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A Dynamic Approach to Secondary Processes in Associative Recognition
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Department of Psychological and Brain Sciences, Cognitive Science Program, Indiana University
1101 E. Tenth St., Bloomington, IN 47405 USA

Abstract

Associative recognition—the ability to discriminate between
studied and novel associations—has been attributed to the op-
eration of a recall-like process that is not engaged during
recognition of single items. An alternative mechanism for as-
sociative recognition is the formation of a compound memory
cue that incorporates relational information between the two
elements of the association. These alternatives make different
predictions about the dynamics of associative recognition as
revealed by speed-accuracy trade-oft (SAT) functions: if recall
were operating, SAT functions should approach asymptotic
performance at a faster rate for stronger associations, whereas
a compound cue mechanism predicts that only asymptotic per-
formance, not rate, should be affected by strength. In a review
of the literature, we find that only asymptotic performance,
not rate, is affected by the strength of studied associations,
supporting the operation of a compound cue mechanism. We
present a formal model of this mechanism as a direct outgrowth
of a model of single-item recognition (Cox & Shiffrin, 2012)
and use it to predict observed SAT curves for both single-item
and associative recognition in a variety of experiments.

Keywords: Recognition memory; associative recognition;
episodic memory; memory models.

Introduction

Recognition is a critical function performed by the memory
system, and must therefore form part of the bedrock upon
which any theory of memory can be constructed. When
engaging in a recognition task, a participant must decide
whether a given test item was or was not present in a partic-
ular study context. Recognition judgments thus indicate the
ability of a participant to discriminate between experienced
and unexperienced events, where an “event” is defined by the
conjunction of an item and context. By characterizing the
situations in which studied items can be correctly detected
and unstudied items can be correctly rejected, we gain under-
standing of how memory is organized and how it is accessed.

Several theories posit that recognition can be accomplished
via two routes: The first route involves a comparison between
the test item and the contents of memory which produces
a value of “familiarity” or “memory strength”. An item is
called “old” if the familiarity it evokes is sufficiently high rel-
ative to a criterion value; this familiarity process has been
characterized by a variety of memory models (e.g., Murdock,
1982; Gillund & Shiffrin, 1984; Hintzman, 1988; Shiffrin
& Steyvers, 1997; McClelland & Chappell, 1998; Dennis
& Humphreys, 2001). A second route involves retrieving a
specific event from memory and directly comparing it to the
test item, responding “old” only if the test item and the re-
trieved memory match. This route, often termed “recall” or
“recollection”, forms a component of dual-process theories
of memory (e.g., Atkinson & Juola, 1974; Reder et al., 2000;
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Malmberg, 2008) and is typically invoked to explain situa-
tions in which familiarity alone is presumed to be insufficient
to distinguish between studied and unstudied test items.

An important exemplar of such a case is associative recog-
nition. In associative recognition, the study list is comprised
of sets of items, e.g., word pairs. Participants are subse-
quently tested on “intact” pairs consisting of two items that
had been studied as part of the same pair (denoted AB) as
well as “rearranged” pairs in which the two items had both
been studied, but not in the same pair (denoted AB’). Thus,
both items of a rearranged pair are “familiar” in that both had
been seen at study, so additional information is needed in or-
der to distinguish rearranged from intact pairs. This informa-
tion could be available via a secondary recall route if partic-
ipants use one of the items (e.g., item A) to cue recall of the
item it had been studied with (B); if the recalled item matches
the other item at test, the pair is judged to have been studied,
but if the recalled item does not match, the pair is rejected
(Rotello & Heit, 2000; Malmberg, 2008). Alternatively, if
studying a pair results in storage not just of the individual el-
ements of the pair, but of relational information representing
the compound of the two items, this would also provide the
necessary information to distinguish between intact and rear-
ranged pairs: rather than comparing each item individually to
memory, a participant could compare the relational informa-
tion in the pair to the relations stored in memory (Murdock,
1982; Dosher & Rosedale, 1989, 1997).

A wealth of research has attempted to distinguish between
these two views of associative recognition on the basis of
accuracy alone. The shape of receiver-operating character-
istic (ROC) curves has been argued to support the involve-
ment of recall in associative recognition (Yonelinas, 1997),
but these data are equally consistent with a signal detection
process that combines two sources of evidence, as in a com-
pound cue model (Wixted, 2007). Process-dissociation pro-
cedures (Jacoby, 1991) have also been used to argue in fa-
vor of a recall-like process in associative recognition. How-
ever, process-dissociation will produce high estimates of the
contribution of recollection even when the data are simulated
from a single-process model where it is known that recol-
lection did not generate the data; and when a model with
recollection is used to generate the data, the process disso-
ciation estimates of recollection’s contributions are incorrect
(Ratcliff, Van Zandt, & McKoon, 1995). Process-dissociation
also relies on the strong assumption that familiarity and recall
are stochastically independent of one another; when the as-
sumption is violated, estimates obtained from this procedure
are uninterpretable (Curran & Hintzman, 1995; Hillstrom &



Logan, 1997). The assumption of independence is also in-
consistent with positive correlations between the probability
of correct recall and that of correct recognition (Tulving &
Wiseman, 1975). Finally, even if the assumptions of the pro-
cess dissociation procedure are satisfied, it is insufficient for
identifying the relevant processing components (Humphreys,
Dennis, Chalmers, & Finnigan, 2000).

Because accuracy data alone is insufficient, we believe
the most promising approach toward understanding the sec-
ondary processes involved in associative recognition is a dy-
namic approach. By this, we mean that we must examine not
just the final recognition decision, but the dynamics of the
mnemonic and decision processes that lead to that decision. If
associative recognition involves secondary processes beyond
those involved in single-item recognition, those processes
should have characteristic dynamics which affect not only
the final decision, but response time and the form of speed-
accuracy trade-off (SAT). This kind of approach has yielded
insights into various aspects of single-item recognition, such
as the form of memory-evidence distributions (Starns & Rat-
cliff, 2014) and short-term memory decay (Donkin & Nosof-
sky, 2012). In this article, we examine evidence from a wide
variety of studies and argue that while the evidence demon-
strates the operation of secondary processes in associative
recognition, such processes are not well-described by a recall-
like process. Instead, the secondary process involved in as-
sociative recognition is best described as the formation of a
compound cue. We present a formal model of this process
and show that it provides excellent quantitative and qualita-
tive fits to SAT data in both single and associative recognition,
with parameter values that provide additional insight into the
cognitive processes underlying recognition.

Evidence for Secondary Processes in
Associative Recognition

In the speed-accuracy trade-off (SAT) paradigm, a test item is
presented on each trial for a varying length of time at which
point a response signal occurs instructing participants to re-
spond immediately based on whatever information they had
acquired during the lag between stimulus onset and response
signal (Reed, 1973). The SAT procedure thus provides a
measure of the dynamics of processing and can, thereby, pro-
vide compelling evidence for the involvement of a secondary
process in associative recognition, as shown in Figure 1. In
Gronlund and Ratcliff (1989, Exp. 1), participants were in-
structed to endorse a test pair if both of its members had
been studied, regardless of whether they had been studied to-
gether (labeled AB and AB’, in contrast to novel pairs XY or
pairs with one novel member AX); this decision involves only
item-level information. In addition, participants were tested
on single items and had to distinguish between studied (C)
and unstudied (X) words, where associative information is
once again irrelevant. In Experiment 2, participants were told
to endorse a pair only if its two members had actually been
studied together (only AB); this decision requires associative
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Figure 1: Probability of responding “old” to a test word or pair over time, along with
predictions from our dynamic recognition model. Parameters used to generate these
predictions are given in Table 1; model details are given in the main text.

information (although participants were, again, also tested on
single-item recognition). Under the Experiment 2 exclusion
instructions, participants initially endorsed rearranged pairs
(AB’) before this tendency reversed at later signal lags. The
nonmonotonic false alarm curve to AB’ pairs under exclusion
instructions, also evident in Figures 1c and 1d, indicates the
involvement of a secondary process or source of information
that is not available early in associative recognition.

The critical difference between a recall and a compound
cue mechanism is the source of the new information that be-
comes available: For a recall-like process, new information
is retrieved from memory, so the rate at which this informa-
tion becomes available should be related to the strength of
the memory from which it is being retrieved. Specifically,
as the target memory gets stronger—perhaps as a function
of increased study time or repetition—information should be
retrieved more quickly (e.g., Raaijmakers & Shiffrin, 1981;
Anderson, 1983; Sederberg, Howard, & Kahana, 2008). In
terms of SAT, this would be reflected in faster rise to asymp-
totic performance and/or an earlier inflection point in the false
alarm curve to AB’ pairs. On the other hand, the formation
of a compound cue depends only the test pair, and is indepen-
dent of the contents of memory, and thus predicts that there
should be no difference in the dynamics of associative recog-
nition as a function of memory strength.

These predictions were directly tested by Dosher (1984),
who presented pairs for varying amounts of time at study and
tested participants on both intact pairs and rearranged pairs
formed by mixing the left and right members from pairs that
had been studied for equal amounts of time. The results,



shown in Figure 1c, demonstrate a similar albeit less dramatic
nonmonotonic false alarm curve to rearranged pairs, but there
is no evidence that either the inflection point or rate of ap-
proach to asymptote changes as a function of study time. In-
stead, only asymptotic accuracy is affected. This mirrors the
findings of Nobel and Shiffrin (2001) and Wickelgren and
Corbett (1977), in which memory strength was manipulated
both by study time and by list length, yet had no effect on
the dynamics of associative recognition, only on asymptotic
accuracy. An additional test of a recall-based account of asso-
ciative recognition was conducted by Gronlund and Ratcliff
(1989, Exp. 4), in which the first word of each test pair was
presented 200 ms before the second; if participants were us-
ing a recall-like strategy, they should use the first word to
cue recall of the second, allowing them to correctly reject a
rearranged pair much faster after the second word appeared
and, perhaps, without any nonmonotonic false alarm curve.
Instead, although participants could reject completely novel
foils (XY) more quickly when given a 200 ms head start,
the extra time conferred no advantage in rejecting AB foils.
When item information alone could enable participants to re-
ject a foil (AB vs. XY), a single unstudied word is sufficient,
but when associative information is necessary (AB vs. AB’),
both members of the pair have to be present, as would be
expected if a compound cue were necessary for associative
recognition.

In sum, the dynamics of associative recognition do not re-
semble those that would be expected if recall were operating.
Instead, associative recognition seems to depend on a sec-
ondary cuing process, such as the formation of a compound
cue. We now present a formal model of this process and show
that it provides an excellent qualitative and quantitative ac-
count of associative recognition performance.

Model

The model for associative recognition that we present is a
direct outgrowth of the model for single-item recognition
proposed by Cox and Shiffrin (2012) and expanded in Cox
(2015). We first describe the assumed structure of long-term
episodic memory, then the model for single-item recognition,
and finally describe how it is extended to address pair and
associative recognition.

Structure of long-term memory

Studying a single word leads to the formation in long-term
episodic memory of a “memory trace”. This trace is repre-
sented as a vector of feature values, which can derive from
two sources: The content of the study event, which in-
cludes semantic, phonological, and orthographic features of
the word; and the context of the event, which pertains to the
general study situation in which the word was encountered.
Additional study time or repetitions increase the probability
that a content feature will be stored in the trace; the prob-
ability of content feature storage is denoted u, and the total
number that may be stored is Nc. We assume that the relevant
context features do not change over the course of a study-test
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block and that they are persistent in the participant’s environ-
ment; therefore, all available Ny context features are assumed
to be stored in the trace. Features are assumed to be binary
with each value having equal base-rate probabilities, such that
the probability that two different items will have matching
values for a particular feature is % If a feature is stored, it is
stored correctly with probability c, otherwise a random value
(e.g., “0” or “1”) is stored instead.

Studying a pair results in the storage of two traces in mem-
ory, one for each of the two words. However, in addition to
the content and context features that would have been stored
had the words been presented in isolation, both traces contain
associative features. The values of these features are equal in
the two traces and represent emergent compound features that
arise from the joint encoding of the two words. As with con-
tent features, additional study time or repetition increases the
probability that an associative feature will get stored in each
of the two traces. We emphasize, however, that the “memory
system” treats content, associative, and context features iden-
tically and does not “know” whence these features of a trace
arose.

Single-item recognition

To make a recognition decision about a single word, a par-
ticipant constructs a “memory probe”. As with a memory
trace, the probe consists of both content features and context
features. At the beginning of the trial, time ¢t = 0, the probe
contains only context features, since these are presumed to be
persistent in the environment. At some later time 7o, content
features begin to enter the probe as the test word is processed.
On each time-step within the model, one of the N¢ available
content features is sampled uniformly at random. If the probe
does not contain a value for that feature, the sampled value
is stored; otherwise, whatever value was already in the probe
remains. Thus, over time, the probe will become saturated
when no new content features are available.

Likelihood On each time-step ¢, the current probe is com-
pared in parallel to all traces in episodic memory. The probe-
trace comparison depends only on the features that are in both
the probe and the trace, and takes the form of a likelihood ra-
tio reflecting the relative probability that the probe and trace
encode the same event versus the probability that they encode
different events (cf. Shiffrin & Steyvers, 1997; McClelland
& Chappell, 1998). If the probe and trace encode the same
event, the probability that they will match on a particular fea-
ture is pys = c+ (1 — ¢)1 while the probability that they will
mismatch is pys = (1 — c)% If the probe and trace encode
different events, the probability that they will either match or
mismatch is simply pyp = pyip = % i.e., chance. We as-
sume for simplicity that features are stored independent of
one another, such that the likelihood ratio is the product

ki(f) = (pM|S/pM\D)N;VI(t) (pN\S/pN\D)N;V(t)

= (14)MO (1 — )W), (1)



where A;(z) is the likelihood ratio between the probe and
trace i at time ¢ and Nj,(t) and Nji(t) denote the number
of matching and mismatching features, respectively, between
the probe and trace i at time .

Memory evidence Recognition decisions depend on the
overall match between the probe and memory, however most
traces (e.g., those from years ago) will not match the probe
very well. Thus, we assume that only traces with likelihood
ratios greater than one contribute to the match. This match
value is the logarithm of the average likelihood ratio for those
traces whose likelihoods exceed this threshold value,

0(r) =log (Ai(t) : Mi(2) > 1), )

which may be considered a form of “log-odds”. At time fo,
when the probe contains only context features, ¢(z9) reflects
the match between the test context and the contents of mem-
ory. As content features are sampled and join the probe, ¢(¢)
will evolve, governed by the order and timing with which fea-
tures are sampled, as well as the properties of the traces stored
during study. Each new feature provides more statistical evi-
dence about whether there is a trace in memory that encodes
the same event as the probe. The number of mismatching fea-
tures (N4 (¢)) between the probe and traces of different items
will tend to increase over time, thus decreasing their likeli-
hood ratios. If there is a trace stored from the test word, its
likelihood ratio will tend to increase beyond the initial match
to context as more matching features are sampled (Ni,(1));
this single trace that matches well on both content and con-
text will grow to dominate the average likelihood!.

On average, then, ¢(¢) increases for targets and decreases
for foils. The change in familiarity over time is thus statisti-
cally diagnostic of whether an item had been studied or not,
and we presume this is the basis for a recognition decision.
The accumulated change is simply the difference between the
current value ¢(¢) and the value before any content features
had been sampled:

—1
x(1) =Y o(t+1)—o(t) = 0(t) — 0(10). 3)

T=I(

By making recognition dependent on the change in evidence
over time, rather than on its absolute level, one need not
assume differing criteria across experimental conditions or
stimulus classes which may differ in their absolute memory
strength (Cox & Shiffrin, 2012). One can also view x(z) as
conditionalizing ¢(¢) on an initial value determined by con-
text, ¢(7p). Because context features are persistent in the en-
vironment, rather than changing rapidly like content features,
they provide a natural baseline level against which to judge
new information.

Predicting SAT data Although more complex assumptions
are possible (cf. Meyer, Irwin, Osman, & Kounios, 1988;

ITraces formed in contexts before the experiment are also
present in memory, but in practice such traces contribute little and
so we do not model them here.
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Ratcliff, 1988), we assume that participants continue to sam-
ple features into their memory probe until a response signal is
given, at which point they stop. Each model time-step is pre-
sumed to take a constant amount of time p. If the accumulated
changes x(¢) at the time of the response signal are greater
than a threshold value 0, the participant responds “old”, oth-
erwise they respond “new”. If a response signal occurs before
sampling begins at time #y, the participant guesses “old” with
probability 1/[1+exp(—6)]. We assume feature sampling
only occurs between #y and the response signal, and that the
additional time required for a participant to make their re-
sponse after the signal does not allow for additional process-
ing of the test item(s). Although this is surely an oversimpli-
fication, response times are typically quite brief (200 ms), are
unrelated to the stimulus itself, and only vary at earlier lags.
These considerations, plus the good fits obtained, suggest this
simplification does not harm any conclusions reported here.

Pair and associative recognition

When a pair is presented at test, a participant processes each
item in its own parallel channel, using the same mechanisms
just described for single-item recognition (Figure 2). Partici-
pants only make an “old” response if the accumulated change
in familiarity for each item is sufficient to call both of them
“old”. In each channel, the probe begins at time #y with Ny
context features and there is available capacity for N¢ content
features. In associative recognition, a certain proportion of
the N¢ content features, denoted p4, are given over to rep-
resenting the association between the two items; the remain-
ing features are used to represent the content features of the
individual items. Due to constraints on short-term memory
capacity, it is possible that not all item-specific features can
be sampled into the two probes; we denote the proportion of
the maximum number of item features (of which there are
(1 — pa)Nc) that can be sampled in pair recognition by ps.

Associative recognition begins just like pair recognition,
but at some time 74 after the start of processing, the paN¢
associative features become available for sampling. At that
point, both item and associative features can be sampled into
each probe. The only difference between item and associa-
tive features from the perspective of the retrieval process is
that the values of the associative features match between the
two probes. Just as in pair recognition, a participant only
responds “old” if both probes result in sufficiently high accu-
mulated change in familiarity. This model is flexible enough
to allow us to explain both single- and multiple-item recog-
nition within the same modeling framework, and enables one
to infer the degree to which associative information is used
(pa), when it is available (#4), and to what extent it interferes
with item-level processing (ps).

Model Fits
We fit this model to the data from the first two experiments re-
ported by Gronlund and Ratcliff (1989) and described above,
where Experiment 1 involved only pair recognition while Ex-
periment 2 required associative information. These experi-



Table 1: Best-fitting parameters of the dynamic model for associative recognition to SAT datasets, as well as fit diagnostic R. In Dosher (1984, Exp. 2), multiple study times were
used, entailing multiple values of up; study times were 1, 2, 4, and 6 seconds per pair. In all models, Nc = Nx = 30.

Experiment us up c PA A Ps Os 6p fo [ R?

Gronlund and Ratcliff (1989, Exp. 1)  0.316 0339 0988 0.07 751.655 0937 -0.118 -0.8391 89.047 5880 0.898
Gronlund and Ratcliff (1989, Exp. 2)  0.414 0388 0980 0.170 411.847  0.869 0.245 0.048 94.477  4.096  0.936
Rotello and Heit (2000, Exp. 1) — 0.439 0984 0.162  437.489 — — 1.097 82982  7.899  0.923
Dosher (1984, Exp. 2) — 0.356,0.420,0.437,0.463 0969  0.190  447.302 — — -0.228  187.346  9.639  0.881
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Figure 2: Schematic depiction of our model for associative recognition. Each member
of the pair is processed in parallel channels that each operate as single-item recognition
processes; sample paths for memory evidence x(¢) are shown for each channel.

ments involved studying both pairs and single items, and thus
represent a strong test of the model’s ability to jointly fit data
from putatively different tasks. We fit a single encoding noise
parameter c, start time fy, and time-step duration p across all
conditions in each experiment, but allowed the probability of
feature encoding to differ between single items (us) and pairs
(up). Even though participants did not need to use associative
information in Experiment 1, we fit values of p4, the propor-
tion of content features used to represent associations, and
t4, the delay in availability of associative features, to verify
that the model is sensitive to the different task demands. Two
criterion parameters were also required, one for single-item
recognition Os and another that applied to both parallel chan-
nels in pair recognition 8p. Model predictions are shown in
Figures 1a and 1b, showing that the model closely matches
the data, with the fitted parameter values in Table 1. Estimates
of ug and up are similar to each other within each experiment,
consistent with the fact that participants were given twice as
long to study a pair as they were a single item. As expected,
pa is much lower in Experiment 1, where associative infor-
mation is not required, although the fact that it is non-zero
suggests that some associative information is nonetheless en-
coded (this would account for the slight increase in asymp-
totic hit rate for AB pairs compared to AB’). It would also
appear the increase in p4 in Experiment 2 is accompanied by
adecrease in pg, suggesting that a greater focus on associative
features entails a smaller capacity for item features.

We also fit our model to two experiments that only tested
pair recognition?. In Rotello and Heit (2000, Exp. 1), partici-
pants had to distinguish between intact pairs (AB), rearranged
pairs (AB’), and novel pairs (XY), rejecting both novel and
rearranged pairs. Thus, as in the experiments from Gronlund

2For these experiments, we set psg = 1 since, without tests of both
single items and pairs, this parameter becomes unidentifiable.
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and Ratcliff (1989), participants could make use of item-level
information to reject certain (XY) foils. Predictions and data
are shown in Figure 1d. Finally, in Dosher (1984, Exp. 2),
item information is made irrelevant: participants studied pairs
for varying amounts of time (1, 2, 4, or 6 seconds per pair)
and foils were created by rearranging pairs within each level
of study time. As shown in Figure lc, an increase in study
time does not affect the rate of approach to asymptotic per-
formance. Our cue-formation model predicts this result both
quantitatively and qualitatively, in contrast to a recall-based
model which must predict a relationship between SAT dy-
namics and pair strength.

The estimated parameters are consistent with the task de-
mands in each experiment. Where associative information is
not needed (Gronlund & Ratcliff, 1989, Exp. 1), the probe
is given over to mostly item features (low p4); associative
features, to the extent that they are involved at all, are not
available until quite late (high 74). When associative infor-
mation is required, it becomes available at roughly the same
time (t4) across all experiments—between 400 and 450 ms
after stimulus onset. Finally, when item information is not
at all informative (Dosher, 1984, Exp. 2), participants de-
lay the onset of feature sampling (fp) by 100 ms and increase
the proportion of associative features used (high p4). This
effectively reduces the influence of item features by dimin-
ishing the time between the onset of processing and the time
at which associative features become available.

Discussion

We have extended a dynamic model for recognition of single
items to the recognition of pairs, showing how it can account
for single-item, pair, and associative recognition. Pair recog-
nition results from the parallel operation of two single-item
recognition processes in which changes in familiarity are ac-
cumulated as features of each item are sampled. If the accu-
mulated changes for both items are sufficiently large, the pair
is judged “old”, otherwise it is called “new”. In associative
recognition, an additional set of features becomes available
later in the processing of the two items; these features repre-
sent an associative binding between the two items. Our model
can thus be considered a form of compound cue formation
(Dosher & Rosedale, 1989, 1997).

The consistency of parameter estimates across experiments
is remarkable and, coupled with good quantitative fits, sug-
gests that this model is capturing something important about
associative recognition. In particular, associative features,
regardless of other aspects of the experiment, are generally
available 400-500 ms after stimulus onset, which is intrigu-
ing because it lies on the border between the two temporal
regions supposed to reflect “familiarity” (typically 300-500



ms) and “recollective” (typically 500-800 ms) processing in
event-related EEG (Rugg & Curran, 2007). If associative fea-
tures become available 400-500 ms after stimulus onset, on
some trials they will be sampled quickly and fall into the early
“familiarity” bin, while on other trials they will be sampled
more slowly and affect the later “recollective” ERP compo-
nents. This potential confusion is reflected in the ERP liter-
ature on associative recognition in which associative recog-
nition performance is sometimes related only to late positive
ERPs (Donaldson & Rugg, 1998) and sometimes with both
early negative and late positive ERPs (Speer & Curran, 2007).

Difficulties in interpreting such data may result from the
a priori assumption that associative recognition must entail
qualitatively different familiarity and recollection processes.
Rather than assuming such a conclusion—as in behavioral
ROC and process-dissociation analyses—we believe more
progress may be made by developing explicit formal mod-
els of the processes involved in memory, as we have demon-
strated here. Doing so allows for much more specific state-
ments to be made about the mechanisms involved, and en-
ables stronger tests of the predictions of various theories. For
this reason, we believe such an approach will be a boon to
the understanding not just of behavioral data, but of neural
measures like EEG. Conversely, the ability of EEG to probe
ongoing cognitive processes at a much finer level than behav-
ioral paradigms could allow for more detailed theories to be
specified, enabling even deeper insights into the dynamics of
retrieval.

We hardly dispute the operation of at least two processes
in associative recognition, but we have shown that the sec-
ondary process is better characterized as compound cue for-
mation, rather than recall/recollection. There are a vari-
ety of other memory tasks that may entail the operation of
secondary processes, such as rejecting highly-similar foils
(Hintzman & Curran, 1994), list discrimination (Hintzman,
Caulton, & Levitin, 1998), and source memory (Hintzman
& Caulton, 1997), which we have also explored within the
dynamic model framework outlined here (Cox, 2015). Al-
though a full description would go beyond the scope of the
present article, we find that although secondary processes be-
yond those found in single-item recognition are necessary to
explain these phenomena, only in the case of source mem-
ory does this secondary process resemble a kind of recall. In
general, it would appear that memory retrieval can involve
a multitude of processes depending on the decision required
of the participant, but that only through rigorous quantitative
modeling can we begin to characterize these processes and
develop a deeper understanding of memory.
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