluster, AVA increase, RME

decrease, and SMDV/D decrease raise the RME fall probability. Thus, SMDV and SMDD gate

RME high to low transitions. They must return to baseline for RME to return to its lower baseline.

The receptive fields shown in figure 4.1 are averages across all of the OH15500 animals.

Plotting the receptive fields for each worm on top of these averages barely changes the plot. This

occurs because the cross-worm regularization strength is very high in the best performing models.

The coefficients for the network history clusters also vary little across worms. The clusters are

distributed fairly equally across all worms. Each cluster has a number of assigned datapoints

from each worm. Most of the cross-worm variability is captured in the intercept term. Altogether,

most of the worms are well described by the clusters and receptive fields in figure 4.1.

The cross-validation approach is repeated for RME fall prediction in ZIM294 animals.

The results are similar to the OH15500 results. Once again, the best performing model uses four

network history clusters. The clusters tell a fairly similar story. When the RME cell cluster is

decreasing from its high state, it is more likely that RME will continue to decrease (blue and
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purple clusters). The receptive fields look nearly identical to those of the OH15500 animals. Also

like the OH15500 animals, there is very little cross-worm variation in model coefficients.

The stimulus is considered for the best performing RME fall prediction model. Two

stimulus windows are added to the model. The latest window averages the mean-centered stimulus

from ˜3 seconds before timebin onset until the end of the timebin. Similar stimulus windows

are introduced in ˜6 second increments before the latest window. Out-of-sample bootstrapping

is performed to assess the change in log-likelihood due to stimulus inclusion. Inclusion of the

stimulus improves model performance in every sample for both the OH15500 and ZIM294 worms

(figures 4.2 and 4.4).

For both OH15500 and ZIM294 animals the stimulus negatively correlates with RME

decrease probability. The last stimulus timewindow has a strongly negative coefficients for both

strains. The earlier stimulus window seems to provide little benefit as it is effectively zero.

Altogether, stimulus removal increases RME fall probability. This effect seems to be mostly

immediate. In summary, RME cell cluster decrease is a function of SMDV, SMDD, and stimulus

history. RME falls to its lower baseline value in concert with SMDV and SMDD quiescence and

stimulus removal.

4.2.3 RME rise dynamics are symmetric to RME fall dynamics

RME rise probability is modeled in a similar way to RME fall probability. The trials are

broken up into timebins of 5 volume durations. The blind thresholding system finds .01 to be a

reasonable threshold choice for RME increase. That is, if the RME cell cluster increases by at

least .01 (units of normalized fluorescence) over a timebin, the timebin is scored as positive.

The out-of-sample bootstrap finds fewer clusters are needed for RME increase prediction.

Two clusters performed best for the OH15500 animals, while only one cluster is needed for

ZIM294 animals. The two OH15500 clusters show RME rise dynamics are governed by the exact

opposite forces as RME fall dynamics (figure 4.5). Unsurprisingly, increases in RME predict
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more increases in RME. Increases in SMDV and SMDD also increase the probability of a RME

cell cluster increase. The receptive fields are nearly identical across all clusters and across both

worm strains. They support the same finding: RME increases in concert with SMDV and SMDD.

Two stimulus windows are added to the best performing models for the OH15500 and

ZIM294 animals. These are the same stimulus windows introduced in the RME fall prediction

models. The inclusion of these stimulus windows improves performance in every out-of-sample

bootstrap for the OH15500 animals. The inclusion of stimulus windows improves performance

in all but one of the bootstraps for ZIM294 animals. For both strains, the coefficient associated

with the latest stimulus window is strongly positive. The earlier stimulus windows are weakly

negative, suggesting the stimulus effect on RME cell cluster increase is strongest at pulse onset.

Altogether, RME fall and RME rise seem to be governed by symmetric dynamics. If the stimulus

is off when SMDV and SMDD fall back to their baselines, RME will tend to fall back to its lower

stable state. If the stimulus turns on while SMDV and SMDD are rising, RME will tend to rise to

its high stable state.

4.2.4 SMDV and SMDD exhibit anti-correlated dynamics

The rise prediction procedure is used for the SMDV cell cluster. The SMDV cell cluster

is composed of the worm’s two SMDV cells. A logistic regression model is built to predict

whether the SMDV cell cluster fluorescence will increase by at least .01 over a ˜3 second duration.

Initially, only the recent network history is available to the model. As in the RME prediction

models, the model uses network history clusters to capture nonlinear features and worm-specific

random effect terms to capture cross-worm variability.

Out-of-sample bootstrap cross-validation produces very differing results between the

two worm strains. The ZIM294 animals are best described by 6 network history clusters, while

the OH15500 animals are best described by 2. The OH15500 network history clusters bear

similarities to the ZIM294 network history cluster. The blue OH15500 cluster resembles the blue,
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purple, and yellow clusters of the ZIM294 animals. In all of these clusters, SMDV is increasing

and the RME cell cluster is increasing (or has recently increased). These network history clusters

are all associated with increased probability of SMDV rise. The red OH15500 cluster resembles

the orange ZIM294 network history cluster. In these clusters, RME and SMDV fall predicts

reduced probability of SMDV rise.

The receptive fields are similar across all clusters and across all worm strains. RME

rise, SMDV rise, and SMDD fall increase the probability of SMDV increasing over the target

timebin. The inhibitory relationship between SMDV and SMDD is unsurprising as these two

cells almost never increase at the same time. The effect of RME cell cluster history on SMDV is

more surprising. The receptive fields suggest SMDV events will tend to be triggered when RME

transitions from its low to high state.

Although all of the network history receptive fields are similar, there are some important

differences as well. In the ZIM294 red and blue clusters, sudden increases in SMDV will increase

the probability of further SMDV rise. However, it is important to note that the SMDV receptive

fields for these clusters are mostly negative. Thus, if SMDV begins to saturate in these clusters,

the probability of SMDV rise will decrease. The clustering system is designed to capture this

kind of nonlinear behavior. When SMDV begins its rising phase, it will tend to continue rising

because SMDV activity is highly autocorrelated. However, as SMDV increases, the probability

of it continuing to rise decreases.

The rise prediction procedure is applied to the SMDD cell cluster. In both strains, the

network history cell clusters with the strongest positive effect on SMDD rise probability are those

in which SMDD is already rising. Similarly, the clusters with the strongest negative effect on

SMDD rise probability are those in which SMDD has recently peaked. The similarity of effect

between the green and purple clusters in the ZIM294 worms suggests RME/AVA state plays a

negligible role in SMDD rise probability.

The receptive fields tell a similar story to that of the SMDV neurons. In most clusters, the
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strongest receptive field components are the SMDV and SMDD components. Typically, sudden

increase in SMDD and/or sudden decrease in SMDV portends further increase in SMDD. SMDV

and SMDD are mutually inhibitory. Once again, the SMDD receptive field components are largely

negative. If SMDD rise begins to slow, it is unlikely to continue increasing.

4.2.5 A neural network confirms stimulus importance

The generalized linear model suggests OP50 exposure increases RME rise probability

and stimulus removal increases RME fall probability. However, it is possible that this effect

is a function of artificial modeling conditions or poor null model performance. A temporal

convolutional neural network is used to address this possibility (section 4.4.5). With its state-of-

the-art performance on multi-class classification problems, it is much better equipped to capture

C. elegans network dynamics than the modified, generalized linear model.

Changes in RME fluorescence over 5 volume timebins are discretized into five classes.

The class boundaries are -.03, -.01, .01, .03. For instance, a given timebin falls into class two if

the RME cell cluster average fluorescence changes by between -.03 and -.01 over the timebin.

Moving from a single-class to a multi-class system allows for a greater amount of RME fluctuation

variance to be captured. Neural network performance is compared with and without consideration

of sensory cells. Sensory cell inclusion leads to significantly improved model performance for

both OH15500 and ZIM294 strains (figure 4.13). The full model neural networks are pretrained

without sensory cell information. This was found to improve model performance, suggesting that

the neural network can easily overfit to stimulus. Overall, it appears that stimulus does have a

significant effect on RME (and, by transitive property, AVA).
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4.2.6 Soft decision trees find useful network states

In an earlier section, generalized linear modeling was found to be improved by the

introduction of network state variables. One might expect the effect of stimulus on RME cell

cluster fluctuations to be state dependent. To this end, the RME datasets are split into different

datasets according to network state. Surprisingly, consideration of the stimulus had a similar

effect on network performance in each of the filtered datasets. Moreover, the stimulus coefficients

are found to be relatively similar across the different filtered datasets. This finding makes little

sense. Stimulus removal should not have a large effect on RME fall probability when RME is in

its low state.

The lack of a differential filter effect is likely the result of the core issue with the general-

ized linear model framework: the network history clusters are derived in a pre-processing step. A

superior model would find network states that directly maximize RME prediction performance.

Neural networks do this implicitly, but they are uninterpretable. Decision trees, on the other hand,

can learn nonlinear features in an interpretable manner. They make predictions by segmenting

data into subsets. For instance, a two-level decision tree divides a dataset into two subsets. It then

makes class predictions for each of the subsets. In this way, the upper levels of the decision tree

can be thought of as network state representations.

A soft decision tree (section 4.4.6) [21] is fit to the multi-class RME OH15500 dataset

described in section 4.2.5. Soft tree cross-validation performance is compared to generalized

linear multinomial performance for a number of tree depths. For all models, worm identity is fed

into the model via fixed effects. Shallow trees (tree depth of 2) are nearly always worse than the

linear model (figure 4.14). Trees of depth 3 are nearly always better than the linear model and

trees of depth 4 are always better than the multinomial linear model. Thus, the hierarchical tree

structure is beneficial for RME prediction.

Figure 4.15 visualizes a depth four decision tree fit to the whole dataset. Two interesting

leaves are annotated as A and B. Leaf A follows directly from the branch with the largest
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magnitude Off cell increase. When this branch is exposed to a large magnitude OFF cell increase

and low SMDV/D activity, leaf A becomes activated (it receives a higher probability value from

its parent). This leaf predicts the largest magnitude decrease in RME. Thus, leaf A agrees with

earlier analyses that found RME falls in accordance with low SMDV/D and high Off cell activity.

Going up the tree, it can be seen that the branch leading to leaf A will be activated when RME is

falling (top level). However, if RME is too low, this branch will not be evaluated (second level).

This also agrees with earlier analysis. If RME is falling, it will continue to fall. If it is nearing its

low stable state, it will tend to stop decreasing.

Leaf B tells a story opposite to that of leaf A. The branch leading to leaf B will be

evaluated if RME, SMDV, and/or SMDD are increasing (second level). This branch will also tend

to be evaluated if the On cell has been high for the last 5-10 imaging volumes (second level). This

branch, in turn, will cause leaf B to be evaluated if RME, SMDV/D, and the Off cells are low.

Since leaf B predicts the largest magnitude increase in RME, it is once again found that large

increases in SMDV/D are coupled with large increases in RME. The one difference from earlier

findings is that this tree predicts the On cells have a delayed excitatory effect on RME increase.

4.2.7 Macro View: SMDV and SMDD gate RME fluctuations

RME rise correlates with SMDV and SMDD rise. How many RME rise events co-occur

with SMDV and SMDD events? To answer this question, SMDV/D and RME cluster events are

annotated. A cluster event initiates when its average fluorescence value eclipses 0.2. The cluster’s

event endures until its fluorescence falls below 0.2 or for 7 seconds (whichever is longer). SMDV

and SMDD ‘cover’ a timepoint if they are undergoing an event during that timepoint. A trial’s

‘coverage’ is the percent of the trial’s timepoints that are covered by SMDV and SMDD. Similarly,

an RME event is covered if the RME cell cluster eclipses its 0.2 threshold in a covered timepoint.

Nearly every RME cell cluster event is covered (figure 4.16). That is, nearly every RME

cell cluster event co-occurs with either an SMDD or SMDV event. In ZIM294 animals, SMDV
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and SMDD typically only cover about 40 - 80% of trials. If RME cell cluster events are assumed to

be randomly distributed, the probability of obtaining the number of observed covered RME events

from the observed percent coverages is astronomically small. The same is true for OH15500

animals even though SMDV and SMDD cover a greater percentage of the trials in these worms.

This greater coverage matches the observation that SMDV and SMDD events tend to be slower in

OH15500 animals. A hierarchical bootstrap is used to estimate the exact probabilities, but no

random sample ever covers the observed number of RME events in tens of thousands of samples.

4.2.8 Stimulus effect on RME is gated by SMDV and SMDD

Since, RME cell cluster transitions are heavily dependent on the state of SMDV and

SMDD, it is possible to use SMDV and SMDD events to divide imaging trials into discrete

windows. For instance, since RME typically enters its falling phase when SMDV/D are falling or

quiescent, one can ask whether a given SMDV/D event will be the last one before RME falls to

its lower baseline.

In order to test this, SMDV/D and RME cluster events are annotated. A cluster event

initiates when that cluster’s fluorescence eclipses 0.2. The cluster’s event endures until the

cluster’s fluorescence falls back below 0.2 or for 7 seconds (whichever is longer). The RME fall

dataset consists of every SMDV/D event that initiates within an RME event. A given SMDV/D

event is scored as a 1 if it is the last event before RME transitions back to its low state.

The question becomes: does the stimulus activity during a given SMDV/D event predict

whether it will be the last SMDV/D event before RME falls to its lower baseline. Since, SMDV

and SMDD events typically last about 20-25 seconds, the stimulus average from SDMV event

onset to ˜13 seconds after onset and from ˜13 seconds after onset to ˜26 seconds after onset are

used as covariates. The simplicity of this model enables the usage of traditional mixed effects

models. The lme4 package is used to fit random-intercept, binomial mixed effects models [5].

The likelihood-ratio test is used to assess whether the different stimulus average covariates are
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significant as fixed effects (section: 4.4.4). For the OH15500 animals, the 0-13 stimulus average

window is not significant (1 degree of freedom, chi-squared value of 0.4085, p-value of 0.5227)

and the 13-26 window is negative and significant at the .05 level (1 degree of freedom, chi-squared

value of 7.1068, p-value of 0.007679). Similar results are obtained for the ZIM294 animals. The

earlier stimulus bin is insignificant (1 degree of freedom, chi-squared value of 0.0128, p-value of

0.9099) and the later stimulus bin is negative and significant (1 degree of freedom, chi-squared

value of 22.245, p-value of 2.4e-06).

Thus, the activity of the stimulus during SMDV and SMDD rising phases does not seem

to matter. However, if the stimulus is off during SMDV and SMDD falling phases, it increases

the probability that RME will transition to its lower baseline. In this way, SMDV and SMDD

gate the effect of the stimulus on RME.

To test whether the effect of the stimulus varies significantly across worms, the later

stimulus window is introduced as a random effect. These more complex models do not signifi-

cantly improve model performance, producing likelihood ratio p-values of 0.7371 for the ZIM294

animals and 0.9169 for the OH15500 animals. This analysis agrees with the earlier finding that

worms are homogenous in terms of their RME fall dynamics.

4.3 Discussion

Fluctuations in C. elegans motor command cells depend on network state context. The

RME cell cluster changes in accordance with the SMDV and SMDD cells. RME only enters

its rising phase during SMDV or SMDD events. It only enters its fall phase when SMDV and

SMDD are either returning to their baseline or quiescent. Similarly, the effect of food stimulus on

RME cell cluster fluctuations depends on network state. If RME is near its high state, stimulus

removal increases RME fall probability. Symmetrically, if RME is near its low state, addition

of food stimulus increases RME rise probability. The stimulus effect is further gated by SMDV
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and SMDD activity. Stimulus has little effect on RME fall probability when SMDV or SMDD is

rising. Removal of stimulus only increases RME fall probability when SMDV or SMDD are in

their falling phase.

SMDV and SMDD can be used to section C. elegans neural network activity into discrete

events. RME/AVA fluctuate in accordance with SMDV/D phase. Similarly, stimulus effect on

RME/AVA is gated by SMDV/D phase. Using SMDV and SMDD to break up worm traces into

discrete units could be very useful for future coding studies.

The sensitivity of C. elegans cells to external stimuli depends on network state. Thus,

many of the food pulses in this study have little effect on the network. By experimentally tying

stimulus exposure to network state, one could increase the event rate of the C. elegans network.

This, in turn, would increase the amount of information gleaned from worm recordings. Such an

effort would require significant improvements to calcium data processing as the current motion

correction and segmentation methods are too slow for live fluorescence trace acquisition.

4.4 Methods

4.4.1 Blind scoring

In order to perform logistic regression on the binned data, each bin must be assigned a

score. For each cell cluster, each bin is assigned a 1 or a 0 depending on whether that cell cluster’s

fluorescence change across the bin exceeds a certain threshold. A proper choice for the threshold

is critical. Consider the scoring of RME cluster increases. When the RME cell cluster transitions

from its low state to its high state, it increases slowly before rising rapidly. If the chosen threshold

is too high, the scoring system might totally miss the initial, slow rise phase of RME low to high

transitions. Such a failure arguably misses the most important part of the RME trace. In order to

handle this issue, a blind scoring system is used. When scoring the RME cluster, for instance,

only the RME cluster is considered. The initiation point of each RME low to high transition is
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found manually. The associated time bin is considered for each of these initiation points. The

RME cell cluster increases by at least .01 for the vast majority of these initiation points. This

threshold captures SMDV and SMDD initiation points as well. A similar procedure is used for

the RME fall phase (high to low transition). A threshold of -.01 is reasonable for capturing where

RME falls over a given timebin.

4.4.2 Pre-processing: Gaussian Mixture Modeling and eigenvector projec-

tion

Clustering is used to capture nonlinear features. First a network history dataset is assem-

bled. For each timebin beginning at time t, the fluorescence traces of RME, AVA, SMDV, and

SMDD from time t - 16 seconds to time t are combined into a single vector. The set of all of these

vectors comprises the network history dataset. Gaussian Mixture Modeling is used on this dataset,

producing cluster centers that represent network trajectories. The mixture model is used to assign

each timebin to a single cluster center. The one-hot encoding of these cluster identities are used as

covariates in downstream modeling. This one-hot encoding enables the downstream generalized

linear model to approximate nonlinear features. For instance, it is possible that similar network

trajectories have drastically different effects on whether RME is about to initiate an event. The

model can capture this if these similar trajectories fall into different clusters.

Gaussian Mixture Modeling generates a covariance matrix for each cluster. These covari-

ance matrices are ready-made for capturing the variance within each network history cell cluster.

Eigenvectors and their associated eigenvalues are derived for each cluster center. The network

history vectors are then projected onto the eigenvectors with the largest magnitude eigenvalues. A

time bin only has access to the eigenvectors of cluster center i if it is assigned to cluster center i.

In this way, the one-hot encoding is extended to the eigenvector projection covariates. Essentially,

this clustering system divides the space of network trajectories into different subspaces and then

performs principal components analysis (PCA) on each subspace. The eigenvector projection
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system reduces the dimensionality of the network history representation in a principled manner.

4.4.3 Pseudo mixed effects model

A simplified mixed effects model is used to predict cell cluster changes. If worm identity

(which worm a particular timebin comes from) is a grouping factor, each worm will get its

own copy of each random effect. Each random effect is assumed to be sampled from a normal

distribution with mean zero. Typical mixed effects models [5] find the value of the random

effect for each worm and the variance of the distribution from which the random effects are

sampled (section 4.5.1). This is done via a nonlinear optimization that struggles for complex

models with lots of random effects. Here, a simpler approach is used. Every covariate is treated

as both a random and fixed effect. For covariate i and worm j, the model multiplies covariate

i by a coefficient that applies across all worms and by a coefficient specific to worm j. All

coefficients are constrained by an L2 penalty. The magnitude of this penalty is the regularization

strength. The worm-specific coefficients are controlled by an additional L2 penalty. The random

effects regularization strength refers to the factor by which the regularization strength is increased

for worm-specific coefficients. For instance, a regularization strength of 2 means that the L2-

norm of the cross-worm coefficients is multiplied by 2 to form an L2 penalty. A random effect

regularization strength of 3 means the L2-norm of the worm-specific coefficients are multiplied

by 2*3 to form the random effects L2 penalty. A cross-validation approach is used to determine

good choices for these regularization strengths.

4.4.4 Likelihood Ratio Test

The likelihood ratio test is a generally accepted test for assessing significance in mixed

effects models [5]. The model is fit with and without a target covariate. Assuming the null

hypothesis is true, the likelihood ratio between the fit without the covariate and the fit with the
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covariate asymptotically converges to the chi-squared distribution.

4.4.5 Temporal Convolutional Neural Network

Temporal convolutional neural networks have achieved state-of-the-art or near state-of-

the-art performance on a number of time series prediction tasks [37]. They can capture arbitrarily

complex features in a dataset. A temporal convolutional neural network is built by connecting

a number of 1D convolutional layers and a number of dense neural network layers. A network

with three convolutional layers followed by two dense layers is sufficiently complex to predict

RME fluctuation probabilities from RME history, SMDV/D history, and present stimulus levels.

A network more complex than this tends to overfit the dataset. Worm identity is submitted to the

network via a one-hot vector.

4.4.6 Soft Decision Trees

A soft-decision tree is used to predict RME fluctuations from RME, SMDV/D, and

stimulus history as well as from a one-hot encoding of worm identity. The soft-decision tree is a

type of oblique tree [35] (section 4.5.2). The soft-decision tree architecture developed in [21] is

used. Each branch of the soft-decision tree learns a hyperplane that separates the target classes (in

this case, whether RME will increase by at least .01, by at least .03, etc.). Each branch outputs a

probability of the left-side of the sub-tree being true for a particular datapoint. These probabilities

are multiplied recursively down the tree structure. In this way, the outputs of the leaves (the

endpoints of the tree that explicitly predict class probabilities) are scaled by the probabilities

output by the above branches. With this construction, the soft tree is end-to-end differentiable. It

is trained using stochastic gradient descent.
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4.5 Related Work

4.5.1 Mixed Effects Models

The problem of combining large-scale calcium imaging data across animals remains

unsolved. This is not surprising because most large-scale calcium imaging datasets consist of

only a few animals. Solving this problem is crucially important for two reasons. First, an overall

goal of systems neuroscience is to find information processing properties that generalize across

animals and species. The second reason is more practical and especially relevant to the worm.

Events may be sparse within a worm. For instance, a 10-20 minute imaging session may only

have 10 or so RME cell cluster events. Thus, it makes sense to combine information across worms

to increase statistical power in finding predictors of these events.

Mixed effects models are designed to combine information across subjects. Since their

introduction in the early 20th century, they have been used in many different disciplines [19].

Mixed effects models use both fixed and random effects. Fixed effects are constant across

subjects. Random effects vary across subjects according to a normal distribution with mean 0 and

a parameter variance.

These models are very powerful for testing specific statistical hypotheses. However, they

tend to have convergence problems for complex models with lots of covariates [5]. Thus, they

are not typically used for model specification. This is problematic for predictions using worm

network history as the important network history features are not known a priori. As an initial

step, using a regularization strategy to both select important features and to constrain variation

across animals is preferable. In this way, the regularized model serves as a pseudo mixed effects

model.
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4.5.2 Oblique Decision Trees

Decision trees are a powerful and interpretable tool for solving multi-class classification

problems. Much of their power stems from the fact that they can represent nonlinear features with

an interpretable, hierarchical tree structure. Decision tree variants have achieved state-of-the-art

performance on a variety of classification takes [25] [6]. Decision trees typically select a single

covariate from the dataset. They find a threshold for this covariate that maximally separates the

target classes. They apply this procedure recursively until the leaves of the tree are mostly pure.

Leaf purity means that applying the branch thresholds to the dataset separates one class from the

rest.

Typical decision trees are not good candidates for predicting RME fluctuations from

network history. This is because the typical decision tree does not handle the dimensionality

of this task appropriately. Predicting RME fluctuation from the last 24 timepoints involves (24

timepoints) x (3 cells + 2 input dimensions) covariates (120 input dimensions). Due to the

smoothness of the calcium traces, many of these covariates are highly correlated. Thus, a model

that uses these covariates well should reduce the dimensionality of the input in some smart way.

Randomly picking one of these covariates at each level of the tree is not a smart way. Oblique

decision trees were developed for this case [35]. At each level of the tree, an oblique decision

tree selects a hyperplane in the full input space that separates the different target classes.
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Figure 4.1: Logistic regression analysis on RME fall probability for OH15500 animals. A.
Cross-validation model performance as a function of number of clusters and eigenvector projec-
tion dimensionality. Performance is measured using log-likelihood on the cross-validation set.
B. Regression coefficients for the four chosen clusters. The distribution of the coefficients across
worms is shown. C. Visualization of the clusters and receptive fields. Receptive field is defined
as the linear combination of the eigenvectors and their regression coefficients. The box colors
in C match the cluster colors in B. The left subplot in each box is the network history cluster.
The right subplot in each box is the receptive field for that cluster. Each subplot consists of four
more subplots. These correspond to the four cell clusters. In order: AVA, RME, SMDV, SMDD.
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Figure 4.2: Stimulus effect on RME cell cluster fall probability for OH15500 animals. A.
Model performance improvement due to stimulus feature inclusion. The null model is the best
performing network history model found in the cross-validation analysis. Stimulus windows
are added to this model to obtain the stimulus model. The stimulus model outperforms the
null model on every cross-validation sample. B. The learned coefficients for the two stimulus
windows. The -3.3 to 3.3 stimulus window refers to the stimulus average from the 3.3 seconds
before a target timepoint to 3.3 seconds after a target timepoint. The distribution of coefficients
across worms is shown.
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Figure 4.3: Logistic regression analysis on RME fall probability for ZIM294 animals. A. Cross-
validation model performance as a function of number of clusters and eigenvector projection
dimensionality. B. Regression coefficients for the four chosen clusters. The distribution of the
coefficients across worms is shown. C. Visualization of the clusters and receptive fields. The
box colors in C match the cluster colors in B. The left subplot in each box is the network history
cluster. The right subplot in each box is the receptive field for that cluster. Each subplot consists
of four more subplots. These correspond to the four cell clusters. In order: AVA, RME, SMDV,
SMDD.

55



Null Log Likelihood

S
ti
m

u
lu

s 
Lo

g
 L

ik
el

ih
oo

d

Stimulus Windows (seconds)

C
oe

ff
ic

ie
n
ts

A

B

Figure 4.4: Stimulus effect on RME cell cluster fall probability for ZIM294 animals. A.
Model performance improvement due to stimulus feature inclusion. The null model is the best
performing network history model found in the cross-validation analysis. Stimulus windows
are added to this model to obtain the stimulus model. The stimulus model outperforms the
null model on every cross-validation sample. B. The learned coefficients for the two stimulus
windows. The distribution of coefficients across worms is shown.
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Figure 4.5: Logistic regression analysis on RME rise probability for OH15500 animals. A.
Cross-validation model performance as a function of number of clusters and eigenvector projec-
tion dimensionality. B. Regression coefficients for the two chosen clusters. The distribution of
the coefficients across worms is shown. C. Visualization of the clusters and receptive fields. The
box colors in C match the cluster colors in B. The left subplot in each box is the network history
cluster. The right subplot in each box is the receptive field for that cluster. Each subplot consists
of four more subplots. These correspond to the four cell clusters. In order: AVA, RME, SMDV,
SMDD.
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Figure 4.6: Stimulus effect on RME cell cluster rise probability for OH15500 animals. A.
Model performance improvement due to stimulus feature inclusion. The null model is the best
performing network history model found in the cross-validation analysis. Stimulus windows
are added to this model to obtain the stimulus model. The stimulus model outperforms the
null model on every cross-validation sample. B. The learned coefficients for the two stimulus
windows. The distribution of coefficients across worms is shown.
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Figure 4.7: Logistic regression analysis on RME rise probability for ZIM294 animals. A. Cross-
validation model performance as a function of number of clusters and eigenvector projection
dimensionality. Since the best performing model only used one network history cluster, it is
well described by a single receptive field (B). The receptive field subplot consists of four more
subplots. These correspond to the four cell clusters. In order: AVA, RME, SMDV, SMDD.
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Figure 4.8: Stimulus effect on RME cell cluster rise probability for ZIM294 animals. A.
Model performance improvement due to stimulus feature inclusion. The null model is the best
performing network history model found in the cross-validation analysis. Stimulus windows
are added to this model to obtain the stimulus model. The stimulus model outperforms the null
model on every cross-validation sample except for one. B. The learned coefficients for the two
stimulus windows. The distribution of coefficients across worms is shown.
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Figure 4.9: Logistic regression analysis on SMDV rise probability for OH15500 animals.
A. Cross-validation model performance as a function of number of clusters and eigenvector
projection dimensionality. B. Regression coefficients for the clusters of the best performing
model. The distribution of the coefficients across worms is shown. C. Visualization of the
clusters and receptive fields. The box colors in C match the cluster colors in B. The left subplot
in each box is the network history cluster. The right subplot in each box is the receptive field
for that cluster. Each subplot consists of four more subplots. These correspond to the four cell
clusters. In order: AVA, RME, SMDV, SMDD.
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Figure 4.10: Logistic regression analysis on SMDV rise probability for ZIM294 animals.
A. Cross-validation model performance as a function of number of clusters and eigenvector
projection dimensionality. B. Regression coefficients for the clusters of the best performing
model. The distribution of the coefficients across worms is shown. C. Visualization of the
clusters and receptive fields. The box colors in C match the cluster colors in B. The left subplot
in each box is the network history cluster. The right subplot in each box is the receptive field
for that cluster. Each subplot consists of four more subplots. These correspond to the four cell
clusters. In order: AVA, RME, SMDV, SMDD.
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Figure 4.11: Logistic regression analysis on SMDD rise probability for OH15500 animals.
A. Cross-validation model performance as a function of number of clusters and eigenvector
projection dimensionality. B. Regression coefficients for the clusters of the best performing
model. The distribution of the coefficients across worms is shown. C. Visualization of the
clusters and receptive fields. The box colors in C match the cluster colors in B. The left subplot
in each box is the network history cluster. The right subplot in each box is the receptive field
for that cluster. Each subplot consists of four more subplots. These correspond to the four cell
clusters. In order: AVA, RME, SMDV, SMDD.
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Figure 4.12: Logistic regression analysis on SMDD rise probability for ZIM294 animals.
A. Cross-validation model performance as a function of number of clusters and eigenvector
projection dimensionality. B. Regression coefficients for the clusters of the best performing
model. The distribution of the coefficients across worms is shown. C. Visualization of the
clusters and receptive fields. The box colors in C match the cluster colors in B. The left subplot
in each box is the network history cluster. The right subplot in each box is the receptive field
for that cluster. Each subplot consists of four more subplots. These correspond to the four cell
clusters. In order: AVA, RME, SMDV, SMDD.
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Figure 4.13: Inclusion of stimulus improves neural network performance on RME fluctuation
prediction. A temporal convolutional neural network is used to predict RME fluctuations with
and without knowledge of the stimulus. Full error is the negative log-likelihood cross-validation
performance of neural networks with access to stimulus information. The null error is model
performance without access to stimulus information. In complex prediction, RME fluctuations
are binned into five categories. In simple prediction, they are binned into three categories.
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Figure 4.14: Deeper trees outperform a generalized linear model in RME fluctuation prediction.
Trees of varying depths and a multinomial linear model are fit to various bootstraps of the
5-state RME fluctuation dataset. Cross-validation log-likelihood relative to the multinomial
linear model is reported.
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Figure 4.15: A tree of depth four is visualized. The tree has three levels of branches and a final
level of leaves. Each of the branches has a receptive field in terms of RME, SMDV, and SMDD
history (left three traces from top to bottom) and a receptive field in terms of On and Off sensory
neurons (right two traces from top to bottom). The probability output by a branch is passed
down to its left sub-tree (red). (1 - probability) output by a branch is passed down to its right
sub-tree (blue). Each leaf has a distinct set of log-odds for RME fluctuation prediction. The first
category (labeled 0) predicts the probability of strong RME decrease. The last category (labeled
4) predicts the probability of strong RME increase.
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Figure 4.16: Relationship between RME and SMDV/D cell cluster events. The left subplots
compare the number of RME cluster events that co-occur with SMDV/D events (blue) to the
number of RME events that do not. The distributions of these two quantities across animals is
shown for OH15500 (A) and ZIM294 (B). % coverage refers to the percentage of trial timepoints
over which SMDV or SMDD is undergoing an event. The distribution of this quantity across
animals is shown in the right subplots for (A) OH15500 animals and (B) ZIM294 animals.
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