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ARTICLE

Demonstration of a beam loaded nanocoulomb-
class laser wakefield accelerator
J.P. Couperus 1,2, R. Pausch 1,2, A. Köhler 1,2, O. Zarini1,2, J.M. Krämer1,2, M. Garten 1,2, A. Huebl 1,2,

R. Gebhardt1, U. Helbig1, S. Bock1, K. Zeil1, A. Debus 1, M. Bussmann1, U. Schramm 1,2 & A. Irman1

Laser-plasma wakefield accelerators have seen tremendous progress, now capable of pro-

ducing quasi-monoenergetic electron beams in the GeV energy range with few-femtoseconds

bunch duration. Scaling these accelerators to the nanocoulomb range would yield hundreds of

kiloamperes peak current and stimulate the next generation of radiation sources covering

high-field THz, high-brightness X-ray and γ-ray sources, compact free-electron lasers and

laboratory-size beam-driven plasma accelerators. However, accelerators generating such

currents operate in the beam loading regime where the accelerating field is strongly modified

by the self-fields of the injected bunch, potentially deteriorating key beam parameters. Here

we demonstrate that, if appropriately controlled, the beam loading effect can be employed to

improve the accelerator’s performance. Self-truncated ionization injection enables loading of

unprecedented charges of ∼0.5 nC within a mono-energetic peak. As the energy balance is

reached, we show that the accelerator operates at the theoretically predicted optimal loading

condition and the final energy spread is minimized.
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E lectron-driven light sources have become indispensable
tools for a broad range of fundamental and applied research.
Large-scale facilities such as synchrotrons and free-electron

lasers (FELs) provide extremely bright and short wavelength
radiation, enabling microscopy at atomic resolution with femto-
second to attosecond time scales. However, conventional radio-
frequency electron accelerators currently used to drive such
sources are limited to only a few-kiloampere peak current. In
contrast, the ultra-high accelerating field gradient in laser-plasma
wakefield accelerators can sustain higher bunch charges within a
few-femtosecond pulses enabling peak currents up to two orders
of magnitude larger than found in conventional accelerators.
Knowledge to operate laser-plasma accelerators in the high-
current regime would make them ideal drivers for next-
generation compact light sources covering high-field THz1, 2,
high-brightness X-ray3, 4 and γ-ray5, 6 sources, compact FELs7–11

and laboratory-size beam-driven plasma accelerators12, 13.
In laser-plasma wakefield acceleration, an ultrashort laser pulse

propagating through an optically transparent plasma excites a
plasma wake by the laser ponderomotive force14. For a suffi-
ciently high driver laser intensity, plasma electrons are expelled
from the laser vicinity, thereby creating a co-propagating near-
spherical ion cavity15. In this so-called bubble or blow-out regime
the accelerating wakefield can exceed several hundreds of
GVm−1. In contrast to conventional accelerators, electrons from
the plasma background can be self-injected into the wakefield,
and therefore no external electron source is required. Electrons
that are injected into the right phase of this wakefield will be
accelerated to high energies within a quasi-monoenergetic peak.
Even though electron beams reaching into the multi-GeV energy
range and few-femtosecond bunch durations have already been
demonstrated16–19, bunch charge has been limited to only a few
tens of picocoulomb. Scaling the charge to the nanocoulomb
range following original predictions15 would yield hundreds of
kiloamperes peak-current beams, the key component for next-
generation compact light sources. During the submission of this
manuscript, Li et al.20 demonstrated generation of electron beams
up to 20 kA from laser wakefield acceleration yet of a continuous
spectrum extending up to 0.6 GeV. Laser-plasma accelerators
generating such high currents accumulate enough charge such
that the self-fields of the bunch will superimpose on the wake-
field21–23. As a consequence the plasma cavity structure will be
reshaped and the effective accelerating field along the bunch
length will be modified affecting the final beam parameters, i.e.,
maximum energy and energy spread. This phenomenon is gen-
erally known as beam loading.

Lu et al.22 estimated the number of particles that can be loaded
into a three-dimensional (3D) nonlinear wake to scale with the
normalized volume of the plasma bubble or the square root of the
laser power. The same scaling was also found by Gordienko and
Pukhov21 with a different coefficient derived from simulations.
The linear theory for beam loading in plasma accelerators was
developed by Katsouleas et al.24 In this one-dimensional
approach it was found that an appropriate bunch shaping can
minimize the energy spread typically associated with plasma
accelerators. In recent work by Tzoufras et al.23, 25 this theory was
expanded for the 3D nonlinear case and an optimum trapezoidal
bunch shape was investigated in order to efficiently convert the
energy available in the wake into kinetic energy of electrons. In
this ideal case, the accelerating field of the wakefield Ez becomes
constant (Es) along the bunch and scales as:
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where c is the speed of light, Qs is the total loaded charge, me and
e are the mass and charge of an electron and np and ωp � ffiffiffiffiffi

np
p

are the density and frequency of the plasma with the plasma
wavenumber kp. For a matched laser condition22, kpRb amounts
to approximately 2

ffiffiffiffiffi

a0
p

with the bubble radius Rb and the laser
normalized vector potential a0. Eq. (1) represents the optimal
loaded case where there is a balance between the amount of
loaded charge and the accelerating field. Here, all electrons in the
bunch experience an identical accelerating field strength such that
no energy spread is gained during the acceleration process. This
leads to a bunch with minimum energy spread. From Eq. (1) the
optimal loaded charge depends on the laser peak power P as
Qs /

ffiffiffi

P
p

but is independent from the plasma density. However,
the accelerating field Es and thus the achievable electron energy
follows a n2=3p dependency (for details see Supplementary Note 1).

Although indications of beam loading have been reported
earlier26, 27, no experimental studies exist for the case of
a quasi-monoenergetic bunch in a heavily loaded wakefield. The
work presented here is the first investigation that systematically
explores the beam loading effect in the bubble regime and its
consequences to the final beam quality over a large and well-
controlled parameter range. We inject several hundred pC of
charge into the bubble cavity while retaining a narrow energy
spread. For this purpose a tailored scheme of the self-truncated
ionization injection (STII)28, 29 process is used (see Methods).
This scheme relies on ionization injection, where the helium gas
based acceleration medium is doped with a small fraction of
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Fig. 1 Energy spectra of 15 consecutive shots. a Raw energy electron spectra. The color map represents the charge density (pCmm−2) on the detector.
b Energy spectrum of the first shot from a. The filled area represents the charge within the FWHM, the yellow dashed line represents the mean peak energy
and the black dashed line represents the maximum attained energy (Emax) at 0.1 pCMeV−1. Obtained with a supersonic gas jet with a 1.6 mm-long plasma
density plateau of 3.1 × 1018 cm−3, 1% nitrogen doping and 2.5 J laser energy in 30 fs FWHM duration. Line graphs of all shots shown in (a) can be found in
Supplementary Fig. 2

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00592-7

2 NATURE COMMUNICATIONS |8:  487 |DOI: 10.1038/s41467-017-00592-7 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


nitrogen gas whose K-shell electrons will be ionized and subse-
quently trapped only near the intensity peak of the laser
pulse30, 31. In the STII scheme laser and wakefield evolution
restrict the time of electron injection into the wakefield, thus
limiting the energy spread. The number of injected electrons can
be tuned by varying the nitrogen doping concentration without
changing the driver laser and plasma density parameters. Thus, in
contrary to the work in ref. 26, the initial position and radius for
trapping can be kept equal for various loaded charges. Loading-
dependent injection length contributes only weakly to the energy
spread (see Supplementary Note 4). Therefore, it enables us to
minimize the interplay between the beam loading effect and the
initial injection volume to the evolution of energy spread.

Results
Accelerator performance. The typical performance of the
accelerator is presented in Fig. 1a, showing raw data from the
electron spectrometer for 15 consecutive shots with Fig. 1b
showing a line graph of the first shot with a graphic representa-
tion of relevant beam parameters. This specific set was obtained
for a 1.6 mm-long plasma density plateau of 3.1 × 1018 cm−3, 1%
nitrogen doping and 2.5 J laser energy in 30 fs full-width at half-
maximum (FWHM) duration. The mean peak energy of the
electron beam is 250MeV with 9% shot-to-shot s.d. The mean
absolute energy spread (FWHM) is 36MeV yielding a relative
energy spread of 14%. The accelerator delivers an unprecedented
charge within the peak (FWHM) of ∼220 pC± 40 pC shot-to-
shot s.d. with a divergence of 7 mrad. The excellent shot-to-shot
reproducibility gives the ability to perform statistical analysis over
multiple shots for each data set belonging to a specific experi-
mental parameter.

Beam loading effects. The influence of both injected charge and
plasma density is clearly seen in the maximum attainable energy
as shown in Fig. 2. Each data point represents the mean value
from a set of up to 20 consecutive shots. For equal plasma density,
indicated by connected data points, the injected charge was
controlled by tuning the nitrogen doping between 0.2% and 1.5%

(see Supplementary Fig. 5). With increasing injected charge, a
decrease in maximum electron energy (Emax) is observed. Since
the injection dynamics do not change significantly, this energy
reduction indicates accelerating field suppression due to the load.

Beam loading perturbs the wakefield such that the accelerating
field strength experienced by the trailing electrons is reduced. In
our measurements we have observed a smaller decrease on the
mean energy of electrons compared to the maximum attained
energy discussed above (see Supplementary Fig. 6). Consequently,
the beam energy spread narrows for higher loaded charges, as
seen in Fig. 3. At the optimum load, flattening of the accelerating
field is expected which then leads to a minimum of the energy
spread. This effect is seen at a charge of ∼300 pC in FWHM for
all sets of plasma densities. This is in very good agreement with
the value estimated by Eq. (1) marked by the vertical line in
Figs. 2 and 3. Deviation from the optimum, either by loading less
or more charge into the wakefield, leads to an increase in energy
spread.
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Effective acceleration length. As discussed before, electron
energy is expected to scale as n2=3p for a given laser power under
the optimal loading condition. Es is plotted as the dashed line in
the inset of Fig. 2. Related experimental data points, represented
by triangles, confirm this dependency. From this we could deduce
the effective acceleration length of our accelerator to be ∼0.8 mm,
which is shorter than the dephasing length Ldeph ≈2.3 mm pre-
dicted in the 3D nonlinear regime22. Hence, higher electron
energies can potentially be reached by extending the accelerator
to approach the dephasing length.

Particle-in-cell simulations. To support our results, we per-
formed 3D Particle-In-Cell (PIC) simulations using the
PIConGPU code32, 33 (see Methods). Multiple simulations were
performed taking realistic experimental parameters in order to
study the beam loading effect under realistic laser-plasma
dynamics, increasing only the nitrogen doping concentration in
order to inject more charge into the wakefield. Although the
injected charge in simulations does not reach the optimal loading
condition, qualitatively the beam loading effects can be observed
until this point. Figure 4a shows the temporal evolution of the
injected electron energy for an example case. The driver laser
beam requires the first half of the jet for focusing before ioniza-
tion injection occurs. Injection is terminated due to the self-
truncation effect and is followed by acceleration along ∼0.9 mm

distance. This value matches our estimate from experimental
data. Increasing injected charge, a clear effect on the accelerating
field Ez due to beam loading was observed as illustrated in Fig. 4b.
For the case where a 168 pC bunch is injected, a suppression of
the accelerating field Ez by ∼50 GVm−1 occurs together with an
easing of the accelerating field slope along the bunch compared to
the weakly loaded case where a 60 pC bunch is injected. Trailing
electrons being affected strongest, this field change subsequently
results in a compression of the electron momentum phase-space
distribution, resulting in both a reduction in Emax and a reduction
of energy spread. This effect is further illustrated in Fig. 5 where
we investigate the final electron energy distribution for loads
between 60 and 168 pC. In agreement with our experimental
results we observe a decrease of both maximum electron energy
and energy spread with increasing charge.

Discussion
The results presented here will have a strong impact on the
parameter design of future laser-plasma accelerators. Minimiza-
tion of the energy spread by means of the presented beam loading
method is a crucial step toward high peak-current beams. At our
laser parameters, the optimal loading condition was reached at a
charge of ∼300 pC within the FWHM. Although we have no
direct measurement of the bunch length, using an indirect
duration estimate employing a two-particle model as presented by
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Rechatin et al.34 we could roughly determine a FWHM bunch
duration of 5 fs. This is in the range of the typical measured laser
wakefield bunch duration which is 4 to 6 fs18, 19. Thus, taking a
conservative bunch length value, we estimate that our accelerator
delivers a FWHM peak current of ∼50 kA while operating at
optimal loading condition with ∼15% relative energy spread.

Working toward driving secondary light sources, future laser-
plasma wakefield accelerators will combine even higher peak-
current beams by operation in the nanocoulomb range as already
predicted in 2002 by Pukhov and Meyer-ter Vehn15 with boosting
the energy to the tens of GeV range, supported by the tremendous
advancements of laser technology pushing peak power above the
petawatt level.

In Fig. 6 the correlation of the total charge to the laser peak
power measured at a fixed plasma density and nitrogen doping is
presented. The laser peak power was adjusted from 40 to 90 TW
by an attenuator placed after the last amplifier stage. The
experimental data exhibit the Q / ffiffiffi

P
p

dependency as originally
predicted by Lu et al.22 and Gordienko and Pukhov21. The
intersection at zero charge for a laser power of 33 TW corre-
sponds to the injection threshold for our experimental para-
meters. Expanding this scaling and operating in the optimum
loading condition we expect that driving a laser-plasma wakefield
accelerator with a petawatt laser beam will result in high-quality
electron beams with peak currents of over 150 kA. This is two to
three orders of magnitude larger than can be achieved in state-of-
the art large-scale accelerator facilities.

Many challenges in the field of laser-plasma acceleration still
remain, besides above-mentioned scalings also transverse beam
emittance. To correctly measure and further optimize beam
emittance for laser wakefield acceleration in the beam loading
regime is a nontrivial task and also named as one of big chal-
lenges in the field which will be the subject of further studies in
this regime. Laser-plasma accelerator-driven FELs are one
example of next-generation radiation sources which require low-
emittance electron beams. Other next-generation radiation
sources, e.g., laboratory-size beam-driven plasma accelerators,
THz-radiation sources, betatron sources and inverse Compton X-
ray sources, put less stringent demands on beam emittance.

The work presented here is a significant step toward the
application of laser-plasma accelerators as drivers for secondary
radiation sources as well as a substantial contribution on
advanced accelerator concepts research. It represents an extensive
systematic experimental study of beam loading by a quasi-
monoenergetic bunch in the bubble regime performed with a
nanocoulomb-class laser wakefield accelerator, thereby confirm-
ing the scaling theory developed by Tzoufras et al.23. We have

shown that in order to generate high charge beams with a small
energy spread, laser-plasma accelerators have to be operated at
the optimal loading condition.

Methods
Laser system. The experiment was performed with the DRACO Ti:Sa chirped
pulse amplification laser system operated by Helmholtz-Zentrum Dresden-
Rossendorf delivering 30 fs (FWHM) pulses with an energy of 2.5 J on target. The
setup allows laser diagnostics on target while the laser system is running at full
power. Extra effort has been made to improve the mid field and far field of the laser
beam profile as well as the correction for the angular chirp and the spectral phase.
An off-axis parabolic mirror (f/20) is used to focus the laser beam onto the gas
target, ∼1.5 mm above the nozzle. A wavefront sensor (PHASICS SID4) in closed
loop with a deformable mirror provides wavefront optimization which results to a
vacuum focal spot size of 20 μm FWHM, yielding a normalized vector potential of
a0=2.6. Approximately 76% of the laser energy is within the beam waist (1/e2 of
intensity), corresponding to an estimated Strehl ratio of 0.9. This energy fraction
drops to 62% at 1.5 mm away from the focus position while maintaining a
Gaussian laser beam profile. Adjusting the tip tilt and gratings groove orientation
of the compressor, the angular chirp of the beam was minimized to less than 0.1
μrad per nm characterized with a spectrally resolved inverted field interferometer.
The spectral phase was measured with a spectral-phase interferometry for direct
electric-feld reconstruction (SPIDER-A.P.E.) in parallel with a self-referenced
spectral interferometry (WIZZLER-Fastlite) and optimized in a closed loop using
an acousto-optic programmable dispersive filter (DAZZLER-Fastlite). Before data
acquisition, the accelerator performance was further optimized by the phase cor-
rection on the second order (group velocity dispersion) and third order (third-
order dispersion) at the DAZZLER. Online diagnostics situated at the experimental
area were used to monitor the laser’s near field and far field and its temporal
stability at each shot.

Gas target. As plasma medium, a gas jet consisting of mixed He-N2 was provided
by a 3 mm supersonic de-Laval nozzle (Mach 10.4)35 mounted on a fast gas valve
(Parker 9-series). The gas-jet profile was characterized with an interferometric
method36. It measures a density profile with a flat top region of 1.6 mm with
density ramps of ∼0.6 mm on both sides of the jet along the laser propagation axis.
By adjusting the gas pressure at which the nozzle is operated, the gas density of the
flat top profile can be varied from 1018 cm−3 up to 5 × 1018 cm−3. Different
nitrogen doping concentrations from 0.2% to 1.5% were achieved by using pre-
mixed bottles with a doping concentration with less than 2% relative error.

Laser-plasma accelerator. The laser-plasma accelerator is operated in a tailored
scheme of the STII process. STII is a combination of ionization injection with
conditions such that injection only occurs over a short distance (self-truncation).
Laser focus evolution and wake deformation caused by an unmatched laser spot
size constrains the electron injection time leading to quasi-monoenergetic energy
spectra. A more detailed description of STII can be found in ref. 28. Operation in
the ionization injection regime was confirmed, see Supplementary Note 3 and
Supplementary Figs. 3 and 4.

In our experiment the STII scheme was tailored by positioning the laser vacuum
focus point 1.5 mm behind the gas-jet exit. Although the vacuum focal spot of
20 μm FWHM is close to the bubble matched spot size condition (between 15 and
21 μm for experimental conditions presented in this paper), the unmatched
condition required for the STII process is fulfilled by starting laser-plasma
interaction in the laser intermediate field ∼4.5 mm before the laser focus is reached.
Focusing of the laser spot given by the geometry is enhanced by the nonlinear self-
focusing effect37 resulting in injection conditions being fulfilled at roughly the
center of the gas target. Subsequent laser spot and wakefield evolution restricts the
time of electron injection. The remaining acceleration length available after the
point of injection is limited by the gas-jet length and thus acceleration is
interrupted before the dephasing length is reached.

This tailored scheme highly requires a high laser beam quality with a large
fraction of the laser energy located within the beam waist (Strehl ratio >0.9). As the
interaction in this tailored scheme starts far before the focus, great care was taken
to optimize the laser profile in the intermediate field around the focus together with
careful spectral-phase correction (see Laser system methods above, Supplementary
Note 2 and Supplementary Fig. 1).

The role of beam loading in the truncation of the injection can be excluded. For
equal density and laser energy the injected charge was tuned by changing the
nitrogen doping. If beam loading would be the main contributor to truncation, this
would lead to continuous injection till a critical load of the bubble inhibiting
further injection would be reached. Instead, we see that truncation also occurs for
lower injected charges (i.e., monoenergetic feature, low dark–current background).

Electron energy spectrometer. After acceleration, electron beams were dispersed
by a 400 mm-long permanent magnetic dipole. The field strength of the dipole was
experimentally mapped using a Hall probe (Lakeshore MMTB-6J04-VG). Electron
trajectories were simulated using the General Particle Tracer code employing the

100

Laser power (TW)

C
ha

rg
e 

in
 F

W
H

M
 (

pC
)

50

400

300

200

100

0
150

Fit

200

Q ∝√P

Fig. 6 Scaling of charge within FWHM with laser power. Circles represent
measured data points taken with a nitrogen doping of 1% at a plasma
density of 3.1 × 1018 cm−3. The error bars represent the s.e.m. The red curve
represents a fit following the expected Q / ffiffiffi

P
p

dependency. The relative
energy spread measured to be ∼15% for all measurement points

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00592-7 ARTICLE

NATURE COMMUNICATIONS |8:  487 |DOI: 10.1038/s41467-017-00592-7 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


measured field map. Scintillating LANEX screens (Konika Minolta OG 400)
imaged onto CCD cameras (Basler acA1300-30gm) were positioned such that
energy resolution is optimized with point-to-point imaging for energies up to 200
MeV38. Above 200MeV the spectrometer has a readout error dominated by
electron pointing. For 6 mrad pointing error this results to a readout uncertainty of
(+1.6/−1.2)% at electron energies of 300MeV and (+3.1/−2.5)% at 400MeV. Lower
pointing errors lead to a lower readout uncertainty. The spectrometer resolution
and detection uncertainty is well below energy and energy spread difference found
between data sets. The maximum detection energy of the spectrometer is 550MeV.
The scintillator screens were calibrated for charge at the ELBE accelerator, cross-
calibrated to an Integrating Current Transformer (ICT-082-070-05:1-VAC, Bergoz
Instrumentation, France) analog to the method described in ref. 39. In order to
eliminate optical imaging setup and camera efficiency effects, the cross-calibration
against CLS method as described in section III B in ref. 39 was used. Cylindrical
glass capsules filled with tritium and covered with scintillating material (mb-
microtec trigalight T 5419-1/l green) were used as constant light sources (CLS).
CLS cross-calibration between calibration setup and electron spectrometer was
performed within 1 month in order to rule out tritium decay and degeneration of
the scintillating material. Charge calibration was performed on scintillating screens
from the same type and batch as used in the electron spectrometer.

Particle-in-cell simulations. PIC simulations were performed with PIConGPU32, 33

using a 0.2.0 pre-release40. The simulation box used consists of 704 × 704 × 2,352
cells with a transversal resolution of Δx=Δy= 177 nm and longitudinal resolution
of Δz= 44.3 nm, thus resulting in a temporal resolution of Δt= 0.1393 fs. The
electric and magnetic field evolution is computed via the field solver by Yee41 while
macroparticles are propagated using the particle pusher by Vay et al.42. The current
is calculated using the Esirkepov current deposition scheme43 with a triangular-
shaped density cloud interpolation44. In order to incorporate ionization into the PIC
cycle, similar simulations were performed using the BSI45 and ADK46 ionization
methods. The results of the both ionization methods show good agreement for our
setup, and thus BSI was selected for performance reasons. By artificially increasing
the doping concentration in simulations, we were able to study beam loading effects
up to 168 pC of injected charge in the peak. The plasma density was modeled
according to the experimentally determined density profile of the gas target used. For
the simulation presented in this paper, the electron density was set to reach
ne=2.62 × 1018 cm−3 after ionization, independent of the doping used. The laser with
wavelength λ= 800 nm was modeled using a Gaussian envelope both transversally
and temporally and reached a vacuum peak intensity of a0= 2.8 in focus. The pulse
duration was set to τ=30 fs and the spot size to w0=19 μm (both FWHM of
intensity).

Data availability. The data that support the plots within this article and other
findings of this study are available from the corresponding authors on reasonable
request.
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