UC Berkeley
UC Berkeley Previously Published Works

Title
Quantifying Human-Mediated Carbon Cycle Feedbacks

Permalink
https://escholarship.org/uc/item/4{26r669

Journal
Geophysical Research Letters, 45(20)

ISSN
0094-8276

Authors

Jones, Andrew D
Calvin, Katherine V
Shi, Xiaoying

Publication Date
2018-10-28

DOI
10.1029/2018gl079350

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4j26r666
https://escholarship.org/uc/item/4j26r666#author
https://escholarship.org
http://www.cdlib.org/

ADVANCING
EARTHAND
f\\,\l SPACE SCIENCE

| .

Geophysical Research Letters

RESEARCH LETTER

10.1029/2018GL079350

Key Points:

« Changes in atmospheric carbon and
climate drive changes in land
management that can be
characterized as carbon cycle
feedbacks

« Land management changes alter the
estimation of both the
concentration-carbon and
climate-carbon feedbacks

+ Quantifying human-mediated
carbon cycle feedbacks provides a
framework for diagnosing
cross-model uncertainty

Supporting Information:

« Supporting Information S1
« Table S1

- Table S2

« Table S3

- Table S4

« Table S5

« Table S6

« Table S7

- Table S8

Correspondence to:
A. D. Jones,
adjones@lbl.gov

Citation:

Jones, A. D, Calvin, K. V., Shi, X., Di
Vittorio, A. V., Bond-Lamberty, B.,
Thornton, P. E., & Collins, W. D. (2018).
Quantifying human-mediated carbon
cycle feedbacks. Geophysical Research
Letters, 45. https://doi.org/10.1029/
2018GL079350

Received 25 JUN 2018
Accepted 3 OCT 2018
Accepted article online 8 OCT 2018

Published 2018. This article is a U.S.
Government work and is in the public
domain in the USA.

Quantifying Human-Mediated Carbon Cycle Feedbacks

Andrew D. Jones’ (', Katherine V. Calvin®
Ben Bond-Lamberty? (2), Peter E. Thornton®

, Xiaoying Shi® (), Alan V. Di Vittorio® (),
, and William D. Collins'*

"Lawrence Berkeley National Laboratory, Berkeley, CA, USA, ?Pacific Northwest National Laboratory, College Park, MD, USA,
30ak Ridge National Laboratory, Oak Ridge, TN, USA, 4Department of Earth and Planetary Sciences, University of California,
Berkeley, CA, USA

Abstract Changes in land and ocean carbon storage in response to elevated atmospheric carbon dioxide
concentrations and associated climate change, known as the concentration-carbon and climate-carbon
feedbacks, are principal controls on the response of the climate system to anthropogenic greenhouse gas
emissions. Such feedbacks have typically been quantified in the context of natural ecosystems, but land
management activities are also responsive to future atmospheric carbon and climate changes. Here we show
that inclusion of such human-driven responses within an Earth system model shifts both the terrestrial
concentration-carbon and climate-carbon feedbacks toward increased carbon storage. We introduce a
conceptual framework for decomposing these changes into separate concentration-land cover, climate-land
cover, and land cover-carbon effects, providing a parsimonious means to diagnose sources of variation across
numerical models capable of estimating such feedbacks.

Plain Language Summary Estimating future changes to the Earth’s climate requires an
understanding of how carbon stored in vegetation and soils will respond to higher carbon dioxide in the
atmosphere and changes in climate such as warmer temperatures and changes in precipitation. For instance,
if plants and soils release more carbon, this will accelerate human-driven climate change, which is known as a
positive feedback. Because climate change and higher atmospheric carbon dioxide will affect crop and
forestry yields, we expect humans to alter their land management activities in the future, leading to greater or
lesser storage of carbon in soils and vegetation. Higher crop yields could lead to less crop area globally and
greater storage of carbon in forests and other natural vegetation. In this study, we introduce a method for
quantifying such human influences on carbon storage, combining a model of land management with a
model of atmospheric, land, and ecosystem processes. We find that both higher atmospheric carbon dioxide
and climate change tend to reduce the footprint of human agriculture and therefore increase carbon
storage on the land. Our method for quantifying such feedbacks provides a simple means to compare across
models and identify areas of agreement or disagreement.

1. Introduction

Changes in land and ocean carbon storage in response to elevated atmospheric carbon dioxide concentra-
tions and associated climate change, known as the concentration-carbon and climate-carbon feedbacks
respectively, are principal controls on the response of the climate system to anthropogenic greenhouse
gas emissions (Arora et al, 2013; Eby et al.,, 2013; Friedlingstein et al., 2003, 2006, 2014; Gregory et al.,
2009; Hewitt et al., 2016; Randerson et al., 2015; Sitch et al., 2008). Carbon cycle feedbacks are estimated to
be on the same order of magnitude as noncarbon climate feedbacks, yet their representation across numer-
ical models varies widely (Arora et al., 2013; Friedlingstein et al., 2006, 2014). Coordinated efforts to quantify
the concentration-carbon and climate-carbon feedbacks across models have typically done so using idea-
lized simulations that do not consider anthropogenic land use and land cover change (LULCC) or treat
LULCC as a static component of a net anthropogenic carbon dioxide emissions scenario (Gregory et al.,
2009). However, recent work using a coupled Earth system and integrated assessment model framework
demonstrates that LULCC responds dynamically to future biospheric change, which in turn alters future ter-
restrial carbon storage (Thornton et al., 2017).

A growing number of coupled model experiments have linked climate and Earth system models with models
of human energy and land use (Calvin & Bond-Lamberty, 2018; Monier et al., 2018; Thornton et al., 2017;
Voldoire et al., 2007), enabling quantitative examination of potential feedbacks and interactions among
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human and Earth system processes. Notably, Thornton et al. (2017) show that future changes in crop yields
and ecosystem productivity in response to climate and associated atmospheric carbon changes could lead to
a contraction of global crop area coupled with an expansion of forests and enhanced terrestrial carbon sto-
rage. This implies that the human LULCC response to biospheric change generates a negative climate
feedback.

The primary cause of this negative feedback was not quantified. However, several studies based on a variety of
models have found that accounting for the CO, fertilization effect can produce increases in yield projections in
various regions of the world (Deryng et al,, 2016; Rosenzweig et al., 2014; Verhage et al., 2017; Wing et al,
2015). This supports the hypothesis that the negative feedback found by Thornton et al. may be dominated
by a concentration-driven effect on plant productivity rather than a climate-driven effect. The Coupled
Climate-Carbon Cycle Model Intercomparison Project (C4MIP) framework for estimating carbon cycle feedback
parameters provides a useful means of identifying and quantifying key differences across numerical models
(Arora et al,, 2013; Friedlingstein et al., 2006; Jones et al,, 2016). To date, this framework has not been expanded
to separately quantify human-and nonhuman-driven components of these feedbacks. In this study, we extend
and apply this framework to test the hypothesis that human-driven carbon cycle feedbacks are driven by a
concentration-carbon feedback. In doing so, we provide a parsimonious means to diagnose sources of model
variation across numerical models capable of estimating such feedbacks.

2. Methods

We adapt the experimental paradigm of the C4MIP (Friedlingstein et al., 2006; Jones et al., 2016) for use with
the Integrated Earth System Model (iESM; Collins et al., 2015) employed by Thornton et al. (2017). The C4MIP
protocol calls for simulations that isolate the separate biogeochemical and radiative effects of atmospheric
CO,, on land and ocean carbon storage. These simulations are then used to estimate linear coefficients that
describe the magnitude of these effects, including f;, which quantifies the terrestrial CO, concentration-
carbon feedback in units of petagrams of carbon per parts per million of atmospheric carbon dioxide, and
y1, which quantifies the terrestrial climate-carbon feedback in units of petagrams of carbon per degree
Celsius. Hereafter we refer to simulations that isolate the biogeochemical and radiative effects of atmospheric
CO, as Carbon Only and Climate-Only simulations, respectively. Control simulations with both effects are
referred to as Carbon and Climate simulations. All simulations are based on a variant of the Representative
Concentration Pathway 8.5 (RCP8.5) emissions scenario (spanning 75 years from 2005 to 2089 Common
Era [CE]) and include other climate forcers such as non-CO, greenhouse gases, anthropogenic aerosols,
and a baseline scenario of LULCC. The effect of these additional forcing agents must be accounted for when
calculating the feedback coefficients described above.

2.1. The iESM

The global change research community frequently uses integrated assessment models to generate scenarios
of human energy and agricultural activities and associated climate forcing (e.g., greenhouse emissions and
land cover change), which are then fed to Earth system models to examine their implications for climate
and carbon cycle processes.The iESM (Collins et al., 2015; Thornton et al.,, 2017) couples two such models
together in order to examine their bidirectional feedbacks: the Global Change Assessment Model (GCAM;
Wise et al., 2014), an integrated assessment model, and the Community Earth System Model (CESM; Hurrell
et al, 2013), a global Earth system model. The version of iESM used for this study focuses on biospheric
feedbacks to LULCC, for example, changes in ecosystem carbon densities and crop model changes resulting
from atmospheric, hydrologic, and nutrient dynamics over time. These terrestrial changes are fed to GCAM
using linear scalars derived from net primary productivity (NPP) and heterotrophic respiration changes within
CESM. These scalars modify carbon storage and crop yield values within GCAM (Bond-Lamberty et al., 2014).
Changes in land use within GCAM are in turn translated into land cover changes at the plant functional type
level, which are fed back to CESM (Di Vittorio et al., 2014).

2.2. Experimental Design

Following the experimental protocol for the fifth Coupled Model Intercomparison Project (CMIP5; Taylor et al.,
2012), each of the simulations used in this study begins from a common preindustrial spin-up condition for
the year 1850 CE and proceeds following prescribed atmospheric greenhouse gas and aerosol

JONES ET AL.



nnnnnnnnnnnnnn
'AND SPACE SCiENCE

Geophysical Research Letters 10.1029/2018GL079350

concentrations and land cover for the years 1850-2005 CE. We conduct three such historical simulations,
which are designed to aid in the isolation of the concentration-carbon and climate-carbon feedbacks.
These include a Carbon and Climate simulation with all climate forcings and carbon cycle processes enabled,
a Carbon-Only simulation in which the radiative effect of atmospheric CO, is disabled, and a Climate-Only
simulation in which the biogeochemical effect of atmospheric CO, on plant physiological processes is
disabled. We note that non-CO, greenhouse gases, aerosols, and land cover change exert a forcing effect
on climate in all cases; there is thus some moderate global warming even in the Carbon-Only simulation,
which we account for below in our parameter estimation paradigm.

From 2005 to 2089 CE, the GCAM model is used to generate future forcing conditions that meet the cri-
teria for the RCP8.5. We use the same population and income in GCAM as the original RCP8.5 to mimic
that scenario as closely as possible. However, we note that while global forcing levels match the
RCP8.5 trajectory, GCAM's particular mix of greenhouse gas, aerosol, and land cover changes differs
slightly from the RCP8.5 forcing scenario adopted for CMIP5 (Riahi et al., 2011). Future simulations are
conducted both with and without human-mediated LULCC feedbacks enabled via the iESM framework
for all three forcing conditions: Climate and Carbon, Carbon Only, and Climate Only. This results in a total
of six future simulations. In order to isolate human-mediated LULCC feedbacks, future simulations all use
the same atmospheric concentrations for greenhouse gases and aerosols. They differ only in their
LULCC trajectories.

2.3. Parameter Estimation Paradigm

Here we show how the C4MIP framework for estimating C cycle feedback parameters (Arora et al., 2013;
Friedlingstein et al., 2006; Jones et al., 2016) can be extended to separately quantify human and nonhu-
man contributions to C cycle feedbacks. We begin by describing our framework for estimating the
concentration-carbon (8;) and climate-carbon (y;) parameters inclusive of both human- and nonhuman-
mediated processes. The framework can be applied over a many time frames. However, except where
noted, all results reported focus on the final two decades of our simulations (2070-2089) relative to pre-
industrial conditions. According to the C4MIP framework, we approximate the change in terrestrial carbon
(AC;) within the Climate and Carbon simulation with human-mediated LULCC feedbacks as the linear com-
bination of the concentration-carbon feedback and the climate-carbon feedback (Friedlingstein
et al,, 2006):

AC, = B, ACp + y, AT (M

where f; and y, are the concentration-carbon and climate-carbon feedback coefficients respectively, AC, is
the change in atmospheric carbon, measured in parts per million of carbon dioxide, and AT is global mean
temperature change measured in degrees Celsius. We obtain similar equations for the Carbon Only and
Climate-Only simulations:

AC. = B ACs + AT )
AC, = BACh + y,AT @3)

where Aa, Aa, and AT are the change in terrestrial carbon, atmospheric carbon, and global mean tempera-

ture for the Carbon-Only simulation and AEL, AEA, and AT are the changes in terrestrial carbon, atmospheric
carbon, and global mean temperature for the Climate-Only simulation.

By design, the change in atmospheric carbon is identical in the Climate and Carbon compared to the Carbon-
Only simulations. Likewise, the change in global mean temperature is equivalent in the Climate and Carbon
compared to the Climate-Only simulations, although it is not identical due to both internal climate variability
and the effect of enhanced terrestrial carbon storage on biogeophysical climate forcing. For instance, we
estimate AT to be 4.08 °C and AT to be 4.26 °C by comparing the final 20 simulation years (2070-2089 CE)
from the Climate-Only simulation and Carbon and Climate simulation to the first 20 historical simulation years
(1850-1869 CE). Thus,
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ACs = AC, )

AT=AT (5)

By combining equations (1) and (2) with (4) and equations (1) and (3) with (5), we can solve for 5, and y,
as follows:

AC, — AC,
y=—r >t ©)
AT — AT
AC, — AC,
B=——"k 7)
ACs — ACs

We note that the effect ofAEA on terrestrial carbon is disabled by design, so the denominator of equation (7)

simplifies to AC,. However, since the Carbon-Only simulation contains non-CO, climate forcing agents, AT
is nonzero.

Next, we decompose the concentration-carbon and climate-carbon feedbacks into nonhuman- and human-
mediated components. Consistent with the C4MIP parameter estimation paradigm that treats the
concentration-carbon and climate-carbon feedbacks as independent and additive (Friedlingstein et al.,
2006), we assume that the nonhuman- and human-mediated aspects of these feedbacks are independent
and additive. In practice, these assumptions have been shown to be imperfect (Gregory et al., 2009), which
introduces concentration-carbon and climate-carbon parameter sensitivity to the experimental and analytic
estimation method. However, if applied in a consistent fashion, the approach has still provided a useful
means to diagnose sources of cross-model variation (Arora et al.,, 2013; Eby et al., 2013). We decompose
the concentration-carbon and climate-carbon feedbacks as follows:

AC, =AC N+ ACH (8)
AC = By nyACa + y NAT 9)
AC = B yACa + 7 yAT (10)

where AC,, y and AC,, iy are the nonhuman- and human-mediated changes in terrestrial carbon respectively,
B nand B,y are the nonhuman- and human-mediated components of the cocnentration carbon feedback
respectively, and y,, y and y; 4 are the nonhuman- and human-mediated components of the climate-carbon
feedback. We note that AC;, ,, represents change in terrestrial carbon that is above and beyond that associated
with any baseline LULCC that would take place in the absence of human responses to biospheric changes.

It follows from equations (1), (8), (9), and (10) that feedback parameters can be written as the sum of their
components as follows:

Bu=Bin+ Bn an
YL=VN T LH (12)
Our Climate and Carbon, Carbon Only, and Climate Only in which the human-mediated LULCC feedback has

been disabled provide a means to estimate the nonhuman components of feedbacks using the same logic
behind equations (6) and (7):

ACiy — ACy
— TTLN T AN (13)
N T TTAT S AT
AC n — AC
= (14)
' ACy — ACy

where AC;, y is obtained from the Climate and Carbon simulation with human-mediated feedbacks
disabled, AC/L] is obtained from the Carbon-Only simulation with human-mediated feedbacks disabled,

and A(.TN is obtained from the Climate-Only simulation with human-mediated feedbacks disabled. The

JONES ET AL.
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human-mediated feedback components can then be calculated as the difference between the fully
coupled feedback parameters and the nonhuman components using equations (11) and (12).

The relatively linear relationship between changes in global crop area and global terrestrial C storage found
in our simulations (see Figure 2) suggests that we can further decompose the human-mediated C cycle feed-
backs into land cover change and consequent carbon storage changes. We define the concentration-land
cover effect (¢), climate land cover effect (1), and land cover-carbon effect (u) as follows:

Pin=eu (15
YiH = MK (16)

where ¢ is the concentration-land cover change effect in units of million square kilometers of cropland per
part per million atmospheric carbon dioxide, 7 is the climate-land cover effect in units of million square
kilometers of cropland per degree Celsius and x is the land cover-carbon effect in units of Petagrams carbon
per million square kilometers of cropland cropland. Moreover, we can write the human-mediated change in
terrestrial carbon as a change in land cover due to feedbacks (ALy) times the land cover-carbon effect:

AC = ALyu (17)
By substituting equations (15), (16), and (17) into (10), we obtain the following:
ALy = gu ACyq + qu AT (18)
The u terms cancel from this equation, yielding the following:
ALy = ¢ ACp + yAT (19)

We can now again repeat the logic behind equations (6) and (7) to solve for ¢ and 7 as follows:

. _ ALy — AL 20)
AT — AT
ALy — AL
p=—H——H @1
ACs — ACa

where ALy can be obtained by examining the land cover difference between the Climate and Carbon simula-

tions with and without human-mediated LULCC feedbacks, AL can be obtained by examining the land cover
difference between the Carbon-Only simulations with and without human-mediated LULCC feedbacks, and

ALy can be obtained by examining the landover difference between the Climate-Only simulations with and
without human-mediated LULCC feedbacks.

Finally, we can estimate the land cover-carbon effect (1) using equation (15) or (16). In practice, we obtain
slightly different values if we use equation (15) or (16), which is not surprising given the assumptions under-
lying the parameter estimation paradigm, that is, that the various feedback effects are independent, linear,
instantaneous, etc. (Gregory et al., 2009). To account for this discrepancy, we report the mean of the two
values obtained using equations (15) and (16). For instance, for the final two decades of our simulations
(2070-2089 CE), we estimate x to be —15.5 PgC/Mkm? using equation (15) and —16.4 PgC/Mkm? using equa-
tion (16). We report a value of —16 in Table 1.

3. Results

Without human-mediated LULCC feedbacks, we find a positive value for 5, and a negative value for y,
(Figure 1), implying that elevated atmospheric CO, enhances terrestrial carbon storage, but climate change
associated with atmospheric CO, decreases terrestrial carbon storage. The sign of these effects is consistent
with previous studies across a range of models (Arora et al., 2013; Eby et al., 2013; Friedlingstein et al., 2006),

JONES ET AL.
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Table 1
Estimated Terrestrial Carbon Cycle Feedback Parameters and Associated Units for Each Parameter
B Bin B H 2 1 L N L, H i B
PgC/ppmCO, PgC/ppmCO, PgC/ppmCO, Mkm*/ppmCO, PgC/°C PgC/°C PgC/°C Mkm®/°C PgC/Mkm
0.28 0.26 0.02 —0.0014 —6.6 -89 23 —0.15 —16

Note. The concentration-carbon feedback (f,) is decomposed into nonhuman-mediated (6, ) and human-mediated components (4, 17), which in turn is decom-
posed into a concentration-land cover effect (¢) and land cover carbon effect (x). Similarly, the climate-carbon feedback (y;) is decomposed into nonhuman-
mediated (y;, n) and human-mediated components (y;, 1), which in turn is decomposed into a climate-land cover effect () and the same land cover-carbon effect

() as above.

but their magnitudes are not directly comparable to other studies due to differences in the underlying
emissions scenario (Gregory et al., 2009).

Inclusion of human-mediated LULCC feedbacks alters both the concentration-carbon feedback and the
climate-carbon feedback (Figure 1). The CO, concentration-carbon feedback (f;) becomes more positive
(from a mean estimate of 0.26 to 0.28 PgC/ppmCO,), and the climate-carbon feedback (y,) becomes less
negative (from a mean estimate of —8.9 to —6.6 PgC/°C). Thus, for both effects, inclusion of human-mediated
feedbacks enhances terrestrial carbon storage relative to the control simulations without such feedbacks. We
compute individual model year estimates of the feedback parameters in Figure 1 in order to show the role of
model internal variability and quantify the change in the parameter values relative to this internal variability.

Enhanced terrestrial carbon storage from the inclusion of human-mediated LULCC feedbacks is associated
with reduced global crop area across all of the simulations examined (Figure 2). These changes are in turn
associated with positive changes in globally averaged crop yields in all cases. While the direction of this effect
is to be expected for the Carbon-Only case due to the productivity enhancing effect of atmospheric CO,, it is
less clear a priori what drives this effect in the Climate-Only simulations, as climate impacts crop productivity
in both positive and negative ways, including changes in precipitation regimes, growing season length,
drought stress, and heat stress. Many mechanistic crop models predict future declines in crop yields due

to climate change, particularly in tropical regions, and particularly when

the productivity enhancing effect of atmospheric CO, is disabled in mod-

= els (Rosenzweig et al.,, 2014) as in our Climate-Only simulations.
6l e To investigate the drivers of crop yield change in our simulations, we
/o examine spatial patterns of the simulated change in NPP (the net accumu-
& | [ .2 y lation of C due to photosynthesis minus C losses due to plant respiration)
> . and a measure of water sufficiency change for the Carbon Only, Climate
S / Only, and Carbon and Climate simulations (Figure 3). The current version
g "8 K / of the iESM uses C3 crop NPP change as a proxy for crop yield change
g / S / (Bond-Lamberty et al., 2014; Collins et al.,, 2015) so changes in NPP are a
§ -9+ //, / direct measure of changes in yield in this model. Water sufficiency is esti-
JEC mated using the BTRAN variable from the Community Land Model (Oleson
1ol [ / et al, 2010). This unitless variable ranges from 0 to 1 and reflects the
N degree to which photosynthesis is enabled by adequate soil moisture. A
value of 1 means fully adequate soil moisture with no limitations on photo-
_18_24 0_‘25 0,‘26 0_‘27 o.és 0.‘29 0‘,3 synthesis, whereas a decrease in this value indicates additional soil

Beta (PgC / ppm CO2) moisture stress.

Figure 1. Estimates for the terrestrial concentration-carbon feedback para-
meter (8;) and climate-carbon feedback parameter (y;) with (red circles)

In the Carbon-Only case, we see widespread NPP enhancements over
regions of the planet with croplands (Figure 3b). However, in the

and without (blue circles) the inclusion of human-mediated land use and Climate-Only case, there is a mix of regions with positive and negative
land cover change (LULCC) feedbacks. Twenty estimates for each parameter  changes in NPP (Figure 3c). Negative changes are seen in Equatorial
combination are shown, one calculated using each of the final 20 years regions of South America and Asia, as well as Southern Africa, Western

(2070-2089 CE) of a 21st century forcing scenario based on the
Representative Concentration Pathway 8.5. Blue (without human-mediated

Europe, the Southwest United States, and Australia. These regions corre-

LULCC feedbacks) and red ovals (with human-mediated LULCC feedbacks) spond in general to regions where increased soil moisture stress is seen
indicate the 95% confidence interval surrounding the joint distribution of in the Climate-Only case (Figure 3f), but regions of reduced water stress

parameter estimates.

do not universally correspond to regions of enhanced NPP, particularly

JONES ET AL.
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Figure 2. Global changes in crop area and associated changes in global ter-

-1.5 -1

Crop Area Change (Mkmz)

restrial C storage due to inclusion of human-mediated land use and land
cover change feedbacks. Individual circles represents the change in these
quantities for the final 20 years (2070-2089 CE) of a 21st century forcing

scenario based on the Representative Concentration Pathway 8.5 driven by

both the biogeochemical and radiative effects of atmospheric CO, (black

circles) the biogeochemical effect alone (blue circles), and the radiative effect
alone (red circles).

at higher latitudes where light may be a limiting factor on annual photo-
synthesis. While a similar pattern of water stress is seen in the Carbon
and Climate case (Figure 3d), the NPP changes in the combined case
reflect the Carbon-Only pattern more so than the Climate-Only pattern
(Figure 3a).

NPP changes in the Climate-Only case are broadly consistent with the
expectation that climate change will have mixed effects on crop produc-
tivity. However, the large range of crop yield responses seen across
mechanistic crop models (Miller et al.,, 2015; Rosenzweig et al., 2014) sug-
gests that if a different crop model were used in the iESM or similar
coupled model, we might find a very different estimate for the human con-
tribution to the climate-carbon feedback (y;). Moreover, while the sign of
the human contribution to the concentration-carbon feedback (5,) is to
be expected, the magnitude could vary widely across alternative
plausible models.

Table 1 summarizes our estimated values for the human and nonhuman
carbon cycle feedback parameters described above using the iESM model.
We see that for this model, the human-mediated share of the total climate-
carbon feedback (2.3 vs. —6.6 PgC/°C is larger than the human-mediated
share of the total concentration-carbon feedback (0.02 vs. 0.28 PgC/ppm
CO,). We note, however, that in our simulations, these values are scaled
by different quantities. For instance, in the fully coupled case, global atmo-
spheric CO, rises by 480 ppm and global mean temperature rises by
4.26 °C for the final two decades of the simulation (2070-2089 CE) com-

pared to preindustrial. As a result, the two human-mediated feedbacks have a similar magnitude effect on
terrestrial carbon storage, 9.8 PgC for the human-mediated climate-carbon feedback and 9.6 PgC for the
human-mediated concentration-carbon feedback. This indicates that negative atmospheric carbon feed-
backs due to the LULCC response to biospheric change are not dominated by CO, concentration effects.

a) NPP Change, Carbon and Climate b) NPP Change, Carbon Only ¢) NPP Change, Climate Only 400
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Figure 3. Simulated changes (2070-2089 CE minus 2005-2024 CE) in grid cell mean Net Primary Productivity (NPP; panels a-c) and water sufficiency (panels d—f)
without the inclusion of human-mediated land use and land cover change feedbacks for model runs driven by both the radiative and biogeochemical effects of
atmospheric CO, (panels a and d), the biogeochemical effect alone (panels b and e), and the radiative effect alone (panels c and f). Simulations are based on an
adapted version of the Representative Concentration Pathway 8.5 forcing scenario. Water sufficiency is measured using the unitless BTRAN variable from the
Community Land Model, which reflects soil moisture limitations on photosynthesis. Negative values of this quantity indicate greater limitations on photosynthesis
due to lack of soil moisture and vice versa. NPP and water sufficiency values are shown only for those grid cells that contain cropland and for which a Student's t test

indicates that the cell differences are significant at the 95% level.
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4, Discussion

Our analysis demonstrates that human-mediated LULCC feedbacks can be quantified in a similar fashion as
nonhuman concentration-carbon and climate-carbon feedbacks. Figure 1 indicates that the introduction of
human-mediated feedbacks leads to a statistically significant change in the feedback parameters relative
to model internal variability. Caution should be taken when comparing feedback parameters across studies
because results are sensitive to the particular experiments used as a basis for calculating them (Gregory et al.,
2009). However, the magnitude of the human-mediated feedbacks found in this study is small relative to the
range of nonhuman feedbacks reported in the literature; for example, a recent study using Earth system mod-
els of intermediate complexity found the non-human concentration-carbon feedback to range from 0.22 to
1.09 PgC/ppm CO, and the nonhuman climate-carbon feedbacks to range from —96.6 to —6.9 PgC/°C (Eby
et al,, 2013). Similar ranges have been found among more process-rich Earth system models as well (Arora
et al., 2013; Friedlingstein et al., 2006). The iESM model’s nonhuman feedbacks are at the low end of this lit-
erature range, and the Community Land Model version 4 used within the iESM modeling framework has a low
terrestrial carbon sink relative to their models (Anav et al., 2013; Keppel-Aleks et al., 2013), which further high-
lights the importance of examining such feedbacks within a multimodel context.

Just as there are significant uncertainties arising from model bias across a range of plausible terrestrial bio-
geochemical models (Arora et al., 2013; Eby et al., 2013; Friedlingstein et al., 2006, 2014), human-mediated
LULCC are likely to vary significantly across alternative plausible models. In addition to terrestrial vegetation
and soil carbon dynamics, there is significant model uncertainty associated with the estimation of future crop
yield changes (Rosenzweig et al.,, 2014), the resulting economic response (Nelson et al., 2014), and the trans-
lation of land use change to land cover change (Di Vittorio et al.,, 2014; Jain & Yang, 2005; Meiyappan & Jain,
2012; Peng et al,, 2017; Prestele et al., 2017). Thus, our decomposition of the human-mediated concentration-
carbon and climate-carbon feedbacks into separate concentration-land cover, climate-land cover, and land
cover-carbon effects is useful because it distinguishes two broad categories of processes that contribute to
the human-mediated LULCC feedbacks: ¢ and 7 reflect model assumptions about the relative value of crop-
land compared to other land uses including crop and forestry yield changes and subsequent economically
driven changes in LULCC, whereas u reflects the process of land conversion itself, including which categories
of land are converted to and from agricultural use as well as the amount of C associated with
those conversions.

In this study, we found that it was sufficient to describe the effect of land cover change on carbon in a parsi-
monious fashion that focuses on changes in global cropland area and associated carbon changes, which is
supported by the relatively linear relationship between global cropland and global carbon storage with
the addition of human-mediated feedbacks (Figure 2). We note, however, that climate-driven changes in land
productivity may induce changes in agricultural and forestry intensification (higher yields on existing lands)
or extensification (expansion of agricultural lands). To the extent that intensification alters carbon storage
within a particular land category, this would be reflected in the u parameter. Alternative model formulations
will likely show differences in the degree of agricultural and forestry intensification versus extensification
induced by climate change, with implications for carbon storage and land cover conversions across multiple
land cover types and regions. The feedback parameters that we describe will reflect such changes and can
point to broad categories of processes that differ among models. However, additional decomposition and
analysis may be required to further identify the specific processes and regions most responsible for
model differences.

Currently only a handful of models have coupled each of the relevant processes into a consistent framework
capable of estimating human-mediated LULCC contributions to carbon cycle feedbacks (Calvin & Bond-
Lamberty, 2018; Monier et al., 2018; Robinson et al., 2018; Thornton et al., 2017; Voldoire et al., 2007). As
the technical capability and scientific interest in this phenomenon grows, the feedback parameter framework
illustrated above provides a parsimonious means to quantitatively differentiate first-order feedback drivers
across models and identify the greatest source of cross-model uncertainty. While this study focuses on cli-
mate change feedbacks to terrestrial carbon storage through changes in land management, climate change
is expected to affect many sectors of society including public health, water, energy, urban, and transportation
systems (IPCC, 2014). Adaptive responses to these impacts all have the potential to generate feedbacks to the
climate system, particularly if they affect activities that produce climate forcing such as the use of energy. Our
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framework demonstrates that such feedbacks can be formally quantified and compared with
nonhuman feedbacks.
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