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Assessment of occupant-behavior-based indoor air quality

and its impacts on human exposure risk: A case study

based on the wildfires in Northern California

Na Luo 1, 2, 3, Wenguo Weng 1, 2, Xiaoyu Xu 1, 2, Tianzhen Hong 3, Ming Fu 4,

Kaiyu Sun 3

1 Institute of Public Safety Research, Department of Engineering Physics, Tsinghua

University, Beijing, 100084, P.R. China

2 Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua

University, Beijing, 100084, China.

3 Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory,

USA

4 Hefei Institute for Public Safety Research, Tsinghua University, Hefei, Anhui Province,

320601, China.

Abstract:  The  recent  wildfires  in  California,  U.S.,  have  caused  not  only

significant losses to human life and property, but also serious environmental

and health issues.  Ambient air  pollution from combustion during the fires

could  increase indoor  exposure risks  to toxic  gases and particles,  further

exacerbating respiratory conditions. This work aims at addressing existing

knowledge  gaps  in  understanding  how  indoor  air  quality  is  affected  by

outdoor  air  pollutants  during  wildfires—by  taking  into  account  occupant

Correspondence and requests for materials should be addressed to Prof. Weng (email: 
wgweng@tsinghua.edu.cn)
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behaviors (e.g., movement, operation of windows and air-conditioning) which

strongly  influence  building  performance  and  occupant  comfort.  A  novel

modeling framework was developed to simulate the indoor exposure risks

considering  the  impact  of  occupant  behaviours  by  integrating  building

energy and occupant behaviour modeling with computational fluid dynamics

simulation. Occupant behaviors were found to exert significant impacts on

indoor  air  flow  patterns  and  pollutant  concentrations,  based  on  which,

certain  behaviors  are  recommended  during  wildfires.  Further,  the  actual

respiratory  injury level  under such outdoor  conditions  was predicted.  The

modeling framework and the findings enable a deeper understanding of the

actual  health  impacts  of  wildfires,  as  well  as  informing  strategies  for

mitigating occupant health risk during wildfires.

Key words: human exposure  risk,  indoor  air  quality,  occupant  behavior,

respiratory injury, NAPA wildfire, computational fluid dynamics simulation
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Introduction

Climate  change  is  influencing  large  wildfire  frequency  and  globally

widespread  disturbance  that  affect  both  human  and  natural  systems

(Hurteau et al. 2014). The 2013 Rim Fire in California has caused an average

PM2.5 concentration of 20 μg/mg/m3 and ranged from 0 to 450 μg/mg/m3, which was

proved  to  exert  significant  adverse  health  effects  to  a  large  population

(Navarro et al. 2016). As another one of the worst wildfires recently, several

massive wildfires swept Napa and Sonoma counties in the North Bay areas of

San Francisco on the western coast of  the United States on the night  of

October 8, 2017 (HST). The fires resulted in the worst air quality that has

ever been recorded in the San Francisco Bay Area1.  The outdoor air quality

index2,3, measured in particulate matter (e.g., PM2.5) exceeded 250 ug/m3,

and  a  measure  of  other  criteria  pollutants4 (e.g.,  sulfur  dioxide  –  SO2)

exceeded 200 ppb, indicating that the high level of air pollution could cause

serious health effects in most people who breathed in the contaminated air

outdoors. 

A  sudden  increase  in  the  number  of  hospitalizations  during  the  days

following the fires could be related to the negative health effects of  high

gaseous  and  particulate  pollutant  levels  in  the  area,  which  included

1 Xinhua. Massive wildfires engulf north San Francisco counties. 
http://news.xinhuanet.com/english/2017-10/10/c_136667925.htm Accessed 2017-10-10
2 EPA USA. Air Data: Air Quality Data Collected at Outdoor Monitors Across the US. 
https://www.epa.gov/outdoor-air-quality-data Accessed 2018-06-15
3 Air Quality Data Query Tool. https://www.arb.ca.gov/aqmis2/aqdselect.php Accessed 2018-
06-15
4 The criteria pollutants (also known as “criteria air contaminants – CAC”) are a set of air 
pollutants (normally six common pollutants, which are ozone, particulate matter, carbon 
monoxide, lead, sulfur dioxide, and nitrogen dioxide) that cause smog, acid rain and other 
health hazards.
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increased  risk  for  asthma,  and  deterioration  of  pre-existing  respiratory

diseases (Lewis et al. 2013). A number of recent researches reported effects

of  the  different  airborne  particle  metrics  on  respiratory  diseases,

cardiovascular  effects,  lung  cancer,  asthma,  and  lung  cancer  via  human

inhalation exposure (You et al. 2017; Haikerwal et al. 2015; Haddrell et al.

2015).  In  other  words,  during the past decades,  wildfires  have exerted a

large  negative  global  impact  on  human  health,  ecosystems,  societies,

economies  and  climate(Jolly  et  al.  2015;  Jaffe  et  al.  2013).  Even  worse,

according  to  the  California’s  Fourth  Climate  Change  Assessment  Report

(Bedsworth  et  al.  2018),  there  is  no  sign  of  abating  in  the  expansion  of

wildfires due to the climate variations. There is an urgent need to mitigate

the impacts of the adverse air quality on the human health caused by the

increasing wildfires (Anderson et al. 2018; West et al. 2013).

Since individuals spend an average of 87% of their time indoors (Klepeis et

al. 2001), indoor air quality (IAQ) is probably more indicative of the pollution

exposure  levels  affecting  residents’  health  than  the  outdoor  measures.

According to the report by the Institute of Medicine (2011), IAQ is affected by

three  main  factors:  occupant  behavior  (OB),  building  characteristics,  and

pollutant properties. Among them, as the most significant factor, OB affects

IAQ through occupants’ interactions with the outdoor physical environment.

Behaviours such as window opening and closing (Stabile et al. 2017), HVAC

operation, and walking into or out of a room (Montgomery et al. 2015) will

change the boundary conditions of the indoor environment, thus influence
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the  flow  pattern  of  indoor  air,  which,  ultimately  cause  the  increase  or

decrease of the indoor pollution levels. 

Many previous experimental studies focused on the separate impacts of

occupant behaviors and building performances on the indoor airflow patterns

and pollutant diffusion process, such as human movements, air-conditioning

system-related parameters and window operation-related natural ventilation

(Luo et al. 2016; Luongo et al. 2016). Several Computational Fluid Dynamics

(CFD)  models  have  also  been  improved  by  validating  with  quantitative

measurements  (Luo  et  al.  2018b;  Gosselin  and  Chen  2008).  These

investigations revealed detailed information about indoor air flow patterns

and  pollutant  concentration  levels  under  different  specific  conditions.

However,  in  a  real  office  environment,  occupant  behaviors  are  always

complex  and  dynamic  due  to  transient  indoor  conditions  such  as

temperature, humidity, and occupant counts, which are mostly associated

with the outdoor environment  (Lin et al.  2017). Also,  when assessing the

impacts  of  the  indoor  environment  on  human  health,  exposure  to  air

pollution is not only largely determined by pollutant concentrations in the

spaces where people spend their time, but also by the amount of time they

spend in those spaces. Therefore, the static status of the indoor environment

is  no  longer  suitable  and  appropriate  for  evaluating  the  indoor  human

exposure  risks  during  daily  working  hours;  a  set  of  OB-related  dynamic

schedules should be first generated to guide the indoor CFD modeling and

risk evaluation. Furthermore, for a given indoor environment, the respiratory

5

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103



injury level is also crucial for assessing adverse health impacts of wildfires,

which  requires  the  pollutant  concentration  near  the  oro-nasal  as  the

boundary condition for assessment. PM2.5 and ultrafine particles are both

considered as the representative pollutants when indicating the indoor air

quality level to the public (Ibald-Mulli et al. 2002; Zhao et al. 2009). Several

studies recognized that PM2.5 are better related to resuspension phenomena

and combustion processes, while quite a high amount of our overall  daily

dose  of  ultrafine  particles  is  due  to  the  indoor  sources.  Considering  the

access to the measured data for further validation, we selected PM2.5 as the

main particle metrics in this work.

Here we used both EnergyPlus and Fluent to co-simulate indoor occupant

behaviors as well  as the corresponding IAQ and particle deposition inside

respiratory  systems,  respectively.  Indoor  pollutant  concentrations  were

simulated and used to  calculate  the  IAQ index,  which  indicated potential

adverse  health  effects.  Results  of  the  properties  affected  by  particle

concentrations near the mouth and nose of occupants, could be potentially

used  as  the  initial  and  boundary  conditions  for  the  assessment  of  the

respiratory  injury.  Outcomes  from the  study  formulated  a  framework  for

modeling (as shown in Figure 1) exposure to indoor pollutants as well as the

potential  assessment of human health hazards in an office environment—

considering occupant movement and behavior, which can inform strategies

to  mitigate  occupant  health  issues  during  times  of  serious  outdoor  air

pollution  such  as  wildfires.  For  broader  application,  this  co-simulation
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framework  among  Building  Energy  Modeling  (BEM),  occupant  behavior

modeling  and  CFD  builds  a  bridge  in  the  outdoor-to-indoor  penetration

process  especially  considering the indoor  occupant  behaviors,  which  thus

could be broadly applied in the assessment of indoor quality under many

other extreme weather events or use cases such as haze pollution in China,

as well as the vehicle exhaust etc.

Figure  1  Overview  of  the  modeling  framework.  The  Building  Energy
Modeling tool (EnergyPlus) was co-simulated with the Occupant Behavior Modeling
tool (obFMU – a functional mockup unit of occupant behavior model) to calculate the
occupant-related schedules, primarily based on the outdoor environment and the
building performance.  These modeled activities  and building performances  were
then  integrated  into  the  Fluent  modeling  process  as  the  boundary  conditions
through a C++ user-defined function (UDF), to further calculate the indoor airflow
and contaminant concentration. Eventually, the corresponding indoor exposure risk
could be evaluated, as well as the respiratory injury level as one of the potential
assessments in the future work.
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Materials and Methods

Occupant  behavior  modeling.  Whole  building  performance  simulation,

using EnergyPlus coupled with obFMU, has been used to simulate occupant

behavior and generate occupant-related schedules in the last decade (Hong

et  al.  2017).  EnergyPlus  is  an open-source program that models  heating,

ventilation, cooling, lighting, water use, renewable energy generation, and

other building energy flows (Crawley et al. 2001). It is the flagship building

simulation  engine  supported  by  the  United  States  Department  of  Energy

(DOE). The occupant behavior function mockup unit (obFMU) is an occupant

behavior-modeling tool developed by Lawrence Berkeley National Laboratory

(T. Hong et al. 2016). It was developed for co-simulation with EnergyPlus,

requiring  an XML file  generated based on the  obXML (occupant  behavior

eXtensible  Markup  Language)  schema  (Hong,  D’Oca,  Taylor-Lange,  et  al.

2015) and a configuration file. The obXML schema describes the occupant

behavior  by  implementing  a  DNAS  (drivers-needs-actions-systems)

framework  (Hong, D’Oca, Turner, et al. 2015). The obFMU is the engine for

occupant  behavior  simulation and co-simulates via the functional  mockup

interface  (FMI)  with  building  performance  simulation  programs,  e.g.,

EnergyPlus and ESP-r.

Occupant  behavior  activities.  In  this  work,  the  simulated  scenario  is

designed in an office room with two occupants working as different types.

One occupant keeps working on the computer, while the other works as a

secretary, who might often walk out of the room to get printed materials or
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coordinate  with  other  people.  The  simulation  period  is  from  9:00am  to

6:00pm, which are the working hours for the office workers. According to the

weather data on October 13, 2017, the building performance, including the

four  occupant-related  schedules  and  the  operation  characteristics  of  the

indoor facilities, were modeled in EnergyPlus.  Four categories of occupant

behavior  models  were  used  in  this  study:  occupant  movement,  lighting,

windows,  and  HVAC  operation.  They  were  used  to  describe  the

characteristics of related occupant behaviors, based on which the probability

of occupants taking an action is estimated. More specifically, Chen’s agent-

based  stochastic  occupant  movement  model  (Chen  et  al.  2018),  Haldi’s

lighting control models (switch on light at arrival or when it is dark, switch off

at departure)  (Haldi 2013), and Newsham’s window control model (open at

arrival  or  when  the  outdoor  environment  is  suitable,  close  at  arrival,

departure or when the outdoor environment is not suitable) (Newsham 1994)

were adopted. HVAC operation is a combination of availability schedule and

actual window operation. In other words, when the window is open, the HVAC

system will be off; when the window is closed, the HVAC system will be on if

occupants  feel  hot.  The  occupant  behavior  models  were  compiled  in  an

obXML file, which worked as the input to obFMU and was used to co-simulate

with  EnergyPlus.  Occupant-related  schedules,  including  the  occupancy

schedule,  lighting  schedule,  natural  ventilation  schedule  (namely  window

schedule), as well as the HVAC schedule were generated in the simulation

process, seen in Figure 2.  As for the detailed characteristics, the operation
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parameters of the windows and HVAC refer to the velocity, temperature, and

pollutant concentration of the inlet airflow. The electric power of the lighting

and computers was associated with the indoor environment in the modeling

process. The changes of occupant count represented the moments when the

occupant was entering or leaving the room. 

Figure 2. Four occupant-related schedules from the co-simulation of 
EnergyPlus and obFMU.
Indoor air flow field modeling.  The CFD software ANSYS Fluent (Version

18.0.0) was employed to simulate the transient indoor flow field affected by

the  occupant  behaviors.  Gambit  (Version  2.4.6)  was  used  to  build  the

geometric model of the office room (Figure 3) and generate the grids for

simulation.  The total  number  of  grids  is  6.7  million.  The  minimum mesh

volume was 2.64 × 10-9m3, located close to the skin of the moving occupant.

The method of mesh generation was used in our previous study (Luo et al.

2018a, 2018b). The transient solver was employed during the calculation. As

for  representing  the  turbulence  airflow  caused  by  the  ventilation  and
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occupant movements, the RNG k-ε model adopted in this work was validated

by previous work (Zhang et al. 2009; Han et al. 2014; Fracastoro et al. 2002),

with  the  overall  consideration  of  accuracy,  computing  efficiency,  and

affordability  for  modeling  the  indoor  flow  field.  The  differential  viscosity

model  and  the  swirl  dominated  flow  in  the  RNG  options  were  selected.

During the iterative process, the pressure-implicit with splitting of operators

(PISO)  algorithm  was  employed  to  solve  the  pressure-velocity  coupling

equations. The second-order upwind scheme was also used to consider the

diffusion-convection in the governing equation. The Discrete Element Model

(DEM) Collison term and the Brownian Motion term were both applied  to

include  the  particle-particle  interactions  (voidage  and  collision),  which

captured the particle resuspension phenomenon of PM2.5.  According to the

aforementioned schedules and the related parameters, a UDF in the Fluent

software has been created to automate the transient changes of the window

boundary  conditions,  HVAC boundary conditions,  light  conditions,  and the

human movement status. The gaseous composition and the corresponding

concentrations of the inlet airflow were based on the measured outdoor air

quality data, seen in Table 1. The time steps during the occupant moving and

static process were set to 0.01 s and 1 s, respectively. The calculation is

computed  in  a  four-node  Linux  cluster.  Each node  of  the  cluster  has  12

processors (2.4 GHz Intel 64). The overall simulation period in this case is

nine  hours  (32400  seconds),  which  requires  120  hours  of  the  computing

time. 
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Table  1.  The daily  maximum outdoor  air  quality  of  some criteria
pollutants  (SO2,  CO,  and  O3)  and  the  particulate  matter  (PM2.5)
within  the  following  week  after  the  wildfire  event  in  Northern
California  (October  8  –  14,  2017).  The  gaseous  composition  and  the
corresponding concentrations of the inlet airflow was based on the measured
outdoor air quality data.

Oct. 8 Oct. 9 Oct.
10

Oct.
11

Oct.
12

Oct.
13

Oct.
14

SO2 (ppb) 65.90 89.49 / / 248.93 439.05 345.92
CO (ppm) 0.80 1.19 / 1.29 1.83 2.84 2.29
O3 (ppb) 12.72 25.49 31.40 33.54 76.57 92.08 50.48

PM2.5 (ug/m3) 86.30 115.3
0

214.70 / 91.97 212.49 179.40
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Figure 3. The geometrical features of the office room. There are two
desks (1.0 m × 0.5m × 0.7 m in length × width x height) at one side of the
room (5 m × 4 m × 3 m in length × width × height). One occupant remains
sitting in front of the desk, the other one (1.75 m-height) walks through the
door (2 m × 1 m in height × width), which is on the other side of the room.
There are two windows (1.55 m × 1.45 m in width × height) on the side wall,
which is adjacent to the seated occupant. The diffuser outlet of the HVAC
(0.3 m × 0.2 m in width × height) is at the top of the wall towards the door.
The lighting fixture is at the center of the celling.

UDF setting. The UDF (user-defined function) setting is a very important

link in the overall framework, serving as a “bridge” connecting the outdoor

and indoor concentration conditions, as well as taking the occupant behavior

into  consideration.  The  aforementioned  generated  occupant-related

schedules determined both the natural and mechanical ventilation strategies

(such  as  opening  and  closing  time,  as  well  as  the  air  flow  rate  and  its

temperature etc.), these strategies were implemented in the CFD simulation

as “time-series data” through coding the user-defined function. The natural

ventilation strategy in Newsham’s research (Newsham 1994) is adopted in

this work (open at arrival or when the outdoor environment is suitable, close

at arrival, departure or when the outdoor environment is not suitable). Thus,

when the windows were opened, the gaseous and particulate pollutants were

blown into the room through the windows and the doors, where the velocity

and temperature of the inlet airflow were set as the EnergyPlus modeling

results.  As  for  the mechanical  ventilation  strategy,  it  is  a combination  of

availability schedule and actual window operation (when the window is open,

the HVAC system will be off; when the window is closed, the HVAC system

will be on if occupants feel hot). While the HVAC system was on, the windows

13

239
240
241
242
243
244
245
246
247
248
249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266



and the door, as well as the outdoor air system of the HVAC system, were all

considered  to  be  closed.  The air  purification  system was  assumed to  be

active  in  this  work,  with  a  removal  rate  of  50%.  Thus,  the  gaseous

composition  and the  corresponding  concentrations  of  the next  timestep’s

inlet airflow were calculated and input in the UDF code, according to the 50%

concentration of reduced pollutants of the last timestep around the HVAC

outlet.  The air temperature and velocity of  the inlet  airflow were also set

using the EnergyPlus modeling results. As for the movement behavior, the

walking speed of the occupant was set to 1 m/s, and it took 5 s walking from

the door to his seat (same in the opposite direction). 

Calculation of IAQ index. The IAQ index is  an index developed by the

United States Environmental Protection Agency (EPA) that is used to indicate

the indoor air quality in terms of its adverse health effects. On one side, the

pollutant concentrations can be converted into the index value based on an

empirical piecewise linear function. The breakpoints of specific pollutants are

guided in  the reports  released by WHO in 2005 and 2010  (World  Health

Organization 2005; 2010). On the other side, the calculated index values are

corresponding to different levels of adverse health symptoms based on many

previous  epidemiological  studies  and  surveys.  The  IAQ  index  for  each

pollutant can be calculated from the modeled pollutant concentration results,

as shown in Eq. 1. 

( )Hi Lo
P P Lo Lo

Hi Lo

I I
I C BP I

BP BP


  
 (1)
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where  PI  is the index for pollutant  P ,  PC  is the rounded concentration of

pollutant P , HiBP  is the breakpoint that is greater than or equal to PC , LoBP  is

the  breakpoint  that  is  less  than  or  equal  to  PC ,  HiI  is  the  AQI  value

corresponding  to  HiBP ,  and  LoI  is  the  AQI  value  corresponding  to  LoBP .

According  to  the  aforementioned  concentration  distribution,  the  average

potential  inhaled concentration was calculated within the vertical plane in

front  of  the  static  human.  The  corresponding  air  quality  level  was  then

calculated based on Eq. 1. While the final AQI is the highest value calculated

for each pollutant (Shi et al. 2015).

Results

Verification of the consistency of the two simulations. It was assumed

that the occupant-related schedules remained the same in the two simulated

environments of EnergyPlus and Fluent, making the process consistent. Due

to the model that we employed in the obFMU, decision making regarding the

operations  of  windows  and  HVAC  was  largely  dependent  on  the  indoor

environment,  especially  room  air  temperature.  Thus,  to  verify  the

consistency of the two simulated environments, indoor average temperature

was chosen as the parameter for  comparison.  Figure 4 shows the indoor

temperature modeled in EnergyPlus and Fluent, respectively. The occupant-
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related schedules generated in EnergyPlus were proved to be reasonable for

the indoor environment simulated in Fluent.

Figure 4. The indoor temperature simulated in EnergyPlus and 
Fluent. For EnergyPlus and Fluent simulations, indoor temperature both 
rose slowly till around 29.2 oC before 11:30 am, when the windows were 
opened. Then, the temperature remained at around 26.0 oC until 2:30 pm 
within the duration when the HVAC was turned on. The same phenomenon 
appeared for such behaviours afterward. Thus, the occupant-related 
schedules generated in EnergyPlus were reasonable for the indoor 
environment simulated in Fluent.

IAQ from measured data and simulated results. The indoor and outdoor

air qualities before and after this wildfire event were provided by the Indoor

Environment Group at Lawrence Berkeley National Laboratory (LBNL). Some

office  rooms  inside  the  Building  51F  in  Lawrence  Berkeley  National

Laboratory (LBNL) are serving as a living laboratory to continually monitor

the indoor and outdoor carbon dioxide and pollutant  concentrations (e.g.,

ozone, particular matters). Figures 5-6 show the comparisons of IAQ level

(namely ozone and PM2.5)  between the measured and simulated results.

Since  more  detailed  IAQ  measurement  was  not  available,  we  chose  the
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average and maximum concentration levels as the comparison indexes of

the  measured  and  simulated  results.  From Oct.  8  to  Oct.  15,  2017,  IAQ

worsened after the breakout of the wildfire, and continued for the next whole

week (Figure 5 (a)). During this week, the average concentration level of the

indoor  ozone was 18.11 ppb.  The maximum levels  of  the ozone reached

47.97 ppb on October 12, 2017, when the outdoor quality data was 76 ppb.

The simulated average and maximum levels of ozone in Figure 5 (b) were

overall  consistent with the measured results, except for two details. First,

ozone is a highly reactive component that reacts quickly with surfaces when

penetrating indoors, which is why the measured ozone levels are generally

lower than those modeled levels. Second, the measured indoor ozone level

stayed at 10 ppb during the night when all  unintentional  openings of the

building were closed,  during which time,  the simulated result  was almost

zero.  These differences between the measured and modeled results were

supposed to be associated with air infiltration in the building and are further

discussed in the discussion section.
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Figure 5 Comparison of the measured and simulated O3 levels. (a)
Concentration of Ozone measured indoors and outdoors, before, during and after
the wildfire.  (b) The simulated concentration of the indoor Ozone on Oct. 13.

Measured data of particle levels from October 12 to 14 indicate that the

maximum and average levels of PM2.5 were 91.97 ug/m3 and 51.44 ug/m3,

respectively (Figure 6 (a)), while those of the simulated results were 131.49

ug/m3 and 53.02 ug/m3,  respectively (Figure 6 (b)).  The simulated results

were a little  higher than the measured data,  which might be due to less

consideration  of  the  particle  interaction.  Comparing  to  the  outdoor

concentration, the indoor PM was about 65% of the outdoor level on average,

under an air exchange rate of 0.7 air changes per hour in this work.
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Figure 6 Comparison of the measured and simulated PM2.5 levels.
(a) Concentration of PM2.5 measured indoors and outdoors during the wildfire. (b)
The simulated concentration of the indoor PM2.5 on Oct. 13.

The fluctuant simulated results indicated that occupant behaviors exerted

a large influence on the indoor pollutant concentration during the working

hours. Through the comparison, the fluctuant indoor concentration level was

proved  to  be  consistent  with  the  measured  data  in  the  actual  office

environment  if  the  occupant  behaviors  were  considered  during  the

simulation. 

Flow pattern and concentration distribution.  The plane in front of the

oronasal  (x=1.25m,  see  Figure  3)  region  was  chosen  as  the  potential

inhalation region. The evolution of the flow structure and the concentrations

of different gaseous pollutants in this region may largely influence human

inhalation  doses,  which  is  significant  in  assessing  exposure  risk  levels.

According to the aforementioned outdoor air quality on that day, the outdoor

concentration of sulfur dioxide (SO2) was much higher than an average day,
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and its hazard level was higher than that of carbon monoxide and ozone.

Thus,  sulfur  dioxide  was  chosen  as  the  representative  pollutant  to

investigate its diffusion characteristics.

Figure 7 The velocity and concentration fields of SO2 indoors after
the windows were opened. (a) At inhalation plane, 40s after the window was
opened. (b)  After 120s.  (c)  After 180s. (d)  After 500s.  (e)  After 1000s.  (f)  After
1800s.

Operation  of  windows  exerted a  significant  impact  on flow pattern  and

concentration  distribution  (Figure  7).  Outdoor  sulfur  dioxide  was  diffused

quickly  through  the  windows.  Owing  to  the  short  distance  between  the

seated occupant and the windows, the concentration of the sulfur dioxide

near  the  oro-nasal  region  reached  a  relatively  high  level  just  after  120s

(Figure 7 (b)). The inlet airflow was affected by transient outdoor weather
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data, such as wind velocity and direction outdoors. Meanwhile, the diffusion

of  the  inlet  airflow  was  also  influenced  by  the  existent  indoor  airflow

circulation.  Eventually,  the  concentration  of  sulfur  dioxide  remained  at  a

steady state after 30 min, which was around 995 ug/m3 (348.25 ppb). Due to

the same pattern of the velocity field, concentration evolutions for carbon

monoxide and ozone were similar to that of the sulfur dioxide. Eventually,

after  30  min  of  opening  the  windows,  concentrations  of  indoor  carbon

monoxide and ozone on the inhalation region (x=1.25 m) reached around

1.40 mg/m3 (1.12 ppm) and 107.08 ug/m3 (49.97 ppb), respectively.

Flow  pattern  and  concentration  distribution  caused  by  other  occupant

behaviors such as air-conditioning and movement can be found in Figure 8-9.

The velocity and concentration fields on the plane near the HVAC outlet 300

s after the HVAC was turned on, indicated the effects of the HVAC operation

on the IAQ (Figure 8 (a)). The cold air coming from the HVAC outlet moved

downwards  during  the  diffusion  (Figure  8  (b-f)).  1300  s  after  the  HVAC

operation, the concentration of indoor sulfur dioxide dropped to 500 ug/m3.

And 6000 s after the HVAC operation,  the concentration of  sulfur  dioxide

remained  at  a  relatively  steady  state,  which  was  around  100  ug/m3.

Combined with the aforementioned analysis, occupants are advised to keep

the windows closed and run the HVAC systems with the outdoor air dampers

shutting off during wildfire to mitigate the indoor exposure risk.
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Figure 8 The velocity and concentration fields of SO2 indoors after
the HVAC was turned on. (a) At the plane near the HVAC outlet, 300 s
after the HVAC was operated. (b) At inhalation plane, 300 s after the HVAC
was operated. (c) After 700 s. (d) After 1300 s. (e) After 1700 s. (f) After
6000 s.

The effects of the occupant movements, i.e. walking out of and into the

room,  can  be  found  in  Figure  9  (a-c)  and  (d-f),  respectively.  A  strong

downward airflow was observed behind its upper body, carrying the gaseous

pollutant  downwards;  while  the  gap  between  the  lower  limbs  exerted  a

horizontal flow between the legs, which enhanced the diffusion speed of the

pollutants. The detailed information of the velocity fields evaluated in this

study has  been verified in  a  previous  PIV  experimental  study  (Luo et  al.

2018a).  Overall,  the  movement  behavior  accelerated  the  diffusion  and

mixture of the existed contaminants at different heights, which enhanced the
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risk of respiratory exposure. Therefore, occupants are recommended to limit

walking activities during the extreme wildfires. 

Figure 10 The velocity  and concentration  fields  of  SO2 along the
moving.  (a-c)  The  occupant  was  walking  out  of  the  office.  (d-f)  The
occupant was walking into the room.

Assessment of the daily exposure risk level.  Epidemiological  studies

have linked exposure to indoor air pollution with a wide range of adverse

health outcomes. The health effects and the breakpoints of some specific

pollutants considered in this study are listed in Table 2 (documented from

(WHO 2010; Mintz 2013; World Health Organization 2005)). 

Table 2. Pollutant-specific sub-indices and health effects statements
for  guidance  on  the  AQI.  The  IAQ  index  for  each  pollutant  can  be
calculated  from  the  modeled  pollutant  concentration  results,  seen  in
Methods. 

AQI
Categorie
s: Index

Ozone (ppb) Sulfur Dioxide
(ppb)

Carbon
Monoxide

(ppm)

Particulate Matter
(ug/m3)

[24-hour][1-hour] [8-hour] [1-hour] [24-
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Values hour]
[8-hour]

Good
(Up to 50)

- 0-59
None

0-35 0-30 0-4.4
None

0-12.0
NoneNone

Moderate
(51-100) -

60-75
Unusually
sensitive

individuals
may

experience
respiratory
symptoms

36-75 >30-
140

4.4-9.4
None

12.1-35.4
Respiratory symptoms
possible in unusually
sensitive individuals;
possible aggravation

of heart or lung
disease in people with

cardiopulmonary
disease and older

adults

None

Unhealthy
for

Sensitive
Groups

(101-150)

125-164 76-95 76-185 140-
220 9.5-12.4

Increasing
likelihood of

reduced exercise
tolerance due to

increased
cardiovascular

symptoms, such
as chest pain, in
people with heart

disease

35.5-55.4
Increasing likelihood

or respiratory
symptoms in sensitive

individuals;
aggravation of heart
or lung disease and

premature mortality in
people with

cardiopulmonary
disease, older adults,
and people of lower

SES

Increasing likelihood of
respiratory symptoms

and breathing discomfort
in people with lung

disease, such as asthma,
children, older adults,
and outdoor workers

Increasing likelihood
of respiratory

symptoms, such as
chest tightness and

breathing discomfort
in people with asthma

Unhealthy
(151-200)

165-204 96-115 186-
304

220-
300 12.5-15.4

Reduced exercise
tolerance due to

increased
cardiovascular

symptoms, such
as chest pain, in
people with heart

disease

55.5-150.4
Increased aggravation

of heart or lung
disease and

premature mortality in
people with

cardiopulmonary
disease, older adults,
and people of lower

SES; increased
respiratory effects in
general population

Greater likelihood of
respiratory symptoms

and breathing difficulty
in people with lung

disease, such as asthma,
children, older adults,
and outdoor workers;
possible respiratory
effects in general

population

Increased respiratory
symptoms, such as
chest tightness and
wheezing in people

with asthma; possible
aggravation of other

lung disease

Very
Unhealthy
(201-300)

205-404 116-374 305-
604

300-
600

15.5-30.4
Significant

aggravation of
cardiovascular

symptoms, such
as chest pain, in
people with heart

disease

150.5-250.4
Significant

aggravation of heart
or lung disease and

premature mortality in
people with

cardiopulmonary
disease, older adults,
and people of lower

SES; significant
increased respiratory

effects in general
population

Increasing severe
symptoms and impaired
breathing likely in people
with lung disease, such

as asthma, children,
older adults, and outdoor

workers; increasing
likelihood of respiratory

effects in general
population

Significant increase in
respiratory symptoms,
such as wheezing and
shortness of breath, in
people with asthma;
aggravation of other

lung diseases

Hazardou
s

(301-500)
405-604 - 605-

1004
600-
1000

30.5-50.4
Serious

aggravation of
cardiovascular

symptoms, such
as chest pain, in
people with heart

disease;
impairment of

strenuous
activities in

general
population

250.5-500.4
Serious aggravation of
heart or lung disease

and premature
mortality in people

with cardiopulmonary
disease, older adults,
and people of lower
SES; serious risk of

respiratory effects in
general population
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According  to  the  modeled  concentration  results,  where  the  1-hour  SO2

value was 348.25 ppb, CO value was 1.12 ppm, the O3 value was 47.97 ppb,

and the PM2.5 value was 131.49 ug/m3, the calculated maximum IAQ index

was  215,  with  SO2 as  the  responsible  pollutant.  Qualitative  evaluation

indicated  that  this  environment  would  cause  an  increasing  likelihood  of

respiratory  symptoms,  such  as  wheezing,  chest  tightness  and  breathing

discomfort in people with asthma, as well as an increasing aggravation of

other lung diseases. However, to achieve the quantitative evaluation of the

injury level, further analyses should be conducted considering an entering

path  of  the  particle  and  gaseous  contaminants  into  the  body  through

breathing. The modeled dynamic indoor contaminant concentration can be

served as a boundary condition. 

As for the impact of occupant behaviors on the daily exposure risk level,

due to the distribution  of  different  indoor  occupant  behaviors,  the indoor

pollutant  concentration  fluctuated  obviously  during  the  working  hours.

Activities such as opening the windows as well as walking into and out of the

rooms  led  to  the  increase  of  the  pollutant  concentration  and  thus  the

exposure risk of the human body and respiratory. While turning on the air-

conditioning without the function of supplying fresh air decreased the indoor

contaminant concentration in a slow but effective way. Therefore, to mitigate

indoor exposure risk,  occupants are advised to keep windows closed and

limit walking activities during the extreme wildfires. Meanwhile, outdoor air

dampers should be shutting off when operating the HVAC system to avoid
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more purification loads. From another aspect, a proper and accurate set of

occupant  behavior  schedules  and  the  corresponding  building  boundary

conditions are also crucial for enhancing the evaluation and prediction of the

indoor risk exposure. 

Discussions

This  study  formulated  a  framework  for  the  indoor  pollutants  exposure

modeling and the potential  human health hazard assessment in an office

environment particularly taking into account the actual occupant behaviours.

The simulated results under this framework were compared with the actual

measured  indoor  and  outdoor  data  (O3 and  PM2.5),  showing  great

consistency in  both the maximum and average levels.  The indoor  airflow

pattern  and  IAQ  fluctuated  obviously  within  working  hours,  which  were

largely dependent on specific occupant behaviors. Therefore, comparing to

the  traditional  IAQ  and  occupant  exposure  assessments  when  occupants

remained static or the indoor equipment (e.g., HVAC and windows) remained

constant running, the framework in this study is proved to provide a more

realistic and reliable result aligned with the actual requirement of assessing

the health hazard level of the indoor occupants. Furthermore, based on this

result  as a boundary  condition,  the deposit  fraction  and equation  can be

fitted to predict a more accurate and dynamic respiratory exposure dosage

under  such  outdoor  wildfire  conditions,  which  not  only  indicates  the  key

injury level, but also provides reference for the further physiological stage.

Assessment of the respiratory injury
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As aforementioned,  the  indoor  pollutant  concentration  near  the  oro-nasal

could be considered as the boundary condition for assessing the respiratory

deposition.  Take  nasal  inhalation  as  an  example,  respiratory  injury  was

mainly  caused  by  the  micron  particle  deposition  fraction  in  nasal  cavity,

pharynx,  larynx  and  trachea  regions  for  nasal  breathing.  The  detailed

modelling  method  and  flow  pattern  inside  the  respiratory  system  were

included in another published journal article (Xu et al. 2018). 

The simulated particle size range was slightly expanded to allow a wider

coverage of the developed deposition equations. For micron-sized particles,

deposition  fractions  were  related  to  the  inertial  parameter  I ,  which

considered  particles  mass  to  the  square  power,  and  the  averaged  fluid

momentum. The inertial parameter is defined as:

2= pI d Q (2)

where  Q is  the  volume  flow  rate  (cm3/s)  and  pd
 (μg/mm)  is  the  particle

aerodynamic diameter. Figure 11(a) and (c) show the deposition fraction in

human  respiratory  airways  for  particles  ranging  from  0.8  μg/mm  to  20  μg/mm

against the inertial parameter for oral and nasal inhalation, respectively. 

The Stokes number was used to correlate the deposition to length scale,

particle density, size and flow rate. It is defined as:

2

18
p p cd uC

St
L






(3)
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where  L is  the  characteristic  length  of  oral  and  u is  the  local  airflow

velocity. The deposition through oral breathing in human airway was related

to St and Re.

For  the  deposition  equation  in  human  airway,  improved  fittings  were

obtained with  St3.271Re and St.1.77Re0.145 for particle sizes from 0.8 to 20 μg/mm,

breathing rate of 10 and 30 L/min for oral and nasal breathing (Figure 11(b)

and  (d)),  with  a  coefficient  of  determination  R2=0.99.  The  empirical

equations are given as

3.271

0.956
[1 ] 100%

22.701 Re 1oralDF
St

  
  (4)

1.77 0.145[1 0.95exp( 7.35 Re )] 100%nasalDF St     (4)
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Figure 11 Comparison of micron particles (0.8 – 20 μm).m). (a) deposition
fraction for oral inhalation. (b) fitted deposition equation for oral inhalation.
(c) deposition fraction for nasal inhalation. (d) fitted deposition equation for
nasal inhalation. 

The dosimetry (in  number,  mass,  surface area)  in  human upper airway

under various breathing flow rates and breathing pattern was calculated by

using the above simulated PM2.5 concentration value, presented in Table 3.

The time period of occupants staying indoors was assumed as 8 hours a day

(as  the  working  hours  from  9am  to  5pm).   A  monotonous  growth  was

obtained in human upper airway dosimetry with the flow rate, which lead to

a  larger  air  exchange  and  particle  exposure  risk,  as  well  as  a  higher

probability of chronic respiratory diseases.

Table 3 Human upper airway dosages of indoor PM2.5 during a day.

Q
(L/mi

n)

Oral inhalation Nasal inhalation
Numbe

r
(106#)

Mass(μg/m
g)

Surface area (10-

5m2)

Numb
er

(106#)

Mass(μg/m
g)

Surface area (10-

5m2)

10 2.93 23.96 5.75 6.41 52.16 12.60
30 36.25 296.6 71.18 31.11 255.3 61.15

Limitations

One limitation of this work is that air infiltration via building permeability

(e.g.,  windows,  envelope  cracks)  was  not  considered  during  the  CFD

simulation. Several previous studies (Shi et al. 2015; G. Hong and Kim 2016;

C. Chen and Zhao 2011) have proved the effects of air infiltration on IAQ and

verified  the  infiltration  factor  as  the  useful  parameter  for  qualifying  the

number  of  indoor  particles  infiltrating  from the  outdoor  environment.  To
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evaluate the potential effect of building permeability on the current results,

we estimate the average infiltration rate as 0.2 air changes per hour (ACH) in

summer based on some previous research  (Chen and Zhao 2011; G. Hong

and  Kim  2016).  According  to  the  volume  of  the  room  and  the  outdoor

pollutant concentration, the air infiltration process might cause the indoor

ozone level to raise to 8 ppb during the night. As can be seen in Figure 5, the

measured  indoor  ozone  concentration  stayed  around  10  ppm during  the

night when the windows were closed, which was supposed to be associated

with the air infiltration. Therefore, the actual indoor pollutant concentration

considering the air infiltration would be 5% higher than the simulated results

in this work, which results in a higher IAQ index and thus higher exposure

risk than evaluated.

As for the concept of the exposure injury, in the current work, we focus

more on the indoor air quality and the corresponding respiratory dosage and

deposition  through  breathing.  As  concluded  in  Table  2,  a  qualitative

evaluation indicates the significant potential of wheezing and shortness of

breath in  people  with  asthma,  as well  as the increasing of  lung disease,

under  the  calculated  IAQ  index.  However,  quantitative  analysis  of  the

contaminant  penetrating  into  the  blood  through  layers  of  skin,  stratum

corneum, viable epidermis and dermal capillaries is also necessary to carry

out together with the physiological researches in the next step, to determine

the exact injury level. Recently, a model of transdermal uptake of hazardous

chemicals has been raised by Morrison et al. in 2017. The final mass of the
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gaseous chemicals (e.g., SO2, CO) entered the blood can be calculated based

on the dynamic indoor chemical concentration as a boundary condition. But

the key point is to validate the aforementioned model with a set of proper

parameters for specific gaseous contaminants.

As for the selection of airborne particle metrics, ultrafine particles also play

a  non-negligible  role  in  affecting  the  occupant  health,  especially  to  the

respiratory system due to its smaller particle size  (Ibald-Mulli  et al. 2002;

Zhao  et  al.  2009;  Nikolova  et  al.  2011).  Plus  that  the  physical  diffusion

process  (origin,  dynamic  and  penetration)  between  PM2.5  and  ultrafine

particles  are  actually  different.  Therefore,  the  approach  proposed  in  this

work is a simplified approach for not considering the ultrafine particles in the

overall  framework.  To  address  this  problem,  accurate  measured  ultrafine

particles  data  should  be  collected  via  carefully  designed  experiments,  to

further validate the physical models of their diffusion process.

The  methodology  in  this  paper  is  more  targeting  at  the  commercial

building  types  (namely,  office  buildings)  where  many  indoor  pollutant

sources such as cooking and incense could be negligible. When it comes to

residential building types for a broader application, the simulation of indoor

combustion sources should be added to the current methodology, especially

the CFD simulation of the origin, dynamics and penetration of such particle

metrics (Yang and Ye 2014; Ezzati and Kammen 2001).

Conclusion
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This work employed both whole-building simulation (EnergyPlus coupled with

obFMU) and computational fluid dynamics (Fluent) to analyze the impacts of

occupant behaviors (namely window operation, HVAC operation, and human

movements)  on  indoor  airflow  patterns  and  IAQ.  The  IAQ,  especially

considering  daily  occupant  behavior  schedules,  was  assessed  during  the

period of a wildfire event in the Northern California, U.S. 

The simulated results were compared with the actual measured indoor and

outdoor  data  (O3  and  PM2.5).  The  measured  and  simulated  IAQ  were

consistent  based  on  the  maximum  and  average  levels.  The  occupant

behaviors were proved to exert  significant impacts on the indoor air flow

pattern and thus the pollutants’ concentrations. The indoor airflow pattern

and  IAQ  transformed  obviously  within  working  hours,  which  were  largely

dependent on occupant behaviors. Thus, to mitigate indoor exposure risk,

occupants are advised to keep windows closed and operate HVAC systems

without outdoor air. Besides, occupants’ movements accelerate the diffusion

and  mixture  of  existing  contaminants  at  different  heights,  which  could

enhance the risk of respiratory exposure. The daily maximum IAQ index was

215, with SO2 as the responsible pollutant, which might result in significant

respiratory  symptoms  and  adverse  health  effects,  such  as  wheezing  and

shortness of breath, in children, older adults, and people with asthma. Based

on indoor air conditions and considering occupant behaviors, deposit fraction

and equation were fitted to predict the respiratory injury level under such

outdoor wildfire conditions.
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This  study  formulated  a  framework  for  the  indoor  pollutants  exposure

modeling and the potential  human health hazard assessment in an office

environment while taking into account actual occupant behaviors. This co-

simulation  was  conducted  by  combining  the  building  energy  modeling,

occupant behavior modeling, CFD modeling, and pollutant modeling, which

can  be  further  applied  in  each  IAQ  issue  where  the  outdoor-to-indoor

pollutant  penetration  aspect  is  important  (such  as  wildfire  events  as

demonstrated in this work, haze pollution in China, as well as the vehicle

exhaust  etc).  Results  can  be  used  to  evaluate  and  inform  strategies  to

mitigate  occupant  health  conditions  during  outdoor  events  of  extreme

pollution.
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