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ABSTRACT OF THE DISSERTATION

Dichroic Coherent Diffractive Imaging

by

Ashish Tripathi

Doctor of Philosophy in Physics

University of California, San Diego, 2012

Oleg Shpyrko, Chair
Sunil Sinha, Co-Chair

Understanding electronic structure at nanometer resolution is crucial to un-

derstanding physics such as phase separation and emergent behavior in correlated

electron materials. Nondestructive probes which have the ability to see beyond

surfaces on nanometer length and sub-picosecond time scales can greatly enhance

our understanding of these systems and will impact development of future tech-

nologies, such as magnetic storage. Polarized x-rays are an appealing choice of

probe due to their penetrating power, elemental and magnetic specificity, and high

spatial resolution. The resolution of traditional x-ray microscopy is limited by the

nanometer precision required to fabricate x-ray optics. In this thesis, a novel ap-

proach to lensless imaging of an extended magnetic nanostructure is presented. We

xi



demonstrate this approach by imaging ferrimagnetic “maze” domains in a Gd/Fe

multilayer with perpendicular anisotropy. A series of dichroic coherent diffraction

patterns, ptychographically recorded, are numerically inverted using non-convex

and non-linear optimization theory, and we follow the magnetic domain configu-

ration evolution through part of its magnetization hysteresis loop by applying an

external magnetic field. Unlike holographic methods, it does not require a reference

wave or precision optics, and so is a far simpler experiment. In addition, it enables

the imaging of samples with arbitrarily large spatial dimensions, at a spatial reso-

lution limited solely by the coherent x-ray flux and wavelength. It can readily be

extended to other non-magnetic systems that exhibit circular or linear dichroism.

This approach is scalable to imaging with diffraction-limited resolution, a prospect

rapidly becoming a reality in view of the new generation of phenomenally brilliant

x-ray sources.
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Chapter 1

Introduction

In this chapter we introduce concepts behind x-ray microscopy carried out

at brilliant light sources known as synchrotrons. We begin with some traditional

and typical types of x-ray microscopy, here the Transmission X-ray Microscope

(TXM) and the Scanning Transmission X-ray Microscope (STXM). These micro-

scopes offer nanoscale resolution which is primarily limited by the quality of x-ray

optics used. We next go into a newer type of x-ray microscopy still under develop-

ment known as the coherent x-ray diffraction microscope. This type of microscope

replaces the x-ray optics used in TXM and STXM with “numerical optics”, i.e. it

is primarily a numerical procedure which takes measured diffraction intensity from

an object and numerically inverts the diffraction to recover a high resolution image

of the object. The spatial resolution is limited by factors which will be discussed.

We next discuss analytical and numerical tools which allow us to interpret and

reliably work with numerically the diffraction intensities measured with an area

detector.

1.1 Synchrotron based x-ray microscopy

This section introduces and explores some examples of conventional x-ray

microscopes which are widespread at synchrotron x-ray sources. Some very com-

mon examples are the Transmission X-ray Microscope (TXM) and the Scanning

Transmission X-ray Microscope (STXM). These will be explored in section 1.1.1.

1
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The primary experimental difficulties and limitations involved with these tech-

niques will also be discussed. Section 1.1.2 will introduce an alternative to lens

based microscopy known as Coherent X-ray Diffractive Imaging (CXDI), which is

a lensless imaging technique, and is the primary topic of this thesis. A prominent

feature of this technique is that the spatial resolution it is capable of is not deter-

mined by how well made (at nanometer scale precision) various optical elements

are fabricated, as is the case in traditional microscopy, but rather by the quality

of the diffraction measurement, e.g. the signal to noise of the diffraction. This in

turn means that the spatial resolution is in practice determined by the quality of

the x-ray area detector and in principle diffraction limited, i.e. close to the x-ray

wavelength.

1.1.1 Traditional x-ray microscopy

Consider the two x-ray microscopes shown in Fig. 1.1. In TXM, x-rays first

are monochromatized and focused down to a spot size on the sample of several

microns by a condenser lens and then scatter from the sample. This scattered

signal is then collected by an objective lens, which acts as an “inverse Fourier

transform” when placed at an appropriate position downstream of the sample, and

which projects and magnifies it onto a two dimensional pixel area detector. The

TXM is essentially a direct analogue of visible light microscopes using condensing

and objective opitcs, the main differences being the types of optical elements used.

The Scanning Transmission X-ray Microscope (STXM) on the other hand uses a

condenser optic to create a small spot size on the sample. The scattered signal

from the small spot size is recorded using an integrating detector while the sample

is raster scanned, and an image of the object is formed by raster scanning many

locations on the sample. In both of these cases, the spatial resolution is determined

by the quality of the focusing lenses; in TXM it is determined by how aberration

free the objective lens is while in STXM it is determined by how small the focal

spot size is.

Visible light microscopes use primarily refractive optics since visible light

interacts strongly with matter. X-rays must generally use something else, e.g.
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Area
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b
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Figure 1.1: (a) The Transmission X-ray Microscope. X-rays are condensed onto
the sample, scatter, and an objective lens is placed downsteam of the sample
so that the “imaging condition” is satisfied and so the objective lens acts as an
inverse Fourier transform of the scattered signal. An area detector is placed further
downstream of the objective so that a magnified image of the sample is measured.
(b) The Scanning Transmission X-ray Microscope. It uses a condenser optic to
create a nanometer scale spot size on the sample, and the sample is raster scanned
so that each scan location makes up a pixel of the image of the object after many
locations on the sample are scanned.
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Figure 1.2: The Fresnel zoneplate, a popular diffractive optic used in x-ray mi-
croscopy. It is made by fabricating radially symmetric regions which alternate
between opaque and transparent. X-rays incident on the zone plate will diffract
around the opaque zones and the zones can be spaced so that the diffracted light
constructively interferes at a desired focus.

diffractive optics, since x-ray refraction is generally very weak; recall the x-ray

index of refraction is n = 1 − δ + iβ = 1 −∆n, where ∆n ∼ (1 − i)10−5 or (1 −
i)10−6. A popular diffractive lens used in x-ray microscopy is the Fresnel zone

plate, which is made by fabricating radially symmetric regions which alternate

between opaque and transparent. X-rays incident on the zone plate will diffract

around the opaque zones and the zones can be spaced so that the diffracted light

constructively interferes at a desired focus; a cartoon of this is shown in Fig. 1.2.

The focal length of a Fresnel zone plate is calculated using [1] the relation:

f =
2rN∆rN

λ
, (1.1)

where ∆rN is the width of the outermost zone, rN is the radius at which this

outermost zone is located, and λ is the x-ray wavelength. The spot size at which

the Fresnel zone plate can focus x-rays down to is given by:

∆s ≈ 1.22 ∆rN , (1.2)

Fresnel zone plates are usually fabricated using a lithographic processes. The

smallest size of features that can be fabricated is dependent on the sophistication

level of the lithography technology, with the state of the art currently in the ∆rN ∼
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10 nm range [2]. The prime difficulty the fabrication process encounters is that

the zone plate needs to be sufficiently thick (in the direction the x-rays propagate)

to provide acceptable diffraction efficiency (number of scattered photons which

contribute to focusing); zone plate efficiencies are typically around 10% for the first

diffraction order. This results in high aspect ratio nanostructures [3]; 3:1 or 4:1

are typical for the highest-resolution zone plates, but greatly limits the diffraction

efficiency. The high aspect ratios also results in generally very fragile optics which

can be easily damaged. It is possible for the focusing properties of Fresnel zone

plates to degrade over time simply by being used; the x-rays themselves cause

damage to the outermost zone and degrade the achievable spot size.

1.1.2 Lensless imaging

Rather than using a microscope which depends on time consuming and ex-

pensive x-ray optics fabrication, we can instead use a technique which does not

use optics to image the sample but uses computational methods to synthesize real

space information from diffraction patterns obtained by scattering a coherent x-

ray beam from a sample. This is termed a “lensless” microscopy, or alternatively

Coherent X-ray Diffractive Imaging (CXDI). Some typical experimental arrange-

ments are shown in Fig. 1.3. In this way of doing things, the diffraction is usually

considered “far-field” diffraction, or Fraunhofer diffraction, and so is related to the

illuminated region on the sample by a simple Fourier transform. If we lived in

Wonderland and had an area detector which in addition to measuring the complex

valued wavefield modulus (the square root of the intensity) can also measure the

phase of the wavefield, then we can get a high resolution image of the object by

simply taking the inverse Fourier transform of the measured complex valued wave-

field. However, since this detector is make believe and we can only measure the

intensity, we must find another way to retrieve the wavefield phase information.

Fourier transform holography [4, 5] is one way of doing this phase retrieval:

fabricate a sample and reference wave pinhole so that diffraction from the sample

coherently interferes with the reference wave, and we will have phase information

encoded in the measurement diffraction intensity. Indeed this method is a very
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a

b

Area
Detector

Pinhole

Aperture

Zoneplate

Sample

Figure 1.3: Some typical Coherent X-ray Diffractive Imaging (CXDI) experimen-
tal arrangements. (a-b) X-rays are incident on a pinhole aperture or a condenser
optic, whose purpose is to select out a coherent volume of the incident partially co-
herent x-ray wavefield and to define the fully coherent x-ray illumination incident
on the sample. An area detector is placed in the far field so that the Fraunhofer
diffraction pattern is measured. Use of a condenser optic in (b) gives the x-ray
wavefield known phase structure when the sample is placed upstream some distance
of the focal plane, and will be explored later in future chapters.



7

Computational Transformation 

from Measurement Space to

Sample Space

Measurement

Space Constraint

Sample 

Space Constraint

Computational Transformation 

from Sample Space to

Measurement Space

Figure 1.4: General “idea” behind iterative algorithms encountered in CXDI and
this thesis. Starting from some initial guess for the sample, we iterate between
sample space and measurement space computationally while enforcing constraints
on the process in the hope of refining the initial guess so that it will eventually
satisfy all constraints simultaneously, meaning we have likely recovered the phases
of the wavefield lost upon measurement.

powerful lensless imaging technique. But issues come into play when attempting

to push towards diffraction limited imaging: the reference wave pinhole must be

fabricated, characterized, and known to nanoscale precision comparable to the de-

sired spatial resolution. So we are back to the time consuming and experimentally

difficult problem of fabricating a sample and reference pinhole composite object

which must be made at nanoscale precision.

In CXDI, indirect phase retrieval is accomplished by the use of iterative

algorithms derived from non-convex and non-linear optimization methods which

can extract phase information from diffraction modulus information [6, 7, 8, 9, 10,

11, 12, 13, 14, 15]. In these algorithms, which will be covered in somewhat grue-
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some detail in Chapter 2, we identify and computationally formulate constraints

which are used to discover the phase of the measured wavefield. These constraints

can be divided into two camps: sample space constraints and measurement space

constraints. In Chapter 2, we will do some identification and formulation of sample

space constraints; measurement space constraints are always the measured diffrac-

tion modulus. A typical flowchart of how CXDI iterative algorithms work is shown

in Fig. 1.4. Here, starting from some initial guess ψ0 for the sample we define a

transformation which takes us from sample space to measurement space. Since

the diffraction we measure is in the far-field, this transformation is the Fourier

transform, or a close relative when using a condenser optics to define the x-ray

illumination on the sample [16, 17]. So we take the Fourier transform of the guess

sample Ψ0 = F{ψ0}, and then enforce the measurement space constraint, the

diffraction measurement. This is done by throwing away the modulus of Ψ0 and

replacing it by the diffraction measurement, but leaving the phase of Ψ0 as it is.

Once this is done we transform back to sample space, and apply any sample space

constraints we have formulated. We then repeat this back and forth process of

transforming to one space, apply a constraint, transform to another space, apply

a constraint, etc., until a “solution” is found, i.e. we simultaneously satisfy all

constraints. When the appropriately defined constraints are all simultaneously

satisfied, it is exceedingly likely that we have successfully recovered the phase of

the wavefield at the detector lost upon measurement [11].

1.2 Wavefield propagation

In this section, we mainly define analytical tools which will be used through-

out this thesis. We start by defining the Fourier transform conventions used,

for both continuous and discrete types. Also, as we will be dealing extensively

with complex valued images when performing wavefield propagation, we present

an effective and compact convention for rendering these complex valued images.

Then, the mathematical formalism of x-ray diffraction is introduced by deriving the

Helmholtz equation. Then various approximations are defined which make inter-



9

preting what exactly we are scattering x-rays from when performing experiments in

the geometries shown in Fig. 1.3 computationally feasible. We also explore some

analytical details and potential pitfalls of wavefield propagation, which are the

transformations mentioned in the previous section required to do phase retrieval.

1.2.1 Fourier transform properties

We begin by defining the two dimensional spatial Fourier transform:

f(r) = F−1[f̃(q)] =
1

2π

∫ ∞

−∞
f̃(q)exp [iq · r] d2q (1.3)

f̃(q) = F [f(r)] =
1

2π

∫ ∞

−∞
f(r)exp [−iq · r] d2r (1.4)

and also the discrete Fourier transforms:

f̃(qx, qy) =
1√
MN

∑
m,n

f(m,n)exp
[
−2πi

(mqx
M

+
nqy
N

)]
(1.5)

f(m,n) =
1√
MN

∑
qx,qy

f̃(qx, qy)exp
[
2πi
(mqx
M

+
nqy
N

)]
(1.6)

where (m,n) are pixel indices in the (x, y) directions, M is the array size in the y

direction and N is the array size in the x direction. It is possible that sometimes

we can have sample space ordering which causes diffraction to be extended out in

reciprocal space more in one direction than the other but this is not considered

in this thesis. In this thesis, we will always have that N = M and the reason for

this is mainly due to the fact that diffraction patterns for the samples we look at

decay more or less in a radially symmetric way, necessitating that N =M . When

using the discrete Fourier transforms computationally, we will need to relate pixel

sizes between the measurement arrays and the sample arrays. This is done by the

relation between pixel sizes in real space and Fourier space:

∆x∆qx = 2π/N, (1.7)

where N is the array size used in the discrete Fourier transforms. This relation

tells us how sampling (pixel size) of the measurement (Fourier space) will affect
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sampling of the object (real space) we scatter x-rays from. Later, we will see (in

Fig. 1.8) that due to the experimental geometry used, we have that:

a

z
≈ ∆qx

k
, (1.8)

where a is defined as the area detector pixel size (an experimentally fixed quan-

tity), z is the detector to sample distance, and k = 2π/λ, with λ being the x-ray

wavelength. This means that the sample space pixel size is

∆x =
λz

Na
. (1.9)

1.2.2 HSV color space

This thesis deals extensively with complex valued wavefields and so contains

many complex-valued images. Showing the real and imaginary parts separately is

not possible since most wavefields are only defined up to an overall constant phase

factor and that depending on this phase factor, the real and imaginary parts are

mixed up in some strange way. It is possible to display the wavefields by separately

showing the modulus and phase, but generally this is a waste of space resulting in

more “busy” figures for little gain in information. So, in this thesis complex valued

wavefields are rendered as shown in Fig. 1.5. This scheme of encoding complex

valued images is standard in the phase retrieval community and is known as HSV

encoding, where HSV stands for Hue-Saturation-Value.

1.2.3 Helmholtz equation

Consider the forward scattering geometry shown in Fig. 1.6. When a mate-

rial with index of refraction n is placed in the way of a source of x-ray plane waves

of frequency ω propagating in the z direction, what does the x-ray wavefield look

like after passing through the material? The answer to this question comes from

Maxwell’s equations:
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-̟

a b

c d1

0

̟/2

̟

3̟/2

0

̟

Figure 1.5: (a) The hue-saturation-value (HSV) colorwheel used to encode com-
plex valued images. (b) The phase of an image, which can vary between ±π, is
encoded as a periodic color scheme as seen in (a). (c) These complex valued im-
ages have the modulus rescaled between 0 and 1 so that the brightest pixel has
the maximum brightness at the edge of the wheel and the darkest pixel is at the
center of the wheel. (d) The final HSV encoded complex valued image with the
phase in (b) encoded as hue and modulus in (c) encoded as value (or brightness).
The definition of zero phase is somewhat arbitrary as the absolute phases in this
thesis are generally indeterminable; only relative phases are recoverable.
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Sample

Near Field

Far Field

Incident
plane wave x-rays 

Figure 1.6: The forward scattering (or transmission) geometry. X-ray plane waves
are incident on a thin sample (thin in the direction of propagation), and depending
on the spatial configuration of the electron density will diffract. There are differ-
ent “regimes” of diffraction encountered in this thesis: near field diffraction (also
known as Fresnel diffraction) and far field diffraction (or Fraunhofer diffraction).

∇×H = −iωϵ(r, ω)E (1.10a)

∇ ·H = 0 (1.10b)

∇× E = iωµH (1.10c)

∇ · [ϵ(r, ω)E] = 0, (1.10d)

where ω is the frequency of the oscillating electromagnetic field, ϵ(r, ω) is the

complex electric permittivity tensor, and µ is the magnetic permeability and is

assumed not a tensor but constant in space and frequency. One vital approximation

[18] we use here is that the length scale of the spatial variations of ϵ(r, ω) is very

much longer than the x-ray wavelength λ. In other words, spatial derivatives of

ϵ(r, ω) are negligible when compared to spatial derivatives of E or H. So, we get
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that:

∇× (ϵ(r, ω)E) = ∇ϵ(r, ω)× E+ ϵ(r, ω)∇× E

≈ ϵ(r, ω)∇× E

= iωϵ(r, ω)µH. (1.11)

Next, using the vector calculus identity:

∇×∇×H = ∇(∇ ·H)−∇2H = −∇2H, (1.12)

and also that ∇×∇×H = −iω∇× ϵ(r, ω)E = −iωϵ(r, ω)∇× E, we get:

∇2H+ ω2ϵ(r, ω)µH = 0. (1.13)

Taking the curl of the above equation again, dropping all spatial derivatives of

ϵ(r, ω) and using Ampère’s Law gives the same expression for the electric field:

∇2E+ ω2ϵ(r, ω)µE = 0. (1.14)

As we do yet not care about order parameters within the sample which scatter x-

rays differently depending on the direction of the incident electric field polarization

(we will in a few chapters), we can ignore the electric field polarization direction and

go from the vector partial differential equation above to a scalar partial differential

equation known as the Helmholtz equation:

∇2Ψ+ k2n2Ψ = 0, (1.15)

where n2 = c2ϵ(r, ω)µ is the index of refraction, c is the speed of light in a vacuum,

and k = ω/c = 2π/λ is the vacuum wavenumber.

1.2.4 Projection approximation

What we measure downstream of the sample shown in Fig. 1.6 are solutions

to the Helmholtz equation. Considering an incident plane wave on the sample as

in Fig. 1.7 in the z direction and also assuming small angle scattering (scattered

k̂ is ≃ ẑ) we first factor out the highly oscillatory component of Ψ(r) = ψ(r)e−ikz,
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Sample

  

Figure 1.7: The projection approximation. In this approximation, it is assumed
that the sample is thin enough and that x-rays interact weakly enough with elec-
trons so that the path an x-ray travels through the sample is negligibly perturbed
(in x and y) when compared to the path it would have taken had the sample been
absent.

where ψ(r) is slowly varying in z. Since ψ(r) is slowly varying in z, derivatives of

ψ(r) in x and y dominate derivatives in z, so ∇2 ≈ ∇2
⊥ = ∂2/∂x2+∂2/∂y2. In this

case, Eq. 1.15 becomes:

∇2
⊥ψ + 2ik

∂ψ

∂z
+ 2k2∆nψ = 0, (1.16)

where n2 = (1 + ∆n)2 = (1− δ + iβ)2 ≈ 1 + 2∆n (∆n is assumed small). This is

known as the paraxial inhomogeneous Helmholtz equation.

If we make a further assumption that x-ray electron interactions are weak

enough that the path an x-ray travels through the sample is negligibly perturbed

(in x and y) when compared to the path it would have taken had the sample

been absent, then the x-ray wavefield at z = z0 can be approximated as being

solely determined by the phase and amplitude shifts it accumulates along this

path connecting the entrance and exit surfaces. This is saying that if variations

of the x-ray wavefront are negligible in x and y, then ∇2
⊥ψ can be dropped from

Eq. 1.16. Thus, we have:
∂ψ

∂z
− ik∆nψ = 0, (1.17)

and the solution to this is [19]:

ψ(r, z0) = ψ0(r)T (r) = ψ0(r) exp

(
ik

∫ z0

0

(n(r, z)− 1)dz

)
, (1.18)
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where ψ0(r) is the incident wavefield at z = 0, and T (r) is known as the sample

transmission function.

1.2.5 Small angle approximation

In the small angle scattering geometry shown in Fig. 1.6, we measure the

wavefield intensity somewhere downstream (i.e. for z > z0) of the sample in

a plane transverse to the propagation direction. To mathematically model this

in a tractable way we separate the transverse (i.e. r⊥ = (x, y)) and parallel z

components of the downstream wavefield ψ(r), so that ψ(r) = ψ(r⊥, z). The

Fourier transform of Eq. 1.15 in this transverse plane r⊥ for some z > z0 gives:(
−q2

⊥ +
∂2

∂z2
+ k2

)
ψ̃(q⊥, z) = 0. (1.19)

where q⊥ = (qx, qy). The general solution to Eq. 1.19 is:

ψ̃(q⊥, z) = Φ̃−(q⊥)e
−iκz + Φ̃+(q⊥)e

+iκz, (1.20)

where κ =
√
k2 − q2

⊥ (see Fig. 1.8). In the small angle regime, we have |q⊥| ≪ k

and so we make the approximation:√
1− q2

⊥
k2

≈ 1− q2
⊥

2k2
. (1.21)

We assume that no part of the incident wavefield is backscattered, and so we set

Φ̃−(q⊥) → 0. The quantity Φ̃+(q⊥) can thus be interpreted as the wavefield at

some arbitrary z, and Eq. 1.20 gives how the wave evolves at any further z:

ψ(r⊥, z) = F−1

{
Φ̃+(q⊥)exp

[
ikz

(
1− q2

⊥
2k2

)]}
. (1.22)

To determine Φ̃+(q⊥), we use the boundary condition at z = z0 given by Eq. 1.18,

which means that we can write that (see Section 1.4.2 in [19]):

Φ̃+(q⊥) = F {ψ(r⊥, z0)}

= F
{
ψ0(r⊥) exp

(
ik

∫ z0

0

∆n(r⊥, z)dz

)}
. (1.23)
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Figure 1.8: The small angle approximation. This approximation allows us to
relate sampling pixel sizes at the measurement location and at the sample location
in a simple way using the relation r⊥/z ≈ q⊥/κ ≈ q⊥/k.

Next, we write Eq. 1.22 as a convolution:

ψ(r⊥, z) = ψ(r⊥, z0) ∗ Π(r⊥, z), (1.24)

where Π(r⊥, z) is known as the Fresnel propagator:

Π(r⊥, z) =
1

2π
F−1

{
exp

[
ikz

(
1− q2

⊥
2k2

)]}
=

−ik
2πz

exp

[
ikz

(
1 +

r2⊥
2z2

)]
. (1.25)

Using the two dimensional convolution theorem:

F
{
ψ(r⊥, z0) ∗ Π(r⊥, z)

}
= 2πF

{
ψ(r⊥, z0)

}
F
{
Π(r⊥, z)

}
, (1.26)

we write Eq. 1.22 as:

ψ(r⊥, z) =
eikz

iλz

∫
d2r′⊥ψ(r

′
⊥, z0)exp

[
ik

2z
(r⊥ − r′⊥)

2

]
=
eikz

iλz
exp

(
ikr2⊥
2z

)∫
d2r′⊥ψ(r

′
⊥, z0)exp

[
ikr′2⊥
2z

− ik

z
r⊥ · r′⊥

]
. (1.27)
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From the geometry of the scattering experiment shown in Fig. 1.8, we identify that

r⊥/z ≈ q⊥/κ ≈ q⊥/k. With this, we finally get that:

ψ(r⊥, z) =
eikz

iλz
exp

(
ikr2⊥
2z

)∫
d2r′⊥ψ(r

′
⊥, z0)exp

[
ikr′2⊥
2z

− iq⊥ · r′⊥
]

=
eikz

iλz
exp

(
ikr2⊥
2z

)
F
{
ψ(r′⊥, z0)exp

[
ikr′2⊥
2z

]}
. (1.28)

The exp(−ikr2⊥/2z) and exp(−ikr′2⊥/2z) factors in Eq. 1.28 are known as a quadratic

phase “curvature” terms; the exp(−ikr2⊥/2z) term can be thought of as describing

the phase curvature in the plane we just propagated to and the exp(−ikr′2⊥/2z)
term the phase curvature in the plane we originally started from. Equation 1.28

is known as the Fresnel diffraction integral, and is in a computationally useful

form for calculating coherent diffraction patterns downstream of a sample since

it is now formulated in terms of a single Fourier transformation, as opposed to

Eq. 1.22, which requires a Fourier transformation of the exit wave right after the

sample (i.e. ψ(r⊥, z0)) and an inverse Fourier transformation.

1.3 Computational wavefield propagation

In this section, we explore how to computationally implement the results of

the previous section. Computational wavefield propagation must be done carefully

if numerical stability is to be retained. The most common issues related to compu-

tational wavefield propagation have to do with proper sampling of the quadratic

phase curvature terms we encountered in the previous section. We go into some

common problems which occur when sampling is done carelessly. We then present

effective and stable computational tools for properly doing computation wavefield

propagation.

1.3.1 Plane wave propagation

Now that we have an analytical expression in Eq. 1.28 for how the wavefield

downstream of the sample in Fig. 1.6 diffracts, we now explore issues which arise

when we must computationally work with it. We first assume that we have N
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Figure 1.9: The way in which we view the forward scattering small angle exper-
iments in computation. The side length for the initial plane on the left is L0 and
the side length for plane we will propagate to is L1.

pixels (i.e. samples) in both the x and y directions, in both the input plane at

z0 and output plane at at z1, as shown in Fig. 1.9. We define the pixel size at

the output plane to be a; the reason for this definition is that the output plane is

where we would put a pixel area detector in an experiment and the pixel size of

the detector is known and constant. The field of view in the detector plane at z1

is L2
1 = aN × aN . Thus r⊥ = (m∆x1, n∆y1) = (mL1/N, nL1/N), where L1 is the

side length of the array used in the output plane. Denote the distance between the

input plane and output planes to be z01 = z1−z0. Using the relation r⊥/z ≈ q⊥/k

from Fig. 1.8, the Fourier space pixel size is found to be ∆qx = ∆qy = ka/z01, and

further using the relation between pixel sizes in real space and Fourier space given

by ∆x∆qx = 2π/N , the real space pixel size at the input plane at z0 is found to

be ∆x0 = ∆y0 = λz01/aN . This also means that the side length of the array at

the input plane is L0 = λz01/a = λz01N/L1.

A simulated numerical evaluation of Eq. 1.28 is shown in Fig. 1.10. One

problem that we immediately encounter when z01 is small is aliasing and severe

numerical artifacts at the edges of the array as seen in Fig. 1.10b. The cause of

this (see reference [20] for more) can be seen by examining the expression L1 =

λz01N/L0; if z01 < L2
0/λN then L1 < L0. This means that it is possible that
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Incident Wavefield

a

z = 0

b c

d e

Figure 1.10: (a) Experimental geometry for plane waves incident on a sam-
ple. In (b-e), computational artifacts due to aliasing and insufficient sampling of
the quadratic phase curvature terms in the Fresnel diffraction integral are shown.
Defining zcrit = L2

0/λN , frame (b) shown numerical artifacts in the magnitude of
the result using the “Direct” method for z = 0.25 zcrit, while (c) is the phase.
Frame (d) shown numerical artifacts in the magnitude of the result using the
“Spectrum propagation” method for z = 100 zcrit, while (f) is the phase.
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Figure 1.11: Defining zcrit = L2
0/λN , wavefield propagation is shown for (a) z = 0

(i.e. this is what is being propagated for z > 0), (b) z = 0.1zcrit, (c) z = 0.5zcrit,
(d) z = zcrit, (e) z = 5zcrit, (f) z = 10zcrit, (g) z = 100zcrit. (h) is a close up of (g);
when we begin to propagate more than z ≳ 10zcrit, Moire patterns due to phase
aliasing in the quadratic phase curvature term outside of the Fourier transform
in Eq. 1.29 begin to emerge. Frame (i) is also z = 100zcrit only with the outside
quadratic phase curvature term removed. Far from the aperture at z = 0, we would
expect that quadratic phase curvature to be negligible (almost a flat or constant
phase), so it should be removed when using the “Direct” method of propagation
when z ≫ zcrit.
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the array size at the output plane can be too small to contain the all the spatial

information present in the propagated wavefield, and aliasing of the FFT algorithm

for computing the Fourier transform will occur. The aliasing effects present in the

phase of the exp(ikr′2/2z) term inside the Fourier transform in Eq. 1.28 is especially

devastating; as the phase of exp(ikr′2/2z) is pathological, the Fourier transform of

the exp(ikr′2/2z) term multiplied by ψ(r⊥, z0) will also end up pathological. As a

result, we must enforce that z01 ≥ L2
0/λN when using Eq. 1.28 [21].

In order to be able to propagate a wavefield when z01 < L2
0/λN , we should

use Eq. 1.22 instead of Eq. 1.28. Since this expression uses a forward Fourier trans-

form on ψ(r⊥, z0), multiplies with exp(−izq2
⊥/2k), and inverse Fourier transforms

the result, we have that L0 = L1 for all z01 < L2
0/λN [20]. However, when using

Eq. 1.22 for z01 > L2
0/λN the diffracted wavefield will again have expanded so that

it will have spatial features outside of the array at z1, and we will again begin to

see aliasing and severe numerical artifacts at the edges of the array; this can be

seen in Fig. 1.10c-d where we have propagated a distance of z01 = 100 × L2
0/λN .

In summary we have that:

ψ(r⊥, z) =


eikz

iλz
exp

(
ikr2⊥
2z

)
F
{
ψ(r′⊥, z0)exp

[
ikr′2⊥
2z

]}
if z01 ≥ L2

0/λN,

eikzF−1
{
F
{
ψ(r′⊥, z0)

}
exp

[
−izq2

⊥
2k

]}
if z01 < L2

0/λN.
(1.29)

and that L1 = L0 if z01 < L2
0/λN but L1 = λz01N/L0 if z01 >= L2

0/λN ; Fig. 1.11

shows the application of Eq. 1.29 for various z. For the remainder of this thesis,

the method above using a single Fourier transform is termed the “Direct” method

of propagating a wavefield while the method requiring two Fourier transforms is

termed the “Spectrum propagation” method.

1.3.2 Focused beam propagation

Next we look at computational wavefield propagation in the case for which

x-ray optics are used, the optics being the Fresnel zone plate introduced in sec-

tion 1.1.1. Here we make the good approximation that these x-ray optics have

similar properties as to those of a “thin lens”, as seen in Fig. 1.12. The most

important aspect of how a thin lens interacts with an incident plane wave is given
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by [1]:

ψ(r, z0) = ψ(r, 0)Θ(r)exp
[
− ik

2f
r2
]

(1.30)

where ψ(r, 0) is the wave incident on the lens, Θ(r) is known as the “pupil” function

and describes the shape of the lens, ψ(r, z0) is the exit wave after passing through

the lens, and f is the focal length of the lens, i.e. the point at which the lens has

concentrated photons into the smallest region of space. Here, it is assumed that

ψ(r, 0) fully illuminates the pupil function, and so we have that ψ(r, 0) is constant

across Θ(r). So, we can write that ψ(r, 0)Θ(r) = ψ0Θ(r), where ψ0 is a constant

proportional to the incident photon flux.

As a concrete example, first assume a pupil function as shown in Fig. 1.12,

N = 512, λ = 1.04 nm, and some experimentally realistic parameters for a zone

plate: a radius for the pupil function of rN = 0.08 mm, ∆rN = 30 nm, L0 = 0.4

mm, and so a focal length of f = 4.6 mm (see Eq. 1.1). With the parameters chosen

here, we have that f ≪ L2
0/(λN). Thus at first glance, if we wish to propagate

from the pupil function plane to the focal plane (or anywhere in between), it looks

like we would need to use the “Spectrum propagation” method. The problem we

would quickly run into is that the quadratic phase curvature term exp(−ikr2/2f)
in Eq. 1.30 has a pathologically highly oscillatory phase using an array size of

N = 512, meaning the Fourier transform of it multiplied by the pupil function

would also be pathological. Increasing N to try to get out of this problem also is

prohibitively expensive in terms of computer memory. We perhaps ironically are

saved by using the “Direct” propagation method instead. Inserting Eq. 1.30 into

Eq. 1.29, we find that:

ψ(r, z) =
eikz

iλz
exp

(
ikr2

2z

)
F
{
ψ0Θ(r′)exp

[ik
2

(1
z
− 1

f

)
r′2
]}
. (1.31)

From Eq. 1.31, we see that if z = f , i.e. we propagate the wavefield exiting the

lens to the focal plane, the wavefield at the focus is

ψ(r, f) = ψ0
eikf

iλf
exp

(
ikr2

2f

)
F
{
Θ(r′)

}
. (1.32)

Equation 1.32 says that the wavefield at the focus is, apart from the exp(−ikr2/2f)
quadratic curvature term outside the Fourier transform and other constant phase
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Pupil Function

Thin Lens

f

Incident
plane wave x-rays 

a

b

Figure 1.12: (a) Focused wavefield propogation. This kind of wavefield propaga-
tion is necessary when we use a condenser optic to focus the beam down so that we
can place the sample past to focal spot so that the incident x-ray illumination will
have phase structure, which is a useful sample space constraint. (b) The definition
of the pupil function and how this and the quadratic phase curvature is used in
the computational propagation method presented.



24

or scaling prefactors, just the Fourier transform of the lens pupil function. At the

focal plane we have an array side length of L1 = λfN/L0 = 6 µm, which means

that the exp(−ikr2/2f) quadratic curvature term outside the Fourier transform

in Eq. 1.32 is well behaved. If we wish to further propagate the wavefield at

the focus to some other location, the criterion for whether we use the “Spectrum

propagation” method is z < L2
1/λN = 69 µm, otherwise we use the “Direct”

propagation method. Another computational tool for attacking this problem comes

from the use of the “Fractional Fourier Transform”. From references [22, 23], for an

optical system like that in Fig. 1.12b, we can write the Fresnel diffraction integral

Eq. 1.28 as:

ψ(r, z) = exp
[
−iπ tan(ϕ/2)

N
r2 + iϕ

]
×F−1

{
exp
[
−iπsin(ϕ)

N
q2
]

×F
{
Θ(r′) exp

[
−iπtan(ϕ/2)

N
r′2
]}}

, (1.33)

where z = f tanϕ, and ϕ < π/4. This allows us to propagate anywhere from the

pupil function plane to the focal plane, i.e. for 0 ≤ z ≤ f , with the array side

length of L1 = L0 everywhere in this region. For locations z > f past the focal

plane, we start with the wavefield at z = f , i.e. simply replace Θ(r′) in Eq. 1.33

with ψ(r, z = f), and use Eq. 1.33 again, with z = f + f tanϕ, ϕ < π/4, and

f ≤ z ≤ 2f . The array side length is also L1 = L0 for all f ≤ z ≤ 2f . Equation

1.33 cannot be used for z > 2f , and we must resort to the use of Eq. 1.29 in

this regime; to do this we again start at the focal plane and use the “Direct”

propagation method for all z > 2f .
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Figure 1.13: Application of the focused beam propagation method. (a) The pupil
function. (b)The pupil function propagated downstream of the pupil function plane
but before the focal plane. (c) The pupil function propagated to the focal plane.
(d) The wavefield at the focal plane propagated downstream of the focal plane but
before the plane located at z = 2f . (e) The wavefield at z = 2f . As expected, it
is an inverted but unmagnified pupil function. (f) The wavefield for z ≫ 2f . It is
basically an inverted magnified pupil function, but some Fresnel fringing occurs.



Chapter 2

The phase problem

In the previous chapter, Coherent X-ray Diffractive Imaging (CXDI) was in-

troduced as an imaging technique which numerically inverts a coherent diffraction

pattern giving us a diffraction limited high resolution map of the sample under in-

vestigation. The numerical inversion process must solve the “phase problem” which

arises due to an area detectors inability to measure a complex valued wavefield.

Only the intensity, or magnitude squared, of the wavefield can be measured. This

chapter delves into the mathematical tools necessary to solve the phase problem

and do “phase retrieval”. Phase retrieval is an extremely challenging optimization

problem. It requires numerical solutions of nonlinear, non-convex, and very large

scale problems (∼ 106 variables). This chapter goes into some algorithmic tech-

niques which can effectively tackle this problem. The algorithms can be split into

two families: gradient descent algorithms, which are covered in Section 2.1, and

projections onto constraint sets algorithms, which are covered in Section 2.2. We

explore these algorithms by applying them to some two dimensional optimization

problems in order to gain some intuition on their characteristics and behavior. We

then discuss how to apply the optimization algorithms to problems encountered in

CXDI in Section 2.3.

26
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2.1 Error metrics and gradient descent algorithms

Assuming ψ(r) is the wavefield after passing through a sample as in the

previous chapter, we begin by defining an error metric:

ϵm = ∥πmψ(r)− ψ(r)∥2, (2.1)

where the πm operator is known as the Fourier modulus operator and is defined

as:

πmψ(r) = F−1π̃mF{ψ(r)} = F−1π̃mψ̃(q)

= F−1π̃m|ψ̃(q)|eϕ(q) = F−1
√
I(q)eϕ(q), (2.2)

where I(q) is the appropriately oversampled [24] measured diffraction intensity, F
denotes numerical propagation of ψ(r) to the measurement location (and is typi-

cally just an Fourier transform for Fraunhofer diffraction), F−1 denotes numerical

propagation from the measurement location back to the sample location (and is

typically just an inverse Fourier transform for Fraunhofer diffraction), and the

Euclidean length of a vector is defined as:

∥ρ∥2 = ρ · ρ† =
∑
r

|ρ(r)|2 =
∑
q

|ρ̃(q)|2, (2.3)

where ρ̃(q) = F{ρ(r)}, and the last equality in the preceding equation is Parseval’s

theorem. With this, we can write the error metric in Eq. 2.1 as

ϵm =
∑
q

{
|F [ψ(r, z0)] | −

√
I(q)

}2

. (2.4)

The computational task we have here is to find a configuration for the elements

of the ψ(r) array which minimize the error of the metric given in Eq. 2.4. One

possibility we can try to accomplish this starting from a guess for ψ(r) is to use

the steepest descent method:

ψn+1(r) = ψn(r)− α∇ψnϵm, (2.5)

where αn is a parameter which determines how far along the steepest descent

direction (given by −∇ψnϵm) we want to update ψn+1 by. We can determine the
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optimal value for αn by doing an exact line search: this involves evaluating the

error metric at a few trial values of αn:

ϵm(αn) =
∑
q

{
|F [ψn(r)− αn∇ψnϵm)]| −

√
Ij(q)

}2

, (2.6)

and using the αn which minimizes the error the most. Alternatively we can try

an inexact line search using the Wolfe conditions [25, 26], or be lazy (and save on

computational effort) and pick some value for αn for all n. The laziness method

many times works acceptably well, but will still require us to pick an αn value that

is appropriate to the scaling of ψn(r) and ∇ψnϵm. This can be done by using the

exact line search method once or twice every so often to see what kind of typical

αn values are returned, and use something on this order.

To get an intuitive idea of how the steepest descent method works in prac-

tice, we look at a reduced dimensionality problem to define the error metric. In the

following algorithms, we look at the gradients of an error metric with respect to a

real valued function ψ; if ψ is complex valued, what should be done is to compute

the gradient of an error metric with respect to the real and inaginary parts of ψ,

i.e. ∇ψϵ = (∇ψR
+ i∇ψI

)ϵ, where ψ = ψR + iψI , Re{ψ} = ψR and Im{ψ} = ψI .

Here, we use as error metric the Rosenbrock “banana” function:

ϵ(x, y) = (1− x)2 + 100(y − x2)2. (2.7)

Some plots of this function are shown in Fig. 2.1. This function is widely used

for exploring the performance of gradient descent optimization algorithms. It

is highly non-convex (effectively meaning that there are many points which are

approximately stationary, i.e. where the error metric gradient is close to zero) and

is useful for performance testing gradient descent algorithms by looking at how

well the algorithm under investigation can avoid being trapped in local minima

in error metric space. The Rosenbrock “banana” function has a narrow parabolic

valley, as seen in Fig. 2.1, with the global minimum being located at (x, y) = (1, 1)

where ϵ(x, y) = 0.

A typical outcome of trying to use the steepest descent method is shown

in Fig. 2.2; starting from outside the valley at where the cyan circle is located in
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(x,y) = (1,1)

ϵ(1,1) = 0

(x,y) = (1,1)

ϵ(1,1) = 0

a

b

Figure 2.1: The Rosenbrock “banana” function. It is a standard test error metric
for evaluating the performance of gradient descent algorithms. The top frame
shows a three dimensional view of the function while the bottom frame shows a
birds eye view. The global minima is located at (x, y) = (1, 1) while all along the
valley the gradient of the error metric is close to negligible.
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a

b

c

Figure 2.2: A typical trajectory of the steepest descent method of trying to get
to the global minimum at (x, y) = (1, 1) starting from a random location (here
the cyan circle in (a)). We quickly travel into the valley, but get stalled there and
barely make any progress due to the zigzagging trajectory the steepest descent
methods takes us in.
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Fig. 2.2a, we follow the steepest descent direction down into the valley with in a few

iterations. What happens once we are in the valley is shown in Fig. 2.2b-c. Since

inside the valley the error metric landscape is almost flat (i.e. is a continuous

region of local minima), the trajectory of the steepest descent method becomes

almost completely stalled. It proceeds in a zigzag fashion as seen in Fig. 2.2c,

staying within the valley. This type of behavior of the steepest descent method

is very typical when the error metric landscape is non-convex and has abundant

local minima; for the type of optimization problems we encounter in CXDI the

steepest descent method almost always becomes stagnated in this fashion making

it next to useless.

In the steepest descent method, what often happens when stuck in local

minima or valleys like in Fig. 2.2 is that we repeatedly move in the same direction

over many different iterations. For example in Fig. 2.2c, the trajectory in the

valley of the banana function is a zigzag shape and we end up going in almost

the same direction every other iteration. What ends up happening there is that

movement in one direction will partially or wholly undo the progress made in the

movement of the previous iteration. A better way of traversing error metric space in

situations like this is to pick a set of directions which minimizes this “destructive

interference”, i.e. find some “non-interfering” directions which will allow us to

make better headway when stuck in error metric space features like the valley in

Fig. 2.2. To do this, we introduce the conjugate gradient method [14, 15, 26, 27].

The conjugate gradient algorithm is given by:

Λ0(r) = −∇ψ0ϵ

Λn(r) = βnΛn−1(r)−∇ψnϵ

ψn+1(r) = ψn(r) + αnΛn(r),

(2.8)

where αn is the step length taken in the conjugate direction Λn and this step length

can be found in an identical manner as in the steepest descent method by using

some type of line search routine. The conjugate directions Λn are determined by

computing a βn parameter given by the Fletcher-Reeves method:

βFRn =
∆ψTn∆ψn

∆ψTn−1∆ψn−1

, (2.9)
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a

b

c

Figure 2.3: A typical trajectory of the conjugate gradient method when trying to
get to the global minimum at (x, y) = (1, 1) starting from a random location (here
the cyan circle in (a)). We quickly travel into the valley, and due to only allowing
steps in conjugate directions make much better progress than when using steepest
descent directions.
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or by the Polak-Ribière method:

βPRn =
∆ψTn (∆ψn −∆ψn−1)

∆ψTn−1∆ψn−1

(2.10)

where T denotes the transpose, ∆ψn = −∇ψnϵ, and for the Polak-Ribière method

we check for and enforce that βPRn = max(0, βPRn ) each iteration, i.e. when βPRn be-

comes negative, we choose the descent direction to be the steepest descent for that

iteration and begin calculating anew βPRn for subsequent iterations. Generally, the

Polak-Ribière method performs better when dealing with non-quadratic features

in error metric space, but in practice experimentation should be performed to see

which methods works best.

Starting from the same location as in steepest descent case in Fig. 2.2 at the

cyan circle, we again travel into the valley within a few iterations. What happens

once we are in the valley is shown in Fig. 2.3b-c. Rather than following a zigzag

trajectory in which we travel in nearly identical directions every other iteration,

by only traveling in conjugate directions given by Λn instead we make much better

headway and there are only a few locations within the valley where the trajectories

are zigzagging and even then only for tens of iterations before finding a direction

which gives very good progress.

The previous two gradient descent methods use only first derivative in-

formation to update a search direction. A popular class of algorithms which use

both first and second derivative information are the “quasi-Newton” type methods,

which are based on Newton’s method for finding stationary points. The essence

of Newton based optimization methods is to use local curvature of error metric

space information to predict and travel a more direct route to stationary points.

They are called quasi-Newton because second derivatives (the Hessian matrix) are

not explicitly computed; instead the Hessian is iteratively computed and refined

based on first derivative information obtained from gradient calculations. Probably

the most popular quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method. The steps taken in the BFGS method are given in Eq. 2.11,

where again αn is a step length taken in the pn direction and can be determined

from some line search method. The inverse Hessian H−1
n is determined in the last

step in Eq. 2.11, with H−1
0 usually chosen to be the identity matrix. One issue



34

a

b

Figure 2.4: A typical trajectory of the BFGS method when trying to get to the
global minimum at (x, y) = (1, 1) starting from a random location (here the cyan
circle in (a)).
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b

Figure 2.5: A typical trajectory of the L-BFGS method when trying to get to
the global minimum at (x, y) = (1, 1) starting from a random location (here the
cyan circle in (a)).
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that is immediately alarming is that for problems with many variables, like we

have in CXDI, the memory requirements are approximately the square of that

encountered using the previous two gradient descent methods, meaning that the

BFGS method is possibly impractical for use in CXDI. However there is a limited

memory version of the BFGS method called the L-BFGS method which does not

attempt to compute an approximate Hessian every iteration. Instead the L-BFGS

method stores in memory only a few vectors that represent an approximation for

the Hessian implicitly and in a recursive fashion. It keeps track of a history of

ψn and ∇ψnϵ updates (usually 5 to 10 of them) for use in the recursive Hessian

approximation; see reference [28] for details. The trajectory of the BFGS method

when again starting from the cyan circle as in the steepest descent and conjugate

gradient methods in shown in Fig. 2.4 and in Fig. 2.5 for the L-BFGS method.

pn = −H−1
k ∇ψnϵ

ψn+1(r) = ψn(r) + αkpn

sn = αkpn

yn = ∇ψn+1ϵ−∇ψnϵ

H−1
n+1 = H−1

n +

(
1 +

yTnH
−1
n yn

sTnyn

)
sns

T
n

sTnyn
− sn(H

−1
n yn)

T +H−1
n yns

T
n

sTnyn

(2.11)

2.2 Projections onto constraint sets

Another way of approaching the problem of finding the configuration for

the elements of the ψ(r) array which minimize the error metric given by Eq. 2.4 is

to use a family of algorithms known as “projections onto constraint sets” (POCS)

algorithms. In these, rather than computing gradients or approximate Hessian

matrices, projections πi are defined which enforce that some guess for ψ(r) satisfy

some constraint; for example by applying πm, the Fourier modulus constraint,

πmψ(r) now belongs to a set of possibilities for ψ(r) which when propagated to

the measurement location have the measured Fourier modulus measurement. If we

also have identified other constraints on the sample which we can enforce, then we

can apply them using the “alternating projections” algorthim, also known as the
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Figure 2.6: Example trajectory of the Error Reduction algorithm for simple
convex constraint sets.

Error Reduction (ER) algorithm [7, 14, 29]:

ψn+1(r) = πsπmψn(r), (2.12)

where πs is some constraint on the sample where the sample is located, as opposed

to the Fourier modulus constraint which is a constraint on the sample exit wave-

field when propagated to the measurement location; these “real space” constraints

which πs represents will be explored more in Section 2.3.

When the constraint sets are convex in Euclidian space, an example of

how the ER method converges to the intersection of the sets is shown in Fig. 2.6.

From the initial guess denoted by the magenta circle, it travels to the closest

element of the πs set and from there to the closest element of the πm set, and

repeats this until the intersection of the sets is reached. At this intersection both

constraints are simultaneously satisfied, and for problems encountered in CXDI

this generally means that a unique reconstruction of the sample has been achieved

[9, 11]. The problem we run into when using the ER method in CXDI is that the

Fourier modulus constraint set is non-convex [14], and it is also possible that we
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Figure 2.7: Example trajectory of the Error Reduction algorithm for non-convex
constraint sets. Stagnation at some location where both constraint sets are close
but not intersecting can occur.

have imperfect knowledge of real space constraints possibly causing the real space

constraint set to also be non-convex. When this happens, ER usually gets trapped

at a location where both constraint sets are close but not intersecting, as seen in

Fig. 2.7. In context of the gradient of an error metric algorithms encountered in

the previous section, non-convexity means that local minima exist and that like

the steepest descent method, the ER algorithm gets easily stuck in these local

minima and stagnates. The ER algorithm is actually identical to the steepest

descent method when the optimal step length αn is chosen which takes the current

ψn iterate to the location of minimum error along the current descent direction

[10, 14].

A POCS algorithm which copes much better with non-convexity is the

Fienup Hybrid Input-Output (HIO) [8] algorithm. This algorithm originated from

control-feedback theory and mixes the current iterate of πmψn with the previous ψn
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Figure 2.8: Example trajectories of the HIO algorithm for non-convex constraint
sets. The top frame shows behavior when the non-convexity is not too severe, while
the bottom frame shows behavior when the constraint sets are highly non-convex.
In this case, even HIO can stagnate and not reach the intersection of the sets.
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(via some β parameter) in such a way that positive feedback is built up when the

current ψn is stuck in the current location for too long which in turn “encourages”

the current ψn to move away from where it is currently stuck:

ψn+1(r) =

πmψn(r) r ∈ S,

(1− βπmψn(r)) r ̸∈ S.
(2.13)

Typically, β is chosen to be somewhere between 0.5 and 1.0, although it’s possible

to determine the optimal β every iteration by solving a sub-optimization problem

[15]. This, combined with the fact that the trajectory the HIO algorithm causes

ψn to take is not direct to either of the constraint sets but is a more “round about”

trajectory means that HIO has the ability to avoid and get out of local minima in

error metric space, as seen in Fig. 2.8. However it too can become stagnated when

the degree of non-convexity is too great as seen in Fig. 2.8.

The current state of the art of POCS algorithms is the difference map (DM)

[30, 31]:

ψn+1(r) = ψn(r) + β [π1f2 − π2f1]ψn(r)

f1 = (1 + γ1)π1 + γ1

f2 = (1 + γ2)π2 + γ2

(2.14)

The DM algorithm can be viewed as a chaotic dynamical system with solutions

defined as fixed points. It has a remarkable ability to escape local minima and by

experimenting with the adjustable parameters β, γ1, and γ2, the DM algorithm is

able to tackle a wide range of optimization problems, for example the graph coloring

problem, Sudoku, spin glass ground states, and protein folding [31]. Additionally,

it can handle any number of constraints, as opposed to only two as in the HIO

method, by using a “divide and concur” strategy [32]. Some example trajectories

of the difference map, using random numbers every iteration between 0 and −2 for

γ1, with γ1 = −γ2, and for β random numbers every iteration between 0 and 2, are

shown in Fig. 2.9. The DM can be considered a meta algorithm, as many other

specialized algorithms used in CXDI and non-convex optimization theory can be

derived from it, based on the choices for β, γ1, and γ2 [14]. For example, with

γ1 = −1 and γ2 = β−1, π1 = πs as the real space constraint and π2 = πm as the

Fourier modulus constraint, the DM algorithm reduces to the HIO algorithm.
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Figure 2.9: Example trajectories of the DM algorithm using random numbers
every iteration between 0 and −2 for γ1, with γ1 = −γ2, and for β random numbers
every iteration between 0 and 2.
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2.3 Real space constraints

Methods for iteratively solving the phase problem have been discussed in

the previous two sections. Two strategies have been put forward: define an error

metric and use gradient descent methods to locate the global minimum in error

metric space, or to define constraint “projections” which when applied to a guess

for the sample exit wave ψn modify the guess so that it satisfies this constraint

(and is a member of the set of all possible ψn which satisfy the constraint), and

iteratively find the intersection of the sets for all defined projections. The diffrac-

tion measurement is one constraint on the sample we will always be able to use.

This section identifies and discusses other constraints on the sample, and how they

are typically used and enforced in practice.

2.3.1 Support

When we are investigating a sample which is smaller than the illuminating

x-ray beam, a constraint on the sample which can be used is the support constraint.

The support constraint is simply knowledge about the maximum size of an object,

for example the circle surrounding the sample in Fig. 2.10. Take for example the

simulated sample in Fig. 2.10b. We can use the fact that we know the sample

is smaller than a circle of some diameter as a support. Starting from a guess for

the sample, as shown in Fig. 2.10c, and enforcing the Fourier modulus constraint

πm, we arrive at what is shown in Fig. 2.10d. What is done next is to enforce

the support constraint by zeroing all pixels outside if the dashed blue circle from

Fig. 2.10b, as seen in Fig. 2.10e. Generally the support constraint is only useful

when it is “tight”, i.e. it is close to the true sample shape; efficient and reliable

methods exist for iteratively refining and determining the support [33].

2.3.2 Beam curvature

Another real space constraint available is to use some sort of structured

beam to illuminate a sample and use this to modify the current iterate for the

sample exit wave [16, 17]. This constraint can be used when the sample is both
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a
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Sample

Figure 2.10: (a) Experimental geometry for when using the support constraint
is possible: when the sample is smaller than the illuminating x-ray beam. (b)
Usually we know that the sample cannot be larger than some maximum size (here
the dashed blue circle), and so we can enforce that any iterates of the guessed exit
wave ψn must satisfy this size limit. (c) A guess for the sample which satisfies
the support constraint. (d) The result when the Fourier modulus constraint πm is
applied to the guessed sample in (c). (e) Enforcing the support constraint πs on
the result in (d).
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b c

a

Figure 2.11: (a) Experimental geometry for when using the curved beam con-
straint is possible. In this case, the sample is larger than the x-ray illumination but
it is also possible for the sample to be smaller than the x-ray beam. (b) The x-ray
wavefield at the focus. At this focal plane, the wavefield is the Fourier transform
of the wavefield just after the focusing optic, and so the quadratic phase curvature
is gone. (c) However, by moving away from the focal plane downstream of the
sample, the quadratic phase curvature becomes significant again. In (c) we see
that the curvature is such that many 2π phase wraps occur. The effect of this
is that many symmetries of the Fourier transform of the sample that exist when
using plane wave illumination, such as translational and π rotation symmetries,
are removed when using a beam with phase curvature. This in turns results in far
greater convergence properties.
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larger or smaller than the incident x-ray beam. What a structured beam means

in this context mainly has to do with what its “phase” looks like. For example, a

Fresnel zone plate introduces a quadratic phase curvature to the x-ray illumination

function. In Fig. 2.11, a sample is placed a little ways downstream of the focal

plane. This means that the quadratic phase curvature of the x-ray beam is signif-

icant; the effect of this is that many symmetries of the Fourier transform of the

sample that exist when using plane wave illumination, such as translational and π

rotation symmetries, are removed when using a beam with phase curvature. Due

to the symmetries that are removed, numerical convergence rates of the iterative

algorithms used are greatly enhanced; it appears that using curved beam illumi-

nation causes the constraint sets (or alternatively the error metric landscape) to

be much less non-convex. An added effect of using an x-ray illumination which

has phase curvature and is expanding is that a pseudo inline holographic region is

created; this can be seen in the “donut” region in the detector plane in Fig. 2.11

where we see a magnified region of the illuminated region on the sample with ad-

ditional Fresnel fringing effects. This is useful experimentally as we in effect have

a low resolution image of the object and can quickly identify interesting features

of the sample in almost real time. Once an interesting feature has been zeroed

in on, we can then collect higher spatial frequency diffraction (located outside the

“donut” region) which can be used to get at higher spatial resolution features on

the sample by using the iterative algorithms in the previous section.

2.3.3 Ptychography

Another real space constraint that can be used is to scan the sample so

that many adjacent and overlapping regions on the sample are illuminated and

collect diffraction from each of these scan locations [13, 34, 35]; an example of this

scanning scheme is shown in Fig. 2.12. This method of collecting data is known

as “ptychography”. The essence of this real space constraint is that there are re-

gions on the sample from which we have collected many different and independent

diffraction measurements. In other words, we can have multiple Fourier modulus

constraints π1, π2, ..., πN constraining regions on the sample which are covered
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Figure 2.12: An experimental arrangement where multiple diffraction patterns
are recorded by scanning at adjacent and overlapping regions on the sample. By
recording diffraction in this way we have multiple Fourier modulus constraints π1,
π2, ..., πN which constrain a common region on the sample. For example, the purple
common regions have two independent diffraction patterns constraining them, the
white common regions have three, while the pink common region has four. Other
than the true configuration of variables within these common regions, there are
vanishingly small other possible configurations which simultaneously satisfy all the
Fourier space constraints. It appears that ptychography causes the optimization
problem to approach an almost convex type of problem.
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by multiple scan locations. These common regions on the sample are highly con-

strained by the multiple diffraction patterns; there are very few potential solutions

for these common regions that simultaneously satisfy all the corresponding Fourier

modulus constraints. The next chapter will be completely devoted to further de-

tails of the ptychographic method of collecting diffraction, so nothing more will be

said here.



Chapter 3

Ptychographic phase retrieval

This chapter goes into details on the ptychographic sample space (or al-

ternatively termed “real space”) constraint of overlapping scan locations on the

sample. This causes a situation where we can have multiple diffraction patterns

which constrain a particular region on the sample. We explore what happens to

the performance of ptychography when the diffraction data set (the Fourier space

constraint) is degraded in some realistic ways, for example when significant noise

is present in the diffraction data, and when regions of the diffraction are missing

due to having to use a beamstop (to prevent damage to the detector when using

ultra-brilliant x-ray beams). We also explore the situation where the scan locations

on the sample are not perfectly known. We may not have perfect knowledge of

these scan location due to e.g. sample thermal drift and/or vibrations or if the

stages we use to move the sample around so it can be ptychpgraphically scanned

are installed in such a way as to not scan in the fashion we expect, and we explore

the consequences of this and also explore an iterative method which allows us to

discover the true scan positions.

3.1 Ptychographic phase retrieval

When the sample is larger than the incident x-ray beam, coherent diffrac-

tion can be collected ptychographically, and this type of experiment is termed

ptychographic coherent diffractive imaging (pCXDI). In this scheme, the sample

48
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Figure 3.1: Schematic of an X-ray scanning CDI measurement in the forwards
scattering geometry. Ptychographic diffraction patterns are recorded in the far-
field by an X-ray area detector by scanning the sample, depicted as the overlapping
circles.

is illuminated at multiple overlapping scan points, examples of which are shown

in Fig. 3.1 as the overlapping circles. Here, a simulated x-ray wave field p(r)

is simulated by Fresnel propagating (using the methods of wavefield propagation

from Chapter 1) a circular pinhole aperture, and it is incident on a sample with

transmission function T0(r). The exit wave is defined as ψ0(r) = p(r)T0(r) (i.e.

we assume the projection approximation), and is propagated to the detector by

taking its Fourier transform. The CCD area detector then measures the modulus

square of this; the phase is lost. The sample is then moved by some r1 so that a

neighboring but overlapping region with exit wave ψ1(r) = p(r)T1(r) can be illu-

minated, where T1(r) = T (r− r1), and this can be repeated for further rj, j ∈ Z,
so that we have the desired total field of view on the sample.

The purpose of collecting diffraction from overlapping regions is that it

results in a stringent constraint on the sample. We have multiple independent

diffraction measurements constraining a particular common region on the sam-
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ple. This drastically reduces spurious numerical artifacts produced by imperfect

measurements of the diffraction, e.g. shot noise or missing data due to a beam

stop. The enantiomorph problem associated with single view diffractive imaging

is also removed as the known scheme of scanning the sample removes the Fourier

transform symmetries from which the problem arises, allowing for vastly improved

convergence time. Ptychographic diffraction collection allows for arbitrarily large

field of view imaging of extended samples. It also allows for the simultaneous

determination of the sample transmission function and the x-ray wave field illu-

minating the sample [34, 35]. Furthermore, when a known test sample is inserted

into a beam from optical elements not well characterized, it allows for a powerful

and robust method of determining the full complex valued wave field produced by

any x-ray optics upstream of the sample [36].

The algorithms used in pCXDI to extract the sample exit wave from an

initial guess using experimental constraints can be formulated in terms of some

sort of gradient descent of an error metric [10, 14, 37] (and popularly known as

the ePIE algorithm) or as a “projections onto constraint sets” algorithm [31] (here

the DM algorithm is used; see the previous chapter). In gradient descent type

algorithms, an error metric ϵj is defined:

ϵj =
∑
q

{
|Ψj,n(q)| −

√
Ij(q)

}2

, (3.1)

where Ψj,n(q) = F [ψj,n(r)] = F [pn(r)Tj,n(r)] = F [pn(r)Tn(r−rj)] is the n
th iterate

of the exit wave at position rj propagated to the detector, and the sum over q

only includes nonzero pixels for each diffraction intensity Ij(q) measurement. The

gradient of the error metric with respect to the sample transmission function or the

x-ray illumination function is then performed analytically [37]. This will generate

an “update function” [35] with which we modify Tj,n(r) and pn(r) in such a way

as to iteratively travel to a location in error metric space that has minimum error.

The rules for updating Tj,n(r) and pn(r) using the ePIE algorithm [35] in this way

are:

pn+1(r) = pn(r) + αp
T ∗
j,n(r)

|Tj,n(r)|2max
(πmψj,n(r)− ψj,n(r)), (3.2)
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and

Tj,n+1(r) = Tj,n(r) + αT
p∗n(r)

|pn(r)|2max
(πmψj,n(r)− ψj,n(r)), (3.3)

where αp and αT are suitable step lengths along the steepest descent directions, ∗
is the complex conjugate, and πm is defined by Eq. 2.2. To update Tj(r) and p(r)

using the Difference Map (DM), we do:

ψj,n+1(r) = ψj,n(r) + πm[2pn(r)Tj,n(r)− ψj,n(r)]− pn(r)Tj,n(r), (3.4)

and from this ψj,n+1(r) update:

Tn(r) =

∑
j p

∗
n(r+ rj)ψj,n(r+ rj)∑
j |pn(r+ rj)|2

, (3.5)

and

pn(r) =

∑
j T

∗
n(r− rj)ψj,n(r)∑
j |Tn(r− rj)|2

. (3.6)

The Fourier space constraints of diffraction from overlapping scan positions appear

to be stringent enough to allow us to find the global minimum in error metric

space. This is implied from the fact that, for diffraction not significantly degraded

by Poisson shot noise or missing data regions, we always recover the same Tj(r)

and p(r) even with very different initial guesses of these functions. That we are at

a global minimum is further supported by the use of the DM algorithm to recover

Tj(r) and p(r) since DM has well noted ability to escape local minima and find

the global minimum [14, 31]. In practice, it is usually not a bad idea to use both

the DM and ePIE. For example, we could run 100 iterations of ePIE initially and

then follow with 100 iterations of DM, and the repeat this use of both methods one

after the other until we have found a solution for Tj(r) and p(r), the criteria for

which is if the error metric given by Eq. 3.1 has reached a suitably low value or has

been at the same value for many iterations, indicating e.g. somehow stagnation in

a local minimum or that we’ve truly found the global minimum.

3.2 Ptychography and noisy diffraction

One thing we always have to deal with regarding experimental data is noise.

We explore here how diffraction that is degraded by noise, here Poisson “shot”
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Figure 3.2: (a) An undegraded, noise-free diffraction pattern with high SNR
which corresponds to the black curve in (g). (b) A degraded diffraction pattern
with moderate SNR vs q (momentum transfer) which corresponds to the red curve
in (g). (c) A heavily degraded diffraction pattern which corresponds to the blue
curve in (g). (h) The PRTF of the reconstructions. Reconstructions (d, e, f) are
from the high SNR diffraction (black curve in (g)), the moderate SNR diffraction
(red curve in (g)), and the low SNR diffraction (blue curve in (g)), respectively.
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noise, affects reconstruction quality. While there are many sources of noise which

can affect the signal to noise vs. q ( momentum transfer) of the measured diffrac-

tion, for example thermal noise of the electrons in the pixels of the CCD (also

known as dark current), usually it is Poisson noise which is dominant. So, we

define the signal to noise ratio (SNR) as

S(m∆q) =

∑
mϕ Ij(m∆q)∑

mϕ

√
Ij(m∆q)

, (3.7)

where ∆q = ak/z, k = 2π/λ, λ is the x-ray wavelength, a is the detector pixel

size, z is the distance from the sample to the detector, the sum over mϕ means we

sum over an annulus of 1 pixel width in q space, and m is a pixel index ranging

from m = 1 (corresponding to the q = 0 annulus) to m = N/2 (corresponding

to the q = N∆q/2 annulus). Using this definition, we look at three different

SNR cases, as seen in Fig. 3.2, to generate ptychographic diffraction data sets,

and reconstruct images for each of the SNR cases. Consider the three diffraction

patterns in Fig. 3.2(a,b,c). The signal to noise vs. q is shown in Fig. 3.2g; the

black curve corresponds the the diffraction in Fig. 3.2a, the red curve corresponds

the the diffraction in Fig. 3.2b, and the blue curve corresponds the the diffraction

in Fig. 3.2c. To quantify the quality of the reconstructions shown in Fig. 3.2(d,e,f)

(corresponding the the diffraction patterns in Fig. 3.2(a,b,c) respectively), we use

the concept of the Phase Retrieval Transfer Function (PRTF) [38], which is the

ratio of the reconstructed diffraction magnitude (the absolute value of the Fourier

transformation of the reconstructed specimen) to the measured diffraction magni-

tude as a function of q:

PRTFj(m∆q) =

∑
mϕ |F{⟨Tj(r)p(r)⟩}|∑

mϕ

√
Ij(m∆q)

(3.8)

where ⟨ ⟩ denotes averaging over many independent reconstructions of Tj(r)p(r).

Typically a cutoff PRTF value is defined in the literature [39] as a value between

0.4 and 0.5, and here we take the value 0.5 as a cutoff. This means that any q

values for which PRTF value fall below this cutoff we will not trust. In other words,

this cutoff defines the spatial resolution of the reconstruction as π/mmax∆q, where

mmax∆q is the maximum value of q for which PRTF is above the cutoff value of
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0.5. From Fig. 3.2h, the PRTF for the black curve is always greater than 0.5,

which we would expect since this PRTF curve corresponds to the undegraded

diffraction in Fig. 3.2a. This in turn means that the spatial resolution for this case

is π/(N∆q/2) = ∆x, where N is the array size used (for both rows and columns),

and ∆x is the pixel size in real space (see Eq. 1.2.1). The PRTF for the red

curve (corresponding to the diffraction pattern shown in Fig. 3.2b) terminally falls

below 0.5 at mmax∆q ≈ 195∆q, meaning that we would trust spatial features up to

π/(195∆q) = 1.31∆x. The SNR at this cutoff is ∼ 1.5 dB. The PRTF for the blue

curve (corresponding to the diffraction pattern shown in Fig. 3.2c) falls below 0.5

at about 56∆q. Although there is a point where is rises back above 0.5 at about

112∆q, this is likely due to the large variation of the PRTF between 56∆q and

112∆q, so we ignore this point at 112∆q. So for this case, we would trust spatial

features up to π/(56∆q) = 4.57∆x. The SNR at this cutoff is also ∼ 1.5 dB. This

indicates that the DM is effective at reconstructing spatial features up to a SNR

of between 1 to 2 dB.

3.3 Ptychography and missing data

In Fig. 3.3 we look at the effect of varying amounts of missing data. Miss-

ing data in diffraction measurements is common for intensely bright x-ray beams

and the typical x-ray CCD detectors currently in use at synchrotrons. The type of

(simulated) beamstop used in Fig. 3.3a is widespread using current direct-detection

CCD detectors for x-ray coherent diffraction experiments; most experimenters us-

ing the scattering geometry shown in Fig. 3.1 would encounter something like this.

The reconstruction corresponding to this diffraction pattern is shown in Fig. 3.3b.

When the amount of missing data is not so severe, ptychography is usually able

to “fill in” the information lost behind the beamstop. This is because typically

the information content in ptychographic data sets is so rich, the information lost

behind the beamstop is “in there somewhere” and the iterative algorithms are able

to find it.

Next consider the beamstops in Fig. 3.3c and Fig. 3.3e. The amount of
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Figure 3.3: Performance of ptychography with varying amounts of missing data.
The SNR for the diffraction patterns in frames (a, c, e) is the same as the black
curve in Fig. 3.2g. Reconstructions in frames (b, d, f) correspond to representative
diffraction patterns (a, c, e) respectively, and the diffraction patterns in frames (a,
c, e) correspond to where 87%, 96% 97% of the integrated intensity has been lost,
respectively. The performance of iterative algorithms to properly scale the missing
data regions [40] for reconstructions in frames (d, f) is quite poor when the missing
data regions get too large, and other methods should be explored.
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missing data encountered in Fig. 3.3c and Fig. 3.3e might be encountered when we

have a very weakly scattering sample and we must attenuate virtually the entire

low spatial frequency signal to be able to take a long enough exposure to access the

higher spatial frequency signal. For the reconstructions in Fig. 3.3d and Fig. 3.3f,

the missing data regions due to the beamstop are treated as unconstrained, i.e.

when applying the Fourier modulus constraint, we do not force these missing pixels

to zero, but actually leave them alone, other than attempting to properly scale

them using another iterative process which scales the missing data regions using

scaling knowledge of the measured regions [40]. These reconstructions are clearly

inadequate, and are in fact high pass filtered versions of the true object.

What is happening here is that in the missing data regions, algorithms we

use to attempt to iteratively arrive at correct scaling [40] in the missing regions

perform worse and worse as the missing data regions become larger. The method

presented in reference [40] works very well if the missing data regions are relatively

small, like in Fig. 3.3a, but begins to fail when we see relatively large missing data

regions like in Fig. 3.3c and Fig. 3.3e. In practice, one could also overcome this

iterative missing data scaling failure by using different beam stops, for example one

large one like in Fig. 3.3e to collect high spatial frequencies with very long CCD

exposures and another smaller beamstop with short exposures to collect the lower

spatial frequency information. One can then use these two measurement regimes

to initially update the object using the low frequency diffraction and after this use

the high frequency diffraction to update the object, or alternatively, patch the two

measurement regimes together into one diffraction pattern.

3.4 Scan positions errors and pCXDI

Errors of assumed scan positions rj can be caused by unaccounted for ther-

mal drift and expansion of the experimental equipment when undertaking exper-

iments when temperature is varied significantly. If using a beam which is on the

order of tens of nanometers, ambient vibrations can also compromise our knowledge

of the scan positions significantly. The ability of pCXDI to quickly and robustly
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Figure 3.4: Schematic of how random errors are added to the assumed scan loca-
tions, denoted by the green circles. The red circles are the “true” scan locations.
A uniform random number distribution is used to generate two random numbers
within some bound, say ± 20 pixels, and each of these random numbers is added to
the x and y component of the scan locations; this is done for all 49 scan locations.

converge to a solution for Tj(r) and p(r) is drastically degraded when errors in the

assumed scan points come into play. This is explored in this section, as well as a

scheme to iteratively solve for unknown scan position errors.

3.4.1 Effects of position errors on reconstructions

To illustrate this a simulated pCXDI experiment is performed. Diffraction

is collected by scanning a simulated sample in an x-ray wavefield in the forward

scattering geometry depicted in Fig. 3.1. A thin rectangular portion of each of these

diffraction patterns is removed, to simulate the effect of a beam stop. Here, we

donote a as the detector pixel size, λ as the x-ray wavelength, k = 2π/λ the x-ray

wavenumber, ℓ as the sample to detector distance, and the array size in the sample

to detector Fourier transformation as N2 = 512 × 512. The field of view at the

detector is LD = Na, while the field of view at the sample plane is LS = λℓN/LD.

Thus the real space pixel size at the sample plane is ∆xS = LS/N = λℓ/Na,

and the Fourier space pixel size at the detector plane is found using the relation

∆q∆xS = 2π/N , resulting in ∆q = ka/ℓ. The x-ray illumination p(r) has a
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Figure 3.5: (a-b)Transmission function and probe reconstructions for when there
is no error in scan position constraint. (c-d) Transmission function and probe
reconstructions when random numbers over a range of ± 10 pixels are added to
each scan position. (e) Lineout of |Tj(r)|. (f) Lineout of the phase of Tj(r). (g)
Lineout of |p(r)|. (h) Lineout of the phase of p(r). In (e-f), the lineouts are along
the white line indicated in (b), and in (g-h), the lineouts are along the white line
indicated in (a). In (e-f), the red dashed line is the lineout for the reconstruction
of the Tj(r) with scan position errors, the black dashed line is the lineout for the
reconstruction of the Tj(r) without scan position errors, while the solid green line
corresponds to the true Tj(r). In (g-h), the red dashed line is the lineout for the
reconstruction of the p(r) with scan position errors, the black dashed line is the
lineout for the reconstruction of the p(r) without scan position errors, while the
solid green line corresponds to the true p(r). The scale bars in frames (a-b) are
both 102λℓ/Na.
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Figure 3.6: (a)The signal to noise of the ptychographic diffraction data set used
in the reconstructions in Fig. 3.5. (b) The PRTF of the reconstructions. The red
curve is for no errors, the blue curve is for a maximum ± 10 pixel random error
added to the x and y components of each of the scan locations, and the black curve
is for a maximum ± 20 pixel random error.

diameter of ≃ 280 pixels, which in units of length is Dp(r) ≃ 280 LS/N . The

overlap between adjacent scan positions is 75%, which corresponds to having the

adjacent scan positions separated by a distance of ≃ 70 LS/N . In this way, 49

diffraction patterns are recorded scanning a 7×7 square grid.

When no errors in scan position knowledge are present, we ptychograph-

ically reconstruct p(r) and T (r) over all j as shown in Fig. 3.5a-b. The x-ray

illumination function is shown in Fig. 3.5a, while the object transmission function

is the image shown in Fig. 3.5b. In Fig. 3.5e-f, a lineout of T (r) is taken (corre-

sponding to the white line shown in Fig. 3.5b). The magnitude of T (r) is shown

in Fig. 3.5e while the phase of T (r) is shown in Fig. 3.5f; both are shown as the

dashed black line. The sold green curves in Fig. 3.5e-f are the true magnitude and

phase of T (r) respectively along the white line in Fig. 3.5b.

When scan position errors are present, we see significant degradation of

the reconstructions of Tj(r) and p(r), as seen in Fig. 3.5c-d. What was done to

simulate scan position errors is to add random numbers to the x and y coordinates

for each of the 49 scan positions, and an example of what this might look like is

shown in Fig. 3.4; in Fig. 3.5c-d, a uniform random number distribution over a

range of ±10 pixels is used to add to the x and y coordinates, and so a maximum

error of 10
√
2 pixels is possible and the average position error is ∆ravg ≈ 8 pixels.
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Scan position errors have the effect of the degradation of the reconstruction over

all spatial frequencies, as seen by computing the PRTF as seen in Fig. 3.6b. In

this, the red curve is the PRTF of the reconstruction in Fig. 3.5a-b assuming no

scan position errors, the blue curve is the PRTF of the reconstruction Fig. 3.5c-d

assuming a maximum error of 10
√
2 pixels, while the black curve is the PRTF of a

reconstruction assuming a maximum error of 20
√
2 pixels (reconstructions are not

shown, they look too terrible). Referring back to Fig. 3.6b, we use a PRTF spatial

frequency cutoff of ≈ 0.5, which for the red curve occurs at ≈ 100ka/ℓ. In Fig. 3.6a,

the signal becomes lost in the noise back ground also at a momentum transfer value

of ≈ 100ka/ℓ, telling us that the reconstruction spatial resolution is here signal to

noise limited, as we would expect. However, with scan position errors, for the blue

curve in Fig. 3.6b the 0.5 spatial frequency cutoff occurs at 75ka/ℓ while the black

curve never rises above the cutoff, illustrating how devastating even relatively small

scan position errors can degrade reconstruction spatial resolution.

3.4.2 Iterative refinement of the overlap constraint

For the reconstructions shown in Fig. 3.5c-d, an average error in scan po-

sition of ∆ravg ≈ 8 pixels is only ∼ 3% of the 280 pixel probe diameter used, and

is ∼ 11% of the step size of 70 pixels used. For any experiment using a probe

which is tens of nanometers in diameter, vibrations on the nanometer scale can

be expected to seriously degrade the spatial resolution and quantitative index of

refraction information of the reconstructions. However, ptychographic diffraction

measurements are often information rich enough to allow us to take the gradient

of Eq. 3.1 with respect to the assumed scan positions rj and use an iterative pro-

cess to correct for scan position errors [37]. We present here an effective method

for incorporating iterative scan position correction into standard ptychographic re-

construction algorithms [34, 35]. The steepest descent method for correcting scan

positions using an analytical calculation of the gradient of Eq. 3.1 with respect to

the assumed scan positions rj is given by:

rj,n+1 = rj,n − αn∇rj,nϵj, (3.9)
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For a little more computational effort but much better performance, we can also

update the scan positions along the conjugate gradient descent directions:

Λj,0 = −∇rj,0ϵj

Λj,n = βnΛj,n−1 −∇rj,nϵj

rj,n+1 = rj,n + αnΛj,n,

(3.10)

where rj,0 are the initial assumed scan positions, αn is a step length taken along

the steepest descent or conjugate gradient directions, and βn is calculated using

either the Fletcher-Reeves or Polak-Ribière methods [14].

We integrate this conjugate gradient correction of the scan positions into

the standard ptychographic reconstruction algorithms by using the rj,0 positions

initially, and update Tj(r) and p(r) using either the DM or ePIE for some tens of

iterations. Once this is done, we use these newly obtained Tj(r) and p(r) in the

gradient calculation of Eq. 3.1, and update the rj using Eq. 3.10. We choose the

step length αn by rescaling Λj,n so that it is a unit vector, and either simply pick

a value of αn (say 2 pixels), or perform a line search along the Λj,n direction by

evaluating the error metric Eq. 3.1 at a few trial values of αn:

ϵ(αn) =
∑
q

{
|F [p(r)T (r− rj,n − αnΛj,n)]| −

√
Ij(q)

}2

. (3.11)

Since Λj,n is a unit vector, some sensible trial values for αn are say 1 pixel, 5 pixels,

and 10 pixels along the conjugate gradient Λj,n direction. Once we have found a

value for αn which gives us the smallest value of ϵ(αn), we use this αn to update

rj,n+1 as in Eq. 3.10. Next, we run the DM or ePIE to again update Tj(r) and

p(r) for another ten iterations or so using the just updated rj,n+1, and repeat the

above conjugate gradient scan position correction procedure again after this. That

whole process is then repeated for however many iterations it takes to get the error

metric to converge to zero.

It is inadvisable to update the rj,n after every iteration of Tj(r) and p(r)

updates; we have noticed that by doing this the rj,n sometimes tend to travel back

to previous values of rj,n. The topology of error metric space is crucially dependent

on Tj(r), p(r), and rj,n, and by updating all three “back to back”, we appear to
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be more susceptible to stagnation in error metric space local minima. Also, the

gradient of Eq. 3.10 with respect to the rj,n requires four FFT evaluations (as

opposed to the two FFT evaluations required by the DM and ePIE algorithms to

update Tj(r) and p(r)). So the time it takes to accomplish all the rj,n updates is

roughly twice as the Tj(r) and p(r) updates. By only updating the scan positions

every ten or so iterations, the computational cost of incorporating rj,n conjugate

gradient updates is minimal, typically 10% to 20% longer than not incorporating

the rj,n updates.

3.4.3 Maximum recoverable scan position error

We next address the question of how well does the iterative scan posi-

tion correction method in the previous section perform when the ptychographic

diffraction data set is degraded in an experimentally realistic way. To explore this

question, we explore in simulation two scenarios: one with a diffraction data set

with good signal to noise out to almost the edge of the array, as seen in Fig. 3.7a,

and another with diffraction which decays into the noise much quicker, as seen

in Fig. 3.7b. The “good” signal to noise diffraction becomes lost in the Poisson

distributed noise background at a momentum transfer value of ≈ 125ka/ℓ where

the signal to noise is between 1 to 2 dB, while the “poor” signal to noise diffraction

becomes lost at ≈ 40ka/ℓ. For both diffraction data sets, a thin rectangular region

extending up from the bottom is removed from the diffraction to simulate the effect

of a beamstop; between %85 and %95 of the integrated diffraction intensity is lost

behind the beamstop for both diffraction data sets.

Using the same simulation parameters as in Section 3.4, we start with using

the “good” signal to noise diffraction and first use an assumed scan position step

size of 70 pixels (which corresponds to 75% adjacent scan position overlap using

a 280 pixel diameter x-ray illumination function). We use 1152 total iterations of

the ePIE and DM algorithms solve for Tj(r) and p(r): (144 iterations of ePIE and

144 iterations of DM repeated 4 times each), and update probe positions every 12

iterations (total of 96 iterations). In this way, we discover that the maximum scan

position error we can reliably solve for is when errors of ≈ 60
√
2 pixels are added
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Figure 3.7: (a) A diffraction pattern with “good” signal to noise. The diffraction
is dominated by Poisson “shot” noise, as is usual in x-ray synchrotron experiments,
and the signal becomes lost in the noise back ground close to the edge of the
measuring device. (b) A diffraction pattern with “poor” signal to noise. The
signal becomes lost in the noise back ground relatively far away from the edge of
the measuring device. In both diffraction patterns in (a-b), a rectangular region
extending up from the bottom is removed from the diffraction to simulate the effect
of a beamstop.
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Δr = 63.1

Δr = 59.1

Δr = 30.1

Δr  = 53.3

Δr  = 45.6Δr  = 18.9a

b Δr = 1.0Δr = 0.0

Figure 3.8: (a) The scan position configuration after application of the procedure
given in Section 3.4.2 to a ptychographic diffraction data set with “good” signal to
noise (as defined in Fig. 3.7), with 75% assumed adjacent scan position overlap, and
random errors of up to 60

√
2 pixels added to each scan location. The grid spacing

between the small black dots is 70 pixels, the red dots are the true scan locations,
the green dots are the solved for scan locations, and ∆r refers the the distance
between green and red dots. Most of the scan positions have been correctly solved
for except a few at the periphery of the scan grid. (b) An average of 20 independent
runs of the procedure given in Section 3.4.2. As a result of the averaging process,
we have nearly perfectly recovered all the scan location positions.
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Figure 3.9: (a-b) The scan position configuration after application of the pro-
cedure given in Section 3.4.2 to a ptychographic diffraction data set with “good”
signal to noise (as defined in Fig. 3.7), with 75% assumed adjacent scan position
overlap, and random errors of up to 80

√
2 pixels added to each scan location. The

grid spacing between the small black dots is 70 pixels, the red dots are the true scan
locations, the green dots are the solved for scan locations, and ∆r refers the the
distance between green and red dots. The errors in scan positions at the periphery
of the scan grid in this case appear to be too severe for the conjugate gradient
method to iteratively solve for. This is primarily a result of these locations having
fewer diffraction patterns constraining them.
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to each scan location (±60 pixel error in x and the same for y), with an average

error of ∆ravg = 50.3 pixels. This is 21% of the illumination function diameter

and 143% of the scan position step size. The final scan position after running 1152

total iterations of the ePIE and DM, and 96 iterations of conjugate gradient scan

position recovery, are shown in Fig. 3.8a. We see that all assumed scan positions

(the green dots) have been corrected so that they are close to the true positions

(the red dots), except on the top left and bottom right; this is characteristic of the

method when the scan position errors are at the limit of the conjugate gradient

algorithm performance. However, repeating the above process again will yield

another configuration of scan positions, most of which have been correctly solved

for and a few that have not been. If we repeat the above procedure say another 20

times, and average all of the obtained scan position configurations, we can finally

reliably recover all scan positions as shown in Fig. 3.8b. Only a few scan positions

at the top of Fig. 3.8b are slightly off from the true positions, by one pixel. In this

example, it is possible to solve for errors larger than ≈ 60
√
2 pixels, but usually

cannot be done reliably; the scan positions at the periphery of the ptychographic

data set are many times intractable for the conjugate gradient algorithm. This

can be seen in Fig. 3.9a-b for maximum errors of ≈ 80
√
2 pixels; here the centrally

located scan positions have been solved for, but at the periphery the scan positions

appear to never converge to the true locations, even after many averages as was

done for the ≈ 60
√
2 pixel case.

The maximum scan position error we are able to solve for is highly de-

pendent of how tightly “clustered” the ptychographic scanning scheme is. The

previous case discussed looked at an assumed scan position overlap of 75% and

was able to recover errors of up to ≈ 60
√
2 pixels reliably. If we instead look at

an assumed scan position overlap of 85%, we find that we can reliably solve for

up to ≈ 90
√
2 pixels (which is 45% of the illumination function diameter and 303

% of the scan position step size of 42 pixels), as seen in Fig. 3.10a-b, while if the

assumed scan position overlap is 65%, we can only reliably solve for up to ≈ 40
√
2

pixels (which is 20% of the illumination function diameter and 58 % of the scan

position step size of 98 pixels), as seen in Fig. 3.11a-b. In both cases, 20 indepen-
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Figure 3.10: (a) The scan position configuration after application of the procedure
given in Section 3.4.2 to a ptychographic diffraction data set with “good” signal
to noise (as defined in Fig. 3.7), with 85% assumed adjacent scan position overlap,
and random errors of up to 90

√
2 pixels added to each scan location. The grid

spacing between the small black dots is 42 pixels, the red dots are the true scan
locations, the green dots are the solved for scan locations, and ∆r refers the the
distance between green and red dots. (b) An average of 20 independent runs of
the scan position refinement procedure.
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Figure 3.11: (a) The scan position configuration after application of the procedure
given in Section 3.4.2 to a ptychographic diffraction data set with “good” signal
to noise (as defined in Fig. 3.7), with 65% assumed adjacent scan position overlap,
and random errors of up to 40

√
2 pixels added to each scan location. The grid

spacing between the small black dots is 98 pixels, the red dots are the true scan
locations, the green dots are the solved for scan locations, and ∆r refers the the
distance between green and red dots. (b) An average of 20 independent runs of
the scan position refinement procedure.
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Figure 3.12: (a) The scan position configuration after application of the procedure
given in Section 3.4.2 to a ptychographic diffraction data set with “poor” signal to
noise (as defined in Fig. 3.7), with 75% assumed adjacent scan position overlap,
and random errors of up to 40

√
2 pixels added to each scan location. The grid

spacing between the small black dots is 70 pixels, the red dots are the true scan
locations, the green dots are the solved for scan locations, and ∆r refers the the
distance between green and red dots. (b) An average of 20 independent runs of
the scan position refinement procedure.
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Figure 3.13: (a) The scan position configuration after application of the procedure
given in Section 3.4.2 to a ptychographic diffraction data set with “poor” signal to
noise (as defined in Fig. 3.7), with 85% assumed adjacent scan position overlap,
and random errors of up to 60

√
2 pixels added to each scan location. The grid

spacing between the small black dots is 42 pixels, the red dots are the true scan
locations, the green dots are the solved for scan locations, and ∆r refers the the
distance between green and red dots. (b) An average of 20 independent runs of
the scan position refinement procedure.
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Figure 3.14: (a) The scan position configuration after application of the procedure
given in Section 3.4.2 to a ptychographic diffraction data set with “poor” signal to
noise (as defined in Fig. 3.7), with 65% assumed adjacent scan position overlap,
and random errors of up to 20

√
2 pixels added to each scan location. The grid

spacing between the small black dots is 98 pixels, the red dots are the true scan
locations, the green dots are the solved for scan locations, and ∆r refers the the
distance between green and red dots. (b) An average of 20 independent runs of
the scan position refinement procedure.
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dent runs using 144 iterations of ePIE and 144 iterations of DM repeated 4 times

each, and scan positions updates every 12 iterations (for total of 96 iterations) are

performed, and the scan positions are averaged at the end.

We next look at the “poor” signal to noise diffraction data as seen in

Fig. 3.7b. As we would expect, since the diffraction is far less information rich

when compared to the “good” signal to noise case, the maximum scan position

errors we can solve for are significantly smaller. For 75% assumed overlap, the

best we can do, using the same reconstruction recipe as for the “good” signal to

noise diffraction above, is up to ≈ 40
√
2 pixels (which is 20% of the illumination

function diameter and 81% of the scan position step size of 70 pixels), as seen in

Fig. 3.12a-b. For 85% assumed overlap, the best we can do is up to ≈ 60
√
2 pixels

(which is 30% of the illumination function diameter and 202% of the scan position

step size of 42 pixels), as seen in Fig. 3.13a-b, and for 65% assumed overlap, the

best we can do is up to ≈ 20
√
2 pixels (which is 10% of the illumination function

diameter and 29% of the scan position step size of 98 pixels), as seen in Fig. 3.14a-

b. The number of scan positions for these cases which are not found perfectly

is greatly increased for the “poor” signal to noise diffraction data. This however

might be expected, since in the ptychographic diffraction data set we only have

spatial frequency information up to about qmax = 30∆q = 30ka/ℓ, which means

that in real space we only have information up to about π/qmax = N∆xS/60 ≈ 8.5

pixels. For the 75%, 85%, and 65% assumed overlap cases presented in Fig. 3.12,

Fig. 3.13, and Fig. 3.14, the typical error of a reconstructed scan position with

respect to the true scan position ranges between ∆rtypical ≈ 5 to 15. That we are

able to recover scan positions at a resolution better than 8.5 pixels is due to the

averaging of many independent reconstructions, and is likely serendipitous.

3.4.4 Scan position errors and diffraction limited imaging

The next question we address is whether or not the ability to achieve diffrac-

tion limited spatial resolution and a quantitative index of refraction has been re-

stored by iteratively solving for unknown scan positions as in the previous sections.

Figure 3.15 shows reconstructions for 65% assumed overlap and using the “good”
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Figure 3.15: Reconstructions for Tj(r) and p(r), 65% assumed overlap, “good”
signal to noise, ±40

√
2 pixel maximum scan position errors. The white line though

the reconstructions refers to the lineouts shown in Fig. 3.16. (a-b) The true Tj(r)
and p(r), assuming the phases of the noise degraded diffraction intensities are
perfectly known. (c-d) Reconstructions for Tj(r) and p(r) using the scan positions
from Fig. 3.11a. (e-f) Reconstructions for Tj(r) and p(r) using the true scan
locations. (g-h) Reconstructions for Tj(r) and p(r) using the scan positions from
Fig. 3.11b.
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Figure 3.16: (a,b,e,f) Lineouts of the reconstructions along the white lines in
Fig 3.17b. (a,b) are line outs for Tj(r) while (e,f) are line outs for p(r). In all frames,
the red dashed curve is the lineout for the reconstruction using the recovered scan
locations Fig. 3.8b, the black curve is for the reconstruction assuming the scan
locations were perfectly known, and the green curve is for the true Tj(r). (c,d,g,h)
The red curve is the difference between the red dashed curve and the green curve
in frames (a,b,e,f), while the black curve is the difference between the black curve
and the green curve in frame (a,b,e,f). (a) Lineout of |Tj(r)|. (b) Lineout of the
phase of Tj(r). (c) Difference between line outs in frame (a). In both cases, the
error between the reconstructions and the true |Tj(r)| is less than ≈ 0.1. (d)
Difference between line outs in frame (b). In both cases, the error between the
reconstructions and the true phase of Tj(r) is less than ≈ 0.5.
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signal to noise diffraction. In Fig. 3.15a-b we have the the true Tj(r) and p(r),

generated by using the true phases with the diffraction intensity and also without

missing diffraction intensity due to the beam stop. In Fig. 3.15c-d a reconstruction

is shown for the scan position configuration shown in Fig. 3.11a, in Fig. 3.15e-f a

reconstruction is shown assuming that the scan positions are known without any

error, and in Fig. 3.15g-h a reconstruction is shown using the iteratively solved for

scan positions shown in Fig. 3.11b.

Since we know the true Tj(r) and p(r), we can compare the results shown

in Fig. 3.15e-h to this, and this is done in Fig. 3.16. Here, a line out is taken along

the white lines shown in Fig. 3.15a-b. In Fig. 3.16a and 3.16b, the magnitudes and

phases of the reconstructed Tj(r) are shown respectively; also in Fig. 3.16e and

3.16f, the magnitudes and phases of the reconstructed p(r) are shown respectively.

In all of these, reconstructions when the scan positions are assumed known are

shown as the black curves, using the iteratively solved for scan positions are shown

as the dashed red curves, and the true Tj(r) magnitudes are shown as the green

curves. In Fig. 3.16c, Fig. 3.16d, Fig. 3.16g, and Fig. 3.16h, the red curves are

the difference between reconstructions using the iteratively solved for scan loca-

tions and the true Tj(r) or p(r) and the black curves are the difference between

reconstructions when the scan locations are assumed known and the true Tj(r) or

p(r).

All of this is also done for the 75% and 85% assumed overlaps in Fig. 3.17,

Fig. 3.18, Fig. 3.19, and Fig. 3.20. We readily see that the reconstructions using the

solved for scan locations and reconstructions using assumed known scan locations

are essentially identical and that both have similar error bounds in all cases. The

source of error here stems from the fact that the ptychographic diffraction data has

Poisson noise associated with it, and that errors in Fourier space mean errors in

real space. Also, we do not have complete diffraction measurements: the missing

data can cause numerical artifacts due to unconstrained modes in the missing

data region [41]. In order to get quantitative results for the reconstructions, we

must effectively determine the proper scaling in this missing data region; this is

done using a method given in [40]. The effects of Poisson noise and unconstrained
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Figure 3.17: Reconstructions for Tj(r) and p(r), 75% assumed overlap, “good”
signal to noise, ±60

√
2 pixel maximum scan position errors. The white line though

the reconstructions refers to the lineouts shown in Fig. 3.18. (a-b) The true Tj(r)
and p(r), assuming the phases of the noise degraded diffraction intensities are per-
fectly known. (c-d) Reconstructions for Tj(r) and p(r) using the scan positions
from Fig. 3.8a. (e-f) Reconstructions for Tj(r) and p(r) using the true scan lo-
cations. (g-h) Reconstructions for Tj(r) and p(r) using the scan positions from
Fig. 3.8b.
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Figure 3.18: (a,b,e,f) Lineouts of the reconstructions along the white lines in
Fig 3.17b. (a,b) are line outs for Tj(r) while (e,f) are line outs for p(r). In all frames,
the red dashed curve is the lineout for the reconstruction using the recovered scan
locations Fig. 3.8b, the black curve is for the reconstruction assuming the scan
locations were perfectly known, and the green curve is for the true Tj(r). (c,d,g,h)
The red curve is the difference between the red dashed curve and the green curve
in frames (a,b,e,f), while the black curve is the difference between the black curve
and the green curve in frame (a,b,e,f). (a) Lineout of |Tj(r)|. (b) Lineout of the
phase of Tj(r). (c) Difference between line outs in frame (a). In both cases, the
error between the reconstructions and the true |Tj(r)| is less than ≈ 0.1. (d)
Difference between line outs in frame (b). In both cases, the error between the
reconstructions and the true phase of Tj(r) is less than ≈ 0.5.
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Figure 3.19: Reconstructions for Tj(r) and p(r), 85% assumed overlap, “good”
signal to noise, ±90

√
2 pixel maximum scan position errors. The white line though

the reconstructions refers to the lineouts shown in Fig. 3.20. (a-b) The true Tj(r)
and p(r), assuming the phases of the noise degraded diffraction intensities are
perfectly known. (c-d) Reconstructions for Tj(r) and p(r) using the scan positions
from Fig. 3.10a. (e-f) Reconstructions for Tj(r) and p(r) using the true scan
locations. (g-h) Reconstructions for Tj(r) and p(r) using the scan positions from
Fig. 3.10b.
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Figure 3.20: (a,b,e,f) Lineouts of the reconstructions along the white lines in
Fig 3.17b. (a,b) are line outs for Tj(r) while (e,f) are line outs for p(r). In all frames,
the red dashed curve is the lineout for the reconstruction using the recovered scan
locations Fig. 3.8b, the black curve is for the reconstruction assuming the scan
locations were perfectly known, and the green curve is for the true Tj(r). (c,d,g,h)
The red curve is the difference between the red dashed curve and the green curve
in frames (a,b,e,f), while the black curve is the difference between the black curve
and the green curve in frame (a,b,e,f). (a) Lineout of |Tj(r)|. (b) Lineout of the
phase of Tj(r). (c) Difference between line outs in frame (a). In both cases, the
error between the reconstructions and the true |Tj(r)| is less than ≈ 0.1. (d)
Difference between line outs in frame (b). In both cases, the error between the
reconstructions and the true phase of Tj(r) is less than ≈ 0.5.
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Figure 3.21: Reconstructions for Tj(r) and p(r), 65% assumed overlap, “poor”
signal to noise, ±20

√
2 pixel maximum scan position errors. The white line though

the reconstructions refers to the lineouts shown in Fig. 3.22. (a-b) The true Tj(r)
and p(r), assuming the phases of the noise degraded diffraction intensities are
perfectly known. (c-d) Reconstructions for Tj(r) and p(r) using the scan positions
from Fig. 3.14a. (e-f) Reconstructions for Tj(r) and p(r) using the true scan
locations. (g-h) Reconstructions for Tj(r) and p(r) using the scan positions from
Fig. 3.14b.
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Figure 3.22: (a,b,e,f) Lineouts of the reconstructions along the white lines in
Fig 3.17b. (a,b) are line outs for Tj(r) while (e,f) are line outs for p(r). In all frames,
the red dashed curve is the lineout for the reconstruction using the recovered scan
locations Fig. 3.8b, the black curve is for the reconstruction assuming the scan
locations were perfectly known, and the green curve is for the true Tj(r). (c,d,g,h)
The red curve is the difference between the red dashed curve and the green curve
in frames (a,b,e,f), while the black curve is the difference between the black curve
and the green curve in frame (a,b,e,f). (a) Lineout of |Tj(r)|. (b) Lineout of the
phase of Tj(r). (c) Difference between line outs in frame (a). In both cases, the
error between the reconstructions and the true |Tj(r)| is less than ≈ 0.1. (d)
Difference between line outs in frame (b). In both cases, the error between the
reconstructions and the true phase of Tj(r) is less than ≈ 0.5.
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Figure 3.23: Reconstructions for Tj(r) and p(r), 75% assumed overlap, “poor”
signal to noise, ±40

√
2 pixel maximum scan position errors. The white line though

the reconstructions refers to the lineouts shown in Fig. 3.24. (a-b) The true Tj(r)
and p(r), assuming the phases of the noise degraded diffraction intensities are
perfectly known. (c-d) Reconstructions for Tj(r) and p(r) using the scan positions
from Fig. 3.12a. (e-f) Reconstructions for Tj(r) and p(r) using the true scan
locations. (g-h) Reconstructions for Tj(r) and p(r) using the scan positions from
Fig. 3.12b.
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Figure 3.24: (a,b,e,f) Lineouts of the reconstructions along the white lines in
Fig 3.17b. (a,b) are line outs for Tj(r) while (e,f) are line outs for p(r). In all frames,
the red dashed curve is the lineout for the reconstruction using the recovered scan
locations Fig. 3.8b, the black curve is for the reconstruction assuming the scan
locations were perfectly known, and the green curve is for the true Tj(r). (c,d,g,h)
The red curve is the difference between the red dashed curve and the green curve
in frames (a,b,e,f), while the black curve is the difference between the black curve
and the green curve in frame (a,b,e,f). (a) Lineout of |Tj(r)|. (b) Lineout of the
phase of Tj(r). (c) Difference between line outs in frame (a). In both cases, the
error between the reconstructions and the true |Tj(r)| is less than ≈ 0.1. (d)
Difference between line outs in frame (b). In both cases, the error between the
reconstructions and the true phase of Tj(r) is less than ≈ 0.5.
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Figure 3.25: Reconstructions for Tj(r) and p(r), 85% assumed overlap, “poor”
signal to noise, ±60

√
2 pixel maximum scan position errors. The white line though

the reconstructions refers to the lineouts shown in Fig. 3.26. (a-b) The true Tj(r)
and p(r), assuming the phases of the noise degraded diffraction intensities are
perfectly known. (c-d) Reconstructions for Tj(r) and p(r) using the scan positions
from Fig. 3.13a. (e-f) Reconstructions for Tj(r) and p(r) using the true scan
locations. (g-h) Reconstructions for Tj(r) and p(r) using the scan positions from
Fig. 3.13b.
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Figure 3.26: (a, b, e, f) Lineouts of the reconstructions along the white lines
in Fig 3.17b. (a, b) are line outs for Tj(r) while (e, f) are line outs for p(r).
In all frames, the red dashed curve is the lineout for the reconstruction using
the recovered scan locations Fig. 3.8b, the black curve is for the reconstruction
assuming the scan locations were perfectly known, and the green curve is for the
true Tj(r). (c, d, g, h) The red curve is the difference between the red dashed curve
and the green curve in frames (a, b, e, f), while the black curve is the difference
between the black curve and the green curve in frame (a, b, e, f). (a) Lineout of
|Tj(r)|. (b) Lineout of the phase of Tj(r). (c) Difference between line outs in frame
(a). In both cases, the error between the reconstructions and the true |Tj(r)| is
less than ≈ 0.1. (d) Difference between line outs in frame (b). In both cases, the
error between the reconstructions and the true phase of Tj(r) is less than ≈ 0.5.
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modes in the missing data region are even more pronounced when looking at the

reconstructions using the “poor” signal to noise diffraction. Figure 3.21 shows

reconstructions for 65% assumed overlap and using this “poor” signal to noise

diffraction. Here, the reconstructions using the solved for and the assumed known

scan locations are still very close to each other, but when compared to the true

Tj(r) or p(r) as in Fig. 3.22, the relative error is greatly increased. The reason

for this is clear: more information is lost behind the beam stop and the effect of

Poisson noise is much greater, and as a result the algorithms used to numerically

invert the diffraction are less effective; the Fourier space constraints contains much

less information and the proper scaling of the missing data region is that much

less effective. We see similar goings on with the 75% and 85% assumed overlap in

Fig. 3.23, Fig. 3.24, Fig. 3.25 and Fig. 3.26.

We next examine the PRTF’s of the reconstructions for both signal to noise

cases; these are shown in Fig. 3.27-3.32. In these, the blue curves are the PRTF’s

when using the scan positions after only one application of the iterative scan po-

sition correction procedure in section 3.4.2 (corresponding to the top frames in

Fig. 3.8 and Fig. 3.10-3.14), the dotted red curves are the PRTF’s when using an

average of 20 application of the iterative scan position correction procedure (cor-

responding to the bottom frames in Fig. 3.8 and Fig. 3.10-3.14), and the green

curves are the PRTF’s when assuming the scan positions are known. In these, we

see that the dashed red PRTF curves are very close to the green PRTF curves, the

difference between the two is shown in the bottom frame in Fig. 3.27-3.32. For the

“good” signal to noise diffraction, the PRTF spatial frequency cutoff of 0.5 occurs

at the same spatial frequency for all reconstructions, at about 125 ka/λ, and for the

“poor” signal to noise diffraction, at about 40 ka/λ for all reconstructions. For all

of these, the difference between the dashed red and the green PRTF curves is less

than ∼ 5 %, indicating that we have restored our ability to get spatial resolution

which is diffraction limited.

In summary, we have explored how reconstruction quality degrades with

uncertainties in the ptychographic constraint of known scan positions, positions

of which cause the illumination function p(r) to overlap with neighboring regions
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Figure 3.27: PRTFs of reconstructions when using 65% assumed overlap, “good”
signal to noise, and with ±40

√
2 pixel maximum scan position errors. (a) The

blue curve corresponds to the PRTF for the reconstruction in Fig. 3.15c-d, which
in turn corresponds to using the recovered scan positions from Fig. 3.11a. The
dashed red curve corresponds to the PRTF for the reconstruction in Fig. 3.15g-h,
which in turn corresponds to using the recovered scan positions from Fig. 3.11b.
The green curve corresponds to reconstructions for which the scan locations were
assumed perfectly known. (b) The difference between the dashed red PRTF curve
and the solid green PRTF curve; the percent error is less than 2.5 %.
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Figure 3.28: PRTFs of reconstructions when using 75% assumed overlap, “good”
signal to noise, and with ±60

√
2 pixel maximum scan position errors. (a) The

blue curve corresponds to the PRTF for the reconstruction in Fig. 3.17c-d, which
in turn corresponds to using the recovered scan positions from Fig. 3.8a. The
dashed red curve corresponds to the PRTF for the reconstruction in Fig. 3.17g-h,
which in turn corresponds to using the recovered scan positions from Fig. 3.8b.
The green curve corresponds to reconstructions for which the scan locations were
assumed perfectly known. (b) The difference between the dashed red PRTF curve
and the solid green PRTF curve; the percent error is less than 2.0 %.
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Figure 3.29: PRTFs of reconstructions when using 85% assumed overlap, “good”
signal to noise, and with ±90

√
2 pixel maximum scan position errors. (a) The

blue curve corresponds to the PRTF for the reconstruction in Fig. 3.19c-d, which
in turn corresponds to using the recovered scan positions from Fig. 3.10a. The
dashed red curve corresponds to the PRTF for the reconstruction in Fig. 3.19g-h,
which in turn corresponds to using the recovered scan positions from Fig. 3.10b.
The green curve corresponds to reconstructions for which the scan locations were
assumed perfectly known. (b) The difference between the dashed red PRTF curve
and the solid green PRTF curve; the percent error is less than 5.0 %.
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Figure 3.30: PRTFs of reconstructions when using 65% assumed overlap, “poor”
signal to noise, and with ±20

√
2 pixel maximum scan position errors. (a) The

blue curve corresponds to the PRTF for the reconstruction in Fig. 3.21c-d, which
in turn corresponds to using the recovered scan positions from Fig. 3.14a. The
dashed red curve corresponds to the PRTF for the reconstruction in Fig. 3.21g-h,
which in turn corresponds to using the recovered scan positions from Fig. 3.14b.
The green curve corresponds to reconstructions for which the scan locations were
assumed perfectly known. (b) The difference between the dashed red PRTF curve
and the solid green PRTF curve; the percent error is less than 1.5 %.
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Figure 3.31: PRTFs of reconstructions when using 75% assumed overlap, “poor”
signal to noise, and with ±40

√
2 pixel maximum scan position errors. (a) The

blue curve corresponds to the PRTF for the reconstruction in Fig. 3.23c-d, which
in turn corresponds to using the recovered scan positions from Fig. 3.12a. The
dashed red curve corresponds to the PRTF for the reconstruction in Fig. 3.23g-h,
which in turn corresponds to using the recovered scan positions from Fig. 3.12b.
The green curve corresponds to reconstructions for which the scan locations were
assumed perfectly known. (b) The difference between the dashed red PRTF curve
and the solid green PRTF curve; the percent error is less than 1.0 %.
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Figure 3.32: PRTFs of reconstructions when using 85% assumed overlap, “poor”
signal to noise, and with ±60

√
2 pixel maximum scan position errors. (a) The

blue curve corresponds to the PRTF for the reconstruction in Fig. 3.25c-d, which
in turn corresponds to using the recovered scan positions from Fig. 3.13a. The
dashed red curve corresponds to the PRTF for the reconstruction in Fig. 3.25g-h,
which in turn corresponds to using the recovered scan positions from Fig. 3.13b.
The green curve corresponds to reconstructions for which the scan locations were
assumed perfectly known. (b) The difference between the dashed red PRTF curve
and the solid green PRTF curve; the percent error is less than 2.0 %.
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which are illuminated. A computationally simple method for correcting large er-

rors in this scan position constraint is presented, which is easily integrated into

existing algorithms used to numerically invert a ptychographic diffraction data

set. Depending on how tightly “clustered” a scanned region on the sample is and

the signal to noise of the diffraction, errors of up to ∼ 45 % of the diameter of

the illumination function p(r) can be nearly perfectly recovered upon performing

many independent runs of the iterative scan position refinement procedure and

averaging the results. In this way, we have an effective method for achieve diffrac-

tion limited imaging even in experiments where vibration and sample drift can

seriously degrade the spatial resolution and quantitative index of refraction of the

reconstructions.

Chapter 3, in part, is a preprint of material being prepared for submission

for publication: A. Tripathi, I. McNulty, O. G. Shpyrko, “Ptychographic overlap

constraint errors and diffraction limited imaging”. Ashish Tripathi is the primary

investigator and author of this paper.



Chapter 4

X-ray interaction with magnetism

Experimentally, the type of samples this thesis will deal with are known

as magnetic multilayers. What follows in the next few sections will be: magnetic

multilayers will be introduced and physics of the multilayers will be explored.

Next, the formalism for x-ray scattering from the magnetic moments comprising

the multilayer will be laid out. In doing this, we will first cover classical x-ray

electron charge scattering and derive an expression for the index of refraction we

encountered in Eq 1.15. Next, the index of refraction for a quantum mechanical

modeling of the interactions of x-rays with electron charge structure and magnetic

moment structure will be introduced, and techniques for modeling x-ray diffraction

from the multilayers will be explored.

4.1 Magnetic multilayers

Magnetic multilayers are engineered nanostructures which can display ex-

otic magnetic domain configurations, phase separation, and reaction-diffusion be-

havior. They are made by depositing alternating layers of different types of mag-

netic elements, as seen in Fig. 4.1a. The magnetic domains in these samples arise

from an ordering of atomic magnetic moments; the interactions between magnetic

moments which cause this ordering are discussed here. The most important mag-

netic elements are the 3d and 4f elements. Some 4f elements are gadolinium (Gd),

terbium (Tb) and holmium (Ho); these are known as rare earth (RE) elements.

94
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Figure 4.1: Magnetic multilayers. They are engineered nanostructures which can
display exotic magnetic domain configurations, phase separation, and reaction-
diffusion behavior

Some important 3d magnetic elements are iron (Fe), cobalt (Co), and nickel (Ni);

these are known as the transition metals (TM). In RE-TM thin films (GdFe will

be the type of film studied in this thesis) the magnetic domain structure splits into

two ferromagnetic phases, one pointing up and the other pointing down as seen in

Fig. 4.1. The interfaces between these oppositely aligned domains are known as

Bloch domain walls; this is where the local magnetization direction changes from

one alignment to the other. These films display what is known as perpendicular

magnetic anisotropy (PMA) which means that the magnetization directions of the

moments tend to align perpendicular to the surface of the film. The magnetic prop-

erties of these films can be changed by modifying their thickness, stoichiometry,

and number of individual layers.

Domain formation in these types of films can be understood by the compe-

tition of various interactions in a Hamiltonian given by [42]:

H =

∫ {
A(∇m̂)2 +Ku(1−m2

z)− µ0Hd ·M− µ0Hext ·M
}
d3r, (4.1)

where A is known as the exchange stiffness constant (a temperature dependent ma-

terial parameter), m̂ is the magnetization unit vector that points in the direction of
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the local magnetization M, Ku is the uniaxial anisotropy constant which describes

the strength of the perpendicular magnetic anisotropy and is dependent on sample

growth parameters, mz is the component of m̂ in the direction perpendicular to

the film surface, µ0 is the vacuum magnetic permeability, Hd is the stray magnetic

field as a result of the Bloch walls, andHext is used to denote any external magnetic

field present. Equation 4.1 models the energy of an infinitely extended defect-free

film, and assumes that any magnetostriction or external strain is negligible. The

A(∇m̂)2 term is known as the exchange interaction, and has the effect of aligning

the magnetic moments in one direction (any direction). The exchange interaction

term A(∇m̂)2 is inversely proportional to the nearest-neighbor distance of atoms.

The exchange energy can be seen as an energy cost due to the deviation of the

zero exchange energy state, i.e. a state of uniform magnetization (a single ferro-

magnetic domain). Typically the direction of the uniform magnetization doesn’t

affect this exchange energy term. The Ku(1 −m2
z) term is known as the uniaxial

anisotropy interaction and attempts to force the magnetic moments to point along

the perpendicular direction. The Ku(1 − m2
z) term reflects the fact that atoms

in an anisotropic surrounding can result in a preferred magnetization direction

and any moments not aligned in this direction can result in an anisotropy energy

penalty. While the exchange interaction tries to align the magnetic moments in the

material to any uniform direction, the anisotropy interaction tries to align them in

a preferred magnetization direction known as the “easy” axis (or direction). The

µ0Hext · M term is known as the the stray field interaction, or alternatively the

shape anisotropy interaction, and describes the energetic penalty of magnetic stray

fields Hd outside a magnetized object. It favors in plane magnetization and has

the effect of breaking up a uniform magnetization state into magnetic domains.

The shape anisotropy interaction is dependent on the shape of the sample and

is important in thin magnetic films due to a large area of free magnetic poles at

surfaces. In the limit of an infinite thin film which is uniformly magnetized in the

direction normal to the film surface, we have Hd = −M and the shape anisotropy

energy density has a maximum value of Kd = µ0M
2/2, which is known as the

stray field energy constant. To reduce this energetically unfavorable situation, the
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magnetization direction breaks up into magnetic domains at the energetic cost of

the formation of domain walls. This has the net effect of reducing M and thus

the shape anisotropy energy. Lastly, µ0Hext ·M terms in the Zeeman interaction

which tries to align the magnetic moments along the direction of the external field.

Magnetic multilayers are interesting materials from a technological stand

point; they are integral parts of next-generation magnetic data storage and spin-

tronic technologies [43, 44]. They allow the realization of unique micromagnetic,

magneto-optic, and magneto-electronic phenomena that cannot be achieved using

conventional materials. In the realm of magnetic data storage, the orientation of

the domain will act in the role of a magnetic bit (1 or 0). These magnetic bits can

be coded as domains in a continuous storage layer, for example small regions where

the magnetic moments are pointing in either one of two directions. In current hard

drive technology, the domains are “written” by a device which applies a local mag-

netic field generated by an electrical current pulse through a coil. Reading of the

domains is accomplished by measuring the electrical conductivity through a tiny

sensing device consisting of a layered structure of various materials. Crucially, one

of these layers in the reading device displays giant magnetoresistant properties.

Giant magnetoresistance is the phenomenon in which conductivity is extremely

dependent on the local magnetic field generated by the magnetic domain in which

the reading device is currently looking at. In this scheme, changes in the magnetic

domain direction of the storage layer causes a change in conductivity of the “read

head” sensor which is interpreted as a 1, while if the domain is unchanging over a

defined bit length size, it is interpreted as a 0. For this type of technology, mag-

netic multilayers offer a very tunable range of systems with which to explore giant

magnetoresistance physics [45].

Magnetic multilayers also exhibit self organizing, reaction-diffusion, and

pattern forming behavior not fully understood. Some partial differential equations

with which these materials can be qualitatively modeled by are known as the

Swift-Hohenberg equation [46]:

∂u(x, y, t)

∂t
= ru(x, y, t)− (1 +∇2)2u(x, y, t) +N(u(x, y, t)) (4.2)
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a

b

Figure 4.2: Reaction-diffusion and phase separation behavior of the Swift-
Hohenberg (top) and Cahn-Hilliard equations (bottom).

and the Cahn-Hilliard equation [47]:

∂u(x, y, t)

∂t
= D∇2

[
u(x, y, t)3 − u(x, y, t)− γ∇2u(x, y, t)

]
(4.3)

where u = u(x, y, t) is a scalar function which describes an order parameter which

undergoes phase separation, r is a real valued bifurcation parameter, N(u) is some

smooth nonlinearity function, D is a diffusion coefficient, and
√
γ determines the

width of the transition regions between oppositely aligned domains. The Swift-

Hohenberg equation models more closely a relatively defect (or impurity) free mag-

netic multilayer while the Cahn-Hilliard more closely models a magnetic multilayer

with impurities, e.g. a GdFe layer with Tb doping. A numerical solution of Eq. 4.2

for u(x, y, t) as a function of t is shown in Fig. 4.2a while a numerical solution of

Eq. 4.3 for u(x, y, t) as a function of t is shown in Fig. 4.2b.

4.2 Resonant x-ray scattering

A good classical model for x-rays traveling through a material is the x-

ray electric field polarization interacting with bound electrons [48]. An atom is

modeled as a massive, positively charged (with charge +Ne) nucleus surrounded
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Figure 4.3: Schematic illustration of an electron “bound” to a nucleus via a
spring (with restoring and dissipative forces), and being driven by an external
electromagnetic field.

by N low mass, negatively charged electrons. When an external electromagnetic

wave (i.e. the incident x-rays) Ei = x̂E0e
−iωt pass through this atom, as shown in

Fig. 4.3, the bound electrons will begin to move under the influence of the x-ray

polarization field, and begin oscillate, driven by the imposed electromagnetic field,

but also damped by the nuclear restoring force. An electrons response to the x-ray

polarization field depends on both the electrons resonant frequency ωr and the

frequency of the incident x-rays, denoted by ω. In this model, Newtons second law

reads:
d2x

dt2
+ γ

dx

dt
+ ω2

rx = − e

me

(Ei + v ×Bi) , (4.4)

whereme is the mass of electron, e is the electron charge, x is the displacement, and

γ is the damping ratio. The first term in Eq. 4.4 is the acceleration contribution,

the second term is the dissipative force term which accounts for energy loss, and the

third term is caused by the restoring force for an oscillator of resonant frequency ωr.

The term on the right side is the Lorentz force imposed by the external field. As

the oscillation is driven by the incident electromagnetic field, the displacement x,

velocity v = dx/dt, and acceleration d2x/dt2 all have the same time dependence

e−iωt as the incident field, along with possible constant phase offsets. For non-

relativistic oscillation velocities v , the v×Bi term is negligible. In that case, Eq.
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4.4 can be simplified to

ω2x+ iωγx− ω2
rx =

e

me

Ei, (4.5)

and so the oscillation of the electron is

x = x̂
e

me

1

ω2 − ω2
r + ωγ

E0e
−iωt. (4.6)

Going from a single electron to a bulk material with electron number density ρ (N

electrons in a volume V ), and comprised of molecules with fi electrons with reso-

nant frequency ωj and damping γj, we next approximate the material polarization

density as

P(t) = ϵ0χE(t) = (ϵ− ϵ0)E(t), (4.7)

where χ = (ϵ/ϵ0−1) is the complex electric susceptibility, and when theN electrons

are displaced by x(t), we have P (t) = −x(t)Ne/V , or

P (t)

E(t)
= (ϵ− ϵ0) =

e2ρ

me

∑
j

fj
ω2 − ω2

rj + ωγj
. (4.8)

An expression for the index of refraction n = ϵ/ϵ0 can now be found, where the

relative permeability µ/µ0 is assumed unity:

n =

[
1− e2ρ

ϵ0me

∑
j

fj
ω2 − ω2

rj + iωγj

]1/2
, (4.9)

In the x-ray region, ω2 ≫ e2ρ/ϵ0me, so we can expand Eq. 4.9 as

n = 1− e2ρ

2ϵ0me

∑
j

fj
ω2 − ω2

rj + iωγj
. (4.10)

This is generally written as

n = 1− δ + iβ = 1− e2ρ

2ϵ0me

(f1 − if2) , (4.11)

with

f1 =
∑
j

fj(ω
2 − ω2

rj)

(ω2 − ω2
rj)

2 + (ωγj)2
, (4.12)

and

f2 =
∑
j

fjγjω

(ω2 − ω2
rj)

2 + (ωγj)2
. (4.13)
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Figure 4.4: The real and imaginary parts of the dispersion correction to the index
of refraction given by Eq. 4.10 as a function of ω/ωr. Here, γ = 0.1 ωr and only
one oscillator is assumed.

The f1 − if2 term above is known as the “dispersion” correction to the refractive

index. It is known as this because away from resonances at ωj, the index of

refraction generally increases with increasing ω. In other words, interaction with

electrons in a material become weaker as x-ray energy increases. This can be seen

by looking at when ω ≫ ωj ≫ γi

n = 1− e2ρ

2ϵ0meω2

∑
i

fi = 1− e2ρ

2ϵ0meω2
Z = 1− 2πρre

k2
Z, (4.14)

where re = e2/4πϵ0mc
2 is the Thompson scattering length, k = ω/c is the vacuum

wavenumber, and Z is the number of electrons in the molecules which comprise

the material. Clearly, as ω → ∞, n → 1, i.e. the x-ray electron interactions

gets weaker. However, when in the vicinity of the resonances at ωj, we begin to

see features such as that shown in Fig. 4.4, which can increase the interactions

of x-rays with bound electrons by factors with order of magnitude of 10 to 100,

depending on the element (i.e. Z).
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4.3 Resonant x-ray magnetic scattering

In this section the formalism for x-ray and magnetic moment interactions is

explored. A quantum mechanical description of the interaction of light with matter

is the non-relativistic approximation of the Dirac equation [49]. The Hamiltonian

used for this description describes an atomic electron in a quantized electromag-

netic field and is given by:

H =

kinetic energy︷ ︸︸ ︷
1

2m

(
p− e

c
A
)2

+ V0(r)︸ ︷︷ ︸
potential energy

−

Zeeman interaction︷ ︸︸ ︷
eℏ
2mc

s · ∇ ×A

= − eℏ
2(mc)2

s · E×
(
p− e

c
A
)

︸ ︷︷ ︸
spin-orbit interaction

+
∑
kσ

ℏωkc
†(kσ)c(kσ)︸ ︷︷ ︸

free radiation field

, (4.15)

where p is the electron momentum operator, A is the vector potential, s is the elec-

tron spin angular momentum, E is the electric field of the atom, and c† and c are

photon annihilation and creation operators. From this Hamiltonian, a scattering

amplitude can be derived [50, 51] which we will use in this chapter to find ex-

pressions for the differential scattering cross section. These in turn will be used to

understand experimentally measured diffraction intensities encountered in Chapter

5.

4.3.1 Magnetic scattering amplitude

The previous section introduced the classical theory x-ray interaction with

electrons “bound” to a nucleus by a very tiny “spring” to derive the index of

refraction. This formalism is adequate for a wide range of problems, but when

looking at physics which is quantum mechanical in nature (e.g. electron spin),

quantum theory must be used to model the x-ray interaction with matter. The

theory of x-ray polarization interactions with magnetically ordered material was

first described in [52, 53, 54, 55, 56]. In these, relativistic quantum effects were

included in the elastic scattering cross section which predicted that interaction be-

tween photon polarization and magnetic moment ordering in a material can have

a strong resonant increase. When a polarized electromagnetic field propagates
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Figure 4.5: Cartoon of an electron in a 4f material (here Gd3+) undergoing
resonant elastic scattering at the M5 absorption edge. Incoming x-rays with po-
larization ê trigger virtual dipole transitions of a 3d electron to an empty 4f state
above the Fermi level. The electron then instantly de-excites back to the initial
state and an x-ray with the same energy but possibly different polarization ê′ and
propagation direction k′.

through a material, the electrons bound to a nucleus begin to oscillate in an elec-

tric multipole transition. If the electrons in the atom have a magnetic moment

and spin-orbit splitting, then angular momentum of the incident photons interacts

with the spin and orbital angular momentum of the electrons. The spin-orbit effect

is necessary because the photon polarization (i.e. angular momentum) state inter-

acts directly with electron orbital angular momentum; it only indirectly interacts

with electron spin via the orbital angular momentum. Conservation of energy and

angular momentum must be enforced, and so only certain selection rules of the

electric multipole transition are allowed. This leads to electronic ground to va-

lence excitation probabilities which are dependent on photon angular momentum

states and electron spin and orbital angular momentum states; a cartoon of these

transitions is shown in Fig. 4.5.

When the incident photons have angular momentum (i.e. are right or left

circularly polarized), and they interact with an atom with a magnetic moment
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Figure 4.6: (a) Example of absorption differences when illuminating a magnetic
sample which exhibits XMCD behavior. Depending on the orientation of mz(r)
(for example mz(r) = +1 for the black domains in frame (b) while mz(r) = −1 for
the white domains), we can have two different absorption values, due to different
electron excitation selection rules will be dependent on whether the incident pho-
ton and valence state angular momenta are parallel or antiparallel. The XMCD
spectrum is defined as the difference between the spectra for RCP and LCP light.
Adapted from [57]. (b) A simulated sample with XMCD contrast for RCP incident
light. (c) A simulated sample with XMCD contrast for LCP incident light. Notice
that it is the inverse of that for RCP light.
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(orbital and/or spin), photon angular momentum will be completely transferred

to any excited electrons. Assuming that the x-ray energy is sufficient to excite

this electron to a valence state, and if the valence state has a preferred spin/orbit

angular momentum state (dependent on the shape of the Fermi surface of the

material), photon-electron excitation selection rules will be dependent on whether

the photon and valence state angular momenta are parallel or antiparallel. This

is origin of the XMCD effect, and explains why there are different absorption

spectra for right or left circularly polarized radiation. In Fig. 4.6a, a typical XMCD

absorption spectra is shown. Also, in Fig. 4.6b, a simulated sample with XMCD

contrast for RCP incident light is shown, while in Fig. 4.6c, a simulated sample

with XMCD contrast for LCP incident light. Notice that it is the inverse of that

for RCP light.

Another possibility when x-rays scatter from a magnetic sample is if the

incident photons have zero angular momentum (i.e. are linearly polarized). The

excited electrons must have the same total (spin + orbital) angular momentum

state as the ground state, and the electric multiplet selection rules give a transi-

tion probability that is maximum when the electron total angular momentum is

parallel or antiparallel to the photon angular momentum, and is minimum when

perpendicular. This is the origin of the XMLD effect.

The analytical result [52, 53, 54, 55, 56] for the scattering amplitude for po-

larized photons resonantly interacting with a magnetically ordered material, which

incorporates resonant charge scattering and both XMCD and XMLD scattering is

given by

f res = F (0)(ω)ê′ · ê c(r)− iF (1)(ω)(ê′ × ê) · m̂(r)

+ F (2)(ω)(ê′ · m̂(r))(ê · m̂(r)), (4.16)

where ê and ê′ are polarization unit vectors of the incident and transmitted

radiation respectively, m̂(r) is the magnetization direction (and is a unit vec-

tor), as shown by the blue and red arrows in Fig. 4.1, and c(r) is the resonant

charge contrast function. The F (0,1,2) are complex (dispersive and absorbtive) res-

onant scattering strengths (in units of re, the Thompson scattering length), with

F (0)(ω) describing any resonant charge scattering, F (1)(ω) describing the strength
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Figure 4.7: Calculated optical constants for Gd. Adapted from [58].

of XMCD and F (2)(ω) describing the strength of XMLD. Calculated values of these

for Gadolinium are shown in Fig. 4.7.

4.3.2 Stokes vectors and Poincaré representation

In order to analytically and numerically work with Eq. 4.16, some prelimi-

nary mathematical “machinery” must be introduced. We first start by defining the

polarization ellipse, Stokes parameters and the Poincare representation for the po-

larization of light. Consider the experimental geometries in Fig 4.8; Fig 4.8a shows

a diffraction experiment in the “transmission” geometry while Fig 4.8b shows a

“reflection” geometry. Defining a plane for which both k and k′ exist in (the light

greenish planes in Fig 4.8a-b), we next express the incident electric field polariza-

tion as components parallel êπ and perpendicular êσ to this plane. The outgoing

electric field polarizations ê′π and ê′σ are defined similarly.

The polarization ellipse relates the components of the electric field polar-
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Figure 4.8: (a) A transmission geometry scattering experiment. An x-ray plane
wave is incident perpendicular to a sample, interacts with the sample, and exits
at some angle θ′. (b) A reflection geometry scattering experiment. An x-ray plane
wave is incident at some angle θ to a sample, interacts with the sample, and reflects
at some angle θ′. The light blue planes in both (a) and (b) are defined as the plane
that is perpendicular to the cross product of the k and k′ vectors. The êσ and ê′σ
vectors are perpenicular to this plane while the êπ and ê′π vectors are parallel. (c)
The polarization ellipse. (d) The Poincaré sphere.
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ization to each other:

Eσ(z, t)
2

E2
0σ

+
Eπ(z, t)

2

E2
0π

+
Eσ(z, t)Eπ(z, t)

E0σE0π

cosδ = sin2δ (4.17)

where δ = δπ − δσ is the phase difference between the Eπ(z, t) and Eσ(z, t) com-

ponents. Furthermore we have:

tan2ψ =
2E0σE0π

E2
0σ − E2

0π

cosδ, (4.18)

where ψ is defined as the rotation angle with 0 ≤ ψ ≤ π and

sin2χ =
2E0σE0π

E2
0σ + E2

0π

sinδ, (4.19)

where χ is defined as the flatness angle with −π/4 ≤ ψ ≤ π/4. This polarization

ellipse is shown in Fig 4.8c. From these, we next introduce the Poincaré sphere

in Fig 4.8d. The Poincaré sphere defines four parameters to describe all possible

polarization states. These parameters can be determined by using the intensity

difference between degenerate polarization states:

P0 ≡ I0/I0 = 1

P1 ≡ (I+45LP − I−45LP )/I0

P2 ≡ (IRCP − ILCP )/I0

P3 ≡ (ILHP − ILV P )/I0,

(4.20)

where I0 is the initial incident intensity, I+45LP is the intensity which has +45◦

linear polarization, I−45LP is the intensity which has −45◦ linear polarization,

IRHC is the intensity which has righthanded circular polarization, ILHC is the

intensity which has lefthanded circular polarization, ILHP is the intensity which

has linear horizontal polarization, and ILV P is the intensity which has linear vertical

polarization. From Fig 4.8d, we can write that:

P0 = 1

P1 = p sin2ψ cos2χ

P2 = p sin2χ

P3 = p cos2ψ cos2χ,

(4.21)
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where p is the degree of polarization (0 ≤ p ≤ 1). The parameters p, 2ψ and

2χ are the spherical coordinates of the Poincaré sphere. Now, we can define all

polarization states:

LHP (or σ light) = (P1, P2, P3) = (0, 0, 1)

LVP (or π light) = (0, 0,−1)

RCP = (0, 1, 0)

LCP = (0,−1, 0)

+45LP = (1, 0, 0)

−45LP = (−1, 0, 0)

Unpolarized = (0, 0, 0),

(4.22)

where P1, P2, and P3 are known as the Stokes parameters.

4.3.3 Polarization density matrix

Next, the mathematical tools to work with Eq. 4.16 and the polarization

states described by the Stokes parameters are developed. For a pure state (such

as degenerate polarization states), there exists a state function |ψ⟩ such that it

completely determines the statistical behavior of the measurement. In other words,

if M̂ is the associated observable operator, its expectation value is ⟨ψ|M̂|ψ⟩. For

mixed states (like partially polarized states), there is no state function ξ to satisfy

its expectation value ⟨ξ|M̂|ξ⟩. However there is a unique Hermitian operator (or

density matrix) µ such that its expectation value ⟨µ|M̂|µ⟩ = tr(µM̂) and its general

formulation is:

µ =
∑
j

pj|ψj⟩⟨ψj|, (4.23)

where each of the pure states |ψj⟩ occur with probability pj. Next, consider the

Pauli spin matrices:

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
. (4.24)

As each Pauli matrix represents an observable operator for spin 1/2 particles in

three spatial dimensions, we can describe statistically all polarization states in
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terms of its measured quantity or its expectation values. Let the expectation

values be P1, P2, and P3. We can express a 2 × 2 polarization density matrix µ in

terms of these parameters. Remember that µ is Hermitian and that tr(µI) = 1 by

definition (where I is the identity matrix) since
∑

j pj = 1. Thus µ should be of

the form:

µ =

(
a x+ iy

x− iy 1− a

)
, (4.25)

where a, x, y are all real, and should satisfy Pi = tr(µσi). From this we can

conclude that:

µ =
1

2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)
=

1

2
(I+ P1σ1 + P2σ2 + P3σ3) . (4.26)

Next, define the state vectors of polarized a photon to be the Jones vectors. The

state vectors for LHP (or σ light) and LVP (or π light) are:

|ψσ⟩ =

(
1

0

)
|ψπ⟩ =

(
0

1

)
, (4.27)

the state vectors for +45LP and −45LP are:

|ψ+45LP ⟩ =
1√
2

(
1

1

)
|ψ−45LP ⟩ =

1√
2

(
1

−1

)
, (4.28)

and the state vectors for RCP and LCP are:

|ψRCP ⟩ =
1√
2

(
1

i

)
|ψLCP ⟩ =

1√
2

(
1

−i

)
. (4.29)

As the probability that a photon has any given polarization state |ψ⟩ is ⟨ψ|µ|ψ⟩,
we find that the probability to find LHP state is:

⟨ψσ|µ|ψσ⟩ =
1

2

(
1 0

)( 1 + P3 P1 − iP2

P1 + iP2 1− P3

)(
1

0

)
=

1

2
(1 + P3), (4.30)

while for the LVP state:

⟨ψπ|µ|ψπ⟩ =
1

2

(
0 1

)( 1 + P3 P1 − iP2

P1 + iP2 1− P3

)(
0

1

)
=

1

2
(1− P3), (4.31)
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from which we can see that P3 describes the linear polarization along êσ and êπ, i.e.

P3 = 1 means LHP state and P3 = −1 means LVP state. Similarly, P2 describes

the mean value of the circular state (P2 = 1 means RCP state and P2 = −1 means

LCP state), and P1 describes the mean value of the ±45LP state (P1 = 1 means

+45LP state and P2 = −1 means −45LP state). So we identify the Pi as the

Stokes parameters from the previous section.

4.3.4 Polarization density matrix properties

According to quantum mechanics, there is a scattering operator for an ob-

servable (scattering event). Let M̂ be this scattering matrix (or operator). Then

the scattering cross section can be calculated by

dσ

dΩ
= tr(µM̂M̂†) = tr(M̂µM̂†), (4.32)

where † is the Hermitian adjoint. In words: for a polarized beam with density

matrix µ, the expectation value of the square of the scattering amplitude is given

by Eq. 4.32. If we define a new density matrix µ′ = tr(M̂µM̂†) for the scattered

beam, we can calculate the polarization of the scattered beam. However, µ′ should

be normalized first, or tr(µ′) = 1. Therefore, the new density matrix for the

scattered beam will be:

µ′ =
M̂µM̂†

dσ/dΩ
, (4.33)

and the polarization vector for the scattered beam will be

P ′
i = tr(µ′σi), (4.34)

where σi are the Pauli matrices.

4.3.5 X-ray magnetic scattering

In this thesis only the “transmission” geometry in Fig. 4.8a will be dealt

with, and so we start by first assuming the polarization unit vectors ê and ê′ in

Eq. 4.16 are written in terms of the basis vectors êσ, êπ, ê
′
σ, and ê′π as seen in
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Fig. 4.8a. Writing ê and ê′ in this way means that there are only four possible

scattering “channels” given by(
σ → σ′ π → σ′

σ → π′ π → π′

)
, (4.35)

and so we can write the ê′ · ê, (ê′ × ê) · m̂ and (ê′ · m̂)(ê · m̂) in Eq. 4.16 as [55]:

ê′ · ê =

(
ê′σ · êσ ê′σ · êπ
ê′π · êσ ê′π · êπ

)
=

(
1 0

0 k̂′ · k̂

)
, (4.36)

(ê′ × ê) · m̂ =

(
ê′σ × êσ ê′σ × êπ

ê′π × êσ ê′π × êπ

)
· m̂ =

(
0 k̂

−k̂′ k̂′ × k̂

)
· m̂, (4.37)

and

(ê′ · m̂)(ê · m̂) =

(
(êσ · m̂)2 (ê′σ · m̂)(êπ · m̂)

(ê′π · m̂)(êσ · m̂) (ê′π · m̂)(êπ · m̂)

)
. (4.38)

From the geometry in Fig. 4.8a, assuming that k̂ = ẑ and ϕ is the azimuthal angle

in the x-y plane, we can identify that

êπ = cosϕ x̂+ sinϕ ŷ

êσ = sinϕ x̂− cosϕ ŷ

k̂′ = sinθ′cosϕ x̂+ sinθ′sinϕ ŷ + cosθ′ ẑ

ê′π = cosθ′cosϕ x̂+ cosθ′sinϕ ŷ − sinθ′ ẑ

ê′σ = êσ.

(4.39)

Using these, and making a further assumption that ϕ ≈ 0, we write Eq. 4.38,

Eq. 4.37, and Eq. 4.36 as:

(ê′ · m̂)(ê · m̂) ≈

(
m2
y −mxmy

−mxmy cosθ′ +mzmysinθ
′ m2

xcosθ
′ −mzmxsinθ

′

)
, (4.40)

(ê′ × ê) · m̂ ≈

(
0 mz

−mzcosθ
′ −mxsinθ

′ −mysinθ
′

)
, (4.41)
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and

ê′ · ê ≈

(
1 0

0 cosθ′

)
, (4.42)

where m̂ = mxx̂ +myŷ +mzẑ. Lastly, the small angle scattering approximation

as in Section 1.2.5 is assumed (i.e. θ′ ≈ 0), so finally we can write:

(ê′ · m̂)(ê · m̂) ≈

(
m2
y −mxmy

−mxmy m2
x

)
, (4.43)

(ê′ × ê) · m̂ ≈

(
0 mz

−mz 0

)
, (4.44)

and

ê′ · ê ≈

(
1 0

0 1

)
. (4.45)

With these, we now write Eq. 4.16 as:

f res = F (0)(ω)c(r)

(
1 0

0 1

)
− iF (1)(ω)mz(r)

(
0 1

−1 0

)

+ F (2)(ω)

(
my(r)

2 −mx(r)my(r)

−mx(r)my(r) mx(r)
2

)
. (4.46)

4.3.6 Differential scattering cross-section

We now have enough mathematical “machinery” to do some calculations

with the scattering amplitude given by Eq. 4.46. We start by computing the differ-

ential scattering cross sections using Eq. 4.32. We make one further approximation

in that the last term, the XMLD term, in Eq. 4.46 is assumed negligible compared

to the first two terms. This is justified on the basis that the domain walls, which

is “in plane” (i.e. has only x and y components) magnetization, and so undergoes

XMLD scattering, are usually a small fraction of the size of the domains proper

[59, 60, 61, 62]. Hence we would expect that XMCD and resonant charge scattering

would overwhelm XMLD scattering. So, calculating the differential cross section
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for linearly polarized light (P3 = ±1) and for RCP (P2 = +1) and LCP (P2 = −1),

and with the scattering matrix defined as M̂ = f res, for circularly polarized light,

we have that: (
dσ

dΩ

)
P2=±1

= |F (0)(ω)c̃(q)± F (1)(ω)m̃z(q)|2

= |F (0)(ω)c̃(q))|2 + |F (1)(ω)m̃z(q))|2

± 2Re
{
F (0)(ω)F (1)∗(ω)c̃(q)m̃∗

z(q)
}
, (4.47)

while for linearly polarized light, the differential scattering cross-section is given

by: (
dσ

dΩ

)
P3=±1

= |F (0)(ω)c̃(q)|2 + |F (1)(ω)m̃z(q)|2, (4.48)

where c̃(q) = F [c(r)], m̃z(q) = F [mz(r)], and F means propagation from the

sample plane to the detector plane. In the case of linearly polarized light, by

ignoring the XMLD term the dependence of the sign of P3 is removed; i.e. only

scattering from in plane magnetizationmx(r) andmy(r) has any dependence on P3.

These expressions can be related to the diffraction intensity by using the relation:

I

I0
= |F [T (r)]|2 =

∣∣∣∣F [exp(ik ∫ D

0

(n− 1)dz

)]∣∣∣∣2 ∝ dσ

dΩ
, (4.49)

where I0 is the incident intensity, T (r) is the sample transmission function, n is

the polarization dependent index of refraction, D is the sample thickness as seen

along the beam propagation direction (i.e. k̂), and the projection approximation

given by Eq. 1.18 is assumed. Examples of what diffraction from a sample with

XMCD contrast would look like is shown in Fig. 4.9. If we wish to make an equality

relation between the diffraction intensity and the differential cross section, we can

use:
I

I0
= ϱ∆Ω

dσ

dΩ
, (4.50)

where ϱ is the areal atomic number density as seen along the beam propagation

direction, and ∆Ω is some solid angle which the detector subtends. We should

note also that when comparing Eq. 4.47 and Eq. 4.48 that they differ by the term

given by:

±2Re
{
F (0)(ω)F (1)∗(ω)c̃(q)m̃∗

z(q)
}
, (4.51)
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Figure 4.9: Diffraction intensities for RCP and LCP incident light. (a) Example
diffraction intensity for RCP incident light using Eq. 4.47 with P2 = +1. (b)
Example diffraction intensity for LCP incident light using Eq. 4.47 with P2 = −1.
(c) A lineout of the diffraction patterns along the dotted white line in (a). The
blue curve corresponds to RCP and the dashed red curve LCP. This illustrates
that while at a distance they look very similar, the diffraction patterns actually
are quite different from one another, and in fact are different by the interference
term given in Eq. 4.51.
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known as the “interference term” due to the product of c̃(q) and m̃∗
z(q) [63, 64],

and interference here means that the diffracted wavefield due to charge scatter-

ing coherently interferes with the diffracted wavefield due to XMCD scattering.

This interference between charge and magnetic scattering is only present when the

incident radiation is circularly polarized; it does not occur when it is linearly po-

larized. The reason for this is that a linearly polarized electric field can be thought

of as a sum of RCP and LCP electric fields (e.g. see the Jones vectors given in

Eq. 4.27 and Eq. 4.29), and since the interference terms for RCP and LCP are

equal but opposite in sign, they cancel leaving only the incoherent sum of charge

and magnetic scattering given by Eq. 4.48. Indeed, we have that:

Ilin =
1

2
(IP2=+1 + IP2=−1) ∝

(
dσ

dΩ

)
P2=+1

+

(
dσ

dΩ

)
P2=−1

. (4.52)

4.3.7 Polarization dependent index of refraction

Having an expression for the polarization dependent index of refraction

could also be useful. In the case when the incident radiation is circularly po-

larized (P2 = ±1) and the experiment is in the forward scattering transmis-

sion geometry (i.e with θ′ ≈ 0), it can be shown [63] that the scattered radi-

ation from a sample with primarily out-of-plane magnetization (i.e. dropping

the XMLD term in Eq. 4.16) will still be purely circularly polarized (i.e. P ′
i =

tr(µ′σi) is still (P
′
1, P

′
2, P

′
3) = (0,±1, 0)); this can be confirmed by evaluating Eq.

4.33 and Eq. 4.34. In this case, we can write the index of refraction as [65, 66]:

n± = 1− 2πρre
k2

f± = 1− 2πρre
k2

(
f 0 + F (0)(ω)c(r)± F (1)(ω)mz(r)

)
, (4.53)

where n+ refers to the refractive index for RCP incident x-rays, n− refers to

the refractive index for LCP incident x-rays, ρ is the atomic number density (N

particles in a volume V ), re is the Thompson scattering length, k = 2π/λ is

the wave number in vacuum, and f 0 is the nonresonant Thompson charge scat-

tering amplitude, which is the electron density with relativistic corrections (i.e.

f 0(r) = Z(r) − (Z(r)/82.5)2.37), where Z(r) is the number of electrons as a func-

tion of r. With this, and assuming that the sample has approximately uniform
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thickness (i.e. n is independent of z) we find that the sample exit wavefield (using

the projection approximation again) is:

ψ±(r, z = D) ≈ ψ0 exp

(
ik

∫ D

0

(n± − 1)dz

)
≈ ψ0 e

ikD(n±−1)

≈ ψ0 (1 + ikD(n± − 1))

= ψ0 − ψ0
2πiDρre

k

(
f 0 + F (0)(ω)c(r)± F (1)(ω)mz(r)

)
= ψNR − ψ0

2πiDρre
k

(
F (0)(ω)c(r)± F (1)(ω)mz(r)

)
. (4.54)

The first term ψNR = ψ0 (1− 2πiDρref
0/k) on the last line in Eq. 4.54 is the

wavefield due to nonresonant charge scattering, and when on electronic resonances

is overwhelmed by the resonant charge and magnetic scattering. Thus, we can

drop this term and from here on assume we are on an electronic resonance. With

this assumption, the wavefield in the far field is given by:

ψ̃±(q) = F
[
ψ0

2πDρre
ik

(
F (0)(ω)c(r)± F (1)(ω)mz(r)

)]
, (4.55)

and the diffraction intensity would be:

I± = ψ̃±(q)ψ̃±(q)
∗

= I0

(
2πDρre

k

)2 (
|F (0)(ω)c̃(q)|2 + |F (1)(ω)m̃z(q)|2

± 2Re
{
F (0)(ω)F (1)(ω)∗c̃(q)m̃z(q)

∗}) , (4.56)

where we define I0 = ψ2
0 as the intensity of the incident wavefield propagated to

the detector. Compare this with Eq. 4.47; we see that we again have the same

thing other than the I0(2πDρre/k)
2 prefactor.

Determining the index of refraction for linearly polarized light is more prob-

lematic; the problem we have here is that due to the incoherent sum of charge

scattering diffraction intensity and magnetic scattering diffraction intensity given

by Eq. 4.48, there is no phase relationship between charge and magnetic scatter-

ing. One type of scattering can be considered a source of “alien” signal for the

other type of scattering because of this. For example, assuming the RCP case in
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Eq. 4.55, and assuming we had a Wonderland detector which can also measure the

phase of a wavefield, we would measure√
I+(q)e

ϕ+ = F
[
ψ0e

ikD(−1+n+)
]
, (4.57)

while for the linearly polarized case it would be something like√
Ilin(q)exp[ϕlin] =

exp[ϕlin]

2

√
|F [ψ0eikD(−1+n+)]|2 + |F [ψ0eikD(−1+n−)]|2

?
= F {ψ0 exp [ikD(−1 + nlin)]} . (4.58)

We would be left with trying to interpret what this “quasi-sample” is exactly,

which mixes the magnetic scattering signal and charge scattering signal is a very

unclear fashion. One might näıvely try to simply sum the ψ̃+(q) and ψ̃−(q) wave-

fields at the detector, but notice that the XMCD term goes away by doing this,

meaning that we would have no magnetic scattering, something which contradicts

theory (i.e. Eq. 4.48) and experiments [64]. The problem we have here is that the

polarization state of the sample exit wave is not the same as the incident wavefield

polarization; the sample exit wave has gained an elliptical component as well as

still having a linear component, and is known as Faraday rotation [67, 68, 69]. The

helicity of this rotation is dependent on the sign of mz(r) (and so is dependent on

r as well). This is why we are unable to simply sum the scalar wavefields for ψ+(r)

and ψ−(r). By doing this we ignore exit wave electric field polarization state, which

is dependent on r; to be able to sum exit wavefields, we would need the ψ+(r) and

ψ−(r) to include polarization information, i.e. make them vector wavefields (this

information drops out when we compute intensities, and so can directly add the

intensities for left and right circularly polarized light). Neverthless, if we know

certain things about the sample, for example if the charge structure of the sample

is independent of both r and z (as is the case usually for homogeneous thin films),

then it is possible to subtract off the resonant charge scattering term in Eq. 4.48,

leaving only the magnetic scattering part of the diffraction intensity:

IM,P3=±1 = I0

(
2πDρre

k

)2
(
��������:0
|F (0)(ω)c̃(q)|2 + |F (1)(ω)m̃z(q)|2

)
. (4.59)
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Now we only have diffraction intensity from magnetic contrast, and so making

sense of the wavefield at the detector is now easy. Using the Wonderland detec-

tor mentioned previously (it can measure the phase of a wavefield in addition to

modulus), what we would “measure” in this case would be:

ψ̃M,P3=±1(q) = ψ0

(
2πDρre
ik

)
F (1)(ω)m̃z(q). (4.60)

What a diffraction intensity pattern given by Eq. 4.59 might look like in practice

is shown in Fig. 4.10; in Fig. 4.10a, a diffraction pattern Ilin is calculated assum-

ing a linearly polarized incident wavefield using the diffraction patterns seen in

Fig. 4.9b-c, and Eq. 4.52. In Fig. 4.10b, the diffraction pattern assuming a spa-

tially homogeneous charge configuration shown. It is simply a scaled (attenuated)

version of what we would see by taking the sample out of the beam, or alter-

natively introducing an external magnetic field and fully saturating the sample

magnetically, so that mz(r) goes away. We can use this, plus knowledge of the

sample thickness to determine the resonant attenuation scaling factor, to subtract

off the resonant charge scattering diffraction to get what is shown in Fig. 4.10c.

This diffraction pattern now contains only magnetic scattering intensity. Lastly,

in Fig. 4.10d, we see what the interference term looks like; this expression is given

in Eq. 4.51. It is this interference term which is subtracted out when we sum the

diffraction intensities for RCP and LCP to obtain the diffraction pattern seen in

Fig. 4.10a.
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Figure 4.10: Subtraction of known charge diffraction intensity to isolate mag-
netic diffraction intensity. All frames have the same scale bar seen in frame (b).
In (a), a simulated diffraction pattern assuming a linearly polarized incident wave-
field; this pattern is proportional to the scattering cross-section given in Eq. 4.48.
In (b), the diffraction pattern assuming a spatially homogeneous charge config-
uration (i.e. c(r) is assumed to actually have no r dependence). It is simply a
scaled version of what we would see by taking the sample out of the beam, or al-
ternatively introducing an external magnetic field and fully saturating the sample
magnetically (so that mz(r) goes away). In (c), we have the result of using the
diffraction pattern in (b) to subtract from the diffraction pattern in (a), leaving
only magnetic scattering, as in Eq. 4.59. In (d), we have the difference between
the diffraction patterns for RCP and LCP incident wavefields; this is proportional
to the interference between charge and magnetic scattering from Eq. 4.51, and it is
this interference term which has been subtracted out when we sum the diffraction
intensities for RCP and LCP to obtain the diffraction pattern seen in frame (a).



Chapter 5

Dichroic Coherent Diffrative

Imaging

This chapter puts into practice everything we have gone over in previous

four chapters. We now know theoretically how to numerically invert a diffraction

pattern and how to interpret what exactly we are attempting to reconstruct when

illuminating a magnetic multilayer with a linearly polarized x-ray beam. This

chapter experimentally confirms this theory. Here we present a novel approach to

lensless imaging of an extended magnetic nanostructure, in which a scanned series

of dichroic coherent diffraction patterns is experimentally recorded and numerically

inverted to map its magnetic domain configuration. Unlike holographic methods,

it does not require a reference wave or precision optics. In addition, it enables the

imaging of samples with arbitrarily large spatial dimensions, at a spatial resolution

limited solely by the coherent x-ray flux, wavelength, and stability of the sample

with respect to the beam. It can readily be extended to non-magnetic systems that

exhibit circular or linear dichroism. We demonstrate this approach by imaging fer-

romagnetic “maze” in a GdFe multilayer with perpendicular anisotropy and follow

the evolution of the domain structure through part of its magnetization hysteresis

loop. This approach is scalable to imaging with diffraction-limited resolution, a

prospect rapidly becoming a reality in view of the new generation of phenomenally

brilliant x-ray sources.
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5.1 Introduction

Materials such as magnetic multilayers and alloys, polymers, liquid crystals,

biofibers and biominerals all exhibit self organizing, reaction-diffusion, and pattern

forming behavior not fully understood. New schemes for directed domain formation

in magnetic multilayers and alloys are integral parts of next-generation magnetic

data storage and spintronic technologies [43, 44]. Controlled phase transitions and

ordering dynamics in polymers and liquid crystals under applied electric fields, with

consequent photonic bandgap shifts, play a major role in organic laser technology

[70]. In the biological sciences, certain biofibers display tensile properties similar

to that of steel yet are far more lightweight, properties thought to be the result

of self-organized phase separation of molecular crystalline and amorphous regions

within the fibers [71, 72]. Deeper understanding of biomineral growth and the

interaction between inorganic material and organic macromolecule phases could

enable use of similar techniques to fabricate novel synthetic materials.

Microscopy using dichroism as a contrast mechanism can reveal much about

phase ordering, separation, and coexistence in these kinds of systems. All of these

materials have an order parameter that scatters light differently depending on the

direction or helicity of the photon polarization. Polarized x-rays are an ideal choice

of probe for imaging buried magnetic structure due to strong resonant enhance-

ment of the scattering at electronic transitions split by the spin-orbit effect. Since

x-ray beams are unaffected by magnetic or electric fields, they are also well suited

to studying phase transitions as a function of applied fields. Established tech-

niques such as transmission x-ray microscopy and x-ray photoemission electron

microscopy as well as novel holographic methods have dramatically improved our

understanding of dichroic materials at the nanoscale [5, 73, 74, 75]. However, these

approaches require focusing optics or apertures that must be made to a precision

comparable to the desired spatial resolution. On the other hand, techniques such

as magnetic force and electron microscopy offer nanoscale imaging, but only near

surfaces and generally with weak external fields [76].

An alternative approach to nanoscale dichroic microscopy is resonant x-

ray coherent diffractive imaging (CDI), whereby the diffraction pattern formed by
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Figure 5.1: (a) Schematic of an x-ray scanning CDI measurement with a dichroic
sample. For the sample under investigation, the magnetization direction m̂(r) is
primarily parallel/antiparallel to the propagation vector k̂. When linearly polar-
ized synchrotron radiation with a polarization direction defined by ê is used to
illuminate the sample, contrast arises primarily from the x-ray magnetic circular
dichroism (XMCD) effect. Diffraction patterns are recorded in the far-field by an
x-ray area detector by scanning the sample, depicted as the overlapping white, blue
and red circles. (b) X-ray energy transmission scan across the Gd M5 edge, with
red circles marking the x-ray energy values for which diffraction patterns (c) and
(d) were collected. (c) Off-resonance diffraction pattern taken at an x-ray photon
energy of 1180 eV has no discernible magnetic scattering and contains only Airy
diffraction fringes from the circular pinhole. (d) On-resonance diffraction pattern
taken at 1189 eV exhibits a magnetic scattering ring arising from magnetic stripe
domains, in addition to the pinhole scattering. (e) Azimuthal average of diffraction
intensity showing higher order magnetic diffraction rings. The red line illustrates
a Q−4 power-law decay of the signal.
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scattering a coherent x-ray beam from a sample is inverted numerically to form

an image of the object [12]. In CDI, the spatial resolution is not limited by the

quality of the optical elements, but by the highest spatial frequencies measured in

the x-ray diffraction pattern. CDI can provide three-dimensional information by

sufficiently mapping the Ewald sphere [38, 77, 78], and offers elemental selectivity

near electronic resonances [79]. When combined with “ptychographic” methods,

regions of arbitrary large lateral dimensions can be imaged quantitatively with

a spatial resolution defined solely by the wavelength, coherent x-ray flux, and

scan precision and stability [13, 30, 31, 34, 80]. In CDI the phases of the scattered

amplitudes lost by recording the diffraction intensity are recovered computationally

by an iterative algorithm. For the algorithm to converge to a unique solution, there

must be sufficient constraints on the problem and the diffraction pattern must

be adequately sampled with respect to the spatial Nyquist frequency [6]. This

requirement, known as ”oversampling” [24] is necessary to regain phase information

in the complex-valued diffraction signal. The algorithm starts with a random

guess for the phase of the measured diffraction, then iterates between the sample

(real space) and the diffraction measurement (reciprocal space) using fast Fourier

transforms, refining the initial guess by enforcing constraints in both real and

reciprocal space at each step [7]. A solution is found when the initial guess is

refined to a degree such that it satisfies all the constraints.

Here we demonstrate that lensless resonant scanning CDI can be used to

image nanometer-scale ferrimagnetic domains in a multilayer GdFe film. In such

multilayer systems, alternating layers of a transition metal and a rare-earth or

noble metal are deposited to create an artificial ferrimagnet with perpendicular

magnetic anisotropy. The balance between exchange, anisotropy, and dipolar en-

ergies results in stripe domain patterns as first described by Kittel [81] and further

developed and studied experimentally by Kooy and Enz [82]. A schematic of this

system is shown in Fig. 5.1a. Perpendicular anisotropy magnetic films are exten-

sively studied to probe the physics of stripe-forming systems [83, 84], where local

pinning sites, external magnetic fields, and temperature can strongly affect the

domain structure. Interest in GdFe and related multilayer structures has grown
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recently with demonstrations of laser-induced femtosecond switching, leading to

the possibility of dramatically faster magnetic recording [85].

5.2 Dichroic diffraction pattern measurements

The present experiments take advantage of the brilliance, polarization, and

tunability of x-ray undulator radiation. The scattering resulting from polarized

photons interacting with the magnetic ordering is strongly enhanced at resonances

[52, 53]; Fig. 5.1b shows an transmission spectrum for the sample in the vicinity

of the Gd M5 edge. This spectrum is highly sensitive to the photon polarization

state and magnetic spin state of the Gd. For the GdFe multilayer studied here in

the small angle scattering geometry, as shown in Fig. 5.1a, the scattered signal is

maximal when the incident photon propagation k̂ is perpendicular to the sample

surface. Off resonance, at 1180 eV, the diffraction pattern is dominated by charge

scattering as well as the unscattered direct beam from the pinhole (see Fig. 5.1c).

The rectangular shadow in Figs. 5.1c and 5.1d is due to the beam stop used to

protect the CCD from the bright, unscattered beam. Since this sample appears

electronically homogeneous in projection, a diffraction pattern taken with the sam-

ple out of the x-ray beam, arising solely from the pinhole aperture, is identical to

Fig. 5.1c up to a known absorption scale factor. The same diffraction pattern was

obtained by saturating the magnetization by applying an out-of-plane magnetic

field and coercing the sample into a single domain state.

A coherent diffraction pattern taken on resonance at 1189 eV is shown in

Fig. 5.1d. The speckle ring at a wavevector of ≃ 0.01 nm−1 corresponds to spa-

tial features of π/0.01 nm−1 ≃ 300 nm. There are several additional higher-order

(odd) diffraction rings at wavevectors of ≃ 0.03 nm−1 and ≃ 0.05 nm−1, which can

be seen in the azimuthally averaged diffraction pattern shown in Fig. 5.1e. This

suggests that the magnetic domains are monodisperse with a characteristic domain

width of ≃ 300 nm. Beyond ≃ 0.06 nm−1, the diffraction signal is difficult to dis-

tinguish from the noise background of the measurement. This maximum value of

the momentum transfer over which the diffraction pattern can be sampled roughly
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defines the spatial resolution in our experiments, and corresponds to spatial infor-

mation down to π/0.06 nm−1 ≃ 50 nm. When using linearly polarized x-rays, the

charge scattering does not interfere with the magnetic scattering [64]. As a result

we can isolate the resonant magnetic scattering by straightforward subtraction of

the magnetically saturated diffraction intensities from those of the non-saturated

measurement, both taken on-resonance. This difference results in a diffraction pat-

tern that arises solely from magnetic contrast. The resulting magnetic diffraction

is used to reconstruct maps of the magnetic domain configuration; further details

are provided in the Materials and Methods section.

Starting from a magnetically saturated state (i.e. the entire sample is in

a single-domain ferrimagnetic state with the net magnetization parallel to the

applied field), the external field was reduced until magnetic diffraction becomes

visible; this occurs at about 44 mT as shown on the hysteresis curve in Fig. 5.2a.

A reconstruction of the ptychographic diffraction data at this point is shown in

Fig. 5.2c, while Fig. 5.2b shows the reconstructed x-ray wave incident on the sam-

ple. We then recorded a series of ptychographic measurements while reducing the

field near zero, with representative reconstructions at selected points on the hys-

teresis curve (Fig. 5.2a) shown in Figs. 5.2d-g. Figs. 5.2h-l show the reconstructions

of the Gd spin density at the same sample region as the field is increased towards

saturation (corresponding to points h through l in Fig. 5.2a). As the magnetic field

is decreased, the magnetic domain pattern undergoes classic evolution towards a

labyrinthine stripe pattern. This type of pattern is commonly found in a wide class

of uniaxially modulated condensed matter systems, including diblock copolymers,

liquid crystals, Langmuir monolayers, adsorbates at metallic surfaces, incommen-

surate structures, membranes, vesicles, and ferrofluids, as well as dewetting, phase

separation, dealloying and convection patterns [84, 87, 88]. The characteristic

length scale corresponding to the width of the stripe is generally defined by the

energetic balance between short- and long-range interactions. The ability to tune

the relative strength of these interactions and to control the degree of orientational

or translational order in many of these systems represents a pathway for driven or

guided self-assembly at nanoscale, a concept especially appealing in areas of soft
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Figure 5.2: (a) Hysteresis loop of the sample magnetization as a function of
magnetic field applied perpendicular to the film surface. (b) Reconstruction of
the x-ray beam that illuminated the sample. The phase of the reconstruction is
encoded as hue of the image, while the magnitude is encoded as brightness. The x-
ray flux incident on the sample is estimated to be 2.5 ·105photons/s ·µm2. (c-g) Gd
spin density reconstructions at indicated points on the magnetic hysteresis curve
shown in (a) while decreasing the external field. Bright domains are anti-parallel to
the applied magnetic field. Phase is encoded as hue and magnitude is encoded as
brightness, as for the probe reconstruction. The color bar shows the areal magne-
tization in terms of the saturation value, Ms = 0.011 emu/cm2. Because only the
Gd is resonantly scattering, the reconstructions only show the evolution of the Gd
magnetic configuration. (h-l) Gd spin density reconstructions at indicated points
on the magnetic hysteresis curve shown in (a) while increasing the external field.
Note that near the top in (e) and towards the middle in (j) we observe that part
of the bright domain appears to move, suggesting the domain configuration had
not quite settled when the measurements began. Each reconstruction presented is
the average of ten reconstructions using random initial phase guesses. The small
variations visible in the images are artifacts caused by statistical noise due to the
low photon count at large Q and by unconstrained modes in the reconstruction
[86].
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matter and magnetism.

5.3 Magnetization configuration behavior

The magnetization behavior with field of the GdFe multilayer studied here

follows closely the classic theory of Kooy and Enz first developed in context of

BaFe12O9 [82] and subsequent modeling of periodic stripe domains in an infinite

plate. The sharp downturn in the magnetization with decreasing field (point c in

Fig. 5.2a) occurs when isolated domains become unstable. These domains seed

an avalanche of stripe domains that quickly fill the sample and a characteristic

domain periodicity rapidly develops across the sample (as reflected by the ring

in the magnetic scattering in Fig. 5.1d). The resulting morphology and ratio

of ”up” domains to ”down” domains depends on the dipolar interactions that

drive the domain formation, the field history, the density of nucleation sites, and

the interaction of the domain walls with quenched disorder (e.g. pinning centers

arising from local variations in the magnetic properties) in the sample. With

decreasing field, the average domain period decreases as domains fill the space

with the domain width remaining relatively constant. This indicates that domain

evolution in GdFe films is qualitatively different from that in Co/Pd multilayer

films where the domain period is relatively insensitive to field and only the relative

ratio of up and down domain widths changes with field [89, 90]. The current results

more closely follow the expectations of modeling [82] and suggest a relatively low

defect density. However, the two early forming vertical domains seen in Fig. 5.2c

appear more heavily pinned than other domains, retaining their position and shape

down to the lowest magnetic field. These early forming domains define a boundary,

dividing the imaged field of view into three distinct regions. Each region contains

self-connected domains, which remain separated during their evolution [91]. Close

comparison of Figs. 5.2e and 5.2f as well as Figs. 5.2g and 5.2h shows that the

final and initial stages of labyrinthine growth are dominated by the unbinding of

the disclination dipoles [83], resulting in formation of split-off Y-shaped branches

and “cul-de-sac” domain lines that are not present in domain patterns shown in
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Figs. 5.2c through 5.2d and Figs. 5.2i through 5.2k. The behavior for increasing

and decreasing field in this region, where the divergence of the periodicity is the

fundamental saturation mechanism, is nearly reversible.

5.4 Spatial resolution

To characterize the quality of the reconstructions in Fig. 5.2, we use the

concept of the Phase Retrieval Transfer Function (PRTF) [38]. The PRTF is de-

fined as the ratio of the reconstructed diffraction magnitude (the absolute value of

the Fourier transform of the reconstruction) to the measured diffraction magnitude

as a function of momentum transfer. The PRTF can be expressed as

PRTF(Q) =
|F{⟨Φ(r)p(r− rj)⟩}|√

Ij(Q)
, (5.1)

where Ij(Q) is the measured diffraction intensity at scan position rj, and ⟨ ⟩ de-

notes averaging over many independent reconstructions of Φ(r). For the PRTF

shown in Fig. 5.3a, the Q axis pixel size is πa/λz ≃ 0.089 µm−1, and annuli 3

pixels wide in both the numerator and denominator of Eq. 5.1 were integrated

from Q = 0 µm−1 to Q = 178 µm−1. The ratio of these two results is shown

in Fig. 5.3a. The PRTF provides a quantitative estimate of the range of spatial

frequencies over which the domain reconstructions can be trusted. Imperfections

of the diffraction measurements due to photon shot noise and missing diffraction

behind the beamstop, as well as imperfect real-space constraints, such as mechan-

ical stage errors when scanning the sample, contribute to numerical artifacts and

degradation of the reconstruction. A typical PRTF of the domain reconstructions

is shown in Fig. 5.3a. The dips in the PRTF arise because of low signal to noise

at spatial frequencies between the highly ordered magnetic scattering rings seen in

Figs. 5.1d and 5.1e. Using a PRTF cutoff value of 0.5 as described previously [38]

indicates that reconstruction is robust up to spatial frequencies of about 57 µm−1.

This corresponds to a spatial resolution of π/57 µm−1 ≃ 55 nm, in good agree-

ment with the estimate above based on the largest wavevector at which speckles

are still visible among the noise. We can arrive at another estimate of the spatial
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Figure 5.3: (a) The Phase Retrieval Transfer Function (PRTF) of a reconstruc-
tion. Defining a cutoff of 0.5 predicts a spatial resolution of π/57 µm−1 ≃ 55 nm
(b) Line cut (r) through two domains. The 10% to 90% edge response gives a
resolution of ≃ 80 nm. The point spread function of the imaging process blurs the
Bloch wall width of ≃ 30 nm, which accounts for the discrepancy.

resolution by taking a line scan across a reconstructed domain wall. As seen in

Fig. 5.3b, the 10% to 90% edge response provides a width of 77 nm (correspond-

ing to a standard deviation of 60 nm). The Bloch wall width for this system is

≃ 30 nm [59, 60, 61, 62]. Convolution of this domain wall width and a Gaussian

point spread function with standard deviation 0.5 · 55 nm would result in a blurred

Bloch wall with a width of 62 nm and 10% to 90% edge response of 80 nm, which

accounts for the results obtained here. During data acquisition the positions of

the magnetic speckles comprising the diffraction patterns did not move detectably

even at the largest wavevector values, indicating that sample vibration within the

illuminated region was negligible in our experiments. However, sample vibration

and positioning errors in scanning could become practical limitations of the CDI

approach at higher resolution.
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5.5 Materials and Methods

This section contains mostly details of the experiment carried out and dis-

cussed above. It goes into sample growth parameters for the GdFe multilayer

studied here, a discussion of how to properly interpret the measured diffraction

intensity assuming a linearly polarized incident x-ray beam, details of data collec-

tion and experimental geometry used, details of the numerical inversion process,

and how to extract quantitative information from the reconstructions.

5.5.1 Sample Preparation

The sample investigated here consisted of 116 layers of 0.41 nm of Fe and

0.45 nm of Gd, capped with 2 nm of Ta to prevent oxidation. The multilayer

was deposited on a 100 nm thick Si3N4 membrane at room temperature at an Ar

pressure of 3 mTorr with a deposition rate of 0.04 nm/s for Fe and 0.18 nm/s for

Gd.

5.5.2 X-ray Diffraction Intensity

The resonant elastic scattering amplitude for polarized photons interacting

with this dichroic sample is

f res = F (0)ê · ê′c(r)− iF (1)(ê× ê′) · m̂(r) (5.2)

+ F (2)(ê′ · m̂(r))(ê · m̂(r)),

where ê and ê′ are Jones vectors of the incident and scattered radiation respec-

tively, m̂(r) is the unit vector magnetization structure factor, as shown in Fig. 5.1a,

and c(r) is the resonant charge structure factor [52, 53]. The F (0,1,2) are complex

(dispersive and absorptive) resonant scattering strengths, with F (0) describing any

non-magnetic scattering, F (1) describing circular dichroic scattering and F (2) de-

scribing linear dichroic scattering. In our experiment (see Fig. 5.1a), the incident

radiation was linearly polarized and the resonant Fraunhofer diffraction intensity
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is given by

I ∝ |F (0)F{p(r)c(r)}|2 + |F (1)F [p(r)mz(r)]|2, (5.3)

where F denotes the spatial Fourier transform, p(r) is the x-ray probe (see Fig.

5.2b), and mz(r) describes magnetization direction parallel/antiparallel to the

propagation vector k̂. The scattering mechanism from the mx(r) and my(r) com-

ponents within Bloch walls is x-ray magnetic linear dichroism (XMLD), which is

many times weaker than the XMCD signal [66]. Also, the Bloch wall width is

a small fraction of the size of the ferrimagnetic domains, and so the scattering

contribution from this in-plane magnetization is negligible.

5.5.3 Data Collection

The experiments were conducted at the 2-ID-B coherent imaging beamline

at the Advanced Photon Source. The pinhole aperture used in Fig. 5.1a was 10 µm

in diameter and positioned 6.5 mm away from the sample. We scanned a 4 by 4

grid with 3 µm step sizes to give a total illuminated field of view of 19 µm by

19 µm. A CCD camera with 2048 x 2048 pixels (pixel dimension a2 = 13.5 µm

by 13.5 µm) was placed z = 455 mm downstream from the sample. This gave

a reconstructed square field of view of width L = λz/a = 35 µm for the array

sizes in the reconstructions and a pixel size of 35 µm/2048 = 17.1 nm, where the

wavelength λ = 1.04 nm at 1189 eV. As the illuminated region on the sample

has an area of A = π(5 µm)2, the sampling ratio is about L2/A ≃ 15.6. We

collected 40 exposures at each of the 16 illuminated regions on the sample, each

with an exposure time of 0.5 s, resulting in estimated flux per exposure of 2.5×105

photons / s ·µm2. The 40 exposures were summed at each scan position to form a

single diffraction pattern with improved counting statistics. Approximately 95 %

of the radiation is absorbed on resonance (see Fig. 5.1b), resulting in an estimated

radiation dose per exposure of 5.6 · 104 Gy.
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5.5.4 Numerical Inversion

We used the difference map algorithm [30, 31, 34] combined with the pty-

chographic steepest descent method [13] to reconstruct the Gd spin density and

x-ray probe. The square-root values of the integrated diffraction intensities at

each scan position were used as constraints in reciprocal space. Unmeasured pixels

behind the beam stop were left unconstrained. The known scan positions (with

70% probe overlap between adjacent positions) were used as constraints in real

space. In addition, because the dispersive part of the refractive index ideally van-

ishes on-resonance [66], the imaginary part of the reconstructed map (arising from

the real component of the refractive index) can be constrained to be small. We

therefore constrained the imaginary part of reconstructed density map between

±0.05i for the first few hundred iterations and then gradually relaxed it to ±0.5i

for subsequent iterations. We solved the Gd spin density and probe simultane-

ously as in [34] using a random set of initial phases for the sample and a set of

uniform amplitudes and phases over a circle of diameter 10 µm as the initial guess

for the probe. The diffracted intensity was highest when the average sample mag-

netization was close to zero and the number of magnetic domains was greatest.

At low applied fields the reconstruction of the Gd spin density and x-ray probe

converged in about 500 iterations of the difference map followed by 100 iterations

of the steepest descent method. When the sample was close to magnetic satura-

tion, using a previously reconstructed probe, about 800 iterations of the difference

map followed by 100 iterations of steepest descent were necessary to obtain a high

quality reconstruction.

5.5.5 Quantitative Gd Spin Density Maps

Quantitative maps of the Gd magnetization M(r) were obtained by scaling

the reconstructions by the calculated XMCD contrast - the dependence of f res on

the relative direction of the Gd spin magnetization and photon helicity - based on

the measured x-ray transmission. The x-ray intensity just exiting the sample can

be written as
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I± = I0 exp {−µ±D} (5.4)

where I0 is the intensity incident on the sample, D is the net thickness of the

Gd layers, ± represents the photon polarization helicity, and µ± is the polariza-

tion dependent extinction coefficient for a given out-of-plane magnetization. The

reconstructed amplitudes Φ(r) of the on-resonance diffraction patterns vary from

ΦC − ΦM to ΦC +ΦM , where ΦC and ΦM represent charge and magnetic scatter-

ing component amplitudes, respectively. The XMCD spectrum is defined as the

difference between µ+ and µ−, the difference in extinction coefficients between the

two out-of-plane magnetization directions for a given circular polarization:

µ+ − µ− =
1

D
ln
I+
I−

=
2

D
ln
ΦC + ΦM

ΦC − ΦM

(5.5)

The absolute value of the magnetization is directly related to this XMCD contrast

through the known magneto-optical constants of Gd [66]. From the reconstruc-

tions, ΦM/ΦC = 0.49, giving an XMCD atomic photoabsorption cross-section of

0.24 Å2, in good agreement with XMCD spectra measured with a fully saturated

Gd moment [66], corresponding to an areal magnetization ofMs = 0.011 emu/cm2.

Note that due to the use of linearly polarized light, a negative of any re-

constructed map of M(r), i.e. −M(r), would also satisfy the constraints. This

two-fold degeneracy in the solution is lifted upon application of a magnetic field,

since the Gd magnetization aligns in the direction of applied field. Measurements

at the Gd M edges provide us with an elemental distribution of the Gd magne-

tization. The measurements would have to be repeated at the Fe M edges to

obtain similar maps of the Fe magnetization. However, since Gd and Fe are known

to be antiferromagnetically coupled, the Fe magnetization map is expected to be

the negative of the Gd magnetization map, re-scaled by the ratio of the magnetic

moments and total layer thicknesses for the two elements.
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5.6 Conclusions

We have demonstrated x-ray microscopy of an extended disordered mag-

netic nanostructure using numerical inversion of a scanned series of resonant dichroic

coherent diffraction patterns. Like x-ray holography and transmission x-ray mi-

croscopy, this approach can be used to image magnetic domains at nanometer

resolution. In contrast to these techniques, the approach described here does not

require circularly polarized light for magnetic contrast nor nano-fabricated optics

or apertures to reach high spatial resolution. Indeed, it works equally well using

circularly or linearly polarized light, allowing this approach to be expanded to im-

age both magnetic and structural heterogeneity. As it replaces optical elements

with a “numerical” lens, in addition to greatly simplifying the experiment, the

spatial resolution is solely determined by the signal to noise at high spatial fre-

quencies recorded in the coherent diffraction measurements and by the precision

and stability with which the sample is scanned in the x-ray beam. It can be used

to image an arbitrarily large area of interest, and the sample under investigation

can be easily interchanged without the need for additional off-resonance calibration

measurements. The technique can be adapted for imaging a wide range of dichroic

materials. Study of order parameters on ultrafast time scales by this technique

would require working below radiation damage thresholds due to the probe over-

lap requirement of the reconstruction algorithm used here. Use of additional real

space constraints such as known material indices of refraction [92], compressed

sensing [93], and probes with phase curvature [17] may enable extension of this

approach to single-view dichroic imaging. While the measurements presented here

were performed at a third-generation synchrotron, this experimental technique will

benefit tremendously as the new generation of high brilliance x-ray sources that

produce beams with nearly full transverse coherence, including ultra low-emittance

synchrotrons [94], energy recovery linacs [95], and free electron lasers [96] become

available.

Chapter 5, in full, is a reprint of the material as it appears in A. Tripathi,

J. Mohanty, S. Dietze, O. G. Shpyrko, E. Shipton, E. Fullerton, S.S. Kim and I.

McNulty, “Dichroic Coherent Diffractive Imaging”, Proc. Natl. Acad. Sci. USA,
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108, 13393-8 (2011). Ashish Tripathi was the primary investigator and author of

this paper.
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[20] D. Mas, J. Pérez, C. Hernández, C. Vázquez, J.J. Miret, and C. Illueca,
Fast numerical calculation of Fresnel patterns in convergent systems, Opt.
Comm. 227, 245 (2003)

[21] M. Sypek, C. Prokopowicz, and M. Gorecki, Image multiplying and high-
frequency oscillations effects in the Fresnel region light propagation simula-
tion, Opt. Eng. 42, 3158 (2003)

[22] D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, Fast
algorithms for free-space diffraction patterns calculation, Opt. Comm. 164,
233 (1999)
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