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ABSTRACT OF THE DISSERTATION

Consecutive Matches in Permutations and Cycles

by

Miles Eli Jones
Doctor of Philosophy in Mathematics
University of California, San Diego, 2012

Professor Jeffrey Remmel, Chair

This dissertation studies 3 different methods to compute generating func-

tions of the following forms

NM t Z, y Z Z I»LRMiH(J)yl—i-des(a)
n>0 .O'E./\/—Mn(T)

NCM t X, y Z Z nyC(U)yCdes(J)
>0 " : TENCMn ()

where 7 is a permutation pattern, N'M,,(7) is the set of permutations in the sym-
metric group S, with no 7-matches, and for any permutation o € S,,, LRMin(0)
is the number of left-to-right minima of ¢ and des(¢) is the number of descents

of o, NCM,,(7) is the set of permutations in the symmetric group S, with no

X



cycle-t-matches, and for o € S, cyc(o) is the number of cycles of o and cdes(o)
is the number of cycle descents of o.

The first method uses the theory of exponential structures to study the
generating function NC M. (t,x,y) by only looking at single cycles and developing
recursions for the coefficients. The recursions lead to differential equations that
can be solved to compute NCM_(t,x,y).

The second method does not compute NM,(t,x,y) directly, but assumes
that for patterns 7 that start with 1,

-
(U(t,9))

where U.(t,y) = >, 5 Urn(y)5; so that U, (t,y) = m We then use the so-

NM,(t, x,y) =

called homomorphism method and the combinatorial interpretation of N M., (¢, 1, y)
to develop recursions for the coefficient of U, (¢, y).
The third method uses a bijection from brick tabloids to cycles to compute

the generating function NC'M~y(t,1,1) for collections of patterns Y.



Chapter 1
Introduction

The notion of patterns in permutations and words has proved to be a use-
ful language in a variety of seemingly unrelated problems including the theory
of Kazhdan-Lusztig polynomials, singularities of Schubert varieties, Chebyshev
polynomials, rook polynomials for Ferrers boards, and various sorting algorithms
including sorting stacks and permutations. The study of occurrences of patterns
in words and permutations is a new, but rapidly growing, branch of combinatorics
which has its roots in the works by Rotem, Rogers, and Knuth in the 1970s and
early 1980s. The first systematic study of permutation patterns was not under-
taken until the paper by Simion and Schmidt [38] which appeared in 1985. The

field has experienced explosive growth since 1992.

1.1 Classical Pattern Avoidance

First we recall the basic definitions for pattern occurrence and consecutive
pattern occurrence in permutations. Given a sequence ¢ = oy ...0, of distinct
integers, let red(c) be the permutation found by replacing the i largest integer
that appears in ¢ by i. For example, if 0 = 2 7 5 4, then red(c) = 1 4 3 2.
Given a pattern 7 = 7y ...7; in the symmetric group S; and a permutation o =
o1...0, € Sy, we say that 7 occurs in o if there exist 1 < 4 < --- < 1; < n
such that red(c;, ---0y,) = 7. For example, the permutation ¢ = 6472351 has
an occurrence of the pattern 132 given by the subsequence 475. We say that o



avoids 7 if there are no occurrences of 7 in 0. We say that there is a consecutive
occurrence of 7 in o or equivalently we say that ¢ has a 7-match at position @
provided red(o; . ..0;4;—1) = 7. Let 7-mch(o) be the number of T-matches in the
permutation o. For example let 7 = 3412 then o = 6472351 has a 7-match starting
at position 2.

These definitions can naturally be extended to sets of permutations. That
is, given a set of permutations T in the symmetric group S;, define a permu-
tation ¢ = o1...0, € S, to have a Y-match starting at position i provided
red(o;...0i1-1) € T. Let T-mch(o) be the number of T-matches in the permu-
tation o. Similarly, we say that T occurs in o if there exist 1 <7y <--- <4; <n
such that red(o;, ---04,) € T. We say that o avoids T if there are no occurrences
of T in o.

Much work has been done on enumerating permutations that avoid certain
patterns. For a pattern 7, let S,,(7) be the number of permutations ¢ € S,, such
that o avoids 7. For example for any pattern 7 € S;, we have a well known

beautiful result [5].

Theorem 1. Let 7 € S;. Then
)
n+1
The 24 patterns of length 4 can be divided into three classes such that all

SN(T) = Cn

the elements 7 of a class share the same value for S, (7) for all n. These classes
are the following [5].
Ira Gessel proved the following result for the pattern 1234 [17].

Theorem 2.
"2k /n\? 3k2+2k+1—n—2nk
n(1234) = 2 .
Sn(1234) Zk:0<k)<k) (k+12(k+2)(n—k—+1)

The closed form result of S,,(1342) can be found in [5].

Theorem 3.

n

n? —3n —2 C o (2= n—i+2
o n—l— _ n—1i Z+17
Sn(1342) = (~1) 5 +BZ,-:2( DA z’!(z’—2)!< 2 )

There is no known closed form result for S,,(1324).



Table 1.1: The Wilf-equivalency classes of patterns of length 4

1234 || 1324 || 1342
1243 || 4231 || 1423
1432 2314
2134 2413
2143 2431
2341 3124
3214 3142
3412 3241
3421 4132
4123 4213
4312

4321

1.2 Consecutive Pattern Occurrences

There have been a number of recent publications on consecutive occurrences
of patterns or in other words pattern matching. There have been some recent
results on the distribution of 7-matches in permutations. See, for example, [12,
20, 21]. Let 7-nlap(o) be the maximum number of non-overlapping 7-matches in o
where two 7-matches are said to overlap if they contain any of the same integers.

Then Kitaev [20, 21] proved the following.

Theorem 4.

" T-nlap(o) __ 14T(t>
2 2T = e T A (1.1)

n>0  o€S,

where A, (t) =3, ~ Z1{o € S, : T-mch(c) = 0}].

In other words, if the exponential generating function for the number of
permutations in S,, without any 7-matches is known, then so is the exponential
generating function for the entire distribution of the statistic 7-nlap(o).

However, it is not always easy to find the generating function A,. For

example, Goulden and Jackson [16] proved that when 7 =1 2---k, then

1
AT:: ki ki (LQ)
Yiso G — D

IR CES))]




Elizalde and Noy [12] proved a number of results about A, and the more general

P t) = 300 ST ) (1.3)

n>0 ’ €S

generating function

For example, they showed that

Angs(t) = ﬁ - ’
2 cos(V/3t/2 + 7/6)
Awll) = :in(t) +et’
Piso(t,u) = T fot el(uTl)zzdz, and
1
Piago(t,u) = T fot Q%dz'

Elizalde and Noy [12] were also able to prove some implicit formulas for P;(u,t)
as specialization of solutions to differential equations. For example, they proved

the following theorem.

Theorem 5. Let m and a be positive integers with a < m and let T be any

permutation of the form
7T=12---a—laoca+1

where o is any permutation of the elements {a+2,a+3,...,m+2}. Then P,(u,t) =
1/w(u, z) where w is the solution of

tm—a—l

w(aH) —+ (1 - U)mu)/ = O (14)

where w(0) = 1, W'(0) = —1, and w®(0) = 0 for 2 < k < a. In particular, P,(u,t)

does not depend on o.

Kitaev [21] showed that an inclusion exclusion argument could give an ex-
plicit generating function for P.(0,t) = A.(t) for the 7’s in Theorem 5. That is,
Kitaev proved the following theorem [21]



Theorem 6. Let 7 = 12---ao(a + 1), where o is a permutation of {a + 2,a +

k+ 1}, then
A (t) = il T . (1.5)
L—t+3 Uka) ITi— (i)
Mendes and Remmel [30] developed a general method for computing A, (t).
They proved A.(t) is of the form

1
A (t) = T (1.6)
=1+ Zn 2 n' wEJT,HwH:n(_]‘) |?w|
where ||w|| = |T|+ w1+ -+ w,, J; is a certain collection of words associated with

7, and P, is a certain collection of permutations o € ), if w = w; ... w,. The
exact definitions of J; and P are quite complicated and will not be discussed in
this thesis.

Liese and Remmel [26] were able to explicitly compute
Z Yy
' weJr,||wl|=n

in several cases. For example, if 7 = 1324 then they showed that

§: 5 (_Umwﬂ”:F<a1+m2+%3_w1+@3> )

2(1 +t + 2t2 + 13)

" wedr||wll=n

where T' is the operator on formal power series f(t) = }_ ., fat" such that
L(f(t) = > ns0 fnL:. This can be used to compute coefficients of the generating
function A, (t). In Chapter 3 of this thesis, there is another method to compute
these coefficients.

Recently, Duane and Remmel found a general formula for the generating
function of 7-matches for a special class of permutations 7 called minimal overlap-
ping permutations.

We say that a permutation 7 € S; where j > 3 has the minimal overlapping
property if the smallest ¢ such that there is a permutation o € S; with 7-mch(o) = 2
is 25 — 1. Again this means that in any permutation ¢ = o0y...0,, any two 7-

matches in o can share at most one letter which must be at the end of the first



7-match and the start of the second 7-match. For example 7 = 123 does not
have the minimal overlapping property since the 1234-mch(=)2 and the 7-match
starting at position 1 and the 7-match starting at position 2 share two letters,
namely, 2 and 3. However, it is easy to see that the permutation 7 = 132 does
have the minimal overlapping property. That is, the fact that there is an ascent
starting at position 1 and descent starting at position 2 means that there cannot
be two 7-matches in a permutation o € S,, which share 2 or more letters.

If 7 € S; has the minimal overlapping property, the shortest permutations
o such that o-mch(=)n have length n(j — 1) + 1. Thus we let MP. ,(j_1)+1 equal
the set of permutations o € S,(;_1)41 such that o-mch(=)n. Duane and Remmel
called the permutations in MP,, ;,(;_1)+1 as maximum packings for 7. Then let

MmprnG—1)41 = ‘MPTn(] 1 +1‘ and

inv(o)pcoinv(cr) )

Mprni-1)+1(P, q) = g

UeM,P‘r,n(jfl)Jfl
In general, it is a difficult problem to compute mp,,;i—1)+1 O MPrpi—1)+1 (P, Q)
but we can compute these in the case that 7 starts either ends or starts with 1
or ends or starts with j. For example, Duane and Remmel [10] proved following

theorem.

Theorem 7. Suppose that 7 = 7y ...7; where 7y =1 and 7; = s, then

mpT,(TL-l-l)(j—l)-l-l(p? C_I) =

coinv(T) inv(T s—1)n(j— n+1 ]—]. —|—1—$
peoin () gino() (s Un(s y[n+1)0G-1)

) MpPrn(i—1)+1 (Pa Q)

)

so that

coinv(7) _inv(r)\ "1 (s— n+1 ] - 1 + L—s
mpr,(n-i—l)(j—l)—i-l(pv q) = (p ( )q ( )> p oy H [ ] — 5 } ’
b,q

=1 )

Note that if 7 = 7y ...7; € S; has the minimal overlapping property, then
the reverse of 7, 77 = 7; ... 7, and the complement of 7, 7 = (j +1—7)...(j +

1 — 7;), also have the minimal overlapping property. Thus one can use Theorem 7



to compute mp- (ny1)(j—1)41(p, q) in the case where 7 either ends or starts with j

or ends with 1.

Duane and Remmel proved the following theorem.

Theorem 8. If 7 € S; has the minimal overlapping property, then

Z Z 7-mch(o comV(U)quV(J) =

n>0 " 0€Sh

1
n(G—1)+1 n
1—(t+ anl Wﬁ}pq'(z — 1)"mprni-1)+1(p, 9))

(1.9)

It follows from Theorems 7 and 8 that if j > 3 and 7 = 7 ...7; € S} has

the minimal overlapping property, 7 = 1 and 7; = s, then

P’r(t> x,p, q) = Z Z 7 mch(o Comv(a)qinv(a) _

UES

n+l ., . -1
coinv(r) ino(r)) (D) (s—1)(i—1)("! (g—1)+1—s
(o g @) p o 1’(2)]_[{( .) } )) . (1.10)
p,q

— S
i=1 J

This results allowed Duane and Remmel [10] to refine several of the results
of Elizalde and Noy and Kitaev mentioned above. For example, both 132 and 1342
have the minimal overlapping property.

By Theorem 7, we have

mp132,20+1(P; q) = H 2i — 1], (1.11)
1=1

Plugging equation (1.27) into (?7), we get the following p, g-analogue of Elizalde
and Noy’s result for Piss(t, ).

t" - o), .coinv(o) inv(c
Pip(t,z,p.q) = Y Y tzrmchio) peoinv(e) ginvo)

n>0 [n]l’vq! TESy

1

T 1 n42n+1 n nan n .
L= (t+ o1 G 270 THL 20 = 1)
1

1 Z p"2+"q"(:v—1)"t2"+1 :
n20 [2n+1]p,q [ [}21[2i]p,q




Similarly, by Theorem 7, we have

’fL 7L o 3n ‘I‘ 1 - 2
mpis42,2n+1 — 3 2 3 H l }
=1 p.q
(3n +3n) /2q2n 3n — 1 372, — 2] (112)
1 p7q

1=

Plugging equation (1.12) into (??), we get the following p, g-analogue of Elizalde
and Noy’s result for Pz (t, ).

— t" 1342—H1Ch(0) coinv(o) ,inv(o)
P1342(t,17,p,Q)—ZW Zi’f p q

n .
n>0 Pq 5es8,

1

r—1 7Lt37l+1 n n n n . i
1—(t+ anl ([?,m)rﬁp(g /242 [2]1$,q [T 138 = 1pq[3i — 2]54)
1
. p(3”2+3”)/2q2"(.’£—1)”t3"+1 :
L= nz0 Bt i, [T B

Now if 7 = 12...ac0a + 1 where o is a permutation of {a + 2,...,k + 1},
then 7 has the minimal overlapping property. Note that

: (a +1
coinv(r) = 5

inv(t) = (k—a)+inv(o).

) + a(k — a) + coinv (o) and

Using Theorems 7 and 8 , Duane and Remmel [10] proved the following general-

ization of Kitaev’s Theorem 6.

Theorem 9. Let 7 = 12...aca+ 1 where o is a permutation of {a+2, ..., k+1}.
Then

Z Z 7 mch(o) COan(O’) IHV(O') _
L ! o€Sn
(1 —(t+ Z s

. —1
. a . . i 4 k_
i (1) a9 76 ) 0
p,q

z—l—ltzk—l—l

j=2



1.3 Our Goals

One of the main goals is to give generating functions for the joint distribu-
tions of left-to-right minima and descents over the set of permutations of S,, which
either have no occurrences or no matches for certain patterns or sets of patterns.
That is, given a permutation o = o7y,...,0,, we let we let des(o) = |{i : 0; >
0ir1}]. Thus for example if o = 3756142, then des(o) = 3 which counts the de-
scent pairs 75, 61, and 42 as we read o from left to right. We say that o; is a
left-to-right minimum of o if o; < o; for all i < j. We let LRMin(o) denote the
number of left-to-right minima of . Our generating functions can be viewed as
refinements of generating functions for the number of permutations of .S,, which
have no classical matches of 7.

We may define similar matching conditions within the cycle structure of
a permutation. Suppose that 7 = 7,...7; is a permutation in S; and o is a
permutation in S, with £k cycles C] ... Cy. We shall always write cycles in the form
C; = (coiy - - - Cp—1,i) Where ¢g; is the smallest element in C; and p; is the length of
C; and assume that we have arranged the cycles by decreasing smallest elements.
That is, we arrange the cycles of o so that ¢o; > -+ > ¢ox. Then we say that
o has a cycle T-match (c-T-match) if there is an ¢ such that C; = (co4, ..., Cp—14)
where p; > j and an r such that red(c, ;¢,41, - . . ¢o4j—1,;) = T where we take indices
of the form r + s mod p;. Let c-t-mch(o) be the number of cycle 7-matches in the
permutation o. For example, if 7 =21 3 and ¢ = (1,10,9)(2,3)(4,7,5,8,6), then
91 10 is a cycle 7-match in the first cycle and 7 5 8 and 6 4 7 are cycle T-matches
in the third cycle so that ¢-r-mch(o) = 3. Similarly, we say that 7 cycle occurs
in o if there exists an ¢ such that C; = (co, ..., ¢p,—1,) Where p; > j and there
is an 7 with 0 <7 < p; — 1 and indices 0 < ¢ < --- < 4;1 < p; — 1 such that
red (¢, iCryiyyi- - - Crai;_14) = T where the indices r + 4, are taken mod p;. We say
that o cycle avoids 7 if there are no cycle occurrences of 7 in o. For example, if
T=123and o = (1,10,9)(2,3)(4,8,5,7,6),then 457,456,568, and 5 7 8 are
cycle occurrences of 7 in the third cycle.

We can extend the notion of cycle matches and cycle occurrences to sets of

permutations in the obvious fashion. That is, suppose that T is a set of permuta-
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tions in S; and ¢ is a permutation in S,, with k cycles C; ... Cj. Then we say that
o has a cycle T-match (c-Y-match) if there is an ¢ such that C; = (¢, ..., ¢p—14)
where p; > j and an r such that red(c,;...c¢,4j-1:) € T where we take indices of
the form r 4+ s modulo p;. Let ¢-Y-mch(o) be the number of cycle T-matches in
the permutation ¢. Similarly, we say that Y cycle occurs in o if there exists an ¢
such that C; = (co, - .., Cp,—1;) Where p; > j and there is an r with 0 <r <p, —1
and indices 0 < iy < -+ <ij_; < p; — 1 such that red(c,iCryyyi---Cryi;_14) €T
where the indices r + i are taken mod p;. We say that o cycle avoids T if there
are no cycle occurrences of Y in o.

The study of patterns in cycle structures in not entirely new. That is,
Callan [8] and Vella [41] studied cycle pattern avoidance in n-cycles in S,. For
example, they independently proved that the number of n-cycles in S,, which cycle
avoid 1324 is the Fibonacci number F5,,_3, the number of n-cycles in \S,, which cycle
avoid 1342 is 2"~! — (n — 1), and the number of n-cycles in S,, which cycle avoid
1234 is 2" +1 — 2n — (’;) However, neither Callan or Vella considered the more
general problem of cycle avoidance in general cycle structures of permutations.
We shall see below that one can use the theory of exponential structures to reduce
the problem of finding certain generating functions on the cycle of structures of
permutations in S, to finding certain corresponding generating functions on n-
cycles in S,,. Thus it is not difficult to extend the results of Callan and Vella to
cycle structure of permutations in S,,. This idea was used by Deutsch and Elizalde
9] to study various generating functions for the analogue of up-down permutations
relative to cycle structures of permutations in S,,. We shall see below that for
even cycles, their definition of up-down cycles is equivalent to having no cycle
{123, 321}-matches.

Another goal is to give generating functions for the joint distributions of
cycles and cycle descents over the set of permutations of \S,, which either have no
cycle occurrences or no cycle matches for certain patterns or sets of patterns. That
is, given a cycle C' = (co, ..., cp—1) Where ¢y is the smallest element in the cycle,
we let cdes(C) = 1 +des(cp...cp—1). Thus cdes(C') counts the number of descent

pairs as we traverse once around the cycle because the extra factor of 1 counts
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the descent pair ¢,—1 > ¢y. For example if C' = (1,5,3,7,2), then cdes(C) = 3
which counts the descent pairs 53, 72, and 21 as we traverse once around C. By
convention, if C' = (¢y) is one-cycle, we let cdes(C') = 1. If o is a permutation
in S, with &k cycles C}...C}, then we define cdes(o) = Zle cdes(C;). We let
cyc(o) denote the number of cycles of o. Our generating functions for such joint
distributions are new. However, in the case where the pattern 7 starts with 1, then
our generating functions can be viewed as refinements of generating functions for

the number of permutations of S,, which have no classical matches of 7.

1.3.1 Notation

Given T C S;, we let S,(T) (resp. CAV,(T)) denote the set of permu-
tations of S, which avoid (resp. cycle avoid) T and S,(T) = |S,(T)| (resp.
CAV,(T) = |CAV,(T)|). Similarly, we let N M, (T) (resp. NCM.,(T)) denote
the set of permutations of S,, which have no T-matches (resp. no cycle T-matches)
and NM,(T) = INM,(T)| (resp. NCM,(Y) = |NCM,(T)|). Throughout this
thesis, when T = {7} is a singleton, we shall just write the 7 rather than {7}.
Thus for example, we shall write S,,(7) for S,(T) when T = {7}.

Given o and f in S;, we say that a and S are Wilf equivalent if S, (o) =
Sn(B) for all n. We say that o and § are matching Wilf equivalent (m-Wilf equiv-
alent) if NM, (o) = NM,(5) for all n. For any permutation o = oy ...0,, we let
o” be the reverse of 0 and ¢° be the complement of ¢. That is, 0" = 0,,...0;
and 0 = (n+1—0y)...(n+1—0,). It is well known that Wilf equivalence
classes and m-Wilf equivalence classes are closed under reverse and complementa-
tion. We say that a and 3 are cycle avoidance Wilf equivalent (ca-Wilf equivalent)
if CAV,(a) = CAV,(pB) for all n and we say that « and 3 are cycle matching Wilf
equivalent (cm-Wilf equivalent) if NCM, (o) = NCM,(B) for all n. If o and
are cycle avoidance Wilf equivalent, we shall write a ~., 8. If a and [ are cycle
matching Wilf equivalent, we shall write o ~,, 5. Similarly, for sets of permu-
tations I' and A in S;, we say that I' and A are cycle avoidance Wilf equivalent
(ca-Wilf equivalent) if CAV,,(I") = CAV,,(A) for all n and we say that I" and A are
cycle matching Wilf equivalent (cm-Wilf equivalent) if NCM,,(I') = NCM,(A)
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for all n.

Callan [8] and Vella [41] observed that for n-cycles, ca-Wilf equivalence
classes are closed under reverse and complement. This is also true for both ca-Wilf
equivalence and cm-Wilf equivalence for general cycle structures. That is, let o
be a permutation in S, with k£ cycles C...Cy. Then we let the cycle reverse
of o, denoted by ¢, be the permutation which arises from ¢ by replacing each
cycle C; = (coi,C1yis - - -, Cp;—1,4) by its reverse cycle Cf" = (¢4, Cp—14, - - - C1,1). For
example, if o = (1,10,9)(2,3)(4,7,5,8,6), then " = (1,9,10)(2,3)(4,6,8,5,7).
We let the cycle complement of o, denoted by ¢, be the permutation that results
from o by replacing each element 7 in the cycle structure of ¢ by n + 1 — 7. For
example, if o = (1,10,9)(2,3)(4,7,5,8,6), then ¢ = (10, 1,2)(9,8)(7,4,6,3,5) =
(1,2,10)(3,5,7,4,6)(8,9). Note that in general o”, 0¢, 0" and o are all distinct.
For example, if 0 =2 3 1 5 4 so that it cycle structure is (1,2,3)(4,5), then

of = 45132,

o¢ = 43512,

o = (1,3,2)(4,5)=31254, and
o = (5,4,3)(2,1)=2153 4.

It is easy to see that for any permutation o € .S,,,

1. o has a cycle 7-match if and only if ¢ has a cycle 7"-match,

DO

. 0 has a cycle 7-match if and only if ¢° has a cycle 7-match,
3. o0 has a cycle 7 occurrence if and only if 0" has a cycle 7" occurrence, and

4. o has a cycle 7 occurrence if and only if 0 has a cycle 7¢ occurrence.

It then easily follows that for all permutations 7, NCM, (1) = NCM,(7") =
NCM,(7¢) so that 7, 7", and 7¢ are all cycle matching Wilf equivalent. Similarly,
CAV, (1) = CAV,(1") = CAV,(7°) so that 7, 77, and 7¢ are all cycle avoidance
Wilf equivalent. Finally we observe that our definitions also ensure that for any
T =1m...7; € S;, any cyclic rearrangement of 7, 7@ =7 . .TjT1...Ti—1 also has

the property that for any o € S,, 7 cycle occurs in o if and only if 7 cycle
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occurs in . Thus for all j > 1, CAV, (1) = CAV, (%) so that 7 and 7% are cycle
avoidance Wilf equivalent.
The generating functions we will study are

Sy t T y _1+Z Z xLRMln(U l+des(0) (114)

n>1 n! g€SH(T

CAVatry) =1+ 35 Z £ ), (1.15)
n>1 ! c€CAVL(T)
NMT t x y -1 _'_Z Z LRMin(o)yH—des(o)7 (116)

n>1 O’ENMn

and

NC My (t,z,y) =1 +Z o gevel)yedeslo) (1.17)
77/>1 . O'GNCMTL )

for T a set of patterns.

1.4 Techniques

We have developed three different techniques that give results for the gen-
erating functions (1.15),(1.16), and (1.17).

1.4.1 Using the theory of exponential structures

First let’s consider the generating functions (1.15) and (1.17). We can
use the theory of exponential structures to reduce the problem down to studying
pattern matching in n-cycles. That is, let £,, denote the set of m-cycles in S,
and let L,, = |L£,,|. Suppose that R is a ring and for each m > 1, we have a
weight function Wi, : L, — R. We let W(L,,) = > ccp, Win(C). Now suppose
that o € S, and the cycles of ¢ are C4,...,Cy. If C; is of size m, then we let
W(C;) = Wy (red(C;)). Then we define the weight of o, W (o), by

We let C,, i denote the set of all permutations of S,, with k cycles. This given, the

following theorem easily follows from the theory of exponential structures, see [39].
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Theorem 10.

> tn " z W(Lm)t™
1+z;mzxk Z W(O’) — T im>l (1.18)
n= k=1

O'Ecnyk

Let T C S5;. Then we will be most interested in the special case of weight
functions W,,, where W,,(C) = 1 if C' cycle avoids a set of permutations and
W (C) = 0 otherwise, or where W,,(C) = 1 if C' has no cycle T-matches and
W, (C) = 0 otherwise. We let CAV,, x(T) denote the set of permutations o of S,
with k cycles such that o cycle avoids T and we let CAV,, x(T) = |CAV,,1(T)|. We
let NCM,, 1.(T) denote the set of permutations o of S, with k cycles such that o has
no cycle T-matches and NCM,, (1) = INCM,, x(T)|. Similarly, we let £5%(T)
be the set of m-cycles v in S, such that v cycle avoids Y, L& (Y) = |L£5%(T)],
L™ () denote the set of m-cycles 7 in S, such that v has no cycle T-matches,
and L'™(Y) = |Lr(T)|. Then a special case of Theorem 10 is the following

theorem.

Theorem 11.

tn " m caes
CAVy(t,z,y) =1+ ! Yook Y ) =g it Loecgen v
n>1 k=1 0eCAV, 4(T)

(1.19)
and

tn - m caes
NCM~(t,z,y) = 1—1—2 — Z 2F Z yedes(@) — o Szt bt Soecpem o 1)
n>1 " k=1 0ENCMyi(Y)
(1.20)

For example, suppose that 7 = 1 2. It is clear that any cycle of length &
where k > 2 has both a cycle occurrence of 7 and a cycle T-match so that L (12) =

Lrem(12) = 0 if m > 2. Since 1-cycles can not have any cycle occurrences of 7 or

any cycle 7-matches by definition, it follows that
y = Z ycdes(C) _ Z ycdes(C’)‘
CeLsav(12) ceLrem(12)

Thus
CA‘/lg(t,llf,y) = NCMlg(t,l’,y) = emyt.
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Next consider 7 = 1 2 3. It was observed by both Callan [8] and Vella [41] that for
k > 3, the only k-cycle which cycle avoids 7 is the cycle (1,k,k—1,...,2). Let

Am(y) _ Z ycdes(C’)’
CeLgav(123)
then clearly A;(y) = y since cdes((1)) = 1, and for k > 2, Ay(y) = y*~! since
cdes((1,k,...,2)) =k —1. Thus

m—1,m

CA‘/lgg (t, z, y) _ 63” (yt+2m22 yT) _ 6x(yt+%(eyt—1—yt)) ‘

It turns out that if 7 € S; is a permutation that starts with 1, then we
can reduce the problem of finding NCM,(t,x,y) to the usual problem of finding
the generating function of permutations that have no 7-matches. That is, we con-
sider the following well-known bijection described in [9]. Suppose we are given a
permutation o € S,, with k£ cycles C;---Cj. Assume we have arranged the cy-
cles so that the smallest element in each cycle is on the left and we arrange the
cycles by decreasing smallest elements. Then we let ¢ be the permutation that
arises from C] - - - C} by erasing all the parentheses and commas. For example, if
o= (7,10,9,11) (4,8,6) (1,5,3,2), then d =7 109 1148 6 1 5 3 2. It is easy
to see that the minimal elements of the cycles correspond to left-to-right minima
in . It is also easy to see that under our bijection ¢ — &, cdes(o) = des(a) + 1
since every left-to-right minima is part of a descent pair in . For example,
if o = (7,10,9,11) (4,8,6) (1,5,3,2) so that ¢ = 710 9 1148 6 1 5 3 2,
cdes((7,10,9,11)) = 2, cdes((4,8,6)) = 2, and cdes((1,5,3,2)) = 3 so that
cdes(0) =242+ 3 =7 while des(¢) = 6. This given, we have the following

lemma.

Lemma 12. If 7 € S; and T starts with 1, then for any o € S,
1. o has k cycles if and only if & has k left-to-right minima,
2. cdes(o) =1+ des(a), and

3. 0 has no cycle-t-matches if and only if ¢ has no T-matches.
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Proof. For (3), suppose that ¢ = & ...5, and d; = 1. Since 7 starts with 1, it is
easy to see that any 7-match in & must either occur weakly to the right of &; or
strictly to the left of ;. That is, 1 can be part of 7-match in & only if the 7-match
starts at position i. If a 7-match occurred weakly to the right of &;, then that
T-match would correspond to a cycle-r-match in Cj in o.

Next suppose that the 7-match occurred strictly to the left of 4, = 1.
Then we claim that we can make a similar argument with respect to the cycles
Ci---Cy_1. That is, suppose that Cj_; starts with m. Then m must be the
smallest element among &7 ...5;_1. Suppose that g, = m where 1 < s < i. Then
again we can argue that any 7-match in oy ... d;_; must occur either weakly to the
right of 7, or strictly to left of 4. If the 7-match in 7;...5;_1 occurs weakly to
the right of &5, then it would correspond to a cycle-T-match in Cj_;. Continuing
on in this way, we see that any 7-match in ¢ must correspond to a cycle 7-match
in C}; for some j.

Vice versa, it is easy to see that since 7 starts with 1, the only way that a
cycle-t-match in C; can involve the smallest element ¢y, in the cycle C; is if ¢g;
corresponds to the 1 in 7 in cycle match. But this easily implies that any 7-cycle
match in C; must also correspond to a 7-match in the elements of & corresponding
to C;.

Thus we have proved that for any o, o has cycle-7-match if only if & has a

T-match. O

We should note that if a permutation 7 does not start with 1, then it may
be that case that NC'M,,(7) # NM, (7). The pattern 7 = 3142 is an example such
that neither 7, 77, 7¢, nor (7")¢ starts with one. Even though we do not know how to
compute closed forms for NC M, (t) and NM,(t), we have computed the following
table. Let £I(7) be the set of all cycles of length n and let L (1) = |L™(T)].

It was conjectured by the author that for a set of patterns T, NCM, (1) #
NM,(Y) if and only if T can cover a cycle. For a cycle C' = (co,...,Ch1)
in S, is covered by Y if each consecutive pair of elements {c¢;,¢;11},0 < i <
n — 1 is part of a cycle-Y-match (this includes the consecutive pair {c,_1,¢co}.)

For example, if 7 = 3142, then 7 covers the cycle (1,4,2,5,3). There are two



Table 1.2: Coefficients for GF's involving 3142

n | Lo (3142) | NCM, (3142) | N M, (3142)
1 1 1 1

2 1 2 2

3 2 6 6

4 5 23 23

5 20 111 110

6 92 638 632

7 532 42783 4237
8 3565 32784 32465
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cycle-T-matches, namely 3142 and 4253 and every consecutive pair of elements
{1,4},{4,2},{2,5},{5,3}, {3, 1} belongs to one of these cycle-r-matches.
Remmel and Tiefenbruck [36] were able to use the involution principle of

Garsia and Milne [15] to show one direction of the conjecture.

Theorem 13. (Tiefenbruck [36]) If T does not cover any cycle then
NCM,(T) = NM,(T).

One consequence of Lemma 12 is that we can automatically obtain refine-
ments of generating functions for the number of permutations with no 7-matches

when 7 starts with 1. We have the following corollary of Lemma 12.
Corollary 14. If T € S; and T starts with 1, then

NCM,(t,z,y) = NDM(t,x,y). (1.21)

Then by Theorem 11 and Lemma 12, if 7 € S; and 7 starts with 1, we have
that

NM,(t,1,1) = NCM,(t1,1)

m
= eZle L?ncm(T)in_l

so that
In(NM,(t,1,1)) = > L™ (r)—.

m>1

(1.22)
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But then
NM.(t,z,1) = NCM,(t,z,1) (1.23)
— T e LM

—  erIn(NM(t1,1) _ (NM,(t,1,1))". (1.24)

Thus if we can compute NM.(t,1,1) for a permutation 7 € S; that starts with 1,
we automatically can compute NM.,(¢,z,1). For example, Goulden and Jackson

[16] proved that when 7 =1 2...k, then
1

NM,(t,1,1) = (1.25)

tk:i tki+1
20 i (keI
Hence, we automatically have the following refinement of Goulden and Jackson’s

result.

Theorem 15. If T =12...k where k > 2, then

1 x
NMT(t7x71) = ( i TRt ) : (126)

22520 Gl ~ ThiA T
An example, where one can use the full power of Theorem 10 is the following.

In Section 2, we shall show that

Z{”' DO ( = ) . (1.27)

| t (1—y)s— s2
n>1 ' Cernem(132) 1—y [y el vvTds

Then it follows that

n
NCMlgg(t,LL’,y) = Z ﬁ Z xCYC(U)yCdCS(U) (128)

n>0  o€S,

_ Z :L_n' Z Zlﬁ'k Z ycdes(a)
k=1

n>0 ' k= ceNCMy, i (7)

zln 1 =
— e 1—y fd“ e(liy)sinds

1 x
N (1_ ¢ (l—y)s—y£d> ’
IOy

This result is a refinement of theorem of Elizalde and Noy [12].
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Our plan is to consider n-cycles and directly compute Y- rcav (1) yy°des(C)

cdes(®) . Then we can use Theorem 10 to compute CAV,(t,x,y)

and ZCeﬁng(T) Y
and NCM,(t,z,y). Furthermore, if 7 starts with 1, we can use Corollary 14 to

compute NM,(t, z,y) from NCM._(t,z,y).

1.4.2 The reciprocal method

Our second method uses the function U, (¢,y) defined by
" 1

NM:(t, z,y) = ZNMr,n(%y)a N GACRE

n>0
It follows that

1 1
TNMAtLy) o NMoa(Ly)5
Remmel and his coauthors [3, 25, 29, 30, 31, 32, 35, 42] developed a method called

U-(t,y)

(1.29)

the homomorphism method to show that many generating functions involving per-

mutation statistics can be applied to simple symmetric function identities such as
H(t)=1/E(-t) (1.30)

where

m(e) =S ht =] 5 —1:@-15 (1.31)

n>0 i>1

is the generating function of the homogeneous symmetric functions h,, in infinitely
many variables x1,zs, ... and
Et) =) et"=]]1+ait (1.32)
n>0 i>1
is the generating function of the elementary symmetric functions e, in infinitely
many variables x1,zo,.... Now if we define a homomorphism # and the ring of

symmetric functions so that

then
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Thus 6(H (t)) should equal U, (t,y). One can then use the combinatorial methods
associated with the homomorphism method to develop recursions for the coefficient

of U.(t,y). Note that if 7 starts with 1 then we can use Corollary 14 to compute
NCM,(t,z,y) from NM,(t,z,y).

1.4.3 Using the bijection between cycles and brick tabloids

The third method we shall use to compute NCMry(t) is completely different
than the other two approaches. This method involves defining a certain bijection
between the set of cycles and certain fillings of brick tabloids. That bijection allows
one to compute generating functions for the number cycles that have no cycle T-
matches by applying an appropriate ring homomorphism defined on the ring of
symmetric functions A in infinitely many variables xi,z5,... to certain simple
symmetric function identities as described above. This approach is generally much
more complicated than the first two approaches. However, it allows us to compute
NC M-~ (t) for a number of sets of permutations T which seem beyond the other

techniques employed in this thesis. For example, one can show that

2 4 2 4
ptHt?/2+11/12 90t /2pt4/12

NCMy(t) = =
r(?) 1= oa(n— 15 — 2— 2t + 2

where T is the set of patterns that contains 1234 and all patterns 7 = 77737475

such that 71 <1 > 1 <74 > 75.

1.5 Results

1.5.1 Results using the theory of exponential structures

In this subsection, we will state several of the results that we proved using
the theory of exponential structures. Since cycle avoidance Wilf equivalence is
closed under cyclic rearrangements, it follows that 1 2 3 ~., 2 3 1 and each
pattern of length 3 is a reverse, complement or reverse complement of one of these
patterns which means that all permutations of length three are cycle avoidance

Wilf equivalent.
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Theorem 16. For all patterns T € S,

CAV,(t) = CAVigs(t) = e !

¢ m

CAV (t,x,1) = % Lmz1 L (1) — g(et=1)
for T € {123,312,231},
CAV, (1,1, ) — el =1-)

and for T € {132,213,321}

yt"™

CAV,(t,2,y) = " (Zn21 57) = gru(et=),

Theorem 17. ([30]) If T =j...2 1 where j > 2, then

1
Z % Z ( )ydes(cr) _ (Z % Z(_l)if){n_l,i,j_lyi>

n>0 " ceENMn n>0 """ >0
where R, ; ; is the number of rearrangements of © zeroes and n — i ones such that

] zeroes mever appear consecutively.

Theorem 18. Forj>2 andt=12...7,

NMT(t,l',y) = NCMT(t,[L"y) = Z m Z nyC(U)ycdes(o')
n>0  oeNCMyu(T)

:cln( i ! i nfi)
= e >0 w1 23>0 Ry 14,51

1 T
B (Zn>0 % i>0(_1)iRn—17i7j_1y"_i) :

where R, ; ; is the number of rearrangements of © zeroes and n — i ones such that

] zeroes never appear consecutively. In particular

T

Tyt 1

NCMlgg(t,LU,y) =e2 : :
(cosh (t y2_4y) — \/‘Z{%sinh (t y2_4y))

xln 1 )
NCM132(t,§C,y) = e <1yf§e(1y)8y82/2ds

- ! | (1.33)

(1 —yJy 6(1—9)3—982/2ds)x

Theorem 19.
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Theorem 20. For T = {123,321},

CAVy(t,z,y) = J(yHT),
NCMvy(t,z,y) = e sec(t\/y)".

Theorem 21. For Y = {123,231},

acyt2 1

NCMy(t,x,y) =e 2z

e~ %Iy e~ %Iy
(11— = erfi (/F) — e (¢~ 1) /7))
Theorem 22. Let 7 =7 ...7; € S; where j > 3 and 11 =1 and 7; = 2. Then
1

_ _ydcs(T)ijl z-
(1 - f(f A G P

Theorem 23. Suppose that 7 =12 ...j —1 v j where v is a permutation of
J+1,....9+pandj>3. Then

NCMT(t,ZE,y) = NMT(tax7y) =

1
YO = way
where
t’l’L
U’r(ta y) - Z Un,‘r(y)_'
= n!
and

n
Un-i-j,r(y) = (1 - y)Un-i-j—l,T(y) - ydeS(T) <p) Un—p-i—l,r(y)-

1.5.2 Results using the reciprocal method

In this subsection, we shall state several results that we proved using the

reciprocal method.

1 xX
Theorem 24. Let 7 = 1324 ...p where p > 5. Then NM.(t,x,y) = (m)
T 7y

n

t
where U-(t,y) =1+ Urny)—, Ur1(y) = —y, and for n > 2,
) n! )

n>1

1—2
=

Urn() = (1= ) Urnca®) + > (=) Urin—(eo—2+1) (1).

k=1
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Theorem 25. Let 7 = 1324. Then

1

€T tn
NCMT(T/7$7 y) = <m) where Uq—(t’y> = 1 -+ Z UT,TL(ZU)E

n>1

and U, 1(y) = —y and forn > 1,

Urn(y) = 1 = ) Urna(y) + Y (=)' CrcatUr a1 (v)

where Cy, is the k" Catalan number.

Theorem 26. Let 7 = 1p23...(p — 1) where p > 4. Then

1 v "
NM,(t,z,y) = < )) where U, (t,y) =1+ Z UT,n(y)g,

U-(t,y e
U-1(y) = —y, and for n > 2,
) k(p—3) — 2
n—k(p—3)—
Unn) = = 0)0eea) + 3 o ("7 7)o
k=1

Theorem 27. Let 7 =13...(p — 1)2p where p > 4. Then

NM,(t,x,y) = (ﬁ) where U, (t,y) =1+ ; UT,n(y)Z—rz,
Uns(y) = —y and forn > 2,
= k 1 k(p—1)
Urn(y) = (1 = y)Urna(y) + ; (—y) m( I )U'r,n—(k(p—2)+1)(y)
Theorem 28. Let 7 = 145...p23 where p > 5. Then
NM,(t,x,y) = <ﬁ) where U (t,y) =1+ ; UT,n(y)Z—T,

UT,l(y> =Y and fOT n > 1)

Urn(y) = (1 = 9)Urn—1(y)+
|22 ]+1

> (—y)’“*((pn;]zk_l )H< p=3) _1)Um—((k—l)(p—2>+1)(y)-

k=2 =1
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1.5.3 Using the bijection between cycles and brick tabloids

In this subsection we shall state several results that we proved using our
bijection between cycles and brick tabloids.

For Theorems 29, 30, and 31, let I" be the set of all patterns 7 = 772737475
such that

T <To>T3<Ty>Ts.

Theorem 29. Let T1 = ['U {1234} then

26162/26164/12
NC My, (t) = o et

Theorem 30. Let To = {132,1234,35241,45231, 34251} then

2€t€t2/2

T A2t 212t

NC M, (t)

Theorem 31. Let T3 = {231, 1234, 13254, 14253, 15243} then

et€t2/2
NCOMx,(t) =




Chapter 2

Generating functions for cycle
matches using the theory of

exponential structures

In this chapter, we shall describe how we can use the theory of exponential
structures to find generating functions for cycle matches in permutations. The
results of this chapter are based on the results appearing in a paper by Jones and

Remmel [18].

2.1 Patterns of length 3

In this section, we study CAV,(¢,z,y) and NCM,(t,z,y) for T € Ss.
First we consider CAV,(t, x) for 7 € Ss. It follows from our remarks in the
introduction that both cycle avoidance Wilf equivalence and cycle matching Wilf

equivalence are closed under the operation of reverse and complement. Thus
1.123~,321and 123 ~,,321 and
2.132~231~213~,312and132~,231~,213~,,312.

Now since cycle avoidance Wilf equivalence is closed under cyclic rearrangements,

it follows that 1 2 3 ~., 2 3 1 which means that all permutations of length three

25
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are cycle avoidance Wilf equivalent. Thus for all permutations 7 of length three,

we have from Theorem 16
CAV,(t) = CAVyo3(t) = e

which is also the exponential generating function for Bell numbers B,, that count

the number of partitions of a set with n elements. But since

t m

CAVT(t) — Zm>1 Lggv(r )

for all 7 € S3, it must be the case that
Z Lcav _ 6 —1
m>1

for all 7 € S3 and, hence also from Theorem 16,
CAV (t ,f(:) = emzm>1L6av(7—)% — em(et—l)

for all 7 € S3. However it is not the case that the generating functions CAV,(t, z,y)
are equal for all 7 € S3 as stated before in Theorem 16. That is, suppose that « is

a cyclic rearrangement of 5. Then it is easy to see that L% («) = L () for all

m > 1 so that
Z ycdes(C' Z ycdes(C' (2 ] 1)
CELEw () CeLsv ()

But then it follows from Theorem 11 that we must have C AV, (¢, z,y) = CAVs(t, z,y).

It thus follows from our results in the introduction that
CAVigs(t,z,y) = CAVaia(t, z,y) = CAVagi (t, 2, y) = ot (vt (v =1-yt))

Next consider 7 = 1 3 2. It is easy to see that for k£ > 3, the only k-cycle
which cycle avoids 7 is the cycle (1,2,...,k). Thus

Z ycdes(C') =y,

CeLeav(132)

for all kK > 1. Hence

CAVigo(t, x,y) = CAVyis(t, x,y) = CAVao (t, 2, y) = 695(2’”21 y’t"_'> = (D),
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Next we shall consider the generating functions NC M., (t,z,y) for T € Ss.
We claim that is enough to compute NCMio3(t, z,y) and NCMis5(t, xz,y). That
is, for any j > 2 and 7 € S, we can compute NCM,-(t,z,y) and NCM(t, z,y)
from NCM,(t,z,y). Note that it follows from Theorem 11 that

Z Z yods(©) = In (NCM,(t,1,y)). (2.2)

n> 1 Ceﬁncm

cdes(C)

Since Y cremn) Y =y, it follows that

Z Z yed=s(©) = In (NCM, (t,1,)) — yt. (2.3)

TL>2 Ceﬁncm

Given any n-cycle C' in S,,, recall C'" denotes its cycle-reverse and C'°“ denotes
its cycle-complement. Then C' € LI*™(7) if and only if C € LI*™(7") and
C e L7(7) if and only if C* € L1"(7¢). Now if n > 2, then it is easy to see
that n — cdes(C') = cdes(C") = cdes(C). That is, each descent as we read once
around the cycle C' becomes a rise as we read around the cycles of C" and C*
and each rise as we read once around the cycle C' becomes a descent as we read
around the cycles of C“" and C°“. Note, however, that if C' is a one-cycle, then
C = C° = C and cdes(C) = cdes(C") = cdes(C) = 1 so that it is not the case
that cdes(C") = cdes(C") = 1 — cdes(C'). Thus we have to treat the one-cycles
separately. Thus we have that

Z Z n cdes(C) _ Z:L_n' Z ycdes(C')

TL>2 Ceﬁncm n22 : C’eﬁ%cm(Tr)

_ Z t_n' Z ycdes(C) )

n:
n>2 CeLnem(re)

It follows that if 7 € .S; where 7 > 2 and

Z Z cdes (2 4)
n>2 " CeLnem(r)
then

ty Y~ Z Z ycdes(C' Z Z ycdes(C’)‘ (25)

TL>2 Ceﬁncm(Tr n>2 Ceﬁncm TC



Thus by (2.3), we have that
— tn caes
In (NCM,(ty,1,y 1)) —t = Zﬁ Z yedes(©)

n>2 " CeLnem(rr)

_ Z t_y: Z ycdes(C)

n!
n>2 " CeLnem(re)

so that

ty —t+In (NCM,(ty,1,y7")) = Zg T e

n>1 : CE;C:’,%C"”(TT)

_ Z Z_T: Z ycdes(C).

n>1 """ CeLnem(re)

Then we can apply Theorem 11 to obtain the following result.

Theorem 32. Let 7 € S; where j > 2. Then

NCM... (t, z, y) = NCM,. (t, z, y) _ em(yt—t-l—ln(NCM‘,—(ty,l,yfl)))'
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(2.6)

Next we shall show that we can find an explicit expression NC'M,(t,x,y)

where 7 =1 2...7 for any j > 3 using some results of Mendes and Remmel [30].

Suppose that we want to compute the generating function

tn cycl(o cdes(o
NCM(twy) = Y — >, a2y
n>0  ceNCMy(T)

t" cdes(o
_ 61”2”21 LT S cecnem gy yeiesl®)

in the case where 7 starts with 1. Then by Corollary 14, we know that

NCM,(t,z,y) = NM,(t,z,y) = Z Z ARMin(o), 1+des(a)

n>0 nl TEN Mn (1)
Now suppose that we can compute
NM,(t,1,y) Z Z yl+des(").
n>0 n! oceEN My (1)

Then we know that

cdes(o)

NM (t, 1, y) = ezn>1 nr ZCeﬁnCm( )y

(2.7)

(2.8)

(2.9)



29

so that

Z Sy = I (NM (1,1, y))

1 U e Lnem (1)

But then it follows that
NCM.(t,z,y) = NM,(t,z,y) = e* VM- (t1y) (2.10)

Thus we need only compute (2.9). However, Mendes and Remmel [30] proved the

following theorem.

Theorem 17. ([30]) If T =j...2 1 where j > 2, then

Z >yl (Z > (-1 nl,i,j_lyZ) (2.11)
")

n>0 'UGNM” n>0 ‘z>o

where R, ; ; is the number of rearrangements of © zeroes and n — i ones such that

] zeroes mever appear consecutively.

Replacing y by 1/y and then replacing ¢ by yt in (2.11) yields

Z Z yn—des(a) _ (ZgZ(_l)iRn—LLJ—lyn—i> . (2.12)

n>0 'aeNMn n>0 >0

It is easy to see that if o € S, has no j...2 l-matches, then the reverse of o, 0"
has no 1 2...j-matches and that n — des(o) equals 1 + des(o”). Thus it follows
that if a =1 2...7, then

-1
Z g Z yl-l-deS(U) — (Z % Z(_l)igzn—l,i,j—lyn_i> ) (213)

n>0 " oeNMnu(a) n>0 >0

Thus we have the first part of Theorem 18.

Theorem 18. Forj>2 andt=12...7,

NCM,(t,z,y) = Z > eyl (2.14)

n>0 'ae/\/cxvrn ()

xln( Al T nfi)
= ¢ 2n>0 mr 23>0 Rp_1,4,5-1¥

1 T
- <Zn20% iZO(_l)ifRn—l,i,j_ﬂjn_i) '



30

where Ry, ; j is the number of rearrangements of © zeroes and n — i ones such that

7 zeroes mever appear consecutively. In particular

T

xyt ]_
NCMys(t,z,y) = > (2.15)
(cosh (t v y;_4y) — fyéél sinh (7t v y§_4y))

For the second part of Theorem 18, in the case where 7 = 1 2 3, we can
obtain an explicit formula NCMa3(t, z,y) by another method. We start with a
general observation. Suppose 7 = 7y ...7; € S; where 7, = 1. We can write any
n-cycle C' in the form C' = (ay,...,®,) where ay = 1. It is easy to see that the
only cycle 7-match in C' that can involve a; = 11is o s ... ;. This means that
the only possible cycle 7-matches in C' must be of the form «; a; 41 ... ;41 where
1 < n — 74+ 1. Thus the problem of finding n-cycles with no cycle 7-matches is
equivalent to the problem of finding permutations ¢ = oy ...0, where 0y = 1 and
o has no 7-matches. Let S! denote the set of all permutations ¢ = oy ...0, € S,
such that o; = 1 and let N M} (7) = S NN M, (7) be the set of permutations of
S! with no 7-matches. Then

Ay = Y g = 3 o), (2.16)
ceEN ML () CeLpem(r)
It turns out that in many cases we can find recurrences for A, ,(y) by classifying
the permutations ¢ = 07 ...0, € S, such that o7 = 1 according to the position of
2in 0. Let &, denote the set of permutations ¢ = oy ...0, € NM.L(7) such
that o, = 2.
Now fix 7 =12 3 and let A,,(y) = A -(y) and &, = &, k.. Our goal is to

compute A(t,y) = > -, Amffl)tm. Now A;(y) = As(y) = y since the permutation

1 has no 7-matches, 1+ des(1) = 1, the permutation 1 2 has no 7-matches, and
1+ des(12) = 1. There are two permutations in Ss that start with 1, namely, 1 2 3
and 1 3 2 and only 1 3 2 has no 7-matches so that Az(y) = y? since 1+des(132) = 2.
Now suppose that n > 3. Every permutation in &, 5 is of the form 1 2 o3...0,.
Clearly, 1 2 03 is a 1 2 3-match so that the elements in &, > do not contribute to

A, (y). For 3 <k < n, the elements of the &, are of the form

loy...0k—1 2 0p41...0,.
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In such a case, the only way that 2 can be part of a 1 2 3-match is if the 7-match
is 2 0411 012 It follows that an element of &, j contributes to A, (y) only if there
is no 7-match in o;...04_; and there is no 7-match in 2 04,1 ...0,. Note that

since (oy_1,2) is a descent pair,
1+des(log...0k120k11...0,) =1+des(log...0p_1)+1+des(2 opy1...04).

Hence the contribution of &, to A, (y) is just (Z:;) Ak_1(y)An_g11(y) since there

n—2
k—2

It then follows that for n > 3,

are ( ) ways to choose the elements which make up oo,...,0%_1.

Any) =) (Z Q)Ak 1Y) An—rs1(y).- (2.17)

k=3

Multiplying both sides of (2.17) by ( 7 and summing for n > 3, we see that

PA(ty) o x— Ap1(y) Ak
o, - poog bty

aAétt, y) <aA§et, y) y) |

Thus thinking of A(¢,y) as a function of ¢, we see that A(¢,y) satisfies the differ-

ential equation
At y) — (A'(ty)* +yA(ty) —y =0 (2.18)

where A(0,y) =0 and A’(0,y) = y. If we let A(y,t) = —In(U(t,y)), then thinking
of U(t,y) as a function of ¢, it follows that
: U'(ty)
Alt,y) = and
(t,y) 0(t.0)
Wy = LD I U (Dl
’ U(t,y))* Ut,y)  \Ulty)

Substituting these expressions into (2.18), one can easily show that U(¢,y) satisfies

the differential equation

U"(t,y) +yU'(t,y) +yU(t,y) =0 (2.19)
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where U(0,y) = 1 and U'(0,y) = —y. One can use Mathematica to solve this

differential equation to conclude that

yt t 2 4 t 2 - 4
U(t,y) =e 2 | cosh Y y) o sinh | VY7
2 v —4 2

so that

yt t\y? —4 t/y2 — 4
Alt,y) = —In <e—2cosh< - y) - ﬁ4sinh <%>) . (2:20)

We can then apply Theorem 11 to obtain the second part of Theorem 18.

xzyt 1
NCM123(t, l’,y) =€ 2
(cosh (t*’ y2_4y) _ \/?4 sinh (t v y2_4y))

. (2.21)

2 Vy— 2

One can use Mathematica to compute that

t2 2t3 ) 3t4
Aly,t) = yt+yg +y §+(2y +y)a+
3 nt’ 3 4 5,1
(8y +y>§+<16y + 22y +y)§

t 8
(136y"* + 52y° + yﬁ)ﬁ + (2729 + 7209° + 11495 + y7)g +

t9
(3968y” + 3072y° + 240y" + ¢") 57 + - -

and

t2 #3
NOM(t,2,y) =1+ayt +ay(l+ay)g; + ry*(1+ 3z + :):Qy)g +
t4
ry?*(2 4 3z + y + 4oy + 62°y + x?’yz)I +
t5
2y (8 + 200+ 152" +y + by + 102%y + 102%y + 2'y*) o +

zy® (16 + 302 + 152° + 22y + T3xy + 902y + 452%y + y>+
tﬁ

6:By2 + 15z2y2 + 203:3y2 + 15z4y2 + :)35y3) il +

zy* (136 + 350z + 3152° + 1052° + 52y + 210zy + 3432%y + 2802°y+

t7
1052y + y* + Tay? + 212%y* + 352°y? + 35xy* + 212°y” + xﬁyg) o + -
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We note that the sequence {A,,(t)},>1 starts out
1,1,1,3,9,39,189, 1107, 7281, . ..

which is sequence A080635 in the OIES and counts the number of permutations in
S, without double falls and without an initial fall. Bergeron, Flajolet, and Salvy

[4] showed that the exponential generating function of this sequence which starts

L+t+8 4+ s
;<1+\/_tan<2< +\ft)))

Thus our generating function A(y, t) which starts at ¢ can be viewed as a refinement
of the result of Begeron, Flajolet, and Salvy.

We can use the same method to compute NC'Mis5(t, x,y). In this case, we
will directly compute

Z Z ycdes(C)‘ (222)

m>1 Cecncm (132)

Let By,(y) = Bmas2(y) and £, = &, k.132. Our goal is to compute B(t, y) =

Y 1 Bmg) . Now By(y) = By(y) = y since the permutation 1 has no 7-matches,
1+des(1) = 1, the permutation 1 2 has no 7-matches, and 1+ des(12) = 1. There
are two permutations in S3 that start with 1, namely, 1 2 3 and 1 3 2, and only
1 2 3 has no 7-matches so that Bs(y) = y since 1 + des(123) = 1. Now suppose
that n > 4. Every permutation in &,  is of the form 1 2 o3 ... 0,,. Clearly, the only
T-matches must be of the form o; 0,41 0,12 Where ¢ > 2 so that &, o contributes
B,—1(y) to B,(y). Every permutation in &, 3 is of the form 1 oy 2...0, where
oy > 3. Thus all such permutations have a 7-match so that &, 3 contributes

nothing to B, (y). For 4 < k < n, the elements of the &, are of the form
loy...0k—1 2 0p41...0,.

In such a case, the only way that 2 can be part of a 7-match is if the 7-match is
2 Ok41 Op42. It follows that an element of &, contributes to B,,(y) only if there is
no 7-match in oy ... 0,1 and there is no 7-match in 2 0%, ...0,. Note that since

(0k_1,2) is a descent pair,

1+des(log...0k120k11...0,) =1+des(log...0p_1)+1+des(2 opy1...04).
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Hence the contribution of &, to B, (y) is just ("_2) Bi_1(y)Bn—_k+1(y) since there

are (k 2) ways to choose the elements which make up o9, ..., 0r_1. Thus for n > 4,
B, (y) = Bn-1(y) + i el Bi—1(y) Bnk+1(y)- (2.23)
— k—2

Dividing both sides of (2.23) by (n — 2)!, we obtain that for all n > 4,

Bu(y)  Bu(y) <= Br1(y) Bura(y)
(n—2)! N (n—2)! Z K (n—2— k) (2.24)

If we multiply both sides of (2.24) by t"2 and sum, we obtain the differential

equation
0*B(t,y) 0B(t,y) 0B(t,y) 0B(t,y)
AR A —y—yt —y—yt
or VY o VTV T VYY) T
Let B'(t,y) = aBa(i’y), then B(t,y) satisfies the differential equation
B'(t,y) = B'(t,y)(1 —y =yt + B'(L,y)) (2.25)

with initial conditions By(y) = 0 and B;(y) = y. One can check that the solution

0 (2.25) is
1
B(t,y) =1 . 2.26
( ’y) " (1 — yf(f e(l—y)s—ys2/2d8> ( )

Hence

L132(t7y) = Z Z ycdos(C)'

m>1 C€£7Lc7n 132

= In - ! . (2.27)
1—y fO e(1=y)s—ys?/2 g

We can then apply Theorem 11 to obtain the following theorem.

Theorem 19.

xln 1 )
NCM132(t,§C,y) = e <1yf§e(1y)8y82/2ds

- ! . (2.98)

(1 —y [ e(l—y)s—ys2/2ds)
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Table 2.1: Coefficients for GF's involving 132

n | L"*m(132) | NCM,,(132)
1 1 1
2 1 2
3 1 5
4 2 16
5 7 63
6 28 296
7 131 1623
8 720 10176
9 4513 71793
10 31824 562848
We note that specialization
1

NCMss(t,1,1) = - f(f gy
has been proved by Elizalde and Noy [12].

One can use our generating functions for NC'Miss(t, x,y) to compute the
initial values of L“"(132) and NC'M,,(132).

If one looks in the OEIS [37], then both the sequences for L?“"(132) and
NCM,,(132) occur. The sequence for L™ (132) is sequence A052319 which counts
the number of increasing rooted trimmed trees with n nodes. Here an increasing
tree is a tree labeled with 1,...,n where the numbers increase as you move away
from the root. A tree with a forbidden limb of length k is a tree where the path from
any leaf inward hits a branching node or another leaf within £ steps. A trimmed
tree is a tree with a forbidden limb of length 2. The sequence for NC'M,,(132) is
the number of permutations that have no 1 3 2-matches as expected.

We end this section with some results on CAVy(t,x,y) and NCM~(t,x,y)
where T C S3. For certain Y’s, this problem is uninteresting. For example, if
T contains both 1 2 3 and 1 3 2, then any k-cycle C' = (01,09,...,0,) where
o1 = 1 and k > 3 will have a cycle T-match since o 05 03 must be either a cycle
1 2 3-match or a cycle 1 3 2-match. Thus in this case £{*(T) = L7™(T) = {(1)},
L5(T) = L3™(Y) = {(1,2)}, and L{*(T) = LF™(YT) = @ for k > 3. It then
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follows from Theorem 11 that
x( t+£)
CAVxy(t,z,y) = NCM~(t,z,y) =€ e,

Similarly, suppose that T = {123,213}. Then we claim that £}“"(T) = ()
for k > 3. That is, for k > 3, a k-cycle C' = (1, ¢a, ..., ¢) has no cycle {123,213}-
matches. Then consider the possible positions for k in cs, ..., cg. Clearly, we can
not have k = ¢, since then ¢; 1 £ would be a cycle match of 2 1 3. We can not have
k = c3 since then 1 ¢y k£ would be a cycle match of 1 2 3. Now suppose that k = ¢;
where i > 3. Then we either have (i) ¢;_o < ¢;_1 < k or (ii) ¢;_o > ¢;_1 < k. But
in case (i), C' would contain a cycle 1 2 3-match and in case (ii), C' would contain

a cycle 2 1 3-match. Thus such a C' can not exist and we can conclude that

2
. yt?
NCM{123,213} (t,z,y) =e¢ (yt+ ’ )

A more interesting case is when Y = {123,321}. First observe that since
any cycle contains a cycle occurrence of 1 3 2 if and only if it contains a cycle
occurrence of 3 2 1, then it is the case that any k-cycle C' where k£ > 3 must have

a cycle occurrence of either 1 2 3 or 3 2 1. Thus

CAVx(t,z,y) = e (yt+%) :

Next consider the case of computing NCM~y(t,z,y). Let C' = (01,...,04)
be an n-cycle such that oy = 1. If n > 3, then we must have o0y > 03 since
otherwise there will be a cycle 1 2 3-match. But then we must have o3 < 04 since
otherwise there would be cycle 3 2 1-match. Continuing on in this way, we see

that o5 ...0, must be an alternating permutation. That is, we must have
O9 > 03< 04 >05<0g>07-"".

However, this means that if n = 2k + 1 > 3, then there are no n cycles which
have no cycle T-matches since we are forced to have o9 > o941 > o1 which is
a cycle 3 2 1-match. If n = 2k and o5 ...0, is alternating, then C will have no
cycle T-matches. For such o it is easy to see that 1+ des(o) = k. Thus in this
case, Ly (Y) = 0 for £ > 1 and Ly () is just the number of odd alternating
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permutations of length 2k — 1 for £ > 1. Deutsch and Elizalde [9] called n-cycles
(1,09,...,04,) such that

O9 > 03 < 04 >05 < 0g>07""",

cycle up-down permutations. One can follow the methods of [9] to find an explicit
formula for NC' M~ (t,z,y). That is, we let Alt,, denote the number of down-up
permutations of length n, then André [1, 2] proved that

2t sin(t)
Alty, = . 2.29
nZ% on+ 1) cos(t) (2:29)
Thus
S g = Y
L3 (7T) = Alto,— e
n>1 (271)' n>1
" sin(z)
= dz = —In|cos(t)].
o cos(z)
Hence,
t2n des(C) t2n
caes — nanm T
n>1 ceLpem(T) n>1
= —In|cos(t\/y)l|.
and

Z Z 4 =ty —1In | cos(t/y)|. (2.30)

n>1 " CeLnem(M)

Thus it follows from Theorem 11

Theorem 20.

exyt

- @ @ = e‘r
cos(ty/y)®
We end section with another non-trivial example which is the case where

I = {123,231}. Let

NC My (t,z,y) = esty=nlcostmD — Y sec(ty/y)".

Goly)= Y y=@ (2.31)

CeLnem(T)
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and

G(t,y) = ZGn(y)g- (2.32)

n>1
Note that £7™(I") = {(1)} and L£5™(I") = {(1,2)} so that G1(y) = Ga(y) = v.
Now suppose that n > 3 and C' = (1,09, ...,0,) is an n-cycle in S,, which
has no cycle I'-matches. Then it cannot be the case that ¢,,_1 < 7,, since otherwise
On_1 0n 1 would be a cycle 2 3 1-match in C'. Thus it must be the case that
On_1 > 0,. It cannot be that o; = 2 since then 1 o9 03 would be a cycle 1 2 3-
match in C' and it cannot be that ¢,,_1 = 2 since then o,,_1 ¢, 1 would be a cycle
2 3 1-match in C. If 0,, = 2, it easy to see that C' = (1,09, ...,0,_1,2) has no cycle
[-matches if and only if C' = (1,09—1,...,0,_1—1) has no cycle I'-matches. Note
cdes(C') = cdes(C”) 4+ 1 so that the n-cycles of the form C' = (1,09,...,0,1,2)
contribute yG,_1(y) to G,(y). Thus consider the cases where o, = 2 where 3 <
k < n —2. We claim that it must be the case that neither (1,09,...,0,_1) nor
(2,0%+1,--.,0,) have any cycle I-matches. That is, it is easy to see that the only
possible cycle I'-match in (1,09, ...,0,_1) that does not occur in C'is if k —1 >3
and op_9 0,1 1is a cycle 2 3 1-match. But in that case, o_9,0,_1 > 2 so that
Ok_2 0r_1 2 would have been a cycle 2 3 1-match in C. Similarly, the only possible
cycle I-match in (2, 0441, . ..,0,) that does not occur in C' is if 0,1 7, 2 is cycle
2 3 1l-match. But in that case, 0,_10,1 would have been a cycle 231-match in
C'. Vice versa, it is easy to see that if o = 2 where 3 < k < n — 2 and neither
(1,09,...,05_1) nor (2,0%41,.-.,0,) have any cycle I'-matches, then C' does not
have any cycle I'-matches. That is, the only possible cycle I'-match in C' that does
not occur in either (1,09,...,0,_1) N0r (2, 0441, ...,0,) 18 if 0x_2 o1 2 is a cycle
2 3 1-match. This is not possible if k£ = 3 since in that case op_o = 1. Similarly if
3<k<n—2and oy 501 2is acycle 23 l-match in C', then o,_5 o1 1 would

be a cycle 2 3 1-match in (1,09, ...,0,_1). Note that it is also the case that
cdes((1,09,...,0k-1)) + cdes((2, 041, ..., 0,)) = cdes(C).

Thus for 3 < k < n — 2, the cycles of the form C = (1,09, ...,0,) where g, = 2

n—2

k—2) Gr-1(y)Gn_r11(y) to G,(y) since we have (Z:g) ways to choose

contribute (

the elements oo, ..., 0%_1.
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It then follows that for n > 3,

“/n—2
Gu) = 1Gns)+ 3 (3G Coialr). 23)
k=3
Multiplying both sides of (2.33) by (t%;), and summing for n > 3, we see that
0?G(t,y)
— Ty = G (t
orr Y ; W )
= VY Gl gy + Y S el
n>3 n>3 i=3 Z ) n ’

) (s e, )

Thus thinking of G(¢,y) as a function of ¢, we see that G(t,y) satisfies the differ-

ential equation

G"(t,y) — (G'(t,y)* + (y + yt)yG'(t,y) — (y + y*t) =0 (2.34)

where G(0,y) = 0 and G'(0,y) = y. If we let G(y,t) = —In(U(t,y)), then thinking
of U(t,y) as a function of ¢, one can easily show that U(¢, y) satisfies the differential
equation

U"(ty) + (y + yt)U'(ty) + (y + y*H)U (L, y) = 0 (2.35)

where U(0,y) = 1 and U’'(0,y) = —y. We used Mathematica to solve this differ-

ential equation which gave the formula

) =¥ (1= () - e (-0, ) )

so that

G(t,y) = —In (e_% (1 — werﬁ <\/§) — werﬁ ((t -1

where erfi(z) is imaginary error function defined by the series

[\)

.CO\—/

D
=

S~—
o

2 e Z2k+1
NG ; k'(2k +1)

We can then apply Theorem 11 to obtain the following theorem.

erfi(z) =
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Theorem 21.

NCMqpg32313 (L, 2, y) = e" Gty (2.37)

acyt2 ]_
(1= ert (B) — et (1 - 1) 5

2

One can use Mathematica to compute that

2 2t3 5 t4
Gy, t) = yt+yg +y §+(y )@Jr
t5 16 7
3y + y4)§ + (13y* + yf’)a + (15y* 4 38y° + yﬁ)ﬁ +
18 19
(183y° + 94y° + y) o5 + (105y° + 12059° + 213y + y) i + -+
and
12 13

NCM{1237231} (t, X, y) =1+ LUyt + LUy(l + l’y)§ + .flfyz(l + 3z + l’zy)? +

4

t
xy? (3w + y + day + 627y + x3y2)g +
' 5

t
2y®(3 4+ 10z + 152° + +y + day + 102%y + 102°y + :c‘*gﬁ)E +

2y (152% 4 13y + 432y + 6022y + 4523y + 32 + 62> + 1522y + 2023y* +
t6
15x%y? + x5y3)§ +

zy* (15 4 63z + 1052% + 1052° + 38y + 147y + 2382°y + 210z°y+

t7
1052y + y* + Tzy® + 212y + 352°y* + 352%y” + 212°y* + 2°¢%) ot

Neither the sequences {G,,(1)},>1 nor the sequences { NCM,,({123,231})},>1 ap-
pear in the OEIS.

2.2 General results

In this section, we shall describe how we can compute NCM.(t,x,y) for
certain general classes of permutations 7. We start by considering permutations

T =71 ...7; where 77 = 1 and 7; = 2. In that case, we have the following theorem.
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Theorem 22. LetT=7,...7; € S; where j >3 and 7y =1 and 7; = 2. Then

1
(1— o eyl deff—ﬂﬁflds)

Proof. Note that in the special case where j = 3, the only permutation satisfying

NCOM, (t,2,y) = (2.38)

the hypothesis of the theorem is 7 =1 3 2. In that special case, the result follows
from Theorem 19. Thus assume that we fix a 7 =7...7; € S; where 71 = 1 and
7, =2and j > 4.
Our first goal is to compute
t’ﬂ
-3 (2.39)
n!
n>1

des(@)+1  Now it is easy to see that

y> _ Z ydes(a)—i-l

oeSh

where A, (y) = 3, cnmr () ¥

for 1 <n <j—1. Thus

t2 3
Alt,y) = yt+y§+( )3—
DA(t,y) t?
ey y+yt+(y+y)2—+ and
02 A(t,
# = y+y+y )+

For n > j, we shall prove a recursive formula for A, (y). We consider three cases

for 0 = 0y ...0, € NM}(7) depending on the position of 2 in o.

Case 1. 0y, = 2.
In this case because j > 4, the only possible 7-matches in ¢ must occur in oy . .. 0,,.
Since des(c) + 1 = des(oy...0,) + 1, it follows that the contribution of the per-

mutations in this case to A, (y) is just A,_1(y).

Case 2. 0, = 2 where k ¢ {2,j}.

n—2

k_2) ways to choose the elements D, that will constitute

In this case, we have (
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03 ...0x_1. Once we have chosen Dy, we have to consider the ways in which we can
arrange the elements of Dy to form o5 ...04_1 and the ways that we can arrange

[n] — (D U{1,2}) to form oy ...0, so that
c=105...0p0-1 2 0Opq1...0, (2.40)

has no 7-matches. However it is easy to see that since k& ¢ {2,j} the only 7-
matches for o of the form (2.40) can occur either entirely in 1 oy . .. 041 or entirely

in 2 o311 ...0,. Moreover it is the case that
des(o) +1=des(l og...05-1) + 1+ des(2 op41...0,) + 1

since o;_1 > 2. Thus the contribution to A, (y) of the permutations in this case is

(Z - Z) Ap-1(Y) An—r1(y)-

Case 3. 0; = 2.

In this case, we have (;‘:22

) ways to choose the elements D; that will constitute
oy ...0;-1. Once we have chosen D;, we have to consider the ways in which we can
arrange the elements of D; to form o5 . ..0;_; and we can arrange [n]—(D;U{1,2})

to form o4, ...0, so that
0'210'2...0'j_120'j+1...0'n (241)

has no 7-matches. Unlike Case 2, it is not enough just to ensure that 1 oo...0;_;

and 2 041 ...0, have no 7-matches. That is, we must also ensure that
I'ed(0'2 e Uj—l) §£ I'ed(Tg Ce Tj—l)

since otherwise 1 oy ...0;-1 2 would be a 7-match. Note that in such a situation
des(1 oy ...0j_1)+1 = des(7). Thus the contributions to A4, (y) of the permutations

in this case is

(? _ 5) (Aj1(y) =y =) A (y).



43

It follows that for n > j,

An(y) = An—l(y) + Z (Z : ;) Ak_l(y)An_k+1(y) — (;L : ;) ydeS(T)An—j+1(y)
- (2.42)
or, equivalently,
Auly)  Aa(®) | (N Aey) Ain(y) ) T A ia(y)
(-2 -2 (; (k—=2)! (n— k) ) G-l g 2

For any formal power series f(t) = >_, o, ful", let f(t)]i<; denote fo+ fit+- -+ ft/.

Multiplying both sides of (2.43) by "2 and summing, we obtain the differential

9A(ty)
ot

equation where A'(t,y) =

A//(tv y) - A//(tu y)‘t§1*3
= A'(t,y) — At y)lisis +

(A'(ty) —y) At y) = (At y) —y) A4 Y) lisis — oA
Thus
A'(ty) = (1—y—y™ ) A (ty) + (A(ty) +
(A"t y)le=i-2) = (A8 )=o) — (A"t y) = 9) A'(Ey) s
We claim that

0= (@tplers) = (25 e ) - (P2 =) 252 oo

or, equivalently, that

A" )z = (At y) + (A y) — y) A'(Ey) i (2.44)

If we take the coefficient of ¢* where 0 < s < #/73 on both sides of (2.44), then we

must show that

Agio A " A1 (y) As—in
S!(y) _ S!(y)+z kk!(y) (Sk_k()@!/)

k=1
s+2

A, A Agio (1
+1 +Z k— 1 +2—(k 1)(9).
' (s +2—k)!
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Thus if we multiply both sides by s!, we see that we must show that for 0 < s <
j - 3a
Aspo(y) = A (y) + Z 9

k=3

2 (542
(i EISOY NS R CYE
However this follows from our analysis of Cases 1, 2, and 3 above for the recursion
of Asi2(y). That is, since s +2 < j — 1, Case 2 does not apply so that we only get
the contributions from Cases 1 and 3 which is exactly (2.45).
Thus we have shown that A(y,t) satisfies the partial differential equation

A"(ty) = (1 —y =y ) A (ty) + (A'(t,y))* (2.46)

with initial conditions that A(y,0) =0, A(y,t)|: =y, and A(y,t)|,2 = y. It is then

2!
easy to check that the solution to this differential equation is

1
A(y,t) =1In — . 247
(y ) 1 — ge(l_y)s+ydes(f) (311)! ds ( )

Thus

Aly,t) = Zt—n, o yel@

n>1 """ CeLnem(r)

1
= In y . (2.48)
1 — (f e(l—y)s-l-ydcs(ﬂﬁds

But then we know by Theorem 11, that

cdes(C)

NCMT(t,LU,y) = 6x2n21 %ZCeL%CTI’L(T)y

zln 1 '
_y)stydes(T J—1
— . (11.5 Jmw)sty es )G{l)!ds)

1

_ des (T sJ—1
1— [t 5o g

which is what we wanted to prove. O

We end this section by showing how one can compute NC M., (t, x,y) where
T € S, is of the foorm 7 =12 ... (7 —1) v j where « is a permutation of the
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elements j+1,...,m where m > j+1. We let p = m — j so that red(y) € S,. We
shall assume that j > 3 since we have already dealt with permutations that start
with 1 and end with 2.

Using our previous theorems as a guide, we shall assume that NC'M, (¢, z,y)
is of the form

cdes(C) ]_

tn
NCM—,—(t’[L"y) = ewZnZl HZCEL%C’”(T)Q o
(U-(t,y))*

where

tTL
=> Unr(y) —- (2.49)

n>0
We have been unable to find a closed form for U, (¢, y). However, we can show that
the coefficients of U, ,(y) satisfy a simple recursion. That is, we shall prove the

following.

Theorem 23. Suppose that 7 =12 ...7 — 1 v j where v is a permutation of
J+1,...,9+pandj>3. Then

1
NCM, (t,z,y) =
A GATRNIE
where
t’ﬂ
Un(ty) =) Unr(y)— (2.50)
n>0 ’
and
n
Un-l—j,T(y) = (1 - y)Un-l-j—l,T(y) - ydCS( )<p) Un—p-l—l,T(y)- (251)

Proof. Taking the natural logarithm of both sides (2.49) and using (2.16), we see
_ yedes(©) " des(o)+1
In(U. ; ca;n(r = nZZI w UEA%L(T)@/ L (252)
Before proceeding, we need to establish some notation. Fix 7 of the form
12 ...5— 1vj where j > 3. For any o € S}, we let 7-imch(c) be the indicator
function that the initial segment of size m in ¢ is a 7-match. Thus 7-imch(o) =1
if red(oy ...0,) = 7 and 7-imch(o) = 0 otherwise. For i = 1,...,j — 1, we let
7 =red(ii4+1 ...5 — 1+ 7). Our first goal is to compute

t’n
= ZAn(y)m (2.53)

n>1
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where
An(y) — Z yl—l—des(a)‘
TENM;,(7)
For i =2,...,k — 1, we shall also need the following functions
t’ﬂ
Bilty) =1+ Bialy) (2.54)
n>1
where

Binly)= ),y

oeSE
7-mch(o)=0
7(Dimch(o)=0
73 imch(o)=0

T(i)imc'h(a)zo

1+des(9) gyer all permutation o in S} such that o has

Thus B;,(y) is the sum of y
no 7-matches and ¢ does not start with a 7)-match for j = 2,...,1.

First we develop recursions for A,(y) for n > 2. Let &, , denote the set
ofall ¢ = oy ...0, € NM.L(7) such that o), = 2. We then consider two cases for

o € NM.(7) depending on which En.k,r contains o.

Case 1. 0 € &,2.+

Thus 0 =12 03...0,. To ensure that ¢ has no 7-matches, we must ensure that
there are no 7 matches in 2 o03...0, and that o does not start with a 7-match
which is equivalent to ensuring that 2 o3 ...0, does not start with a 7(*¥-match.

Thus in this case, the permutations of &, 5, contribute By ,,_1(y) to A, (y).

Case 2 0 € &, i,r where 3 <k <n.

In this case, it is easy to see that the only possible 7-matches must occur in o, . .. g,

n—2

k_2) ways to choose the elements that will con-

orin o;y...0,_1. Thus we have (
stitute oy ...0,_1 and Aj_1(1) ways to order them so that there are no T-matches
in oy ...04_1. Once we have picked oy ...04_1, there are A, _,1(1) ways to order
the remaining elements so that there are no 7-matches in oy . ..0o,. Having picked

o, we have that

des(o) + 1 =des(oy...041) + 1+ des(og...0,) + 1
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since o;_1 > 2. Hence in this case, the permutations in &, j » will contribute
n—2
A A, _
(k; 3 2) k1Y) An—r+1(y)
to A, (y).

It follows that for n > 2,
" /n—2
An(y) = Bap-1(y) + Z L—9 Ap1(y) An—rr1(y)- (2.55)
k=3

We can develop similar recursions for By ,(y) for n > 2. However we have
to consider the cases j = 3 and j > 3 separately.

First consider, the case where j = 3. Note in this case 7 = red(2 v 3) =
1 o 2 where « is a permutation of 3,...,p+ 2 such that red(a) = red(y). We then

consider three cases for 0 € N Mi(T) depending on which &, j - contains o.

Case 1. 0 € &, 9.+

Thus ¢ =12 03...0,. To guarantee that ¢ has no 7-matches, we must ensure
there are no 7 matches in 2 o03...0, and that o does not start with a 7-match
which is equivalent to ensuring that 2 o5 . .. 0, does not start with a 7®-match. It
might seem that to ensure o does not start with a 7-match then we must ensure
that 2 o3. .. 0, does start a 7)-match. However, in this case 70 = red(v 3) does
not start with 1 so then it is automatically true that 2 o3...0, does start with a

7®)-match. Thus the permutations in En.r contribute By ,,_1(y) to By ,(y).

Case 2. 0 € &, pior.

In this case, it is easy to see that the only possible 7-matches must occur in
Opt1...0p OF in 07 ...0,. Now we have (";2) ways to choose the elements that
will constitute oy ...0,4+1. We can order these elements in any way that we want
except that we cannot have red(oy . ..0,41) = red(7y) since otherwise o would start
with a 73 match. Note that By, 1(y) = Zﬁes,iﬂ ydes(®+1 gince no permutation

of length p + 1 can contain a 7-match or start with a 7®-match. Since

des(l oy...0p41) + 1+ des(2 0pya...0,) + 1 =des(o)
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and des(1 ) + 1 = des(7), the permutations in &, ,12 . will contribute

(" %) Bagis ) = 1))

to Bgm(y)

Case 3. 0 € &, where 3 <k <nand k ¢ {2,p+ 2}.

In this case, it is easy to see that the only possible 7-matches must occur in oy, . .. g,
orin oy ...0,_1. Thus we have (Z:g) ways to choose that elements that will con-
stitute oy ... 01 and By;_1(1) ways to order them so that there are no 7-matches
in oy...04_1 and oy ...0,_; does not start with a 7 match and A, _;,1(1) ways
to order oy ...0, so it contains no T-match. It follows that the permutations in

En i, Will contribute (Z:g) By j—1(y)An—i+1(y) to Ban(y).

Thus if n > p + 2, we have the recursion

Byn(y) = (2.56)
Byn-1(y) + (k; (n B 2) Bz,k—l(y)An—k+1(y)> — (n ; 2) Y= A, ().

p —
For 2 <n <p+ 1, Case 2 does not apply so that we have the recursion
" /n—2
Bgm(y) = B2,n—1(y) + Z ( )B2,k—l(y)An—k+l(y) . (257)
o \P 2

Before considering the case where j > 3, we shall show how we can derive

a recursion (2.51) for the U, ,(y)s in this case. We have shown that for all n > 2,

) = B+ 3 (25 ) Aa) A and

Bonly) = Banaly)+ (Z (Z:Z)Bz,k_xy)An_kH(y)) -

k=3

n—2
Mn2p+%f“”<]))Awwﬂw

where for any statement A, we let y(A) equal 1 if A is true and equal 0 if A is
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false. Thus we have that for all n > 2,

An(y) _ B2n 1 + = Ak 1(?/ n— k-i—l(y) and

(n—2)! (n— 2 pr (k—2)! —k)!

B2,n(y) _ Bz n— 1 —l— n 2 k— 1 A, k+1(y) _

(n—2)! n—2 3 (n—k)!
es(T

(n—p)

Multiplying by #t"~2 and summing, we obtain the following differential equations

when we think of A = A(t,y) and By = Bs(t,y) as just functions of ¢:
A" = By+ (A" —y)A" and
ydes(ﬂ-)tp
p!
Now if U = U(t,y) = U.(t,y), then A = —In(U). Thus

By = By+(By—yA -

/

_TIr/

A = 0 and (2.58)

. g 8l 2
A" = - . 2.
-+ (%) (259)

Making these substitutions in our first differential equation and solving for B), we

see that

U" + yU'

By— "'

(2.60)

Thus

U/// + yU// (U// _l_ yU/)U/
U * U?

Substituting these expressions into our second differential equation and simplifying,

Bl = — (2.61)
we obtain the following differential equation for U,
ydCS(T)tp

"o N "
U"=1-y)U o

U (2.62)
Taking the coefficient of £ on both sides of (2.62), we see that

Untar(y) = (1= y)Unsa(y) — (Z) Y Ui (y) (2.63)

in the case where 7 =1 2 v 3 and 7 is a permutation of 4,...,3 + p.
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Now consider the recursion for By, (y) where j > 3. We then consider two

cases for 0 € NM} (1) depending on which set &, ;. contains o.

Case 1. 0 € &,9.+

Thus 0 =12 03...0,. To ensure that ¢ has no 7-matches, we must ensure that
there are no 7 matches in 2 o3...0, and that ¢ does not start with a 7-match
which is equivalent to ensuring that 2 os.. .0, does not start with a 7(®-match.
However in this case, we must also ensure that o does not start with a 73 which
means that 2 o5...0, must not start with a 7()-match. Thus in this case, the

o € &, contribute Bs,_1(y) to Ba,(y).

Case 2 0 € &, i, where 3 <k <n.

In this case, it is easy to see that the only possible 7-matches must occur in oy, . .. o,

n—2

k—2) ways to choose the elements that will consti-

orin oy...o0,_1. Thus we have (
tute oy ...05_1 and By ,_1(1) ways to order them so that there are no 7-matches in

2 match and there are A,_j.1(1)

o1...06_1 and o1 . .. 01 does not start with a 7
ways to order oy ...o, so that there is no 7-match. It follows that the permuta-
tions in &, will contribute (Z:;) By j—1(y)An_+1(y) elements to By, (y).

It follows that if j > 3, then for n > 2,

Ban) = Baoa)+ 3 (3 ) BuacsAuiai) (260

One can repeat this type of argument to show that in general, for 2 <7 <

J—2

Bin(y) = Biyin-1(y) + Z (Z : ;) Bij—1(y) An-r+1(y)- (2.65)

The recursion for B;_;,(y) is similar to the recursion for B, ,(y) when
j = 3. That is, 707 = red(j — 1 v j) = 1 a 2, where « is a permutation of
3,...,p+2and red(y) = red(«). Then we have to consider three cases depending

on which set &,  » contains o.
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Case 1. 0 € &9+

Thus 0 =12 03...0,. To ensure that o has no 7-matches and does not start with
a 7M-match for i = 2,...,j — 1, we clearly have to ensure that 2 o5...0, has no
r-matches and does not start with a 7®-match for i = 2,...,j — 1. However, we
do not have to worry about 2 o3...0, starting with a 70 = red(c j) since 7V
does not start with its least element. Thus in this case, the permutations in &, 2,

contribute Bj_; ,—1(y) to Bj_1.,(y).

Case 2. 0 € &, ;12 In this case, it is easy to see that the only possible T-matches
must occur in op4q...0, orin o;...0,. Now we have (";2) ways to choose that
elements that will constitute oy ...0p41. We can order these elements in any way
that we want except that we cannot have red(os...0,11) = red(7y) since otherwise
o would start with at 70— match. Note that B;_,11(y) = ZB€S;+1 s+ gince
no permutation of length p + 1 can contain a 7-match or start with a 7()-match

for i = 2,...7 — 1. Thus since
des(l 09...0p41) +1+des(2 opta...0,) + 1 =des(o)

and des(1 ) + 1 = des(7), the permutations in &, ,12 . will contribute

n—2
( . )(Bj_l,m(y) S ONAL ()

to Bj—l,n(y)'

Case 3. 0 € &, where 3 <k <nand k ¢ {2,p+ 2}.

In this case, it is easy to see that the only possible 7-matches must occur in oy, . . . g,

n—2

k—2) ways to choose that elements that will consti-

orinoy...o,_1. Thus we have (
tute oy ...0,_1 and B;j_; ;_1(1) ways to order them so that there are no 7-matches
in y...04_1 and oy ...04_1 does not start with a 7()-match for i =2,...,5 —1
and there are A,,_x.1(1) ways to order oy . ..o, so that there is no 7-match. Thus

the permutations in &,  » will contribute (z:g)Bj_l,k_l(y)An_kH(y) to Bj_1,(y).
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It follows that for n > 2,
" /n—2
Biin(y) = Biiaa(y)+) <k: B 2) Bj1p-1(y)An-r1(y) —  (2.66)
k=3

n— 2
x(n>p+2) ( ) )ydes(T)An—p—l(y)-

Thus for all n > 2, we have proved that in general

M) = Buaa)+ 3 (25 A1) A sa)
Ban(0) = Baas )+ 3 (125 ) Boss 0w i)

(1) = Bras )+ 3 (175 ) Basa 0w i)

n

2
Bj on(y) = Bj1n-1(y) + (k; ) i—2k—1(Y) An—rt1(y)
3

k=

By1aly) = Byrmay) + ( )Mmymn_m(y))—

—2
x(n2p+2)< . )ydewn_p_l(y).

n—2
7—5y and then sum

As in the case for j = 3, if we multiply everything by =

over n > 2 we get the following system of differential equations where we think of

A(t,y) and B,(t,y) for i =2,...,7 — 1 as functions of ¢.

(D)) A" =By+ A” —yA
(D,)  BY = Bj+ ByA' —yA’
(Ds)  BY = Bj+ ByA' —yA’

(Dj-2) B;'/—z - B§—1 + B/‘—2A/ —yA’

tp
(Dj_1) Bf_ =B, +B; |A'—yA — Wydes(T)A
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As in the case j = 3, we let A(t,y) = —log(U(t,y)) so that A" = _g/
and A" = _g” + ([]]—/22 Thus under this substitution, the first differential equation
becomes

_U// U/2 , U/2 U/
vttt
so that
—_U" — U’
B, = Ty (2.67)

In fact, we have the following lemma.

Lemma 33. For2<:<j—1,

L) — 3L o)
p ==Y yUZk=1U . (2.68)

Proof. We proceed by induction on i. We have already shown that (2.68) in the

case where 1 = 2. Now suppose that

_U® — =1 7(k)
B = yUZk=1 . (2.69)

Then we must show that

—UHD S Uk
i :
Taking the derivative of both sides of (2.69) with respect to ¢, we see that

B — Uit —y 22:2 u® + <U(i) +y 22_:11 u® z>

B, = (2.70)

U U U

Plugging our expression for B! and B, into the differential equation
(Di) B = By + BiA' =y A,

we see that

U U U

R A AN
i+1 U U U .

Solving for B;,, we see that

_yH) —y S e . ( U 4y St g . U/)

—UHD —y S Uk
i .

! —
Bi—l—l -
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By the Lemma, we know that

Uy
— U )
and, hence,
B// o _U(j) —Y Zi;; U(k) + U(j_l) +y Zi_2 U(k) Q/
I U U U

Thus plugging these expressions into the differential equation (D,_1), we obtain

that

U

A DY
- U

- —yX U Uty g Y (e 20
U U U P! U

Simplifying this expression yields that

_UW — y S g . (Uu—n 4y Sy _Q’)

tp

U = (1 = y)Ub=D = Syt (2.71)
p:

Then taking the coefficient of £; on both side of (2.71) gives that

es(7 n
Untj = (1 =y)Unyj1 + y ( )<P) Un—pt1

which is what we wanted to prove. O

We end this section with an example of the use of Theorem 23. Let 7 = 1243

and

tn es(o cdes(o
Aot =S Anclip =0 T OR300 > v

n>1 n>1 " geNML (1) n>1 " CeLnem(r

It is easy to check that Al,T(y> =Y, A2,T(y) =Y, A3,T(y> =Y + y27 and A4,T(y> =

y + 3y? +y3. Now
1) =3 Unely) = et

n>0
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so that one can use Mathematica to compute that Uy ,(y) =1, Uy .(y) = —v,
Usr(y) = =y + ¥y, Uso(y) = =y +2y* — ¢, and Us-(y) = —y +4y° = 3y° + y*.

By Theorem 23, we know that we have the recursion that

Uni3-(y) = (1 = 9)Uns2-(y) — yUn - (y).

Thus we can use this recursion to compute that

Us-(y) = —y + 6y* — 8y° + 4y* — ¢,

Us-(y) = —y +8y* — 16y° + 13y" — 5y° +¢°,
Ur-(y) = —y + 10y* — 28y> + 32y* — 19¢° + 6y° — 7, and
Us-(y) = —y + 12y° — 44y’ + 68y" — 55y° + 26y° — Ty" + y°.

But then we know that NCM.(t,z,y) = m Let NCM; ,(x,y) be the coef-

ficient of %n, in NCM,(t,z,y). That is, let

tTL

NCM,(t,z,y) = > NCM,,(x, y) =
n>0

Thus one can use Mathematica to compute the polynomials NCM, ,(x,y) where
NCMT@(I, y) = 1,
NCM;1(z,y) = xy,
NCM, 5(z,y) = vy + 2%y,
NCM, 3(z,y) = zy + zy* + 32%y? + 23¢°,

NCOM, 4(z,y) = vy + 3wy + To?y? + 2y® + 422y® + 62°y° + 2ty?,

NCM, 5(x,y) = xy + 9zy* + 152%y* + 8wy® + 252%y° + 252°y° + wy* + 5a%y* +
1023y* 4+ 102%y* 4 %95,
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NCOM, ¢(x,y) = zy+23xy? + 312%y? + 452y3 + 119223 + 9023y> + 20xy* + 732%y* +
10523yt + 652 y* + xy° + 62%y° + 1523y5 + 202ty + 152°y° + 25y5,

NCM, 7(z,y) = xy + 53zy® + 632%y* + 2172y> + 4902%y> + 3012%y> + 192zy* +
623z%y* + 74923y + 35021yt + 47xy° + 1962%y° + 34323y + 31521y° + 140255 +
xy’ + T2?yS + 2123y5 + 35219 + 35255 + 21255 + 27y", and

NCM, s(z,y) = zy+ 1152y + 1272%y? 4+ 9162y® + 183822y® + 96623y® + 15002y * +
433322y + 44662y + 17012%y" + 7652y + 281022y° + 421423y + 31642y° +
10502°y° + 105295 + 495225 + 100823y + 1148x1y® + 77025y° + 2662%y° + zy” +
8x2y" + 282%y™ + 56xty” + 702%y" + 5620y7 + 2827y" + 28y,



Chapter 3
The reciprocal method

In this chapter, we will present several results based on the reciprocal

method introduced by Jones and Remmel [19].

3.1 Introduction

Recall the definitions

" .
NMT(t, , y) =14+ Z E Z xLRMln(U)lerdeS(U)’ (]_]_6)
n>1 " ceNMnu(Y)

and

NCM~(t,z,y) =1+ Z — Z xcyC(o)ycdos(U) (1.17)
n>1  geNCMy(Y)

This chapter will be focusing on the generating function NM. (¢, x,y) for single
patterns that start with 1. Recall that in this case by Corollary 14, NM,(t,z,y) =
NCM,(t,z,y).

This method does not compute NM, (¢, x,y) directly. Instead, we assume

that
NM,(t,z,y) = < ! )w where U, (t,y) =1+ Z UT,n(y)ﬁ. (3.1)
U-(t,y) = n!
Thus
U (t,4) = : (32

1+ anl NM. (1, y)%

57



o8

Our method gives a combinatorial interpretation the right-hand side of (3.2) and
then uses that combinatorial interpretation to develop simple recursions on the
coefficients U, ,(y).
It follows from Theorems 11 and Corollary 14 that if 7 € S; and 7 starts
with 1, then
NM.(t,z,y) = F(t,y)" (3.3)

for some function F'(¢,y). Thus our assumption that

NM,(t,2,y) = (ﬁ) (3.4)

is fully justified in the case when 7 starts with 1. Now we review the background
in symmetric functions that is needed to give combinatorial interpretation to the

coefficients U, ,,(y) from (3.1).

3.2 Symmetric functions.

In this section, we give the necessary background on symmetric functions
that will be needed for our proofs.

Given a partition A = (A1,...\y) where 0 < Ay < -+ < Ay, we let £(\) be
the number of nonzero integers in A. If the sum of these integers is equal to n,
then we say A is a partition of n and write A - n.

Let A denote the ring of symmetric functions in infinitely many variables
T1,Ty,.... The n' elementary symmetric function e, = e,(x1,2s,...) and n'®
homogeneous symmetric function h,, = h, (1, xs, . ..) are defined by the generating
functions given in (1.31) and (1.32). For any partition A = (A1,..., ), let ey =
ey ---ey, and hy = hy, ---hy,. It is well known that {e, : A is a partition} is a
basis for A. In particular, eg, e, .. . is an algebraically independent set of generators
for A and, hence, a ring homomorphism 6 on A can be defined by simply specifying
0(e,) for all n.

A key element of our proofs is the combinatorial description of the coeffi-
cients of the expansion of h, in terms of the elementary symmetric functions ey

given by Egecioglu and Remmel in [13]. They defined a A-brick tabloid of shape
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(n) to be a rectangle of height 1 and length n chopped into “bricks” of lengths
found in the partition \. For example, Figure 3.1 shows one brick (2, 3, 7)-tabloid
of shape (12).

Figure 3.1: A (2,3, 7)-brick tabloid of shape (12).

Let By, denote the set of A-brick tabloids of shape (n) and let B, ,, be the
number of A-brick tabloids of shape (n). If B € By, we will write B = (by, ..., b))
if the lengths of the bricks in B, reading from left to right, are by, ..., byn). Through

simple recursions, Egecioglu and Remmel [13] proved that

hy =Y (=1)"*WBy e (3.5)

AFn

3.3 Combinatorial interpretation of U, ,(y)

Suppose that 7 € S; which starts with 1 and des(7) = 1. Let us also assume

that 7 has only one descent. Consider the generating function

1 1

_ k 3.6
NM:(t,1,y) 1+, GNM, (1) (36)

U-(t,y) =

where ]\7]\47_’n(17 y) = ZUGNMn(T) y1+des(0)_
To this end, we define a ring homomorphism 6, on the ring of symmetric
functions A by setting 6, (eg) = 1 and

(="

n!

0.(en) = NM.,(1,y) for n > 1. (3.7)

It follows that

0-(H(t) = ;HTM")t S O(E(—t) 1+, (—)"0-(en)

1
I+ anl %NMnn(la y)
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which is what we want to compute.

By (3.5), we have that

nf-(h,) = nl> (=1)"""B,.0(c,)

ukEn
g(/»‘) (_1)bz
= Ay S TN (L)
uFn (01,0bp(u))EBpm i=1 "

1)
= Z(_l)f(u) Z (bl, . .TL’ bg(“)) H NM.,.(1,9). (3.8)

pkn (b15-sDe (1)) EBu,n =1

Our next goal is to give a combinatorial interpretation to the right-hand side of

(3.8). If we are given a brick tabloid B = (by,. .., b)), then we can interpret the
------

of B in such a way that |S;| = b; for i = 1,...,¢(p) and the sets S, ..., Sy, form

a set partition of {1,...,n}. Next for each brick b;, we use the factor

NMoy(Ly) = D,y
€Sy, ,7-mch(0)=0

to pick a rearrangement ¢® of S; which has no 7-matches to put in cells of b; and
then we place a label of y on each cell that starts a descent in o® plus a label of y
on the last cell of b;. Finally, we use the term (—1)“*) to turn each label y at the
end of brick to a —y. We let O, ,, denote the set of all objects created in this way.
For each element O € O, ,,, we define the weight of O, W(0O), to be the product
of y labels and the sign of O, sgn(0), to be (—1)“". For example, if 7 = 13245,
then such an object O constructed from the brick tabloid B = (2,8, 3) is pictured
in Figure 3.2 where W(O) = 4™ and sgn(O) = (—1)3. Tt follows that

b (h,) = Y sgn(O)W(0). (3.9)
0€0;.n

Next we define a weight-preserving sign-reversing involution I, on O .
Given an element O € O, ,, scan the cells of O from left to right looking for the
first cell ¢ such that either

(i) cis labeled with a y or
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-y y y y |-y |V -y
La] 8l|{[7] 10125 12| 3] 96|/l 2] 1] 14

Figure 3.2: An element of O;304513.

(ii) cis a cell at the end of a brick b;, the number in cell ¢ is greater than the
number in the first cell of the next brick b;, 1, and there is no 7-match in the

cells of bricks b; and b; 1.

In case (i), if ¢ is a cell in brick b;, then we split b; in to two bricks b; and b}
where b/, contains all the cells of b; up to an including cell ¢ and b} consists of the
remaining cells of b; and we change to label on cell ¢ from y to —y. In case (ii),
we combine the two bricks b; and b;,; into a single brick b and change the label on
cell ¢ from —y to y. For example, consider the element O € 0394513 pictured in
Figure 3.2. Note that even though the number in the last cell of brick 1 is greater
than the the number in the first cell of brick 2, we can not combine these two
bricks because the numbers 4 8 7 10 11 would be a 13245-match. Thus the first
place that we can apply the involution is on cell 5 which is labeled with a y so that

I.(O) is the object pictured in Figure 3.3.

-y -y y y |-y |V -y
La] 8l|[7 ] 10 21|[5 12| 3] o9l 6]l 2] 1] 14

Figure 3.3: I.(O) for O in Figure 3.2.

We claim that I, is an involution so that I? is the identity. To see this,
consider case (i) where we split a brick b; at cell ¢ which is labeled with a y. In
that case, we let a be the number in cell ¢ and @’ be the number in cell ¢+ 1 which
must also be in brick b;. It must be the case that there is no cell labeled y before
cell ¢ since otherwise we would not use cell ¢ to define the involution. However,
we have to consider the possibility that when we spilt b; into 0} and b} that we
might then be able to combine the brick b;_; with 0 because the number in that

last cell of b;_; is greater than the number in the first cell of b, and there is no
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7-match in the cells of b; ; and b;. Since we always take an action on the left
most cell possible when defining I, we know that we cannot combine b;_; and b; so
that there must be a 7-match in the cells of b;_; and b;. Clearly, that match must
have involved the number a’ and the number in cell d which is the last cell in brick
bj—1. But that is impossible because then there would be two descents among the
numbers between cell d and cell ¢ + 1 which would violate our assumption that 7
has only one descent. Thus whenever we apply case (i) to define I,.(O), the first
action that we can take is combine bricks b} and b so that I2(O) = O.

If we are in case (ii), then again we can assume that there are no cells
labeled y that occur before cell c. When we combine brick b; and b;, 1, then we
will label cell ¢ with a y. It is clear that combining the cells of b; and b;,; cannot
help us combine the resulting brick b with an earlier brick since it will be harder
to have no 7-matches with the larger brick . Thus the first place cell ¢ where we
can apply the involution will again be cell ¢ which is now labeled with a y so that
I2(0) = O if we are in case (ii).

It is clear from out definitions that if I.(O) # O, then sgn(O)W(0) =
—sgn(1.(0))W(I.(O)). Hence it follows from (3.9) that

nlf-(h,) = Y sgn(O)W(0) = > sgn(0)W(0). (3.10)
O€O0 n 0€0+ 1,I;(0)=0

Thus we must examine the fixed points of .. So assume that O is a fixed point of
I,. First it is easy to see that there can be no cells which are labeled with y so that
numbers in each brick of O must be increasing. Second we cannot combine two
consecutive bricks b; and b;;; in O which means either that there is an increase
between the bricks b; and b;;, or there is a decrease between the bricks b; and
bi11 but there is a 7-match in the cells of the bricks b; and b;;;. We claim that,
in addition, the numbers in the first cells of the bricks must form an increasing
sequence, reading from left to right. That is, suppose that b, and b;,; are two
consecutive bricks in a fixed point O of I and that a > a’ where a is the number
in the first cell of b; and @’ is the number in the first cell of b; ;. Then clearly the
number in the last cell of b; must be greater than o’ so that it must be the case

that there is a 7-match in the cells of b; and b;,,. However a’ is the least number
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that resides in cells of of b; and b;,; which means that the only way that a’ could
be part of a 7-match that occurs in the cells of b; and b;,; is to have a’ play the
role of 1. But since we are assuming that 7 starts with 1, this would mean that if
a’ is part of a T-match, then that 7-match must be entirely contained in b;,; which
is impossible. Thus ¢’ cannot be part of any 7-match that occurs in the cells of b;
and b; 1. However, this would mean that the 7-match that occurs in the cells of b;
and b;; 1 must either be contained entirely in the cells of b; or entirely in the cells
of b; 11 which again is impossible. Hence it must be the case that a < a'.

Thus we have proved the following.

Lemma 34. Suppose that T € S;, T starts with 1, and des(t) = 1. Let 0, : A —
Q(y) where Q(y) is the set of rational functions in the variable y over the rationals

Q defined by 0.(eg) =1 and 0,(e,) = (=" NM, ,(1,y) forn>1. Then

n!

n16,(h,) = > sgn(0O)W(0) (3.11)

0€0; 1,1 (0)=0

where O, is the set of objects and I is the involution defined above. Moreover,

every fized point O of 1. has the following three properties.

1. There are no cells labeled with y in O so that the elements in each brick of

O are increasing,

2. the numbers in the first cell of each brick of O form an increasing sequence,

reading from left to right, and

3. b; and b1 are two consecutive bricks in O, then either (a) there is increase
between b; and by, or (b) there is a decrease between b; and b;1 but there is

T-match in the cells of b; and b; 1.
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3.4 Special cases

341 7=1324...pfor p>5

Now we specialize to the case where 7 = 1324 ...p where p > 5. In this

case, we have

0.(H(t) = nzzoer(hn)t T (ECD) Tt S (—0)0r (en)
1 &
TS R TG A D Unaly)—.

n>1

Thus 0(h,) = M or, equivalently, n!6(h,) = U, ,(y). Hence

Unly)= Y. sgn(O)W(0).
0€0+ 1,1 (0)=0

In this situation, we can make a finer analysis of the fixed points of I,. Let
O be a fixed point of I.. By Lemma 34, we know that 1 is in the first cell of O.
We claim that 2 must be in cell the second or third cell of O. That is, suppose
that 2 is in cell ¢ where ¢ > 3. Then since there are no descents within any brick
2 must be the first cell of a brick. Moreover, since the minimal numbers in the
bricks of O form an increasing sequence, reading from left to right, 2 must be in
the first cell of the second brick. Thus if b; and by are the first two bricks in O,
then 1 is in the first cell of b; and 2 is in the first cell of by,. But then we claim
that there is no 7-match in the cells of b; and b,. That is, since ¢ > 3, b; has
at least three cells so that O starts with an increasing sequence of length 3. But
this means that 1 can not be part of a 1324 ...p-match. Similarly, no other cell
of by can be part of 1324 ... p-match because the 2 in cell ¢ is less than any of the
remaining numbers of b;. Thus if there is a 1324 ... p-match among the cells of b;
and by, it would have to be entirely contained in by which is impossible. But this
would mean that we could apply case (ii) of the definition of I, to b; and by which

would violate our assumption that O is a fixed point of I.. Thus, we have two cases.

Case 1. 2 isin cell 2 of O.



65

In this case there are two possibilities, namely, either (i) 1 and 2 are both in
the first brick by of O or (ii) brick b is a single cell filled with 1 and 2 is in the first
cell of the second brick by of O. In either case, it is easy to see that 1 is not part of a
1324 ... p-match in O and if we remove cell 1 from O and subtract 1 from the num-
bers in the remaining cells, we would end up with a fixed point O’ of I in O ,,_1.
Now in case (i), it is easy to see that sgn(O)W (0) = sgn(O")W (O') and in case (ii)
since by will have a label —y on the first cell, sgn(O)W (O) = (—y)sgn(O" )W (O’).
It follows that fixed points in Case 1 will contribute (1 — y)U. ,,—1(y) to Urn(y).

Case 2. 2 isin cell 3 of O.

Let O(i) denote the number in cell ¢ of O and by, by, . .. be the bricks of O, reading
from left to right. Since there are no descents within bricks in O, we know that
2 is in the first cell of a brick. We claim that it must be the case that b; is has
two cells and by has at least p — 2 cells. That is, it cannot be that b; and b, both
only have one cell each. Otherwise, it would be the case that 2 is the least number
in the cells of bricks by and b3 so that there would be a decrease between bricks
by and b3 and there could be no 7-match in cells of by and b3. But then we could
combine bricks by and b3 according to the definition of I, and O would not be a
fixed point of I,. Thus b; has two cells. But then by must have at least p — 2 cells
since otherwise, there could be no 7-match contained in the cells of b; and by and
we could combine bricks b; and b, which again would mean that O is not a fixed
point of I,. Thus b; is a brick with two cells and by is brick with at least p — 2
cells. But then the only reason that we could not combine bricks b; and b, is that
there is a 7-match in the cells of b; and by which could only start at position 1.
Next we claim that O(p — 1) = p — 1. That is, since there is a 7-match
starting at position 1 and p > 5, we know that all the numbers in the first p—2 cells
of O are strictly less than O(p—1). Thus O(p—1) > p—1. Now if O(p—1) > p—1,
then let ¢ be least number in the set {1,...,p—1} that is not contained in bricks b;
and by. Since the numbers in each brick are increasing and the minimal numbers

of the bricks are increasing, the only possible position for ¢ is the first cell of brick
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bs. But then it follows that there is a decrease between bricks by and bs. Since
O is a fixed point of I, this must mean that there is a 7-match in the cells of by
and bs. But since 7 has only one descent, this 7-match can only start at the cell
¢ which is the second to the last cell of b,. Thus ¢ could be p — 1 if by has size
p—2orc>p—1if by has size > p — 2. In either case, p —1 < O(p—1) <
O(c) < O(c+1) > O(c+ 2) = i. But this is impossible since to have a 7-match
starting at cell ¢, we must have O(c) < O(c + 2). Thus it must be the case that
O(p—1)=p—1and {O1),....,.0p—-1}={1,...,p—1}.

We now have two subcases.

Case 2.a. There is no 7-match in O starting at cell p — 1.

Then we claim that O(p) = p. That is, if O(p) # p, then p cannot be in by
so that p must be the first cell of the brick b3. But then we claim that we could
combine bricks by and bs. That is, there will be a decrease between bricks by and
bs since p < O(p) and O(p) is in be. Since there is no 7-match in O starting at cell
p — 1, the only possible 7-match among the cells of b, and b would have start at
a cell ¢ # p — 1. But it can’t be that ¢ < p — 1 since then it would be the case
that O(c) < O(c+ 1) < O(c + 2). Similarly, it cannot be that ¢ > p — 1 since
then O(c) > p and p has to be part of the 7-match which is impossible since O(c)
must play the role of 1 in the 7-match. Thus it must be the case that O(p) = p. It
then follows that if let O’ be the result of removing the first p — 1 cells from p and
subtracting p — 1 from the remaining numbers, then O will be a fixed point of I,
in O ,,_(p—1)- Note that if b, has p — 2 cells, then O" will start with a brick with
one cell and if by has more than p — 2 cells, then O’ will start with a brick with at
least two cells. Since there is —y coming from the brick b, it is easy to see that

the fixed points in Case 2.a will contribute —yU- ,,—-1)(y) to Urn(y).

Case 2.b. There is a 7-match starting a p — 1 in O.

In this case, it must be that O(p — 1) < O(p) > O(p + 1) so that by must have



67

p — 2 cells and brick b starts at cell p+ 1. We claim that b3 must have at least
p — 2 cells. That is, if b3 has less than p — 2 cells, then there could be no 7-match
among the cells of b, and b3 so then we could combine by and bs violating the fact
that O is a fixed point of I.

In the general case, assume that in O, the bricks by, ..., by_1 all have (p—2)
cells. Thenlet ry =1l andfor j=2,....,k—1,let r; =1+ (j —1)(p—2). Thus r;
is the position of the second to last cell of brick b; for 1 < 57 <k —1. Furthermore,
assume that there is a 7-match starting at cell r; for 1 < j < k—1. It follows that
O(rp—1) < O(rg—1+1) > O(rr_1+2) so that brick b, must start at cell r,_;+2 and
there is a decrease between bricks b,_; and b;,. But then it must be the case that by,
has at least p — 2 cells since if b, has less than p — 2 cells, we could combine bricks
br—1 and by violating the fact that O is a fixed point of .. Let r, =1+ k(p — 2).
We shall also assume that O does not have a 7-match starting at position r. Thus

we have the situation pictured below.

T2 Tk—1 Tk
O(1) | 0(2) || O@B) | = | O(r2) | O(rz2+1) | O(rk—1) | O(rk—1+1) || = | O(rg) | O(r+1)
b1 b2 br—1 by

First we claim O(r;) = r; and {1,...,7;} = {O(1),...,0(r;)} for j =
1,..., k. We have shown that O(1) = 1 and that O(r3) = O(p — 1) = p — 1 and
{0(1),...,0(p—1)} ={1,...,p—1}. Thus assume by induction, O(r;_1) = rj_1
and {1,...,7,_1} = {O(1),...,0(rj_1)}. Since there is a 7-match that starts at

cell r;_; and p > 5, we know that all the numbers
O(Tj_l), O(Tj_l + 1), Cey O(’f’j_l +p — 3)

are less than O(r;) = O(rj_1 +p —2). Since {1,...,7r;_1} ={O0(1),...,0(r;-1)},
it follows that O(r;) > r;. Next suppose that O(r;) > r;. Then let i be the
least number that does not lie in the bricks 0y,...,b;. Because the numbers in
each brick increase and the minimal numbers in the bricks are increasing, it must
be the case that ¢ is in the first cell of the next brick b;;;. Now it cannot be

that j < k because then we have that i = O(r; +2) < r; < O(r;) < O(rj4+1)
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which would violate the fact that there is a 7-match in O starting at cell r;. If
J = k, then it follows that there is a decrease between bricks b, and by, since
bpr1 starts with ¢ < rp < O(rg). Since O is a fixed point of I, this must mean
that there is a 7-match in the cells of b, and bi.;. But since 7 has only one
descent, this 7-match can only start at the cell ¢ which is the second to the last
cell of by. Thus ¢ must be greater than r, because by hypothesis there cannot
be a 7-match starting at cell r;. So bgy; must have more than p — 2 cells. In
this case, we have that i < r, < O(rg) < O(¢) < O(c+1) > O(c+2) = 1.
But this can not be since to have a 7-match starting at cell ¢, we must have
O(c) < O(c+2). Thus it must be the case that O(r;) = r;. But then it must
be the case that r;_; = O(r;—1) < O(c) < O(r;) = r; for rj_; < ¢ < r; so that
{0(1),...,0(r;)} ={1,...,r;} as desired. Thus we have proved by induction that
O(r;)=r;jand {1,...,7;} ={O(1),...,0(rj)} for j =1,... k.

This means that the sequence O(1),...,0(ry) is completely determined.
Next we claim that since there is no 7-match starting at position r, it must be
the case that O(ry+1) = rp + 1. That is, if O(ry + 1) # 1, + 1, then 7, + 1 cannot
be in brick by so then r; + 1 must be in the first cell of the brick b;,;. But then we
claim that we could combine bricks b; and by, ;. That is, there will be a decrease
between bricks by and by, since 1, +1 < O(ri, + 1) and O(rg + 1) is in by. Since
there is no 7-match starting in O at cell ri, the only possible 7-match among the
cells of b, and bg,q, would have to start at a cell ¢ # ry. Now it cannot be that
¢ < 1, since then O(c) < O(c+ 1) < O(c+ 2). But it cannot be that ¢ > 7 since
then O(c) > ¢ + 1 and 74, + 1 would have to be part of the 7-match which means
that O(c) could not play the role of 1 in the 7-match. Thus it must be the case
that O(ry + 1) = rp + 1. It then follows that if we let O’ be the result of removing
the first 7 cells from O and subtracting r; from each number in the remaining
cells, then O’ will be a fixed point I, in O, ,_, . Note that if by has p — 2 cells,
then the first brick of O’ will have one cell and if b, has more than p — 2 cells, then
the first brick of O’ will have at least two cells. Since there is a factor —y coming

from each of the bricks by, ...,bx_1, it is easy to see that the fixed points in Case

2.b will contribute Zk23(_y)k_lU-r,n—((k—l)(p—2)+1)(y) to Urn(y).



Thus we have proved the following theorem.

Theorem 24. Let 7 = 1324...p where p > 5. Then NM,(t,x,y) = (

where U, (t,y) _1+ZUT"

n>1

For example, we have computed the following. Ujsess1(y) =

Ursass2(y) = —y + 4%,

Ursaas,3(y) = —y + 2y° — 4%,
Ursaasa(y) = —y + 3y° = 3y° + ¢,
Ursoss(y) = —y + 5y — 6y° + 4y* — 37,
Ursaas6(y) = —y + Ty* — 12y° + 10y*
Utzoas,7(y) =

Ursaass(y) = —y + 11y* — 34y° 4 47y*
Utsaas.0(y) =

Uisa5,10(y) = —y + 15y

U132456,1 Yy
U132456,2 Yy
U132456,3 Yy

U 132456,4\Y

U132456,6 Y
U132456,7 Yy
U132456,8 Yy

(y) =
(y) =
(y) =
(y) =
Utz24s6,5(y) =
(y) =
(y) =
(y) =
(y) =

U 132456,9(Y

U1324567,1 (y) =

Ur,n(y) =

tn

n' ’ UT,I (y> =

= 5y” + 1%,

—y, and forn > 2,

—y + 9y2 — 21y3 + 23y4 — 159° + 6y6 — y7,

272y +153y!

3045 + 214
—y + 13y* — 51y® + 88y* — 90y° + 61y°® — 28y™ + 8y® — ¢°,
— 189y° + 156¢° — 90y” + 36y°

—y + 7

—y +2y° —y?,

—y + 3y = 3y° + v,

—y +4y* — 6y° + dy* — 9,

—y+6y —10y +10y —5y +y,

—y + 8y* —

—y + 10y? — 27y3 + 38y* —
— 4013 + 68y*
Utsaase10(y) = —y + 14y? — 57y3 + 114y* — 146y° + 131y5 — 84y + 36y°

—y + 12y

-y,

Uisaaser,2(y) = —y + 42,

17y + 20y*

=Ty + P

— 15y° + 6y° — y”
— 3595 + 2195 — Ty + 98,
— T41® + 5695 — 28y7 + 88 — ¢°

69

Uxim)m

—0y° 4 ¢

— 9y 4+ 10
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—y+2y° — v,
—y+3y° = 3y° +y,
Ursoasers(y) = —y +4y* — 6y° + 4y* — °,

Utsaaser3(y) =
(y) =
(y) =
Ursaaser,s(y) = —y + 5y° — 10y° + 10y* — 5y° + ¢,
(y) =
(y) =
(v) =

U 1324567,4\Y

—y + Ty? — 1593 + 20y* — 15¢° + 69° — ¢/7,

—y + 9y? — 23y% + 35¢y* — 35¢° + 219° — Ty" + o8,

Ursaaser,o(y) = —y + 11y* — 34y + 59y* — T0y° + 56y° — 28y" + 8y® — 17,
Ussaaser0(y) = —y + 13y2 — 48y + 96y* — 130y° + 126y° — 84y" + 363° — 9y° + y'°

Ursoase7,7(y

Urso4s67,8 (Y

Of course, one can use these initial values of the Ujses ,n(y) to compute
the initial values of NMig04. ,(t,2,y). For example, we have used Mathematica to

compute the following initial terms of N Miszo45(t, x,y).

1
NM13245(t, Z’,y) =1+ Zlﬁ"yt + 5 (l’y + 1’2y2) t2 +

1
5 (zy + zy® + 32%y° + 2°y°) £° +

1
o (zy + dzy® + T2y + 2y’ + 42®y® + 62°y° + o'yh) t* +

% (:)sy + 10zy? + 152%% + 11ay® + 3022y® + 25233+

zyt + 52yt + 102%y" + 102%y* + 2°9°) £° +

% (a:y + 24xy? + 312%y% + 62xy> + 14022y + 9023y + 262y* + 912y +
1202%y* + 652%y* + xy® + 62°y° + 152%y° + 202"y” + 152°y° + 2%°) t° +
ﬁ (zy + Bdzy® + 632%y* + 273zy” + 5532%y° + 3012%y” + 292zy*+
840x2y* + 87523y + 3502ty? 4+ 572y + 2382%y° + 40623y° + 3502y +

1402°y° + xy® + 72%9°® + 21239° + 352%9° + 352°9° + 212%° + :c7y7) t"+

10390 (zy + 1163y> + 1272y + 1068zy° + 20002°y* + 9662°y” + 2228zy*+
57262%y* + 515223y* + 1701z%y* 4+ 11712y + 40162%y° + 547423y° +
36402y + 10502%y° + 1202y° + 5752%y° + 117623y5 + 13162 y° + 8402°y° +
2662595 + xy” + 8x2y” + 28x3y” + 56xty” + 7025y” +

56207 + 28zTy" + 2%y®) 8+ - -
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We note that there are many terms in these expansions which are easily
explained. For example, we claim that for any p > 4, the coefficient of z¥3* in
NMiso4. pn(x,y) is always the Stirling number S(n, k) which is the number of
set partitions of {1,...,n} into k parts. That is, a permutation ¢ € S, that
contributes to the coefficient z*y* in NMisp4. ,n(z,y) must have k left-to-right
minima and k& — 1 descents. Since each left-to-right minima of o which is not
the first element is always the second element of descent pair, it follows that if
1 =141 <ig <ig < --- < i are the positions of the left to right minima, then o
must be increasing in each of the intervals [1,1is), [i2,93), .. ., [ik—1, k), [ik, n]. It is

then easy to see that

{o1,.. .01} {0iy, 01 b oo {ou s o021}, {00, - R}

is just a set partition of {1,...,n} ordered by decreasing minimal elements. More-
over, it is easy to see that no such permutation can have a 1324...p-match for
any p > 4. Vice versa, if Aj,..., Ay is a set partition of {1,...,n} such that
min(Ay) > -+ > min(Ag), then the permutation o = Ay T A1 T ... 4; T is
a permutation with k& left-to-right minima and £ — 1 descents where for any set
A CH{l,...,n}, A1 is the list of the element of A in increasing order. It follows
that for any p > 4,

1. NMisos pn(@,y)|ey = S(n, 1) =1,

2. NMisoa pn(2,9)|s22 = S(n,2) =271 — 1,
3. NMisos pn(T,y)|smyn = S(n,n) =1, and
4. NMisoa.. pn(z,y)|znyn = S(n,n—1) = (g)

We claim that

2n=l _p ifn<p
NM1324...p,n(x7 y)\xyz =

2"l —p—(n—(p—1))=2""1-2n+p—1 ifn>p.
That is, suppose that o € S, contributes to NMis24. pn(z,y)|z2. Then o must

have 1 left-to-right minima and one descent. It follows that ¢ must start with 1
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and have one descent. Now if A is any subset of {2,...,n} and B=1{2,...,n}—A,
then we let 04 be the permutation 04 =1 AT B 1. The only choices of A that do
not give rise to a permutation with one descent are ) and {2, ...,i} fori =2,... n.
It follows that there 2"~! — n permutations that start with 1 and have 1 descent.
Next consider when such a 04 could have a 1324 . .. p-match. If the 1324 ... p-match
starts at position ¢, then it must be the case that red(o;0;410:420:+3) = 1324. This
means that the only descent is at position 7+ 1 and all the elements o; for j > ¢+3
are greater than or equal to 0,,3. But this means that all the elements between
1 and 0,9 must appear in increasing order in os...0; 1. It follows that o4 is of
the form 1...(¢ —2)q¢(q +2)(¢+ 1)(¢ +2)...n. There are no such permutations
if n < p— 1 and there are n — (p — 1) such permutations if n > p as ¢ can range

from 1 ton— (p—1).

3.4.2 71=1324

Suppose 7 = 1324, the analysis of the fixed points of 1394 is a bit different
from when 7 = 1324...p for p > 5. Let O be a fixed point of [1324. By Lemma
34, we know that 1 is in the first cell of O. Again, we claim that 2 must be in
the second or third cell of O. That is, suppose that 2 is in cell ¢ where ¢ > 3.
Then since there are no descents within any brick, 2 must be in the first cell of a
brick. Moreover, since the minimal numbers in the bricks of O form an increasing
sequence, reading from left to right, 2 must be in the first cell of the second brick.
Thus if by and by are the first two bricks in O, then 1 is in the first cell of b; and
2 is in the first cell of by. But then we claim that there is no 1324-match in the
elements of b; and by. That is, since ¢ > 3, b; has at least three cells so that O
starts with an increasing sequence of length 3. But this means that 1 can not
be part of a 1324-match. Similarly, no other cell of b; can be part of 1324-match
because the 2 in cell ¢ is smaller than any of the remaining numbers of b;. But
this would mean that we could apply case (ii) of the definition of I1394 to b; and
b, which would violate our assumption that O is a fixed point of I1304. Thus, we

have two cases.
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Case I. 2 isin cell 2 of O.

In this case there are two possibilities, namely, either (i) 1 and 2 lie in the first
brick b; of O or (ii) brick b; has one cell and 2 is the first cell of the second brick
by of O. In either case, it is easy to see that 1 is not part of a 1324-match and if
we remove cell 1 from O and subtract 1 from the elements in the remaining cells,
we would end up with a fixed point O’ of I1394 in O1324,—1. Now in case (i), it is
easy to see that sgn(O)W(0) = sgn(O")W(O') and in case (ii) since b; will have
a label —y on the first cell, sgn(O)W(0O) = (—y)sgn(O" )W (O'). It follows that
fixed points in Case 1 will contribute (1 — y)Uis24.-1(y) to Uizoan(y).

Case II. 2 in cell 3 of O.

Let O(7) denote the element in ¢ cell of O and by, bs, ... be the bricks of O, reading
from left to right. Since there are no descents within bricks in O and the minimal
elements in the bricks are increasing, we know that 2 is in the first cell of a brick
by. Thus b; has two cells. But then by must have at least two cells since if by has
one cell, there could be no 1324-match contained in the cells of b; and by and we
could combine bricks b; and by which would mean that O is not a fixed point of
I1324. Thus by has two cells and by has at least two cells. But then the only reason
that we could not combine bricks b; and by is that there is a 1324-match in the
cells of by and by, which could only start at the first cell.

We now have two subcases.

Case Il.a. There is no 1324-match in O starting at cell 3.

Then we claim that {O(1),0(2),0(3),0(4)} = {1,2,3,4}. That is, if
{0(1),0(2),0(3),0(4)} # {1,2,3,4},

then let 1 = min({1,2,3,4} — {O(1),0(2),0(3),0(4)}). Since there is a 1324-
match starting at position 1, it follows that O(4) > 4 since O(4) is the fourth
largest element in {O(1),0(2),0(3),0(4)}. Since the minimal elements of the
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bricks of O are increasing, it must be that ¢ is the first element in brick b3. But
then we claim that we could combine bricks by and bs. That is, there will be a
decrease between bricks by and b3 since ¢ < O(4) and O(4) is in by. Since there
is no 1324-match in O starting at cell 3, the only possible 1324-match among the
elements in by and b3 would have start at a cell ¢ > 3. But then O(c) > 4, which is
impossible since it would have to play the role of 1 in the 1324-match and i would
have to play the role of 2 in the 1324-match since 7 occupies the first cell of bs.
Thus it must be the case that O(1) =1, O(2) =3, O(3) = 2, and O(4) = 4.

It then follows that if we let O’ be the result of removing the first 3 cells
from O and subtracting 3 from the remaining elements, then O’ will be a fixed
point [i394 in O1394,,—3. Since there is —y coming from the brick by, it is easy to

see that the fixed points in Case Il.a will contribute —yUi304.n—3(y) to Uisaan(y).

Case II.b. There is a 1324-match starting a 3 in O.

In this case, it must be that O(3) < O(4) > O(5) so that by must have two
cells and brick b3 starts at cell 5. We claim that b3 must have at least two cells.
That is, if b3 has one cell, then there could be no 1324-match among the cells of
b, and b3 so that we could combine by and bs violating the fact that O is a fixed
point of I304.

In the general case, assume that in O, the bricks b, ..., by_1 all have two
cells and there are 1324-matches starting at cells 1,3,...,2k — 3 but there is no
1324-match starting at cell 2k — 1 in O. Then we know that b; has least two
cells. Let ¢; < d; be the numbers in the first two cells of brick b; for ¢t = 1,... k.
Then we have that red(c¢;d;c;11d; 1) = 1324 for 1 < i < k — 1. This means that
Ci < Ciy1 < d; < diyq.

First we claim that it must be the case that {O(1),...,0(2k)} = {1,...,2k}.
If not there is a number greater than 2k that occupies one of the first 2k cells. Let
M be the greatest such number. If M occupies one of the first 2k cells then there
must be a number less than 2k that occupies one of the last n — 2k cells. Let m

be the least such number. Since numbers in bricks are increasing, M must occupy
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the last cell in one of the first £ — 1 bricks or occupy cell 2k. If M occupies the
last cell in one of the first kK — 1 bricks, then M is part of a 7-match

ci | M || ciya | diya

But then red(¢; M ¢;y1 diz1) = 1 3 2 4 implies that M < d;;; which contradicts
our choice of M as the greatest number in the first 2k cells. Thus M cannot occupy
the last cell in one of the first £ — 1 bricks. This means that M must occupy cell
2k in O.

Since numbers in bricks are increasing, m must occupy the first cell of by ;.
But then there is a descent between bricks by and by so that m must be part of
a 1324-match. But the only way this can happen is if in the 1324-match involving
m, m plays the role of 2 and the numbers in the last two cells of brick b, play
the role of 1 3. Since, we are assuming that a 1324-match does not start at cell
2k — 1 which is the cell that the number ¢, occupies, the numbers in the last two
cells of brick b, must be greater than or equal to d;, = M which is impossible since
m < M. Thus it must be the case that {O(1),...,0(2k)} = {1,...,2k} and that
dy = 2k. It now follows that if we remove the first 2k — 1 cells from O and replace
each remaining number ¢ in O by ¢ — (2k — 1), then we will end up with a fixed
point in O’ of I 1304 in Op_(2x—1). Thus each such fixed point O will contribute
(9" Un—2t+1(y) to Un(y).

The only thing left to do is to count the number of such fixed points O.
That is, we must count the number of sequences cidicads ... crdy such that (i)
g =1, (i) eg = 2, (ili) dy, = 2k, (iv) {e1,dq, ..., e, di} = {1,2,...,2k}, and (v)
red(c;d;cii1d;y1) = 1324 for each 1 < i < k — 1. We claim that there are Cj_4
such sequences where C,, = n%rl (27?
that Cy_1 counts the number of Dyck paths of length 2k — 2. A Dyck path of
length 2k — 2 is a path that starts at (0,0) and ends at (2k — 2,0) and consists of

) is the n-th Catlan number. It is well known

either up-steps (1,1) or down-steps (1,-1) in such a way that the path never goes
below the z-axis. Thus we will give a bijection ¢ between the set of Dyck paths
of length 2k — 2 and the set of sequences cy,dy, .. ., ¢, dy satisfying conditions (i)-
(v). The map ¢ is quite simple. That is, suppose that we start with a Dyck path
P = (p1,pa, ..., pak—2) of length 2k —2. First, label the segments py, . .., por_o with
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2,...,2k—1, respectively. Then ¢(P) is the sequence ¢1d . .. cxdy where ¢; = 1 and
Co...cp are the labels of the up-steps of P, reading from left to right, dy...dg_1
are the labels of the down steps, reading from left to right, and dy, = 2k. We have
pictured an example in Figure 3.4 of the bijection ¢ in the case where k = 6.

y

Figure 3.4: The bijection ¢.

It is easy to see by construction that if P is a Dyck path of length 2k —2 and
d(P) = c1dy ... cpdy, then ¢ < cg < -+ < ¢ and dy < dy < -+ < di. Moreover,
since each Dyck path must start with an up-step, we have that ¢ = 2. Clearly
cg = 1, d, = 2k, and {cy,dy, ..., ¢, dp}y = {1,...,2k} by construction. Thus
c1dy . . . cpdy, satisfies conditions (i)-(iv). For condition (v), note that ¢; =1 < d; >
2 = ¢y < dy so that red(cidicady) =13 2 4. If 2 < i < k — 1, then note that ¢;
equals the label of the (i — 1)st up-step, ¢;11 equals the label of the i-th up-step,
and d; is the label of i-th down-step. Since in a Dyck path, the i-th down-step
must occur after the ¢-th up-step, it follows that ¢; < ¢;41 < d; < d;41 so that
red(c;d;cii1d;i41) = 1 3 2 4. Vice versa, if we start with a sequence c1d; . .. cxdy,
satisfying conditions (i)-(v) and create a path P = (pi,...,pa—2) with labels
2,...,2k — 1 such that p; is an up-step if j + 1 € {ca,..., ¢} and p; is an down-
step if j+1 € {dy,...,dr_1}, then condition (iii) ensures P starts with an up-step
and condition (v) ensures that the i-th up-step occurs before the i-th down step so

that P will be a Dyck path. Thus ¢ is a bijection between the set of Dyck paths of
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length 2k — 2 and the set of sequence ¢, dy, . .., ¢k, dy, satisfying conditions (i)-(v).
It follows that fixed points O of I;394 where the bricks by, bo, ..., bi_1 are of

size 2 and there are 1324-matches starting at positions 1,3,...,2k — 3 in O, but

there is no 1324-match starting at position 2k — 1 in O contribute to U, (y),

Ck—l(_y)k_lUT,n—WH—l(y)‘
Thus we have proved the following theorem.

Theorem 25. Let 7 = 1324. Then

1
U, (t,y)

NCMT(t,«T, y) = < ) where Uq—(t,y) =14+ Z Uq—’n(y>t—

n!
n>1

and U, 1(y) = —y and forn > 1,

Urn(y) = 1 = 9)Urna(y) + ) (=)' Crct Ur a1 (v)

where Cy, is the k" Catalan number.

In this case, one can easily compute that

U1324,1 Yy

—y+y?

—y+ 27—y,
Ursaaa(y) = —y +4y* = 3y° +

(y) =
Usa2(y) =
(y) =
(y) =
Uisoas(y) = —y + 6y* — 8y° + dy* — ¢°,
(y) =
(y) =
(v) =
(y) =

U 1324,3\Y

—y + 8y* — 18y3 + 13y* — 5y° + 4,

—y + 10y? — 32y3 + 36y* — 199° + 695 —

—y + 129% — 509 + 85yt — 61y° + 26y5 — 7y7 + 5,

Utzano(y) = —y + 14y? — 72y% + 166y* — 170y° + 94y° — 34y" + 8y® — ¢°
Ussaat0(y) = —y + 16y — 98y> + 287y* — 412y° + 296y° — 136y" + 43y® — 9y° + y*°

U1324,6 Yy
U1324,7 Yy
U1324,8 Yy

This, in turn, allows us to compute the first few terms of the generating
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function N Mi394(t, z,y). That is, one can use Mathematica to compute that

NMigoa(t, ,y) =
1 1
1+ tey + §t2 (a:y + x2y2) + 6t3 (a:y + zy® + 32%y* + x3y3) +

1
ﬂt‘l (zy + 3zy® + T2°y” + zy® + 427y + 62°y° + 2'y*) +

%Ot‘r’ (xy + 9zy* + 152%y* + S8wy® + 252%y° + 2523y° + oy +
527yt 4 102°y* 4+ 102%y* + :c5y5) +

%tﬁ (zy + 23zy® + 312%y® + 4Tay® + 1192%y° + 902%y® + 202y + T32°y"+
1052°y* + 65z%y* + 2y + 627y + 152°y° + 202%y° + 152°9° + x6y6) +
ﬁﬂ (a:y + 53xy? + 632%y* 4 2212y® + 4902%y® 4 3012°y® + 2022y* +
6372%y* 4+ 74923y* 4 3502 y* 4+ 47xy® + 1962%y° + 3432%y° + 315215+

1402°y° + zy® + 72y + 212%y° + 352"y°® + 352°y° + 212%° + 2Ty") +

1
10320 (zy + 1152y + 1272y + 9222y° + 18382%y° + 9662°y> + 1571xy*+

44212%y* + 446623y* + 17012%y* 4+ 7952y° + 28902%y° + 42702%y° +
31642y 4+ 105025y° + 1052y° + 4952%¢° + 100823y5 + 1148z%y° +
7702%y% + 2662°%y° + 2y + 8x%y" + 282%y" + 562ty" +

702°y" + 562°y" + 2827y" + 2%yF) ¥ + - - -

We note that there are other methods to compute N Mjs04(¢,1,1). That
is, Elizalde [11] developed recursive techniques to find the coefficients of the series
NM1324(t, ]_, 1)

343 7=1p23...(p—1) for p >4

Now we specialize to the case where 7 = 1p23...(p — 1) and p > 4. In
this case, we can make a finer analysis of the fixed points of I.. Let O be a fixed
point of I.. By Lemma 34, we know that 1 is in the first cell of O. We claim that
2 must be in the second or third cell of O. That is, suppose that 2 is in cell ¢
where ¢ > 3. Then since there are no descents within any brick, 2 must be the

first cell of a brick. Moreover, since the minimal numbers in the bricks of O form
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an increasing sequence, reading from left to right, 2 must be in the first cell of
the second brick. Thus if b; and by are the first two bricks in O, then 1 is in the
first cell of b; and 2 is in the first cell of b,. But then we claim that there is no
7-match in the cells of b; and by. That is, since ¢ > 3, b; has at least three cells
so that O starts with an increasing sequence of length 3. But this means that 1
can not be part of a 1p23...(p — 1)-match. Similarly, no other cell of b; can be
part of 1p23...(p— 1)-match because the 2 in cell ¢ is less than any of the remain-
ing numbers of b;. Thus if there is a 1p23...(p — 1)-match among the cells of b;
and by, it would have to be entirely contained in by which is impossible. But this
would mean that we could apply case (ii) of the definition of I to b; and by which

would violate our assumption that O is a fixed point of I.. Thus, we have two cases.

Case 1. 2 is in cell 2 of O.

In this case there are two possibilities, namely, either (i) 1 and 2 are both in
the first brick b; of O or (ii) brick b, is a single cell filled with 1 and 2 is in
the first cell of the second brick by of O. In either case, it is easy to see that
1 is not part of a 1p23...(p — 1)-match in O and if we remove cell 1 from
O and subtract 1 from the numbers in the remaining cells, we would end up
with a fixed point O’ of I, in O,,_;. Now in case (i), it is easy to see that
sgn(O)W(0) = sgn(O")W(0’) and in case (ii) since b; will have a label —y on the
first cell, sgn(O)W(O) = (—y)sgn(O" )W (O’). It follows that fixed points in Case
1 will contribute (1 — y)U,n-1(y) to Uy, (y).

Case 2. 2 isin cell 3 of O.

Let O(i) denote the number in cell i of O and by, by, . .. be the bricks of O, reading
from left to right. Since there are no descents within bricks in O and the minimal
elements of the bricks are increasing, reading from left to right, it must be the case
that 2 is in the first cell of brick by. Thus b; has two cells. But then b, must have

at least p— 2 cells since otherwise, there could be no 7-match contained in the cells
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of by and by and we could combine bricks b; and by which again would mean that
O is not a fixed point of I.. Thus b is a brick with two cells and by is brick with
at least p — 2 cells. But then the only reason that we could not combine bricks by
and by is that there is a 7-match in the cells of b; and b, which could only start at
the very first cell.

Next we claim that O(p — 1) = p — 2. That is, since there is a T-match
starting at the first cell and p > 4, we know that O(p — 1) is greater than all
elements of the set {O(1),...,0(p—2)}—{0(2)} and O(2) > O(p—1) > O(p—2).
Thus O(p — 1) is greater than p — 3 other numbers so O(p — 1) > p — 2. Now if
O(p—1) > p — 2, then let i be least number in the set {1,...,p — 2} that is not
contained in bricks b; and b,. Since the numbers in each brick are increasing and
the minimal numbers of the bricks are increasing, the only possible position for 7 is
the first cell of brick b3. But then it follows that there is a decrease between bricks
by and bs. Since O is a fixed point of I, this must mean that there is a 7-match
in the cells of by and b3. But since 7 has only one descent, this 7-match can only
start at the cell ¢ which is the second to the last cell of by. Thus ¢ could be p — 1
if by has p — 2 cells or ¢ > p — 1 if by has more than p — 2 cells. In either case,
p—1<0O(p—1) <0(c) <O(c+1) > O(c+2) =i. But this is impossible since to
have a T-match starting at cell ¢, we must have O(c) < O(c+2). Thus it must be
the case that O(p—1) = p—2 and {O(1),...,0(p—1)} —{0(2)} ={1,...,p—2}.

We now have two subcases.

Case 2.a. There is no 7-match in O starting at cell p — 1.

Then we claim that O(p) = p — 1. That is, if O(p) # p — 1, then O(p) > p — 1.
This means that p — 1 cannot be in brick by. Similarly, p — 1 can not be O(2)
since the fact that there is a 1p2...(p — 1)-match starting at cell 1 means that
O(2) > O(p). Thus p — 1 must be the first cell of the brick b3. But then we claim
that we could combine bricks b, and bs. That is, there will be a decrease between
bricks by and b3 since p — 1 < O(p) and O(p) is in by. Since there is no 7-match
in O starting at cell p — 1, the only possible 7-match among the cells of b, and b3
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would have start at a cell ¢ # p — 1. But it cannot be that ¢ < p — 1 since then
it would be the case that O(c) < O(c+ 1) < O(c + 2). Similarly, it cannot be
that ¢ > p — 1 since then O(c) > p — 1 and p — 1 has to be part of the 7-match
which is impossible since O(c¢) must play the role of 1 in the 7-match. Thus it must
be the case that O(p) = p — 1. It then follows that if we let O’ be the result of
removing the first p — 1 cells from O and renumbering the remaining cells in such
a way that we keep the same relative order but use the numbers 1,...n — (p — 1),
then O will be a fixed point of I in O,,_(_1). Note that if b, has p — 2 cells,
then O’ will start with a brick with one cell and if b, has more than p — 2 cells,
then O" will start with a brick with at least two cells. The 7-match starts at the
first cell, so O(2) > O(p) = p — 1. Since there are n — (p — 1) such numbers to
choose from and since there is —y coming from the brick by, it is easy to see that

the fixed points in Case 2.a will contribute (—y)(n—(p—1))Urn—p-1)(y) to Urpn(y).

Case 2.b. There is a 7-match starting at p — 1 in O.

In this case, it must be that O(p — 1) < O(p) > O(p + 1) so that by must have
p — 2 cells and brick b3 starts at cell p 4+ 1. We claim that bs must have at least
p — 2 cells. That is, if b3 has less than p — 2 cells, then there could be no T-match
among the cells of by and b3 so then we could combine by and b3 violating the fact
that O is a fixed point of I.

In the general case, assume that in O, the bricks b, ..., b,_1 all have p — 2
cells. Then let 1y =1 and for j =2,....,k—1,1let r; =1+ (j —1)(p —2). Thus r;
is the position of the second to last cell of brick b; for 1 < 7 <k —1. Furthermore,
assume that there is a 7-match starting at cell r; for 1 < 7 < k — 1. It follows
that O(rx—1) < O(rg—1 + 1) > O(rr—1 + 2) so that brick by must start at cell
rL,—1 + 2 and there is a decrease between bricks b,_; and b;. But then it must be
the case that b, has at least p — 2 cells since if by has less than p — 2 cells, we could
combine bricks by_; and b, violating the fact that O is a fixed point of I,. Let
r, = 14+ (k— 1)(p — 2) and assume that O does not have a 7-match starting at

position r,. Thus we have the situation pictured below.
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2 Th—1 Tk
o) | 0@ | 0@) | ~ | 0r2) | 0Gat1) | | | OGis) | Orx ) | — | 0 | OGrat)
by by b b,

First we claim O(r;) =r; — (j — 1) and

(L. = =1} ={0Q),....,0(rj)} ={0(ri + D}i=1. i

for j =1,..., k. We have shown that O(1) = 1 and that O(r) = O(p—1) =p—2
and {O(1),...,0(p—1)} —{0(12)} = {1,...,p — 2}. Thus assume by induction,
O(rj-1) =rji—(—2)and {1,..., 7,1 = (j=2)} = {O(1),..., O(r;-1)} —{O(ri +
1)}iz1. j—2. Since there is a 7-match that starts at cell r;_; and p > 4, we know

that all the numbers
{0(rj-1),0(rj-1+2),...,0(rj1 +p=3)} = {O(rj-1 + 1)}
are less than O(r;) = O(r;_1 +p — 2). Since

{1 =G =2 ={0Q),...,0(rj1)} ={O(ri + D }iz1 o,

it follows that O(r;) > rj_1 — (j —2) + (p — 3) =r; — (j — 1). Next suppose that
O(rj) > rj — (j — 1). Then let ¢ be the least number which is in

[Leory = (= D} = ({0, 0(r;)} = {00 + D}imjr):

It is that case that O(ry +1) > O(rg +1) > ... > O(r; + 1) so that i does
not lie in the bricks by,...,b;. Because the numbers in each brick increase and
the minimal numbers in the bricks are increasing, it must be the case that ¢ is
in the first cell of the next brick b;y;. Now it cannot be that j < k because
then we have that i = O(r; +2) <r; — (j — 1) < O(r;) < O(r;+1) which would
violate the fact that there is a 7-match in O starting at cell r;. If j = k, then it
follows that there is a decrease between bricks by and by, since by starts with
i <rp—(k—1) < O(rg). Since O is a fixed point of I, this must mean that
there is a 7-match in the cells of by and by,;. But since 7 has only one descent,

this 7-match can only start at the cell ¢ which is the second to the last cell of b.
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Thus ¢ must be greater than r; because we are assuming that there is no 7-match
starting at cell r;. So byy1 must have more than p — 2 cells. In this case, we have
that i <rp —(k—1) < O(ry) <O(c) < O(c+1) > O(c+2) = i. But this cannot
be since to have a 7-match starting at cell ¢, we must have O(c) < O(¢+2). Thus

it must be the case that O(r;) =r; — (j — 1). Finally since
L{1,...,rj.1—(j —2)} ={01),...,0(rj—1)} —{O(ri + 1) }i=1. j—2 and
2. O(’f’j_l), O(’f’j_l + 2), ey O(Tj_l +p - 3) < O(T’j),

it must be the case that

{1 = (=D} ={0(1),...,0(rj)} ={O0(ri + D}i=1j

as desired. Thus we have proved by induction that O(r;) = r; — (j — 1) and
{1,....r;,— (-1} ={0(1),...,0(rj)} ={O(ri+ 1) }izy. j1 for j =1,... k.
This means that the set {O(1),...,0(rg)} —{O(r;+1) }i=1. k-1 is completely
determined. Next we claim that since there is no 7-match starting at position 7y,
it must be the case that O(ry +1) = r, — (k— 1) + 1 = r, — k + 2. That is,
since there is a 7-match starting at each of the cells r; for j = 1,...,k — 1, it
must be the case that O(r1 +1) > O(ro+1) > --- > O(rj—1 +1) > O(rp + 1). If
O(rp+1) #rpy—k+2, then O(rp + 1) > ry — k+ 2 and, hence, r, — k + 2 cannot
be in any of the bricks by, ...,b,. Thus r, — k + 2 must be in the first cell of the
brick bg.1. But then we claim that we could combine bricks b, and by, ;. That is,
there will be a decrease between bricks b, and by, since 1, — k +2 < O(ry + 1)
and O(ry 4 1) is in bg. Since there is no 7-match starting in O at cell 7y, the only
possible T-match among the cells of b, and b1 would have to start at a cell ¢ # ry.
But it cannot be that ¢ < ry since then O(c) < O(c+ 1) < O(c+ 2). Similarly,
it cannot be that ¢ > ry since O(c) > r, — k + 2 and r, — k + 2 would have to
be part of the 7-match which means that O(c) could not play the role of 1 in the
7-match. Thus it must be the case that O(ry+1) = rp —k+2. It then follows that
if we let O" be the result of removing the first 7, cells from O and renumbering
the remaining cells in such a way that we keep the same relative order but use the

numbers 1,...,n — 1y, then O" will be a fixed point I, in O,,_,,. Note that if b
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has p — 2 cells, then the first brick of O" will have one cell and if b, has more than
p — 2 cells, then the first brick of O’ will have at least two cells. Since there is a
T-match starting at each of the cells r; for j = 1,...,k—1, it must be the case that
O(r1+1)>0(ra+1)>--->O0(rg-1+1) > O(rp+1) = ry — k+2. Hence we can
choose any k—1 numbers fromn— (1, —k+2) =n—((k—1)(p—2)+1—-k+2) =

—(k—1)(p—3)—2 and place them in cells r; +1,r9+1,..., 7,1 +1 in decreasing
order, reading from left to right, to produce an O which has 7-matches starting
at cells 1,75,...,7,_1. Thus we have ("_(k_;)_(’f—g)_z) ways to assign numbers to
O(r1+1),0(roa+1),...,0(rr_1 +1). Since there is a factor —y coming from each
of the bricks by, ..., b,_1, it follows that the fixed points in Case 2.b will contribute
o (=) (T RLTITU(e-yp-200) () 10 Ura(y).

Hence we have proved Theorem 26.

Theorem 26. Let 7 = 1p23...(p — 1) where p > 4. Then

1 v "
NM,(t,z,y) = < )) where U, (t,y) =1+ Z Uﬂn(y)g,

Ur(t,y =

U‘r,l(y) =Y, and fOT n Z 2;

Urn(y) = 1= ) Urnca(y) + Y (—p)* (n ko . 3~ 2) Urin(k(p-2)11) (1)-

We have computed the following.

U1423,1 Yy

—y+ 9

—y+2y° =y’
Uwazsa(y) = —y +4y* = 3y° + ¢

(y) =
U1423,2(?/)
(y) =
(v) =
Unazas(y) = —y + 79> = 9y° + 4y — ¢
(y) =
(y) =
(y) =
(y) =

U 1423,3\Y

—y + 11y* — 23y® + 16y* — 5¢° + ©

—y + 16y% — 53y3 + bdy* — 259° + 6y° — ¢

—y + 22y — 110y° + 165y* — 105y° + 36y — Ty" + /®

Uiiazo(y) = —y + 29y* — 208y° + 457y* — 400y° + 181y° — 49y7 + 8y® — ¢/*
Unsazio(y) = —y+ 37y —364y° +1151y* — 1391y° 4 826y — 287y + 64y — 9y” +y*°

U1423,6 Yy
U1423,7 Yy
U1423,8 Yy



Uts23a1(y

—y +y’

—y+2y° =y’
Ursasaa(y) = —y +3y* — 3y° + ¢

(y) =
Utsasa2(y) =
(y) =
(y) =
Ussosas(y) = —y + 5y* — 6y° + 4y* —
(y) =
(y) =
(y) =
(y) =

U 15234,3 (Y

—y + 8y? — 13y3 + 10y* — 5y° + ¢/°

—y + 129% — 27y + 26y* — 1595 + 6y° — ¢”

—y + 17y% — 52y% + 65y* — 459° + 210 — Ty7 + ¢/8
Ussasao(y) = —y + 23y% — 97y + 150y* — 130y° + 715 — 28y7 + 8y° — 3°
Utsaza10(y) = —y+30y? — 174y3 + 337y* — 346y° + 231y5 — 105y + 361°

U15234,6 Yy
U15234,7 Yy

U 15234,8 (Y

Ute2345,1(Y

—y+y°

—y+2y° -y
Usezsasa(y) = —y + 3y° — 3y° +¢*

(y) =
Usesa5,2(y) =
(y) =
(y) =
Usgasas,s (y) = —y +4y* — 6y° + 4y* —
(y) =
(y) =
(y) =
(y) =

U 162345,3\Y

—y + 632 — 10y° + 10y* — 5y5 + y°

—y 4 9y? — 18y3 + 20y* — 15¢° + 645 —

—y + 13y? — 33y° + 41y* — 35y° + 21y° — 7y7 + y®
Uie2345,0(y —y + 18y% — 58y3 + 86y* — 80y° + 56y° — 28y" + 8y® — ¢/°
Useazasao(y) = —y + 24y? — 97y> + 174y* — 186y° + 141y° — 84y" + 364

U 162345,6\Y
U 162345,7\Y

U 162345,8\Y
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Ui723456,1 (Y

—y+ 9

—y+2y° =y’
Ui723456.4(Y —y+3y? = 3y* + y*

(y) =
Utrasase,2(y) =
(y) =
(y) =
Urrasases(y) = —y +4y* — 6y° + 4y* —¢°
(y) =
(y) =
(y) =
(y) =

U 1723456,3\Y

—y + by? — 10y® 4+ 10y* — 5y° + ¢°

—y + Ty? — 15y3 + 20y* — 15¢° + 6y% — ¢

—y + 10y — 249> + 35y* — 35¢° + 2190 — Ty" + ¢/°

Utrazaseo(y) = —y + 14y? — 40y3 + 62y* — 70y° + 56y — 28y" + 8y® — ¢/°
Usrasaseo(y) = —y + 19y% — 669° + 114y* — 136y° + 12635 — 84y ™ + 363° — 9y + y'°

U 1723456,6 \Y
U 1723456,7\Y

U 1723456,8 Y

There are a number of coefficients of Uipa (p-1),(y) that are easily ex-
plained. For example, it is clear that Uips. (p—1),n(y)|y = —1 for all p > 4 since there
is only one fixed point of I;,s. . (,—1) With one brick since the elements in each brick
of a fixed point of I, 1) are increasing. Similarly, Uipe. (p—1)n(¥)|y» = (—=1)"
for all p > 4. That is, if a fixed point of I1ps. (,—1) has n bricks, then the under-
lying permutation must be the identity since the minimal element in bricks are
increasing from left to right. For any p > 4, we claim that

n—1 if2<n<p-—1and

le]u2...(p—1),n(y)|y2 = 3 (312)
(") +p—3 ifn>p.

That is, we want to consider the fixed points O of Iy, . (,—1) which have precisely 2
bricks, B; of size by followed by B, of size by. Now if there is an increase between
By and Bs, then the underlying permutation must be the identity and hence there
are n — 1 such fixed points as b; can range from 1 to n — 1. Now if O is such that
there is a decrease between B; and By, then there must be a 1p2...(p — 1)-match
starting at the second to last cell of By. This can only happen if n > p. Now
suppose that O(b; —1) = x. Then we know that < O(by) + 1. Since the elements
in By are increasing, it follows that 1,..., 2 —1 must be in brick B;. As O(b;) > «,
it follows that x = b; — 1. But then z +1,...,2 + (p — 2) must be the first p — 2
elements of By. We then have n — (2 + (p — 2)) choices for O(by). As x can vary
from 1 to n — p + 1, it follows that the number of fixed points O where there is a
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decrease between bricks By and B, is

nfln—@ﬂp—z)): (“‘12"2).

=1
It then follows that if n > p, the the fixed points O of I3 (,—1) which have

precisely 2 bricks is

n—p—2 n—p+3
—1= _3
( 9 )+n ( 5 )+p 3

This establishes (3.12).
Of course, one can use these initial values of Uyps. (,—1)»(y) to compute the
initial terms of NMiy. (p—1)(t,x,y) for small values of p. For example, we have

computed the following.

1
NMigos(t,z,y) =1+ xyt + 5 (:By + I2y2) 2+
1
6 (xy + :L’y2 + 3x2y2 + xsyg) 3+
(:)sy + 3xy? + T2?y? + xy® + 42y + 623y> + :84y4) th+

,_.§|>—‘

— (2y + 8zy® + 152y + 9zy® + 252°y* + 252°y° + xy* + HaPy'+

—_
[\)
o

102%y* + 102*y* + x5y5) 2+
1
=0 (zy 4 20zy® + 312%y® + 462y° + 1132%y* + 902%y® + 232y + 792y +
1052°y* + 65*y* + zy”® + 62°y° + 152°y° + 20z*y° + 152°y° + 2%9°) t° +

1
010 (zy + 4T2y® + 632%y* 4 2002y° + 4482°y° + 3012°y® + 2192y*+

651a2y* + 72823y* + 3502%y? 4 532y + 2172%y° + 36423y° + 315y° +
1402°y° + zy® + 72y + 212°y° + 352%y°® + 352°y° + 212%° + 2Ty") 1T +

40;)20 (zy + 105zy> + 1272y + 794zy” 4 16502%y® + 9662”y” + 1547zy "+
42252%y* 4+ 42142%y* + 17012'y* + 91921° + 31662°y° + 44102°y° +
3108z%y° + 10502°y° 4+ 1152y° + 543225 + 109223y +
12042%° 4 77025y 4 26625¢° + xy” + 8x2y” +

28x3y" + 5621y" + 702°y" 4 5625y" + 2827y + x8y8) 54
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We note that there are many terms in these expansions which are easily
explained. For example, we claim that the coefficient of z*y* in NMips...p—1)n (2, )
is always the Stirling number S(n,k) which is the number of set partitions of
{1,...,n} into k parts. That is, a permutation o € S,, that contributes to the
coefficient 2*y* in N Mips.. (p—1)n(x, y) must have k left-to-right minima and k£ — 1
descents. Since each left-to-right minima of ¢ which is not the first element is
always the second element of descent pair, it follows that if 1 = i} < i < i3 <

-+ < i are the positions of the left to right minima, then ¢ must be increasing in

each of the intervals [1,4s), [i2,73), . .., [ik—1, k), [ix, n]. It is then easy to see that
{0'1, NP ,O'Z'2_1}, {O'Z'2, ey Ui3—1}7 ey {Uikfﬂ NP 7aik—1}7 {O’ik, ey O'n}
is just a set partition of {1,...,n} ordered by decreasing minimal elements. More-

over, it is easy to see that no such permutation can have a 1p2...(p — 1)-match
for any p > 4. Vice versa, if Aj,..., Ay is a set partition of {1,...,n} such that
min(A;) > -+ > min(Ag), then the permutation 0 = Ay T Ax_1 T ... A; T is
a permutation with k left-to-right minima and £ — 1 descents where for any set
A CH{l,...,n}, A1 is the list of the elements of A in increasing order. It follows
that for any p > 4,

L. NMIP2---(P_1)7"(x>y)|:cy = S(?’L, ]_) = ]_’
2. NMlpz___(p_l)(l’, y)‘waz = S(n’ 2) —9on-1 _ 1’

3. NMps. p-1)(2,9)

znyn = S(n’ n) — 1, and

4. NM1p2...(p—1)(za y)|x"*1y”*1 = S(TL, n— 1) = (Z)

We claim that

n-l _pn if n < p and
NM1p2...(p—1),n(za y)|xy2 = (313)

o=l _p — ("_g+2) if n>np.

That is, suppose that o € S, contributes to N M. (p—1),n (%, ¥)|zy2. Then o must
have 1 left-to-right minima and one descent. It follows that o must start with 1 and

have one descent. Now if A is any subset of {2,...,n} and B = {2,...,n} — A,



89

then we let o4 be the permutation 04 = 1 A T B 1. The only choices of A
that do not give rise to a permutation with one descent are () and {2,...,i} for
i =2,...,n. It follows that there 2"~' — n permutations that start with 1 and
have 1 descent. Next consider when such a o4 could have a 1p2...(p — 1)-match.
If the 1p2...(p — 1)-match starts at position ¢, then it must be the case that
0; < 0i11 > 0ij1o. Thus it follows that oq,...,0;41 and 0;,9, ..., 0, are increasing

sequences. But the fact that there is a 1p2...(p — 1)-match starting at position

7 also implies that o; < ;5. It follows that 1,...,0; — 1 must preceed o; which
implies that o; = 7. But since 0,4, is greater than 0,19, ..., 0,41, it follows that
0i42 :7;_'_1770-2'—1—3:i+27---70-i+p—1 :Z—O—p—Q

But then we have n— (i+(p—2)) choices for 0;11. Asi can vary from 1 to n—p+1,
it follows that there are 3" P*'n — (i 4 (p — 2)) = ("_SH) such 04 which have a

1p2...(p — 1)-match. It is then easy to see that this implies (3.13).

344 7=13...(p—1)2pfor p >4

Next we analyze the fixed points of I for 7 = 13...(p — 1)2p where p > 4.
By Lemma 34, we know that 1 is in the first cell of O. We claim that 2 must be in
cell 2 or p—1in O. That is, suppose that 2 is in cell ¢ where ¢ ¢ {2,p — 1}. Since
there are no descents within any brick, 2 must be in the first cell of a brick. More-
over, since the minimal elements in the bricks of O form an increasing sequence,
reading from left to right, 2 must be in the first cell of the second brick. Thus if
b1 and by are the first two bricks in O, then 1 is at the start of b; and 2 is at the
start of by. But then we claim that there is no 7-match in the elements of b; and
by. That is, if 2 < ¢ < p—1, then 1 cannot be the start of a 7-match in O because
2 is too close to 1. But if 1 is not part of a 7 match, then no other element in
brick b; can play the role of the 1 in a 7-match so that the 7-match in bricks b,
and b, must be entirely contained in by which is impossible if O is a fixed point of
I,. Similarly, if p—1 < ¢, then again 1 cannot be the start of a 7-match in O since
2 is too far away from 1. But then no other element in brick b; can play the role

of 1 in a 7-match in O. Thus, we have two cases.
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Case 1. 2 is in cell 2 of O.

In this case there are two possibilities, namely, either (i) 1 and 2 are both in
the first brick b; of O or (ii) brick b, is a single cell filled with 1 and 2 is in
the first cell of the second brick by of O. In either case, it is easy to see that
1 is not part of a 13...(p — 1)2p-match in O and if we remove cell 1 from
O and subtract 1 from the numbers in the remaining cells, we would end up
with a fixed point O’ of I, in O,,_;. Now in case (i), it is easy to see that
sgn(O)W(0) = sgn(O")W(0’) and in case (ii) since b; will have a label —y on the
first cell, sgn(O)W(0) = (—y)sgn(O" )W (O’). It follows that fixed points in Case
1 will contribute (1 — y)U;n-1(y) to Uy, (y).

Case 2. 2 isin cell p — 1 of O.

Let O(i) denote the element in cell i of O and by, bs, . .. be the bricks of O, reading
from left to right. Since there are no descents within bricks in O and the minimal
elements of the bricks are increasing, reading from left to right, it must be the case
that 2 is at the start of a brick by. Thus b, is a brick of size p—2. But then by must
have at least two cells since otherwise, there could be no 7-match contained in the
cells of b; and by, and we could combine bricks b; and by which would mean that
O is not a fixed point of I,. But then the only reason that we could not combine
bricks b; and b, is that there is a 7-match in the cells of b; and by which could only
start at position 1.

We now have two subcases.
Case 2.a. There is no 7-match in O starting at cell p — 1.
Then we claim that O(p) = p. First observe that O(p) must be greater than

or equal to O(1),0(2),...,0(p—1) since there is a 7-match starting at position 1
in O. Thus O(p) > p. Thus if O(p) # p, then it must be the case that O(p) > p.
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Hence p cannot be in brick by. Since brick b; has p — 2 cells and 1 is in b, we can
not have all of the elements 3, ..., p in b; so let i be the least element in {3, ..., p}
which is not in b;. Since our assumption is that O(p) > p, we know i cannot be
in brick by. Since the minimal elements in the bricks are increasing, it must be
the case that 7 starts brick b3 and there is a descrease between brick b; and brick
bs. But then we claim that we could combine bricks by and b; which violates the
fact that O is a fixed point of I.. That is, since 2 is the first element of b, and,
by assumption, it does not start a 7-match in O, then no element in b, can start a
7-match in O since 7 would have to be part of any such 7-match and i is smaller
than all of the remaining elements in by. Thus it must be the case that O(p) = p.
But since 1 starts a 7-match in O, then we know that O(2),...,0(p — 2) are all
less than O(p) so that O(2),...,0(p — 2) must be the sequence 3,...,p — 1.

It then follows that if we let O’ be the result of removing the first p — 1 cells
from O and subtracting p — 1 from the remaining numbers, then O’ will be a fixed
point of I in Oy ;,_—1). Note that if by has 2 cells, then O’ will start with a brick
with one cell and if by has more than 2 cells, then O’ will start with a brick with
at least two cells. Since there is —y coming from the brick by, it is easy to see that

the fixed points in Case 2.a will contribute —yU- ,,_,—1)(y) to Urpn(y).

Case 2.b. There is a 7-match starting at p — 1 in O.

In this case, it must be that O(p—1) < O(2p—3) < O(p) < --- < O(2p—4). But
then it must be the case by must be of size p— 2. Clearly, b, has at most p — 2 cells
since the elements in each brick are increasing and O(2p —4) > O(2p — 3). Now
if by has less than p — 2 cells, then O(2p — 3) must start some brick by and brick
bi_1 would have less than p — 2 cells. But then we could combine bricks b;_; and
by since that would mean that all the elements in b;_; are strictly bigger than the
first element of b, so that it would not be possible to have a 7-match contained in
the bricks b,_1 and bg. Thus brick b, has p — 2 cells which, in turn, implies that
brick b3 must have at least 2 cells. That is, if b3 has less than 2 cells, there could

be no 7-match among the cells of b, and b3 so that we could combine by and bs
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violating the fact that O is a fixed point of I..

In the general case, assume that in O, the bricks by, ..., b,_1 all have p — 2
cells and the first elements of each of these bricks start 7-matches in O. . Let
ri=14+(( —1)(p—2) for j =1,...,k — 1 so that r; is the position of the first
cell in brick b; for 1 < j < k — 1. Furthermore, assume that there is no 7-match
starting at position 7, = (k—1)(p—2) + 1. First we claim that brick b, must have
at least 2 cells. That is, since there is a 7-match starting at position r;_; in O, we
know that O(ry — 1) > O(ry). Thus if b has 1 cell, then we could combine brick
bi_1 and b, which would violate the fact O is a fixed point of I..

Next we claim that O(ry + 1) = r, + 1 and {O(1),...,0(ry),O(ry +
1)} = {1,...,7 + 1}. That is, since there are 7-matches starting at positions
T1,72,...,Tk—1, we have that O(r;),...,0(r;41) < O(rj41 + 1) and for each 1 <
Jj < k—1. It follows that O(ry + 1) is greater than O(:) for ¢ = 1,...,r; so that
O(rg+1) > rp+1. For a contradiction, assume that O(rp+1) > r,+ 1. It then fol-
lows that there is at least one ¢ € {1,..., 7+ 1} which does not occupy any of the
positions 1, ..., 7, so let j be the least element in {1, ..., r,+1}—{O(1),...,0(ry)}.
Then j cannot lie in brick by, because j < O(ry+ 1) so that j must be the first ele-
ment in brick bg,q. Thus there is a decrease between bricks by and by,;. But then
we claim that there can be no 7-match contained in the cells of b and by, ;. That
is, we are assuming that there is no 7-match starting at position r; in O. Thus if
there is a T-match contained in the cells of b, and b, it must start after position
rr and involve j. But j is smaller than all the elements in brick b, that appear after
position r; which means that none of them can play the role of 1 in 7-match. But
this would mean that we could combine bricks b and by ; which would violate the
fact that O is a fixed point of I,. Thus it must be the case that O(ry+1) = r. + 1.
Since O(ry + 1) is greater than O(7) for i = 1,... 7 so that O(r +1) > . + 1, it
automatically follows that {O(1),...,0(r,+1)} = {1,..., 7+ 1}. Thus if we let
O’ be the result of removing the first 7, cells from O and subtracting r;, from the
remaining elements, then O’ will be a fixed point of I in Oy, (k—1)(p—2)+1). More-
over, since each of the first k — 1 bricks contributes a factor of —y to sgn(O)W (0),
we have that sgn(O")W (0O') = (—y)*Lsgn(O)YW(O). Let a® = O(1)...O(rp + 1)
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be the permutation of S, ;i determined by the first 7, + 1 cells of O. It is easy
to see that a® has T-matches starting at positions 1,7y, ...,75_;. We claim that if
we place any permutation ¢ € .S,, 41 such that there are 7-matches in o starting at
positions 1,7, ...,7x_1, then we will create another fixed point of I,. That is, if
o € Sy, +1 is such that there are 7-matches in o starting at positions 1,79, ..., 7%_1,

then this forces that

1. 0,y < -+ < 0, which means that the minimal in the first & bricks are
increasing,
2. o is increasing within each of the bricks by, ..., b,_1, and

3. Orp+1 :’l“k—l—l

It follows that the contribution of such fixed points to U, ,(y) is

(_y)k_lDT,rk-l-lUr,n—(k—l)(p—Q)-‘rl) (y)

where D, 11 is the number of ¢ € S,, 41 such that there are 7-matches in o
starting at positions 1,7y, ..., 7rp_1.

Fortunately, Harmse in his thesis [?] has already found a formula for D, 4
for any 7 = 13...(p — 1)2p where p > 4 in a different context. In particular, this
formula was needed for the study of column strict fillings of rectangular shapes
initiated by Harmse and Remmel [?]. That is, Harmse and Remmel [?] defined
Fnr to be the set of all fillings of a & x n rectangular array with the integers
1,..., kn such that that the elements increase from bottom to top in each column.
We let (i, 7) denote the cell in the i-th row from the bottom and the j-th column
from the left of the k x n rectangle and we let F'(i,j) denote the element in cell
(i,7) of F € Fp .

Given a partition A = (Aq,..., Ax) where 0 < A; < -+ < N, we let F)
denote the Ferrers diagram of A, i.e. F) is the set of left-justified rows of squares
where the size of the i-th row is A\;. Thus a k x n rectangular array corresponds
to the Ferrers diagram corresponding to n*. If F' € F,; and the integers are
increasing in each row, reading from left to right, then F'is a standard tableau of

shape n*. We let St,» denote the set of all standard tableaux of shape n* and let
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Stox = |St,x]. One can use the Frame-Robinson-Thrall hook formula [14] to show

that
(kn)!

where (n) o=1and (n) Jy=n(n—1)---(n —k+1) for k > 0.

If F'is any filling of a k xn-rectangle with distinct positive integers such that

(3.14)

Stk =

elements in each column increase, reading from bottom to top, then we let red(F’)
denote the element of F, ; which results from F' by replacing the i-th smallest
element of F' by i. For example, Figure 3.5 demonstrates a filling, F', with its
corresponding reduced filling, red(F').

12]16]22

8 |15(17

F ol1s red(F)

10|12
11

o

=lw|lo| N
o | o
oo

175

S
[N)

Figure 3.5: An example of F' € F5,4 and red(F).

IfFeFopand 1 < ¢ < - < ¢ <n, then we let Flcy,...,c;] be the
filling of the k x j rectangle where the elements in column a of Flcy,...,¢;| equal
the elements in column ¢, in F' for a = 1,...,j. Let P be an element of Fj
and ' € F, ) where j < n. Then we say there is a P-match in F' starting
at position i if red(F[i,i+1,...,i+ j — 1]) = P. We let P-mch(F") denote the
number of P-matches in F.

If P € Fy,, then we define MPp,, to be the set of F' € F,; such that
P-mch(F') = n — 1, ie. the set of F' € F, ) such that there is a P-match in
F starting at positions 1,2,...,n — 1. Elements of MPp,, are called maximum
packings for P. We let mpp,, = |MPp,| and use the convention that mpp; =
1. For example, if P is the element of F5; that has the integers 1,...,s in the
first column and the integers s + 1,...,2s in the second column, then it is easy
to see that mpp,, = 1 for all n > 1, since the only element of F' € F,; with
P-mch(F) = n — 1 has the integers (i — 1)s + 1,...,(i — 1)s + s in the i-th
column, for i = 1,...,n. Harmse and Remmel [?] proved that the computation
of the generating function for the number of P-matches in £}, ; can be reduced to

computing mpp,, for all n so that they computed mpp,, for various P € Fy;. In
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particular, let Py € Stys be the standard tableau which has 1,3,4,...,s+ 1 in the
first column and 2,5+ 1,s + 2,...,2s in the second column. For example, P; is

pictured in Figure 3.6.

P lW OO
N ([N |00 |©

Figure 3.6: The standard tableau Ps.

Then Harmse proved that for s,n > 2,
Mpp,n-1 = m (s:) (3.15)
Now suppose that s,n > 2 and ' € MPp,,. It is easy to see that in F
that the top s — 1 elements of column i are larger than any of the elements in
columns ¢ — 1 and are greater than or equal to F'(1,7). It follows that the top s —1
elements in column n are greater than all the remaining elements in F' so that they
must be s(n —1)+2,s(n—1)+3,..., sn reading from bottom to top. Given such

an F', we let o be the permutation in Sj,—1)4+2 where
op=F(1,1)F(2,1)...F(s,1)...F(1,n—=1)F(2,n—1) ... F(s,n—1)F(1,n)F(2,n).

For example, if F' is the element of MPp, 4 pictured at the top of Figure 3.7, then
o is pictured at the bottom of Figure 3.7.

12| 16| 20
11| 15|19
10| 14| 18

9|13 17
2137

n
1]
RO O |0

Op = 145 6 8 2 9101112 3 13 14 1516 7

Figure 3.7: An example of op.
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It is then easy to see that if /' € MPp_,, then op is a permutation in
Sk(n—1)+2 which has 13...(s—1) 2 s-matches starting at positions 1+ (s—2)(j—1)
for j = 1,...,n — 1. Vice versa, if 0 € S4n_1)42 is a permutation which has
13...(s—1) 2 s-matches starting at positions 1+ (s—2)(j—1) forj=1,...,n—1,
then we can create a filling of F, € MPp,,, by letting 7" column of F consist of
Tg(r—1)41, - - - s Ts(r—1)+s, reading from bottom to top, for r = 1,...,n—1 and letting
the nt" column of Os(n—1)410s(n—1)+2, S(n—1)+3, ..., sn. It then follows from (3.15)

that the number of permutations o € Sg_1)pp-1)42 that have 1 3...(p — 1) 2 p-
1

(7).

matches starting at positions 1+ (p—2)(j—1) forj=1,... ., k—11s
Henceif r=13...(p—1) 2 p, then

N e )

It then follows that the contribution to U ,, of those fixed points O such that the

(p—2)k+1

bricks by, ..., bx—1 all have p — 2 cells and there is a 7-match starting at cell r; for
1 < j < k—1, but there is no T-match starting at position r, = (k—1)(p —2) + 1

is

(_y)k—l 1 <(k - 1)(p - 1)

Ur o (k—1)(p— :
Hence we have shown that if if 7 = 13... (p—1)2p where p > 4, then U, 1(y) = —y
and for n > 2,

=) 1 k(p— 1)
Urn(y) = (1 = 9)Urn-1(y) + ]; (—y)km< pk )U‘r,n—(k(p—2)+l)(y)

(3.16)
This proves Theorem 27.

Theorem 27. Let 7 =13...(p — 1)2p where p > 4. Then

NM,(t,z,y) = (ﬁ) where U, (t,y) =1+ ; UT,n(y);—yz,
Unsly) = —y and forn > 2,
2=2)
Urn(y) = L= 9)Urnaa() + Y (—9)" m (k(p k_ 1)) Urn—(k(p-2)+1) (Y)
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Again, it is not difficult to compute some initial values of Uz (p—1)2p.n(¥)

for small p. For example, we have computed the following.

Uis241(y

~y + v

—y+2y° =y’
Ursaaa(y) = —y +4y* — 3y° + y*

(y) =
U1324,2(Z/)
(y) =
(y) =
Uisoas(y) = —y + 6y* — 8y° + 4y — ¢
(y) =
(y) =
(y) =
(y) =

U 1324,3\Y

—y + 8y* — 19y3 + 13y* — 5y° + 4f
—y + 10y? — 34y® + 38y* — 19y° + 6y° — ¢”
—y + 129% — 53y + 98y* — 641° + 260 — Ty7 + ¢/°

Uis2a6(Yy
Uizoa,7(y
Uis2a8(Yy
Uiz2a.0(y
Ursoa,10(y) = —y + 16y — 103y° 4 334y* — 531y° + 337y — 141y " + 43y°

Utsazs,1(y

—y +y°

—y+2y° =y’
Urzazs,a(y) = —y + 3y° — 3y° + ¢*

(y) =
Utsaos 2(y) =
(y) =
(y) =
Uszazs 5(y) = —y + 5y — 6y° + 4y* —
(y) =
(y) =
(y) =
(y) =

U 13425,3 (Y

Uisa2s,6(y —y + Ty* — 12y + 10y* — 5y5 + y°
Uisazs7(y) = —y + 9y — 21y* + 23y* — 15¢° 4 6y° —
Usazsg(y) = —y + 11y? — 37y + 47y* — 39y° + 21y° — 7y7 + 98

Utzans.0(y) = —y + 13y* — 57y + 94y* — 90y° + 61y — 28y" + 8y® — ¢/*
U13425,10(y) = —y+ 15y — 81y3 + 171y4 — 198y5 + 156y6 — 90y7 + 36y8

Utzasze1(Y) = —y

Uisasas 2(y) = —y + ¢

Ursasas3(y) = —y +2y° — ¢°

Ussasosa(y) = —y + 3y = 3y° +y*

Usasze,s(y) = —y + 4y° — 6y° + 4y* — ¢°

Ursasas s (y) = —y + 6y° — 10y° + 10y* — 5¢° 4 ¢/°

—y + 14y? — 769> + 194y* — 196y° + 98y — 34y" + 8y® — ¢°
—0y® + 410

—0y° 4 ¢
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Utzaser(y) = —y + 8y? — 17y + 20y* — 15¢° + 6¢° — o7

Ursasass(y) = —y + 10y* — 27y 4 38y* — 35y° + 21y° — Ty" + ¢°

Utzasaso(y) = —y + 12y% — 40y + 68y* — T4y + 56y — 28y" + 8y — ¢/°
Utzasas,0(y) = —y + 14y* — 61y° + 114y* — 146y° + 131y° — 84y™ + 36y — 9y° + y'°

Uszasezr,1(y

—y+ 9

—y+2y° =y’
Ursaseara(y) = —y +3y° — 3y° + ¢*

(y) =
Uszasear,2(y) =
(y) =
(y) =
Ussasears(y) = —y +4y* — 6y° + 4y* — ¢
(y) =
(y) =
(y) =
(y) =

U 1345627,3\Y

—y + 5y — 10y® 4 10y* — 5y° 4 y/°

—y + Ty? — 15y% + 20y* — 15¢y° 4+ 6y° — y”

—y + 9y? — 2313 + 35y* — 359° + 2195 — Ty + 48

Ussasearo(y) = —y + 11y? — 34y3 + 59y* — 70y° + 56¢° — 28y™ + 8y® — ¢°
Usasezr,i0(y) = —y + 13y* — 48y° + 96y* — 130y° 4 126y° — 84y" + 36y° — 9y” +¢'°

U 1345627,6 \Y
U 1345627,7\Y

U 1345627,8 (Y

Again, there are a number of coefficients of U3 (p—1)2pn(y) that are easily
explained. For example, as in the case of Uy (p-1)n(¥), it is easy to see that
Uss..p-1)2p0()|y = —1 and Uiz (p—1)2pn(y)|y» = (=1)" for all p > 4. We also
claim that for any p > 4,

n—1 if2<n<p-—1and

Uss...o-1y2p.n(Y)]y2 = (3.17)
2n—p ifn>p.

That is, we want to consider the fixed points O of I3 (,—1)2, Which have precisely
2 bricks B of size by followed by Bsy of size by. Now if there is an increase between
By and Bs, then the underlying permutation must be the identity and hence there
are n — 1 such fixed points as b; can range from 1 to n — 1. Now if O is such
that there is a decrease between B; and By, then there must be a 13...(p — 1)2p-
match starting at position by — (p — 2) + 1. This can only happen if n > p. Now
suppose that O(b; — (p —2) + 1) = z. Then we know that © < O(b;) + 1. Since

the elements in By are increasing, it follows that 1,...,2z — 1 must be in brick
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By. Thus x = by — (p — 2) + 1. Note that for O(by +2) > O(j) > O(by + 1) for
j=0b+(p—2)+2,...,b; so that it must be the case that O(b; + 1) = z + 1,
O(b1+2) = z+p—1,and {O(j) : j = bi+(p—2)+2,..., b1} = {z+2,..., 2+ (p—2)}.
As z can vary from 1 to n — p + 1, it follows that the number of fixed points O
where there is a decrease between bricks By and By is n — p 4+ 1. This establishes
(3.17).

Of course, one can use the initial values of the Uiss (p—1)2pn(¥y) to compute

the initial values of N Mz (p—1)2p(t, %, ). For example, we have computed that

NMggo5(t, x,y) = 1 + xyt + % (zy + oY) 2 +

é (zy + zy® + 3%y + 2%y°) t° +

1

4

1170 (xy + 10xy? + 152%y* + 11ay® + 302%y° + 252%y° + 2y + 5a?y?
+102°y* + 102%y* + x5y5) £+

(zy + day® + T2y + 2y® + 42°y° + 62°y° + o'y*) t* +

DO

1
=0 (zy + 24zy® + 312%y* + 622y° + 1402%y> + 902%y® + 262y" + 912°y"+

1202%y* + 652%y* + xy® + 62°y° + 152%y° + 202"y” + 152°y° + 2%°) t° +
1
=010 (zy + Bdzy® + 632*y* + 273xy” + 5532%y° + 3012°y° + 292zy*+
840x2y* + 87523y + 35021 y? + 572y + 2382%y° + 40623y° + 350xy° +

1402%y° + xy® + 72y’ + 212°y° + 352%y® + 352y + 212%° + 27y") 7 +

10330 (zy + 1162y® + 1272°y* + 1071zy® + 20002°y° + 9662°y° + 2228y '+
57262%y* + 51522 y* + 17012%y* + 1171ay° + 401622y + 54742y° +
36402%y° + 10502°y° + 1202y° + 5752%y° + 11762y° + 13162%y° +
8402°y° + 2662%y° + xy” + 8x%y" + 282°y" + 562ty” +
702°y" 4 562%y" + 2827y + :c8y8) 54
Again, it is easy to explain several of these coefficients. For example, the

same argument that we used to prove that NMio. (p—1)n (%, Y)|zkyr = S(n, k) will

prove that
NM13...,(p—l)2p,n(x> y)|xkyk = S(TL, k)
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We claim that for p > 4,

2n=t —p if n < p and
N M. (p-1)2p0 (2, Y )y = (3.18)
2l —on+p—1 ifn>p
That is, suppose that o € S, contributes to N M3 (—1)2pn (%, Y)|zy2. Then
o must have 1 left-to-right minima and one descent. It follows that ¢ must start
with 1 and have one descent. Again, there are 2"~! — n permutations that start
with 1 and have 1 descent. Next consider when such a ¢ which starts with 1 and
has 1 descent can have a 13...(p—1)2p-match. If the 13...(p—1)2p-match starts
at position ¢, then it must be the case that 0,4,_3 > 0;1,—2. Thus it follows that
O1,...,0i+p—3 and o4, o, ..., 0, are increasing sequences. But the fact that there
is a 13...(p — 1)-match starting at position ¢ also implies that o; < 0;4p_o. It
follows that 1,...,0; — 1 must preceed o; which implies that o; = 7. But since

Oitp—1 1s greater than 0,41, ..., 0,4p_3, it follows that o;1, o =i+ 1 and
Oiy1 =1+2,,043=1+3,...,0i4p3=1+Dp—2.

Thus there is only one such o which has 13... (p—1)2p-match starting at position
7 As i can vary from 1 to n —p—+1, it follows that there are n — p+ 1 permutations
o which starts with 1 and have 1 descent and contain a 13...(p — 1)2p-match. It
is then easy to see that this implies (3.18).

3.45 7=145...p23 for p >5

We will start by analyzing the fixed points of I for 7 = 145...p23 where
p > 5. By Lemma 34, we know that 1 is in the first cell of O. We claim that
2 must be in cell 2 or p — 1 in O. That is, suppose that 2 is in cell ¢ where
c ¢ {2,p — 1}. Since there are no descents within any brick, 2 must be in the
first cell of a brick. Moreover, since the minimal elements in the bricks of O form
an increasing sequence, reading from left to right, 2 must be in the first cell of
the second brick. Thus if b; and by are the first two bricks in O, then 1 is at the
start of b; and 2 is at the start of by. But then we claim that there is no 7-match

in the elements of b; and by. That is, if 2 < ¢ < p — 1, then 1 cannot be the
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start of a 7-match in O because 2 is too close to 1. But if 1 is not part of a 7
match, then no other element in brick b; can play the role of the 1 in a 7-match
so that the 7-match in bricks b; and by must be entirely contained in by which is
impossible if O is a fixed point of I.. Similarly, if p — 1 < ¢, then again 1 cannot
be the start of a 7-match in O since 2 is too far away from 1. But then no other el-

ement in brick b; can play the role of 1 in a 7-match in O. Thus, we have two cases.

Case 1. 2 isin cell 2 of O.

In this case there are two possibilities, namely, either (i) 1 and 2 are both in
the first brick by of O or (ii) brick b, is a single cell filled with 1 and 2 is in the first
cell of the second brick by of O. In either case, it is easy to see that 1 is not part of a
145 ... p23-match in O and if we remove cell 1 from O and subtract 1 from the num-
bers in the remaining cells, we would end up with a fixed point O’ of I, in O, ,,_;.
Now in case (i), it is easy to see that sgn(O)W (O) = sgn(O’)W(0O') and in case (ii)
since by will have a label —y on the first cell, sgn(O)W(0) = (—y)sgn(O")W(0O’).
It follows that fixed points in Case 1 will contribute (1 — y)U- ,,—1(y) to Ur,(y).

Case 2. 2isin cell p — 1 of O.

Let O(i) denote the element in cell i of O and by, bs, ... be the bricks of O, reading
from left to right. Since there are no descents within bricks in O and the minimal
elements of the bricks are increasing, reading from left to right, it must be the case
that 2 is at the start of a brick by. Thus b, is a brick of size p—2. But then by must
have at least two cells since otherwise, there could be no 7-match contained in the
cells of b; and by, and we could combine bricks b; and by which would mean that
O is not a fixed point of I.. But then the only reason that we could not combine
bricks b; and b, is that there is a 7-match in the cells of b; and by which could only
start at position 1.

We now have two subcases.
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Case 2.a. There is no 7-match in O starting at cell p — 1.

Then we claim that O(p) = 3. To show this, suppose 3 is in a cell ¢ such that
c¢{l,p—1,p}. f 1 < c < p—1 then since there are no descents within bricks,
¢ = 2 or c is the first cell of a brick. Because there is a 7-match starting at the
first cell, ¢ cannot be equal to 2 because O(2) must be at least 4 to be part of a
T-match. Furthermore, ¢ cannot be the first cell of a brick because the minimal el-
ements in bricks are increasing but (O(1),0(c¢),O(p—1)) = (1, 3,2). Now suppose
that ¢ > p. Then since there are no descents within bricks and minimal elements
of bricks are increasing, ¢ must be the first cell of brick b3. There is a decrease
between bricks b, and b3 so there must be a 7-match within these bricks. This
means that O(c) = 3 must play the role of 2 in the 7-match. This is impossible
because 2 does not start a 7-match therefore there are no numbers left to play the
role of 1 in the 7-match that contains 3. Thus O(p) = 3.

It then follows that if we let O’ be the result of removing the first p — 1
cells from O and subtracting p — 1 from the remaining numbers, then O" will be a
fixed point of I; in O, _—1). Note that if b, has 2 cells, then O’ will start with a
brick with one cell and if by has more than 2 cells, then O’ will start with a brick
with at least two cells. The T-match starts at the first cell so all of the numbers
{0(2),...,0(p — 2)} are greater than O(p) = 3. Since there are n — 3 numbers
greater than 3 occupying p — 3 cells and there is —y coming from the brick by, it is
easy to see that the fixed points in Case 2.a will contribute —y (Z:??:) Urn—p-1)(¥)
to Urn(y).

Case 2.b. There is a T-match starting at p — 1 in O.

In this case, it must be that
Op—1)<O0@2p—3)<O02p—2)<O(p) <---<O(2p—4).

But then it must be the case that b, must have p — 2 cells. Clearly, by has at most
p—2 cells since the elements in each brick are increasing and O(2p—4) > O(2p—3).
Now if by has less than p — 2 cells, then O(2p — 3) must start some brick b, and
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brick by_1 would have less than p — 2 cells. But then we could combine bricks b;_4
and by, since that would mean that all the elements in b;_; are strictly bigger than
the first element of b so that it would not be possible to have a 7-match contained
in the bricks b,_; and bg. Thus brick by has p — 2 cells which, in turn, implies that
brick b3 must have at least 2 cells. That is, if b3 has less than 2 cells, there could
be no 7-match among the cells of by and b3 so then we could combine by, and bs
violating the fact that O is a fixed point of I..

In the general case, assume that in O, the bricks by, ..., b;_1 all have p — 2
cells and the first elements of each of these bricks start 7-matches in O. Let
rj=1+(—1)(p—2) for j =1,...,k so that r; is the position of the first cell in
brick b; for 1 < j < k. Furthermore, assume that there is no 7-match starting at
position 1, = (k — 1)(p — 2) + 1. First we claim that brick b, must have at least
2 cells. That is, since there is a 7-match starting at position ry_; in O, we know
that O(ry — 1) > O(rg). Thus if by has 1 cell, then we could combine brick by_;
and b, which would violate the fact O is a fixed point of I.

Next, we claim that O(r;) = j for 1 < j < k. We have shown that
O(r;) = O(1) = 1 and O(ry) = O(p — 1) = 2. Thus, assume by induction that
O(rj—1) = 7 — 1. Notice that since there is a 7-match starting at cell r;_;, we have
that O(r;) > O(r;_1) so O(r;) > j. Now let’s figure out where the number j could
be. Let’s assume that O(r;) # j, so O(r;) > j.

Now, suppose j is in cell ¢ such that ¢ < r; and ¢ ¢ {ry,...,m_1}. If
rj_1 < ¢ < r;, then since there is a 7-match starting at r;_1, O(c) > O(r;) which
cannot happen because O(c) = j and O(r;) > j. Next suppose that r; < ¢ < 744
for 1 <i < j—2. Then since there is a 7-match starting at cell 7;, O(c) > O(r;11+1)
but O(r;41+1) cannot be less than j because all of the numbers 1,2, ... j—1 occupy
the cells 71,79, ...,7j_1. Therefore j must occupy a cell ¢ such that ¢ > r;.

Suppose ¢ > r;, then since there are no descents within bricks and O(r;) >
7, cell ¢ must be the first cell in a brick. But then cell ¢ cannot be the first cell of
a brick because minimal elements of bricks increase and O(r;) > O(c). Therefore
¢ = r; or in other words, O(r;) = j.

Next we claim that O(ry + 1) = k 4+ 1. Since the numbers 1,. ..,k already
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occupy the cells r1,rs, ..., 7 we have that O(ry, + 1) > k + 1. Let’s assume that
O(rp+1)#Ek+ 1.

First suppose that k41 is in cell ¢ such that ¢ < ry+1and ¢ & {ry,..., 7}
In other words, suppose r; < ¢ < ;41 for 1 < i < k — 1. Then since there is a 7-
match starting at cell 7, k+1 = O(c) > O(r;41+1) but O(r;41 + 1) cannot be less
than k + 1 because all of the numbers {1,2,...k} occupy the cells {ry,7q,..., 7}
Therefore k + 1 must occupy a cell ¢ such that ¢ > r, + 1.

Suppose ¢ > rp + 1, then since there are no descents within bricks and
O(rp+1) > k+1, cell ¢ must be the first cell in a brick. But then cell ¢ cannot be
the first cell of a brick because minimal elements of bricks increase and O(ry+1) >
O(c). Therefore ¢ =, + 1 or in other words, O(ry, +1) =k + 1.

If we let O’ be the result of removing the first ry cells from O and renumber-
ing the remaining cells in such a way that we keep the same relative order but use
the numbers 1,...,n — ry, then O" will be a fixed point I, in O,,_,,. Moreover,
since each of the first k — 1 bricks contributes a factor of —y to sgn(O)W(O), we
have that sgn(O" )W (0') = (—y)*"tsgn(O)W(O). Since we have shown that the
numbers {1,2,...,k, k+ 1} occupy the cells {ry,7o,... 7,7 + 1}, it must be the
case that the numbers within the cells in between r; and r;.; for 1 < ¢ < k —1

are all greater than k 4+ 1. So there are n — (k + 1) numbers to choose from that

n—k—1
(k=1)(p—3)
choose these numbers. Let a® = red(O(1)...0O(ry + 1)) be the permutation of

must occupy 1y — k = (k —1)(p — 3) cells. Thus there are ( ) ways to
Sro+1 determined by the first 7, + 1 cells of O after renumbering. It is easy to
see that a® has 7-matches starting at positions 1,7s,...,75—1. We claim that if
we place any permutation o € S,, 41 of the numbers {O(1)...O(ry + 1)} such
that there are 7-matches in ¢ starting at positions ry,7r,...,7%_1, then we will
create another fixed point of I.. It follows that the contribution of such fixed
points to U, ,(y) is (—y)*1 ((kfz)k(;ig))FmHUT,n_(k_l)(p_g)H)(y) where F,, 41 is
the number of o € §,, 11 such that there are 7-matches in o starting at positions
T1, T2y ey Tho1-

Suppose o € Sy, +1 such that there are 7-matches in o starting at positions

r1,72,...,7k—1 and let o(i) be the number that occupies position i. Then we
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already know from above that 1,...,k + 1 occupy positions rq,79,..., 7%, 7% + 1.
Now we must assign numbers to the positions between r; and r;1 for 1 <7 < k—1.
Since there are r;,1 —r; — 1 = p — 3 numbers in between each pair of positions
i, Tiv1, then there are (p — 3)(k — 1) numbers left to assign. Since there is a 7-
match starting at position r; for 1 < ¢ < k — 1, then o(r; + 1) < o(r; +2) <
-~ <o(ri+p—3) = 0o(ris1 — 1). So each value o(r; + 1) is less than the following
p — 4 numbers and also o(r; +1) > o(r; + p — 1) = o(r;11 + 1) which means that
o(ri+1)>0(rag+1)>--->0(rg—1 +1) > o(ry + 1) = k+ 1. This implies that
o(rp_1+ 1) is less than (p —4)(k— 1)+ (k—2) = (p — 3)(k — 1) — 1 numbers so
it must be the least of the numbers left to assign. Then we may choose from the
remaining (p—3)(k—1)—1 numbers to fill in the positions rx_1+2,...,rx_1+p—3
so there are ((p_?’)p(ﬁ;l)_l) ways to do this.

Now we must assign the remaining (p — 3)(k — 2) numbers to the positions
between r; and r;11 for 1 < ¢ < k — 2. By the same argument above, o(ry_o + 1)
is less than (p —4)(k —2) + (k — 3) = (p — 3)(k — 2) — 1 numbers so it must be
the least of the numbers left to assign. Then we may choose from the remaining
(p—3)(k —2) — 1 numbers to fill in the positions ry_s+2,...,7x_o+p— 3 so there
are ((;;-3)5522)—1) possible ways to do this.

We repeat this process by arguing that after assigning numbers to positions
Tk—(i—1)+ 1, ... Tp—(i—1) +p—3, the number o(r;_;) must be the least of the numbers
left to assign and then we may choose from the remaining (p—3)(k—i) — 1 numbers
to fill in the positions r,_; +2,...,7x_; + p — 3 so there are ((p_?’ifff)_l) possible

ways to do this and we take ¢ from 1 up to k& — 1.

Therefore, F;, 41, the number of o € S, 41 such that there are 7-matches

in o starting at positions ry, 79, ..., 7x_1 is given by
k—1 .
p—3)(k—1)—1
FT,Tk—i-l = H <( ;(_ 4 ) ) (319)
i=1

Thus we have proved Theorem 28

Theorem 28. Let 7 = 145...p23 where p > 5. Then
tTL

1 X
’ )) where U (t,y) =1+ Z U‘r,n(y)aa

NMT(tVIay) = <7
U-(t,y e



UT,l(y> =Y and fOT’ n > 1)

Un(y) = (1 = y)Urna(y)+

L2=2]+1

k=2

We have computed the following coefficients.

Uras23.1(y

—y+ ¢

—y+2y° =y’
Uwasasa(y) = —y + 3y° — 3y° + ¢

(y) =
Uasaz2(y) =
(y) =
(y) =
Utaszss(y) = —y + 5y* — 6y° + 4y* — ¢
(y) =
(y) =
(y) =
(y) =

U 14523,3(Y

—y + 9y% — 14y3 + 10y* — 55 + ¢/
—y + 16y* — 35y® + 30y* — 15¢° + 6y° — y”
—y + 27y? — 8493 + 95y* — 559° + 21y5 — Ty + 48

U14523,6 Yy
U14523,7 Yy
U14523,8 Yy

Ulas23,0(y
Utasazi0(y) = —y +65y? — 478y + 869y — 749y° + 406y° — 140y + 361°

Utase23,1 (y) =
(y) =—-y+y?
) =-y+2° -y’
Uraseasa(y) = —y + 3y* — 3y° + ¢
Urtsezss(y) = —y +4y* — 6y° + dy* —
(y) =
(y) =
(y) =
(y) =

U 145623,2\Y

U 145623,3\Y

—y + 6y — 10y° + 10y* — 5y5 +¢°
—y + 11y? — 20y 4 20y* — 153° + 65 —
—y + 22y% — 51y% + 50y* — 35y° + 21y5 — 7y7 + 8

U 145623,6\Y
U145623,7 Y
U 145623,8\Y

U 145623,9\Y

U1456723,1(y) =Y
Uriseras2(y) = —y + v
Unaserass(y) = —y + 2y — y?

106

2 o ((pn—_i%)k(;l;—ll)) ﬁ ( (pp —3>4_ 1) Urn-tt-ne-2e0 ()

—y + 43y% — 201y3 + 284y* — 2109° + 91y5 — 28y7 + 8y® — 4*
— 999 4910

—y 4+ 43y% — 133y3 + 161y — 105y° + 5615 — 28y7 + 8y® — y°

Utase2s.10(y) = —y -+ 79y% — 326y° 4 504y* — 406y° + 196y5 — 84y ™ + 36y® — 9y® + y'°
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—y + 3y = 3y° +y*

—y +4y* — 6y° + 4yt — 9

—y 4 5y? — 10y® + 10y* — 5y° + ¢/F

—y + Ty? — 1593 + 20y* — 15¢° + 6y° — o7

—y + 13y* — 27y + 35y* — 35y° + 21y° — Ty" + ¢°

Ulsseraso(y —y + 29y% — 70y3 + 77y* — 70y° 4 56y° — 28y" + 8y® — 1°
Utaseras.10(y) = —y +65y% — 204y3 + 252y* — 18215 + 126¢° — 84y” + 36¢® — 9y + y'°

Ul456723.4 (y
U 1456723,5 (y
Ul456723,6 (y
U 1456723,7(?/
(
(

U 1456723,8 \Y

)=
)=
)=
)=
)=
)=

3.5 Permutations with no 1324...p-matches and

one or two descents

In this section, we will show how we can use Theorem 24 and Theorem 25
to find the generating function for the number of permutations o € S,, which have
no 1324 ...p-matches and have exactly k descents for k = 1,2 and p > 4.

That is, fix p > 4 and let dsf?p denote the number of ¢ € S,, such that
1324 ...p-mch(o) = 0 and des(o) = i. Our goal is to compute

DY) =Y dﬁ;’}pg = NMuzoy ,(t,1,y)|,in
n>0
fori=1and = 2.

To this end, we first want to compute Uisos. pn(¥)ly, Urs2a. pn(y)|,2, and
Uisoa.pn(y)|ys. That is, we want to compute the number of fixed points of I1304.
that have either 1, 2, or 3 bricks. Clearly there is only one fixed point of I;324._, of
length n which has just one brick since in that case, the underlying permutation
must be the identity. In such a situation, the last cell of the brick is labeled with
—y so that for all n > 1 and all p > 4, Uszo4. pn(y)|, = —1. Hence

Uisaa p(ty)ly =1 — €', (3.20)

Next we consider the fixed points of I;304., which are of length n and con-

sists of two bricks, a brick B; of length b, followed by a brick Bs of length b,. Note
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that in this case, the last cells of B; and B; are labeled with —y so that the weight
of all such fixed points is y2. Suppose the underlying permutation is o = oy ... 0,.
Then there are two cases.

Case 1. There is an increase between the two bricks, i.e. oy, < 0p,41.

In this case, it easy to see that o must be the identity permutation and,

hence, there are n — 1 fixed points in case 1 since b; can range from 1 to n — 1.

Case 2. There is an decrease between the two bricks, i.e. oy, > op, 11.

In this case, there must be a 1324 . . . p-match in the elements in the bricks of
By and By which means that it must be the case that red(op, — 104, 0,41 - . - O, 4p—2) =
1324 ...p. Now suppose that 0,1 = x. Since 0}, 41 is the smallest element in brick
By and the elements in brick B increase and oy, > 03,41, it must be the case that
1,...,2 — 1 must lie in brick B;. It cannot be that o,, = x + 1 since gy, > 0p, 41.
Thus it must be the case that 04,41 = x4+ 1 and o3, = x + 2 since o3, < Op, 42.
Thus brick B consists of the elements 1,..., 2,2 + 2. Hence there are n — p + 1

possibilities in case 2 if n > p and no possibilities in case 2 if n < p.

It follows that
0 ifn=0,1
Usoa. pnlyz =4¢n—1 if2<n<p-1and (3.21)

2n—p if n > p.

Note that
tn tn—l tn
> 2n—p) = %E:@ijﬁ_pEZE
n>p n>p nzp
p—2 p—1
t" t"
_ t R t _
- 2t(€ | ) p(e | )
n=0 n=0
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Thus
p—1 n p—1 n
Uigoa p(ty)ly2 = (2t —ple' +p+ Z(P - 2”)% +)) (n— 1)%
;L:i nn:2
= (2t—p)et+p+zl(p—n—1)%. (3.22)

Next we consider a fixed point of I1324. , which has 3 bricks, B, of size b;
followed by Bs of size by followed by Bj of size bs. Let 0 = o7 .. .0, be the under-
lying permutation. The weight of all such fixed points is —y®. We then have 4 cases.

Case a. There are increases between B; and By and between By and Bs, i.e.

Oy < Opy11 and Op, 1y < Oby4by41-

In this case, it is easy to see that ¢ must be the identity permutation so

that there are (";1) possibilities in case 1 if n > 3.

Case b. There is an increase between B; and B, and a decrease between Bs

and Bs, i.e. oy, < 0p,4+1 and Op,+b, > Oby+byt1-

In this case, it must be the case that o7 < --- < 04,44, and

red(O-bl-i-bz—lo-bﬁ-bzO-bﬁ-bz-i-l .- '0b1+b2+p—2) =1324.. -P.

Then we can argue exactly as in case 2 above that there must exist an x such that
Opytby—1 = @ and 1, ...,z — 1 must occur to the left of oy, 14,1, T 44, = ¢+ 2 and
Oby+by+1 = © + 1. Then for any fixed x > 2, we have z — 1 choices for the length
of By so that we have S"_P"(z — 1) = ("72*1) possibilities if n > p+ 1 and no
possibilities if n < p.

Case c. There is a decrease between B; and By and an increase between B,

and Bg, 1L.e. Op, > Opy+1 and Oby4by < Oby4byt1-

In this case, it must be the case that 03,11 < -+ < 0, and

red(op, —10b, Oy 41 - - - Oby+p—2) = 1324...p. Again we can argue as in case 2 above
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that there must exist an x such that o, 1 =2 and 1, ..., x—1 must occur to the left
of oy, _1, 0p, = v+2 and 0y, 1 = x+1. Then for any fixed =, we have n—1—(z+p—1)
choices for the length of By so that we have Y7 'n—ax —p—1= (""2"") possi-

bilities if n > p 4+ 1 and no possibilities if n < p.

Case d. There are decreases between B; and By and between B, and Bjs, i.e.

Opy > Oby+1 and Oby+by = Oby+bot1-

In this case, there are two subcases.

Subcase d.1 p = 4.

Now we must have red(oy, _10p,0p,410p,42) = 1324. First suppose that
by = 2. Then we also have that red(oy, 1105, 4204, 1308, +4) = 1324. It follows that
T = 0p—1 < Op41 < Op,+3. Oince op, 41 is the smallest element in brick B, and
op, +3 is the smallest element in brick Bs, it must be the case that 1,...2 —1 lie in
brick B; and that 04,41 = x+1. It also must be the case that o, < 04,12 < 0p, 44 SO
that oy, 05,42 € {4+ 2,2+ 3} and 0y, .4 = x + 4. Thus there are two possibilities
for each . As x can vary between 1 and n — 5 in this case, we have 2(n — 5)
possibilities if by = 2 and n > 6 and no possibilities if n < 6.

Next consider the case where by > 3. Again we must have
red(op,—10p,0p, +10p,+2) = 1324. Similarly we must have
red (O, 15y—10by 4550y 10y +10b 1bot2) = 1324, but this condition does not involve
op,+1- Nevertheless, these conditions still force that o, < oy, 44,41 so that if
op,—1 = x, then x is less than the least elements in bricks By and Bjs so that
1,...,2 — 1 must be in brick By and o3,11 = = + 1. However in this case,
red(O, 15y—10by 45y 0by +by 10k 1bot2) = 1324 ensures that oy, .o is also less than
the least element of B3 and since op, < 03,42, we must have o, = = + 2 and
Op+2 = = + 3. If we then remove the first z + 2 cells which contain the num-
bers 1,...,x + 2, then we must be left with a fixed point which has two bricks on
n —x — 2 cells. Then by our analysis of case 2, there are n — x — 2 — 3 possibilities

for By so that we have a total of 3" %n — 2 — 5 = (",?) possibilities.
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It follows that in subcase d.1 where 7 = 1324, we have 2(n — 5) + ("°)

possibilities if n > 7 and no possibilities if n < 7.
Subcase d.2. p > 5.

In this case, we must have a 1324 ... p-match among the elements of bricks
By and B, which can only happen if red(op, —10, 05,41 - - - Oy 1p—2) = 1324 .. .p and
by > p — 2. Similarly we must have have 1324 ... p-match among the elements of
bricks By and Bz which can only happen if red(0b, 5y—10b, 45y Oty 4+by+1 « - - Oby4bptp—2) =
1324 ...p which is a condition that does not involve o}, 1. Nevertheless, these con-
ditions still force that o, 0y, 11 < Tp, 1,41 S0 that if o, 1 = z, then x is less than
the least elements in bricks By and B3 so that 1,...,2 — 1 must be in brick By
and oy, 41 = x + 1. We also have that o, < 03,12 and that oy, must be less
than the least element in brick Bs which is o4, 44,+1. It follows that it must be the
case that o,, = x + 2 and o0p,42 = x + 3. If we then remove the first z +p — 3
cells which contain the numbers 1,..., 2 4+ p — 3, then we will be left with a fixed
point which has two bricks on n — x — p + 3 cells. Then by our analysis of case
2, there are n — x — p 4+ 3 — p + 1 possibilities for B3 so that we have a total of
Zz;f(”_m_l n—x—2p+4= ("_22p+4) possibilities if n > 2p —2 and no possibilities
ifn <2p—2.

It follows that

0 ifn=0,1,2
Uszaan(y)]ys

—
S

N
—

~—

if n = 3,4 and

(") +2("%) + (%) +2(n—5) =2(n—3)? ifn > 5.
(3.23)
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0 ifn=0,1,2
" ifn=3<n<
Ussoa. pin(Y)lys = (%) thn Snxp
(n;1)+2(n_§+1) ifn=p+1< n<2p—3and
\ (n;l) + Q(n—;;—l—l) + (n—22p+4) if n 2 2]9 _9

Note that 2(n — 3)? = 2n(n — 1) — 10n + 18 so that

Uis2a(t, y)lys = —+34'+Z n— 325

n>5

N _+?y+2ﬁnn—1——§:mm_++§:w—

n>>5 n>5 n>5

- §+34ﬂt Z&J — 10t(e nﬂa)lae_
2 2 B
= (2t - 10t +18)e' — 18 — 8t — ¢ gt

For p > 5, note that

() (1)

on(n—1)+ (5—4p)n+3p> —8p+ 7

ol (G I G R ) BB
E:(%un—1%+®—4mn+&9_8p+ﬂ

’I’L
nl

2p—4 m

W (e =D )+ B = 3 )+ (3"~ 8p+ (e

n=0 =0

(3.24)
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It follows that for p > 5,

Uisoa. p(t,y)]ys = (2% + (5 —4p)t +3p* —8p+7)e’ +

z”:<n;1>g+ §(<n;1>+2<n—§+1 )Z_’:_

n=3 n=p+1
2p—>5 2p— 4t 2p—3 4
( t2z—+ 5— 4p)t Z TG =8p+T) —'>.
n=0 ’
One can then use Mathematica to show that
2p—3
Ussaa.p(t, y)lys = (262 = (5 — dp)t +3p° = 8p + T)e' + > _ f(n,p) (3.25)
n=0
where
(
—3p? +8p —Tifn=0,
—3p®+12p —121if n =1,
f(n,p) = ¢ —3p> + 16p — 21 if n = 2, (3.26)

_%+(4p_%)_3p2+8p—61f3§n§p7 and

2 (2p—D) =32+ Tp—6ifp+1<n<2p—3.

\

Now for any 7, we can write

1 1
NG LY) = Gy =10 <A Oy = B0y 7 O + 0]
= 1+ (4 S0y + Cr(t)y® + O(yh)™ (3.27)

n>1
It then follows that

NMT(tv 17y>|y = AT(t>7

NM.(t,1,9)|,2 = (A.(#)*— B,(t), and
NM.(t,1,y)|,s = (AT(t))2 —2A.(t)B,(t) + C.(t).

We have shown that
Ag(t) = € =1,
2

t
31324(t) = <2t — 4)€t + 442t + 5, and

3 4

t
ETRT

/
Crpma(t) = (267 =10t +18)e! —18 8t — £ + o +

3!
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One can then use Mathematica to compute that

t3

DSV (t) = NMysau(t, 1, 9)],2 = €% — (2t — 2)e' —3 — 2t + 5 (3.28)
It follows that for n > 4,
dl) = 2" —2n +2. (3.29)

This is easy to explain directly. That is, if o € N Mi324, and has one descent, then

o has either one or two left-right-minima. Thus for p > 4,

dng,zl = NM132477L (LU, y)‘xgﬂ + NM1324,7L (SL’, y)|m2y2
= 2" —op4+4—14+2"1 -1
= 2" —2n+ 2.

One can also use Mathematica or Maple to compute that

A
D () = NMysos(t, 1, y)| s = ¥ + (5 — 4t)e® + (1> — 10t +5)e’ — 11 — 4t + RETE
(3.30)
It then follows that for n > 5,
d?) = 3" + (5 —2n)2" +n? — 11n + 5. (3.31)
We do not know of a simple direct proof of this result.
We have shown that for p > 5,
Arga.p(t) = €' —1,
p—2 m
31324"'p(t) = (2t — p)et +p + Z(p —n — ].)E, and
n=1
2p—3 n
Cisaap(t) = 22+ (B —4p)t+3p° —8p+T)e' + > f(n, p)
n=0 )
One can then use Mathematica to compute that
p—2 n
DMV (t) = NMyga(t, 1, y)],e = e — (2t —p+2)e =) (p—1— n)g. (3.32)
n=0 ’
It follows that for n > p — 1,
1) _ on
d) =2"—2n—p+2. (3.33)
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One can easily modify the direct argument that we used to prove d 1 =2"—2n+2
for n > 4 to give a direct proof of this result.

One can also use Mathematica to compute that

DR (t) = NMizs p(t, 1,y)],s =€ + (2p — 3 — 4t)e* +

p

p—2
tn
<3p—12p+10+(13 6p)t + (5 —p)t Z (p— n—1n> el
n=3 )

2p—1+2(2(p—n—1 +anp (3.34)

where f(n,p) is defined as in (3.26). For example, one can compute that

2t3
DO () = ¥+ (7T—4t)e® + (25— 17t — S0 -
3t
2 3
33 = 21t — 6" — #7 =~ —
4¢3 2t
DP(t) = ¥+ (9—4t)e® + (46 — 23t — > — a5 e
27t 172 3t 6> 38 {7
B T TR TR H TR T
@) att 20
D7 (t) = €+ (11 — 4t)e* + (73 — 29t — 26> — t* — i ?)et
48t% 343 23t 1565 10t 617 38 10
—85 — 65t — — — — —— - —
2 3! 4! 5! 6/ 7 & 9l
It then follows that for n > 2p — 2,
2) __ an n
d) =3"+ (2p—3—2n)2"+
PRop—k—1)
3p%—12p+10+(13—6p)n+ (5—p)n(n—1)— Y - (n—1)--- (n—k+1)
k=3 )
(3.35)
For example, for n > 8,
53 3
d®) = 3" 4 (7= 2m)2" + 25 — Tn+n2— %

For n > 10,

136n  n? n3 nt
A —3n L (9 _om)2" 446 — — 4 — = _ .
n.6 +(9-2m)2"+ 6 T12° 6 12
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For n > 12,

142n  Tn® n®
2) _ on . n . _ ]
dp7=3"+ (11 =2n)2" +73 < T3 " w0



Chapter 4

The Bijection Between Cycles
and Brick Tabloids

In this chapter, we will define a bijection between cycles and brick tabloids
that leads to results about permutations that have no cycle-matches for unusual

groups of patterns.

4.1 Symmetric Functions

Let Z = {0,£1,4£2,...} denote the set of integers and P = {1,2,3,...}
denote the set of positive integers. Recall that h,, and e, are given by (1.31) and
(1.32). Givena f : P — P, we define a ring homorphism O : A — Z by Of(ep) =1
and Of(e,) = (—1)2& for n > 0. This given, we want to give a combinatorial

interpretation for n!©(h,). Using (3.5), we see that

nlO(h,) = nl> (=1)""B,,6(e,)

ukn
n— (=11 f ()
— ey Y S
HFn (bl ..... b((u))EBu,n =1 L

pEn (bl ----- bé(u))eBu,n

117
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We can interpret (b1 ) ) as picking the number of ways of placing the numbers
1,...,n in the brick tabloid (by,..., b)) so that the numbers increase from left
to right in each brick. We let F,, denote the set of all pairs (7, 0) where T' =
(by,...,bx) is a brick tabloid in B, and ¢ € S,, which is increasing in each brick.
We then define the f-weight of (T, 0), ws(T,0), to be f(b1)--- f(by). Thus we
have shown that

nlOp(hy) = Y wy(T,o0). (4.2)

(T,0)EFn

We can now apply ©; to (1.30), we see that

1+Z Y w(T0) = Op(H(1))

n>1 (T,0)eFn

n(=D" "L f(n
L+ Zn21(_t) ()nixf()

1
= . (4.3)
1- anl %tn

Let’s use the theory of exponential structures to describe other objects

dependent on the function f(n). Consider an object (T,0) € F,. Notice that
since the bricks increase from left to right, the left-to-right minima will always be
the first element of a brick. So we can now use the inverse map described on page
15 where we group “cycles” by starting a new cycle at each left-to-right minimum.
Notice that the grouping will never break apart a brick. Then by the theory of
exponential structures, Theorem 10 we can think about this generating function

as

1 t"
—— = exp —gf(n)> (4.4)

n>1

where gr(n) counts cycles of length n that are weighted by the following function.
Let C' = (cgy...,¢n_1) € S, be a cycle with ¢y = 1, then let B(C) be

the set of all brick tabloids (7, C') such that C' starting with 1 is the underlying

permutation and the numbers in each brick are increasing.

Then let vi(C) = 37 cyep(oy wr(T, C) be a weight function based on f
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and let £,, be the set of all n-cycles. Then we have that

gr(n) =Y vs(C). (4.5)

CeLly

We can interpret gf(n) as the number of brick tabloids 7" = (by,...,by)
filled with the numbers 1,...,n so that the numbers increase from left to right in
each brick and such that the first element of the first brick is 1. Furthermore the
brick tabloid is weighted by the function w;(T,C) = f(b1) - - - f(bx). Now we can

express (4.4) as

t" 1

n>1 n>1 n!

4.2 The bijection between cycles and filled cir-
cled brick tabloids

We start off by considering the generating function (4.3) where f(n) =n—1
for all n > 1. Then the right hand side of (4.3) becomes

1 1
1= 37, o Bt R P T D D (n—11)!tn_l
1 et
et — tet 1—t (4.7)
And so we have that
t" 1
—gf(n) = log T
; n! 1- ZnZl n—'lt
et
=1
o (1)
= —t—log(l—1t)
n tn
_ D _ _ |
=Y = Zn!(n 1)! (4.8)
n>2 n>2

Notice that this is the EGF for cycles with length > 2. Let £,, be the set
of all cycles of length n and let L, = |£,|. It follows that

L, =v¢(n). (4.9)
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Since f(n) =n — 1, we can interpret vs(n) as the number of brick tabloids (T, C')
that start with 1 and are made up of bricks that have size 2 or greater in which
we circle one element in each brick which is not the final element in the brick. Let

Fc.n be this set of objects. For example, Figure 4.1 shows two elements of F¢ 12

1[4 [D]7 [10[11]12] (3)[6 | (D8 |9

(D3| D5 | @]10[11] |6 [Df12] [2]3

Figure 4.1: Elements of F¢ 2.

It follows (4.9) that |F¢.,| = Ly, for all n > 2 and, hence, there must exist a
bijection ®,, : F¢, — L, for all n > 2. This best way to describe the bijection is a
step by step process. We will use the first brick tabloid of Figure 4.1 as a example.
Let (T,o)=|1|4|®|7]|10|11|12]|®|6||@]|8|9}

Step 1. Arrange the elements in each brick so that the circled elements comes

first followed by the remaining elements arranged in decreasing order.

(D [12[11f10]7 [4 [1 | B®D]6 | [D]9 |8

Figure 4.2: Step 1 of transforming (7, o).

Step 2. Now simply erase the brick and think of the resulting configuration as a

cycle @, (T, o).

®,((T,0)) = (5,12,11,10,7,4,1,3,6,2,9,8)
= (1,3,6,2,9,8,5,12,11,10,7,4).

For the inverse map, suppose that we are given a cycle ¢ in L,. Then we

can compute ®-1(c) by the following four step process. For this example suppose
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o=(1,6,11,10,5,3,2,9,13,7,8,12, 14, 4)

Step I. Arrange the cycle o so that 1 is at the start of the cycle. (In our ex-

ample, o already starts with 1)

Step II. Read the entries of o from right to left. We then circle the first el-
ement o;, such that o;, < o;,41. If 41 is not the first entry, then we continue
reading the elements from right to left until we find a cell 75 in the brick such that
0iy < 0iy+1 and i + 1 < 27 in which case we circle o;,. If iy is not the first entry,
then we continue reading the elements from right to left until we find a cell i3 in
the brick such that o;, < 0;,41 and i3 + 1 < 75 in which case we circle o;,, etc. In

our example after Step II, the circled elements are shown below

(1,),11,10,5,3,2,0,13,(1), 8,02, 14, 4)

Step III. Next we break up o from Step II into bricks by starting with each circled
element and form a brick which consists of the circled element plus all elements to
the right that come before the next circled element. For the last circled element in
o, the corresponding brick will contain all the elements to its right if 1 is circled
or it will contain all the elements to its right with 1 added to the end if 1 is not
circled. We may think about this last remark as wrapping around the cycle until

you get to the next circled element. In our example, the bricks are shown below.

®|11]10|5(3|2||@|13||@D|8| @|14|4]1

Step IV. Finally cyclically arrange the bricks so that the brick that includes 1 is
the first brick and arrange the numbers within each brick in increasing order. Here

is the pre-image of our example ®;} ().

1l4l@14]|2|3]5|/®|10]11]|@|13]||® |8

To see that the procedure for ®! is correct, suppose that 7' = (by, ..., by)

and consider these two cases.
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Case 1. In (T,0), 1 is circled in b;.

Since in each brick of (T, o), we put the circled element first and the remaining ele-
ments in decreasing order, @, (7, o) will directly produce a cycle (cy, ..., ¢,) where
c1 = 1. We can find the circled element that corresponds to brick b, because it
will correspond to right-most rise in ¢; - - -¢,. If that element is ¢,, then the cir-
cled element in brick b;_; will correspond to the right-most rise in ¢; - - - ¢,_1, etc..
Thus it is easy to see that Step II will recover the circled elements and Step III

will recover the original bricks.

Case 2. In (T, 0), 1 is not circled in b.

This means that brick b; has length at least three. Under ®,,, we would arrange
the elements in by so that a; < ag > -+ > ap,—1 > 1 where a; is the circled element
in b;. Thus the cycle produced by ®,, from the elements in bricks by, ..., b would
be of the form (cy,...,¢,) where ¢; = 1 and ¢,—; = ap,—1—; for i = 0,...,b; — 2.
This means that, we can recover the elements in the b; by looking for the the right-
most rise in ¢; ... ¢, and combining it with the element 1. Once we have recovered
the elements in brick by, then, as in Case 1, we can find the circled element that
corresponds to brick by because it will correspond to right-most rise in ¢y - - - ¢p_yp, .
If that element is ¢,, then the circled element in brick b,_; will correspond to the
right-most rise in ¢y ---¢,_1, etc.. Hence our procedure in Step II will properly
recover the circled elements and Step III will recover the original bricks by, . . ., bg.
Thus we have shown that @' o @, is the identity. The argument that ®,, o @, !

equals the identity is similar. Thus we have the following theorem.

Theorem 35. ®,, is a bijection from Fe,, onto L,

4.3 Restricting brick tabloids

Once a bijection is formed between two sets of objects that do not obviously
have the same cardinality, it is natural to restrict the structure of one set and see
what this restricted subset maps to under the bijection. The restrictions that we

consider will be restrictions that come about by altering the function f(n). If
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f(n) = n — 1 produces the set of objects F¢,, then changing this function will

produce subsets of F¢ .

4.3.1 No bricks of size 2

The first restriction that we consider is restricting the set F¢,, to include
objects that do not have any bricks of size 2.

In this case, the function f(n) in the generating function (4.3) can be defined

fl(n>:{ 0 =t (4.10)

as

n—1 if n>3

Theorem 36. Let ]-"(ljm be the subset of Fc.,, restricted by only including objects
that do not have any bricks of size 2.

Forn > 5, The map ®,, maps ]-"(ljm to the set of cycles that have no con-
secutive cycle occurrences of the patterns in the set I' U {1234} where I' is the set

of all patterns o = 0109030405 such that
01 < 09 > 03 < 04 > 05.

Proof. We will prove this by showing that the inverse map ®,, is a bijection between
the complement of £:°"(I'U{1234}) and the complement of F¢,,, First lets say that
comp(Lp™(T' U {1234})) is the complement of £1™(I' U {1234}) and comp(F,,)

is the complement of F¢, . We will show that the maps

®,, : comp(Fe,,) — comp(Lp™(I'U {1234})) (4.11)
@, comp(Lr™(T U {1234})) — comp(F¢,,,) (4.12)

n

are both injections.

®,, : comp(Fe,,) — comp(Lpe™(I'U {1234}))
Suppose (T,0) € comp(F,) with T = (b, ..., b;) then for some brick |b;| = 2.

Suppose b; =| @) | ao | and suppose that the circled element of b, is as

Case 1: ay < ag

Suppose that the greatest element of ;11 is a4. From Step 1 of the map ®,,, the
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numbers of ®,(T, o) will be arranged so that a; is followed by as then az and then
as. Then a; < ay < ag < a4 so there is a cycle-1234-match in @, (7, 0).

Case 2: ay > a3

We must consider 2 subcases.

Subcase 1: All bricks are of size 2.

We will assume that there are no two consecutive bricks| @) | a, || @) | a4 |such that

as < az because this has been considered in Case 1. Specifically there will be three

bricks in a row | @) | as || @ | a4 || @ | ag |such that a1 < as > a3 < as > a5 < ag

so when we apply the map ®,,(7’, ), there will be a cycle pattern match in ®, (7', o)
for a pattern in I'.

Subcase 2: There exists a brick that has size larger than 2.

Consider the brick of size 2 that comes directly before the brick of size larger than
2. For the larger brick, let az be the circled element, let ay be the largest element
and let a5 be the second largest element (excluding the circled element.) Then
after Step 1 of the map, the numbers of ®(7,0) will be arranged so that a; is
followed by as, as, as, as. Then aq; < as > az < ag > as so there is a cycle pattern

match in ®,,(7T, o) for a pattern in I'.

O comp(Lp™(T'U {1234})) — comp(FE,,,) :
Suppose that ¢ € comp(LI™(I" U {1234})) has a cycle match of 1234 then some-

where in the cycle we have
(...Ci < Ciy1 < Ciyo < Ciyg > Ci+4...).

From Step II of the inverse map, ¢;.3 and ¢;; are circled which will map to a brick

tabloid (7', o) that includes the brick | &), | ¢; 1o | Of size 2.

Now suppose that ¢ € (), has a cycle match of a pattern in I', then some-

where in the cycle we have
(...Ci < Cig1 > Ciyo < Ciyg > Ci+4...).

From Step II of the inverse map, ¢;.o and ¢; are circled which will map to a brick

tabloid (7', o) that includes the brick | @) | ¢;4; | of size 2.




125

Therefore we have shown that @, : comp(F¢,,,) — comp(Lr“™(T'U{1234}))
is a bijection, therefore ®,, : F¢,, — L5°™(I" U {1234}) must also be a bijection. [
Corollary 37. Let T1 =T"U {1234} then

26t2/26t4/12

NCMx, (1) = 55

Proof. Since | F¢, | = [£p°™(T1)] for n > 5, and | F¢,, | is counted by the generating

function }, -, 2gp,(n) where

if n=
fl(m:{ 0 1,2
n

-1 ifn>3

then we have that

" nem "
S Siemee) = 3 Cgntm)
n>5 n>5
4
1 t"
= log n - —9n (n)
4
1 t"
= IOg n— - _|‘/~:1 n‘
(1 — Yz nz:; =

One can easily show that for n = (1,2,3,4), |F¢,,| = (0,0,2,3) so this generating

function becomes:
" e 1 et

n>5
e 2 2t 3t
= %\ 9 et 2) T 31 Al

Furthermore, one can easily show that for n = (1,2,3,4), |£'™(Y)| = (1,1,2,5)

so we can get the following generating function for | £} (T)|

" e 2 2t 3t 2 2t3  5tt
ZHM" Tl = 1Og<2et—2tet+t2)_ﬁ_ﬂ+t+5+§+ﬂ

n>1
= lo 2 +t+ 5+ 2t
8\ 9 ol + 2 21 Al
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Then by the theory of exponential structures (10) we can compute the generating
function of NCM~, (t)

NCMry,(t) = exp (Zglﬁzcm(ﬂ)\)

n>1
] 2 Tt r + 2t
= X (0] _ _
P8\ oar Zoter + 2 o1 Tl
2€t2/26t4/12
T 921 2et

O

4.3.2 No bricks of size 2 and circle the second to last ele-

ment

In this case we consider the function

0 if n=1,2

fa(n)z{l s (4.13)

Theorem 38. Let ]-"gW be the subset of Fc.,, restricted by only including objects
that do not have any bricks of size 2 and furthermore only the second to last element
may be circled.

Forn > 5, The map ®,, maps ]:(%m to the set of cycles that have no con-
secutive cycle occurrences of the patterns in the set I' U {1234,132} where I is the

set of all patterns o = o100030405 such that
01 < 09 > 03 < 04 > 05.
Proof. Just like in the proof of Theorem 36, we will show that

®, :comp(FE,,) — comp(Lr™(T'U {1234,132})) (4.14)
@' comp(Lrem(T U {1234,132})) — comp(FE,,) (4.15)

n

are both injections.

Py, : comp(FE,,) — comp(Lpe™(I'U {1234, 132})) :
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Case 1: (T,0) € comp(FE,,) has a brick of size 2.

From Theorem 36, we know that this will map to the set comp(L"“"(I' U {1234}))
which is a subset of comp(L™(I" U {1234, 132})).

Case 2: (T,0) € comp(F¢,,) does not have a brick of size 2.

This means that there exists a brick b; in (T, ) such that the circled element of b;
is not the second to last element. Then suppose for b;, a; is the circled element,
as is the greatest element and as is the second greatest element. Then by Step 2
of the map ®,,, the elements of ®,,(T,0) will be arranged so that a; is followed by
ay and az. But red(aq,as, a3) = 1,3,2 so the image under the map ®,, maps to a

cycle that has a cycle-132-match.
O 1 comp(Lpe™(T U {1234,132})) — comp(FE,,) :

Case 1: Suppose o € comp(L!™(I' U {1234, 132})) has a cycle-I'-match or a
cycle-1234-match.
Then by Theorem 36, ®'(c) is in comp(F¢,,) which is a subset of comp(Fg,,)

Case 2: Suppose o € comp(L“™(I' U {1234, 132})) has a cycle-132-match.

Then suppose the entries ¢;, ¢;11, ¢;12 have relative order 132. Then consider two
subcases.

Subcase 1: ¢; 5 is circled in Step II

If this is the case then by Step II, ¢; is also circled and therefore the pre-image
®~!(0) has a brick of size 2 consisting of the entries ¢;, ¢;1; and therefore ®~1(o) €
comp(F¢,,).

Subcase 2: ¢; 5 is not circled in Step II

If this is the case then then ¢; is circled and the pre-image ®~'(o) has a brick
of size greater than 2 that includes the elements ¢;, c;y1, c;i o and perhaps more
elements. Since by Step III, the elements are arranged by increasing order in the
bricks, and because ¢; < ¢;io < c¢ii1, it is clear that in this brick there are at
least two elements greater than the circled element ¢; and therefore this is a brick

where the second to last element is not circled and therefore ®~'(o) € comp(F¢,,).
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Therefore we have shown that ®,, : comp(Fg,,) — comp(Lp“™(I'U {1234, 132})) is
a bijection, therefore ®,, : F&, — Ln"(I'U {1234, 132}) is also bijection. O

Corollary 39. Let Ty = {132,1234, 35241, 45231, 34251} then

2€t€t2/2

NCOMx, (t) = 42t + 1212

Proof. First notice that the only 3 patterns in I' that do not have a 132-match are
{35241,45231,34251}. Notice that if a permutation o has no cycle-r-matches for a

pattern 7 that has a 132-match then o will have no cycle-132-matches. Therefore
Lrem(T u{1234,132}) = £1m({132, 1234, 35241, 45231, 34251 })

Since |Fg,,| = |Lpe™(T U {1234, 132})] = |L;™(T5)| for n > 5, and |FZ,)|

is counted by the generating function Y, -, &gy, (n) where

0 if n=12
fa(n) = ’
2() 1 if n>3

then we have that

" nem "
S Doz = 3 g
n>5 n>5
1 t"
= log n - Z —9f (n)
(1 - anl f27§| )tn) n=1 n!
4
1 t"
= IOg - _|‘/_"2 n‘
(1 D DI %t“) ; n!'" <

One can easily show that for n = (1,2,3,4), |F&,,| = (0,0,1,1) so this generating

function becomes:

" e 1 A
Zgwn (T2)] = 10g<—1_2 it”>_§_a

n>5 n>3 nl

1 2 A
= O —_— e —
S\d1 -2t r2+2t) 3 4
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Furthermore, one can easily show that for n = (1,2,3,4), [£r"(T2)| = (1,1,1,1)

so we can get the following generating function for |L£]“"(Ts)|

" 2 Bt U B
L (Y,)] = 1 bt — 4 =+ —
;n!| o (L)l Og(4—2et+t2+2t) ZTR TR RN

1 2 ci4
e (@) —_—
S\ 1 212+ 21 9]

Then by the theory of exponential structures (10) we can compute the generating

function of NC'M~, (t)

NCMy,(t) = exp <Z%|£ZCW<T2)I>

n>1

2 t2
- 1 -
eXp(Og (4—2et+t2+2t) * +2!)

26t6t2/2
4 —2et + 12+ 2t

O

4.3.3 No bricks of size 2 and do not circle the second to

last element

In this case we consider the function

n—2 if n>3

f3<n>={ O m=te (4.16)

Theorem 40. Let ]-"gm be the subset of Fc.,, restricted by only including objects

that do not have any bricks of size 2 and furthermore the second to last element

may not be circled.

Forn > 5, The map ®,, maps ]-"gm to the set of cycles that have no con-

secutive cycle occurrences of the patterns in the set I'U {1234, 231} where I is the

set of all patterns o = g109030405 such that

01 < 09 > 03 < 04 > 05.
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Proof. Just like in the proof of Theorem 36, we will show that

®, :comp(Fg,,) — comp(Lr™(T'U {1234,231})) (4.17)
@' comp(Lrm(T U {1234,231})) — comp(F,,,) (4.18)

n

are both injections.

Py, : comp(F¢,,) = comp(Lp™(I'U {1234, 231})) :

Case 1: (T',0) € comp(F¢,,) has a brick of size 2.

From Theorem 36, we know that this will map to the set comp(L™(I' U{1234}))
which is a subset of comp(L™(I" U {1234, 231})).

Case 2: (T,0) € comp(F¢,) does not have a brick of size 2.

This means that there exists a brick b; in (T, 0) such that the circled element of b;
is the second to last element. Then suppose for b;, a; is the circled element, ay is
the greatest element and ag is the third greatest element. Then by Step 2 of the
map ®,,, the elements of ®,,(T', o) will be arranged so that a; is followed by ay and
as. But red(a,as,a3) = 2,3,1 so the image under the map ®,, maps to a cycle

that has a cycle-231-match.
O 2 comp(Ln™(T U {1234, 231})) — comp(FE,,) :

Case 1: Suppose o € comp(L!™(I' U {1234,231})) has a cycle-I'-match or a
cycle-1234-match.
Then by Theorem 36, ®,'(c) is in comp(F¢,,) which is a subset of comp(F¢,,)

Case 2: Suppose o € comp(Lr“™(I" U {1234, 132})) has a cycle-132-match.

Then suppose the entries ¢;, ¢;11, ¢;i o have relative order 231. Then consider two
subcases.

Subcase 1: ¢; 5 is circled in Step 11

If this is the case then by Step II, ¢; is also circled and therefore the pre-image
®~1(0) has a brick of size 2 consisting of the entries ¢;, ¢;;; and therefore ®~1(o) €
comp(F¢,,,).

Subcase 2: ¢; ;5 is not circled in Step II
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If this is the case then then ¢; is circled and the pre-image ®~!(o) has a brick
of size greater than 2 that includes the elements ¢;, ¢;y1, ;1o and perhaps more
elements. Since by Step III, the elements are arranged by increasing order in the
bricks, and because c;1o < ¢; < ¢;11, it is clear that in this brick there is only one
element greater than the circled element ¢; and therefore this is a brick where the

second to last element is circled and therefore ®~1(o) € comp(fgvn).

Therefore we have shown that @, : comp(F¢,,) — comp (L™ (' U {1234,231})) is
a bijection, therefore @, : F¢, — Lr™(I'U {1234,231}) is also bijection. O

Corollary 41. Let T3 = {231, 1234, 13254, 14253, 15243} then

et€t2/2
NOMy,(t) = —1—t+ 2t —tet

Proof. First notice that the only 3 patterns in I' that do not have a 132-match are
{13254, 14253, 15243}. Notice that if a permutation o has no cycle-r-matches for a

pattern 7 that has a 132-match then ¢ will have no cycle-132-matches. Therefore
Lrem(T u{1234,231}) = L£12™({231, 1234, 13254, 14253, 15243})

Since |F¢,| = [Ln™(T U {1234,231})| = | L7 (Ts)| for n > 5, and |FZ,,|

is counted by the generating function 2@1 %n, gs,(n) where

fa(n) 0 if n=1,2
’)’L:
’ n—2 if n>3

then we have that

tn ncm tn
E awn (T3)] = E agfg(”)
n>5 n>5
4
1 t"
= log< —— )—E —3,(n)
I_anl fii!)tn n=1 !
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One can easily show that for n = (1,2,3,4), |F2,,| = (0,0,1,2) so this generating

function becomes:

1 3 2tt

tn ncm .
Za‘ﬁn (T3)] = 10g<1_z "——%n)_i_ﬂ

n>5 n>3 nl

_ 1 1 t* 2!
T O\ T i 2 —tet ) 31 A

Furthermore, one can easily show that for n = (1,2,3,4), |£'™(Y3)| = (1,1,1,2)

so we can get the following generating function for | £ (Ts)|

t" nem 1 3 2tt 2 3 ¢4
Zﬁ‘ﬁn (T?))‘ = 10g<1_z "—_Qt">_§_z+t+5+§+j

n>1

Then by the theory of exponential structures (10) we can compute the generating
function of NC'M~,(t)

NCMry,(t) = exp (Zgwczcm<rs>\)

n>1

= 1 1 t 2
R —1 —t+ 2et — tet + +§

2
elet®/2

—1 — 1+ 2e! — tet

4.3.4 No bricks of size 2 or 3

In this case we consider the function

0 if n=1,23

hm%={n_1 s (4.19)

Theorem 42. Let ]-"ém be the subset of Fc.,, restricted by only including objects
that do not have any bricks of size 2 or 3.
Forn > 6, The map ®,, maps ]-"ém to the set of cycles that have no consec-

utive cycle occurrences of the patterns in the set Ty = {1234} ULy 4 ULy 4, where
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[t 14 is the set of all patterns o = 1090304 such that
o1 < 03 > 03 < 04.
And T'yy 14y 1s the set of all patterns o = 010903040506 such that
o1 < 0y > 03> 04 < 05 > 0.
Before we start the proof of this Theorem, consider the following lemma.
Lemma 43. Forn > 6, comp(Lr™(I" U {1234})) is a subset of comp(Lr™(Yy))

Proof. Suppose o € comp(L™(I' U {1234})) has a cycle-1234-match, then cer-
tainly o € comp(L!“™(YT,)) because 1234 € Y,.Now suppose o has a cycle-m-match
forT €, (11 < T > 73 <74 >75). Then the first three elements of this match

would be a cycle-T-match in o for 7 € I'y4. O

Proof. of Theorem 42
Just like in the proof of Theorem 36, we will show that

®, :comp(FE,,) — comp(Lr™(Ty)) (4.20)
@, i comp(Lr™(Yy)) — comp(F,,) (4.21)

n

are both injections.

®, : comp(F¢,,) = comp(Lr™(Ty)) :

Case 1: (T,0) € comp(F¢,) has a brick of size 2.

From Theorem 36, we know that this will map to the set comp(L™(I' U{1234}))
which is a subset of comp(L“™(Y4)) by Lemma 43.

Case 2: (T,0) € comp(F¢,) does not have a brick of size 2.

This means that there exists a brick of size 3. Suppose this brick consists of the
elements aq,as,as written in increasing order. If a; is circled then the map ®,,
arranges the elements in the order aq,as, as and if as is circled then the map ar-
ranges the elements in the order ao, as, a;, in either case there is an increase then a
decrease. Without loss of generality, let’s just consider the arrangement aq,as, as

and the argument for as, ag, a; will be similar. Suppose that the circled element
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in the next brick is a4, the greatest element of the next brick is a5 and the next
greatest element is ag (We are assuming that there are no bricks of size 2 so this
brick must have at least 3 elements.) Then the map &, arranges these elements
in the order aq,as, as, a4, as,ag. First assume that as > a4 so this arrangement
follows the pattern 1]]1J so there is a cycle-T-match for 7 € I't}+;. Now suppose
that as < a4 then this arrangement follows the pattern 1]11J] which means that
the first three elements follow the pattern 7|1 and there is a cycle-T-match for
T € Iy

®; 1 comp(Lp™(Ty)) — comp(Fe,,) :

Case 1: Suppose o € comp(LI*™(Y4)) has a cycle-I-match (Recall that if 7 € T
then 71 < 7 > 73 < 74 > 75.) or a cycle-1234-match.

Then by Theorem 36, ®'(0) is in comp(F¢,,) which is a subset of comp(F,)
Case 2: Suppose o € comp(L“™(T,)) does not have a cycle-T-match for 7 € I" or
7 = 1234. Then suppose that o has a cycle-r-match for 7y < 7 > 73 < 74. (Note
that this pattern is of type 1J1.) Because of the restrictions that have been made,
there must be a match of type 1T/114. Suppose a1 < as > az < ay < as > ag is such
a match in o. Then by the map, the pre-image will have a4 as a circled element
of one brick and a; as the circled element of the brick before. The pre-image will
include a brick of size three consisting of the elements aq, as, as.

Case 3: Suppose o € comp(L™(T,)) has a cycle-r-match for 7 € I'y 4,
Suppose a; < as > az > ay < as > ag is such a match in ¢. Then by the map,
the pre-image will have a4 as a circled element of one brick and a; as the circled
element of the brick before. The pre-image will include a brick of size three con-

sisting of the elements a1, az, as. and therefore ®~!(c) € comp(F¢,,).

Therefore we have shown that ®, : comp(F¢,) — comp(Ln(Ty)) is a bijec-

tion, therefore ®,, : F¢,, — Ln"(Ty) is also a bijection. O

Corollary 44. Let T4 = {1234} U FTiT U FTiiTi then

6€t€t2/2€t3/3

NCMy, () = .
T () 6(1 — t)et + 213 + 3¢2
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Proof. Since | F¢,, | = [£1°™(T4)] for n > 6, and | F¢,,| is counted by the generating

function ), -, 2 gs,(n) where

fum) 0 if n=1,23
n) =
! n—1 if n>4

then we have that

t" t"
S =[Lrem (Y] = > —gn(n)
n>6 n! n>6 n!
5
1 t"
= log ~ — —gy,(n)
(1_2@1 %ﬂ) ; 7
5
1 t"
- lOg n— - _|f4n|
(stew) L

One can easily show that for n = (1,2, 3,4,5), |.7:é7n\ =(0,0,0,3,4) so this gener-

ating function becomes:

e 1 tt
men (Ty)| = 10g<1_z ”—flt”>_3ﬂ_4a

n>6 n>4 nl
6 3t 4At°
= log - — — =
(1 —t)et + 23 + 3¢t2 4! 5!

Furthermore, one can easily show that forn = (1,2, 3,4,5), |[£"(Ty)| = (1, 1,2,3,4)
so we can get the following generating function for | £} (T)|
" 6
Z_|Lnem = 1
;n” o () Og((1—t)et+2t3+3t2
3t 4td 2% 3t 4

oo Tttt

1 0 a2
= (0] J— -
S\ T =t + 26 + 32 o1 " 3]

Then by the theory of exponential structures (10) we can compute the generating
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function of NC M-y, (t)

NCMry,(t) = exp (Zngm(ml)

n>1

1 0 +zt+tQ+2t3

= X O a1 a1

P\ 0 et w26 - 32 21 " 3l
66t6t2/26t3/3

6(1 — t)et + 2t3 + 3¢2
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