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Self-regulation refers to the ability to control behavior, cognition,
and emotions, and self-regulation failure is related to a range of
neuropsychiatric problems. It is poorly understood how structural
maturation of the brain brings about the gradual improvement in
self-regulation during childhood. In a large-scale multicenter effort,
735 children (4–21 y) underwent structural MRI for quantification of
cortical thickness and surface area and diffusion tensor imaging
for quantification of the quality of major fiber connections. Brain
development was related to a standardized measure of cognitive
control (the flanker task from the National Institutes of Health Tool-
box), a critical component of self-regulation. Ability to inhibit re-
sponses and impose cognitive control increased rapidly during
preteen years. Surface area of the anterior cingulate cortex
accounted for a significant proportion of the variance in cognitive
performance. This finding is intriguing, because characteristics of
the anterior cingulum are shown to be related to impulse, attention,
and executive problems in neurodevelopmental disorders, indicat-
ing a neural foundation for self-regulation abilities along a contin-
uum fromnormality to pathology. The relationshipwas strongest in
the younger children. Properties of large-fiber connections added to
the picture by explaining additional variance in cognitive control.
Although cognitive control was related to surface area of the ante-
rior cingulate independently of basic processes ofmental speed, the
relationship between white matter quality and cognitive control
could be fully accounted for by speed. The results underscore the
need for integration of different aspects of brain maturation to un-
derstand the foundations of cognitive development.

executive function | cognitive conflict | inhibition | morphometry

Self-regulation enables people to make plans, choose from al-
ternatives, control impulses, inhibit thoughts, and regulate so-

cial behavior (updated reviews in refs. 1 and 2). Several neuropsy-
chiatric conditions and problems have been related to deficiencies
in self-regulation [e.g., Attention Deficit Hyperactivity Disorder
(3), addiction (4), risk behavior (5), conduct problems (6), and poor
school and academic performance (7, 8)]. Although development
of self-regulation in children is the result of a dynamic interaction
between maturation and learning, we have scarce knowledge about
the role played by structural brain characteristics in this process.
Recent reports indicate that adjustment problems in childhood
psychopathology are related to structural brain characteristics (9–
13), but the brain basis for development of self-regulation in nor-
mal children is less well-understood. Thus, the purpose of the

present paper was to use multimodal neuroimaging to map the
structural brain characteristics related to self-regulation and cog-
nitive control in a large sample of 735 children between 4 and 21 y
of age.
Self-regulation is closely tied to the concepts of cognitive con-

trol, attention, and executive functions (14). The ability to handle
response conflict in pure cognitive tasks has been shown to cor-
relate with parents’ reports of their children’s behavioral control
(e.g., to delay actions and avoid lying, cheating, or other antisocial
behavior) (6, 15). Executive attention and effortful control have
been related to academic outcome, aspects of social adjustment
(16), and inhibitory control to early arithmetic competency (17).
More specifically, lower performance on the flanker task (see
below) has been related to poorer social behavior, increased rates
of peer rejection and more disturbing behavior in the classroom
(18), dimensions of school competence (19), and parent-reported
temperamental effortful control (20). This finding makes it pos-
sible to study the neural foundation of self-regulation by using
validated cognitive tasks with a high degree of experimental con-
trol. Evidence has converged on an executive attention network,
with the anterior cingulate being the central structure, as themajor
network responsible for resolving cognitive conflicts (21, 22). Of
special interest for the current investigation is that this network
seems less differentiated from other attention networks in infancy
and young childhood. The work by Posner (22) suggests that the
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anterior cingulate cannot exercise full control of other networks until
longer connections form during childhood. Thus, differentiation of
cognitive control networks is obtained through maturation of
major white matter (WM) tracts, which is measurable by diffusion
tensor imaging (DTI) (23–27), and therefore, gradually, an adult
organization of cognitive control and self-regulation emerges.
Thus, to be able to understand the structural foundation for self-
regulation and cognitive control during development, it is nec-
essary to map structural maturation of the anterior cingulate es-
pecially but also, long-distance projection fibers constituting the
major WM tracts of the brain.
Strikingly, in addition to their presumed critical role in the de-

velopment of cognitive control in normal children (28), structural
differences in prefrontal and cingulate cortices have repeatedly
been identified in children with a range of different psychopath-
ological conditions related to self-regulation and attention, in-
cluding AttentionDeficitHyperactivity Disorder, conduct disorder,
and prenatal substance exposure (10–13, 29–34). Thus, at the
neuroanatomical level, there seems to be a link between brain
areas involved in cognitive control and inhibition tasks and brain
areas associated with regulatory problems in different neuro-
developmental conditions. At the cognitive level, there seems to
be a relation between performance on cognitive control tasks and
reported daily life behavior. On this background, the purpose of
the present study was to conduct a detailed mapping of the re-
lationship between cognitive control, as indexed by performance
on a well-validated version of the classical Eriksen flanker task
(35), implemented as part of the National Institute of Health
toolbox for Assessment of Neurological and Behavioral Function
(36, 37) and MRI measures of brain structure (Materials and
Methods). This mapping allowed us to test the combined influence
of cortical and WM maturation on performance of the anterior
cingulate control network.We hypothesized that cortical thickness
and surface area of prefrontal regions, especially the anterior cin-
gulate, would be related to cognitive control. Cortical thickness is
the distance from the gray matter/WM boundary (i.e., the WM
surface) to the outer surface of the brain (i.e., the pial surface),
likely partly reflecting the number of cells within cortical columns
(38). Cortical area for a participant describes the 2D extent of the
cortex compared with a standard brain, and it seems more closely
related to the number of cortical columns (38). Area and thickness
are genetically unrelated (39) but often confounded in measures of
cortical volume, which is the product of the two. In addition to
cortical thickness and area, we hypothesized relationships between
microstructure of major WM tracts and cognitive control. More
specifically, we expected high fractional anisotropy (FA) and low
apparent diffusion coefficient (ADC), both indications ofWM tract
maturation and integrity, to be related to cognitive performance.

Results
Flanker Task Performance. Age relationships were analyzed with a
nonparametric correlation (Spearman ρ) in cases where substantial
nonlinearity was observed; otherwise, a parametric correlation was
used (Pearson r). The task used was a version of the flanker task,
and the participants were to indicate which direction an arrow
presented on a computer screen pointed (Materials and Methods).
In the congruent condition, the target arrow was surrounded by
arrows pointing in the same direction, whereas in the incongruent
condition, the surrounding arrows pointed in the opposite di-
rection. Mean reaction time (RT) in the congruent condition was
789 ms (SD = 217) vs. 906 ms (SD = 293) in the incongruent
condition (t= 20.83, P< 10−75), and both were negatively related to
age (Spearman ρ, congruent RT = −0.53, P < 10−53; incongruent
RT = −0.61, P < 10−76). Mean incongruence effect (cognitive
conflict) on RT was 14.8% and negatively related to age (Pearson
r = −0.33, P < 10−19). RT in each condition as well as the incon-
gruence effects were plotted as a function of age, and smoothing
spline (40) was used to estimate age trends (Fig. 1). RT decreased
rapidly in the first part of the age range, plateauing at about
12–13 y in the congruent condition and about 14–15 y in the in-
congruent condition. The cognitive conflict effect followed the
same basic age trajectory. Perfect accuracy was used as inclusion
criterion, and therefore, it could not be analyzed (Materials and
Methods).

Cortical Surface Area. First, RT in the incongruent condition was
regressed on cortical area point by point on the surface without
anatomical constraints by general linear models, with genetic an-
cestry factor (GAF) (Materials and Methods), scanner, sex, age,
and RT in the congruent condition included as covariates of no
interest. This analysis was run in the full sample and the young
(age≤ 12 y) and older (age> 12 y) age ranges separately. A cluster
of negative effects covering the entire right anterior cingulate
was found for the young group (cluster size = 2,077 mm2, clus-
terwise P= 0.019, corrected) (Fig. 2) but not for the older group or
the total sample. For comparison purposes, the same analyses
were run for RT from the congruent and incongruent conditions
without congruent RT as a covariate. No relationships survived
corrections for multiple comparisons.
To illustrate the strength of the relationship, surface area of the

right caudal anterior cingulate was extracted as a region of interest
following the borders of the effect in Fig. 2 (i.e., in a completely
data-driven way) and regressed on incongruent RT, with GAF,
scanner, sex, and age included as covariates separately for the
younger and older parts of the sample bymultiple linear regression
analysis. Partial β was −0.23 (P < 0.05) for the younger sample
compared with −0.02 [not significant (n.s.)] for the older sample.
With RT from the congruent condition included as an additional
covariate, the corresponding partial β values for incongruent RT
were −0.32 (P < 0.05) for the younger group and −0.01 (n.s.) for

Fig. 1. Cognitive performance and age. RT in z scores, corrected for sex, site, andGAF, plotted as a function of age for congruent (Left) and incongruent (Center)
stimuli as well as the cognitive conflict effects operationalized as the percentage of slowing of RT for incongruent relative to congruent stimuli (Right). The red
lines represent the smoothing spline function, with the harshness of the smoothing parameter chosen to minimize Bayesian information Criteria (BIC) (40).
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the older participants. RT from the congruent condition did not
contribute significantly. Additional analyses showed relationships
of marginally less strength in the left hemisphere (artial β = −0.24
vs. −0.02 in the young and older groups, respectively, with con-
gruent RT as a covariate). The same type of analysis was done for
thickness of the right caudal anterior cingulate to test whether the
observed effects were specific to area. Although thickness did not
survive permutation testing, a significant relationship was found
(partial β = 0.11, P < 0.05). When congruent RT was added as
a covariate, this relationship ceased to be significant (partial β =
0.09, n.s.). Adding household income as a proxy for socioeconomic
status as an additional covariate did not affect any of the reported
relationships. There were no effects of sex on RT, but a positive
significant effect on anterior cingulate surface area for boys
(partial β = 0.18, P < 0.10−6) was found.
The relationship between right anterior cingulate surface area

and incongruent RT was plotted as a continuous function of age.
The relationship was strongest for the youngest part of the sample,
and it decreased linearly in strength with age (Fig. 3).

DTI. The relationships between RT in the incongruent condition
and theADCand FA in the 14major tracts were tested bymultiple
regressions, with GAF, scanner, sex, and age included as cova-
riates (Fig. 4). Significant positive RT relationships with forceps
major were seen for both ADC (β = 0.18, P < 0.014, corrected for
the number of comparisons) and FA (β = −0.20, P < 0.0014,
corrected). ADC and FA are related to WM integrity, and lower
ADC and higher FA indicate more mature WM tracts. Adding
socioeconomic status as an additional covariate did not affect the
relationships. Sex had no effect on the DTI measures. Forceps
major represents the posterior, occipital portion of the corpus
callosum. The exact delineation of the tract will vary somewhat
between individuals, which is illustrated in Fig. 4.
Analyses run separately for the youngest and oldest parts of the

sample did not yield significant results for either ADC or FA. In
contrast to the cortical results, where a linear reduction in strength
of the relationship with age was seen, the relationship between
ADC/FA and cognition was strongest around 6–10 and above 16 y,
with correlations not significant in themiddle part of the age range
(Fig. 3). The coefficient strength at different ages was generally not
very different and should be interpreted with caution.
The analyses were rerun with congruent RT as an additional

covariate. Neither of the RT measures was uniquely related to the
DTI variables for any of the tracts. To test to what degree the
different DTI parameters were complementary in explaining RT
incongruent, analyses were run where RT incongruent was the
dependent variable, and DTI parameters were included pairwise
as simultaneous predictors [ADC and FA, ADC and transverse
diffusion coefficient (TDC), ADC and longitudinal diffusion co-
efficient (LDC), FA and TDC, and FA and LDC]. In no cases did

a DTI parameter explain unique variance when it was entered
simultaneously with FA, whereas the opposite was true in most
instances. When FA and ADC in forceps major were entered, FA
was still significantly related to incongruent RT (β = −0.11, P <
0.01), whereas ADC ceased to be significant. The same was true
when FA was entered with TDC (β = −0.12, P < 0.005) and LDC
(forceps major FA β =−0.14, P < 0.00005). LDC and TDC did not
explain any additional variance to FA. In forceps major, both
ADC and TDC explained unique variance in incongruent RT
(ADC β = 0.53, P < 0.005; TDC β =−0.43, P< 0.02), and the same
was seen when ADC was entered with LDC (ADC β = 0.22, P <
0.00002; LDC β = −0.15, P < 0.005).

Multimodal Analysis. A final multiple regression analysis was run,
with RT from the incongruent condition as the dependent vari-
able and FA in forceps major and the area of the right caudal
anterior cingulate as joint predictors, with GAF, scanner and
site, sex, and age included as covariates of no interest. In this
analysis, both cortical area (β = −0.10, P < 0.002) and FA (β =
−0.13, P < 0.000005) contributed significantly to explain RT.

Discussion
The present study represents a major multicenter initiative to
understand the relationship between cognitive control and brain
structure in development. Cognitive control performance showed
a protracted developmental trajectory, and it was related to in-
dividual variability in brain structure. Interestingly, the relation-
ships between the brain measures and cognitive function were very
different for cortex and WM in terms of specificity and how the
relationships varied with age. The results underscore the need for
integration of different aspects of brain maturation to understand
the structural foundations of cognitive development. Further-
more, the data indicate that brain–cognition relationships are not
constant across development. Finally, the present results show
that large multicenter collaborative studies are feasible in neuro-
developmental research, yielding extended possibilities to increase
sample size and statistical power. Albeit cross-sectional and hence,
not well-suited to investigate change per se, the present study is
based on a very large sample, and it should be well-suited to

Fig. 2. Cortical surface area and cognitive conflict. Relationship between
incongruent RT and local cortical surface area in the participants 12 y or
younger corrected for age, sex, scanner, GAF, and congruent RT. The analyses
were unbiased, with no anatomical constraints imposed. The effect was cor-
rected for multiple comparisons by z Monte Carlo simulations and thresh-
olded at P < 0.05.

Fig. 3. Age relationships. (Upper) Correlations between incongruent RT and
area of the right caudal anterior cingulate (Left), FA (Center), and ADC
(Right) in forceps major. Correlations were calculated in 5-y age bins, with
a moving time window of 1 y and the results smoothed (smoothing spline). P
values are from the nonsmoothed correlations. Age, sex, scanner, and GAF
were regressed out from all variables in addition to RT from the congruent
condition for the area correlations. (Lower) Relationships between age and
the imaging variables residualized for GAF, scanner, and sex. The age tra-
jectory is estimated with smoothing spline (see above). Age did not correlate
with right caudal anterior cingulate surface area (Pearson r = 0.06, P = 0.10),
whereas the correlations for FA and ADC were significant (Spearman ρ =
0.25, P < 0.10−10 and Spearman ρ = −0.08, P < 0.05, respectively).
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capture general trends in brain–behavior relationships with age in
development. The implications of the results are discussed below.

Structural Brain Maturation and Self-Regulation.Most children enter
a stage of self-regulation about preschool age, at which time they
are able to use rules, strategies, and plans to guide their behavior
(41). From around 4 y of age, an executive attentional network is
assumed to gradually differentiate from orienting and alerting
systems and become the dominant factor in cognitive control (6,
22). The present results show age differences that are in coherence
with a steep developmental trajectory of cognitive control from 4 y,
which gradually decreases in slope and plateaus at around 14–15 y.
Increases in processing speed could not account for all age-related
improvements in conflict processing, indicating that self-regulating
and executive abilities continue to develop throughout childhood
and well into adolescence (42–47).
Although strong group-level age-related performance en-

hancement was seen, not all children develop the same degree of
cognitive control at the same pace. The hypothesis of the present
study was that different structural brain features can explain parts
of the individual differences in self-regulation seen during de-
velopment. The relationship between cortical surface area and
cognitive control was found in the right caudal anterior cingulate,
and post hoc analyses showed a similar but weaker relationship in
the opposite hemisphere. Thus, although only the right hemi-
sphere survived proper multiple comparison corrections, we do
not believe that the data yield support to hemispheric asymmetry
of effects. An early study found a correlation between total right
anterior cingulate area and controlled processing in a group of
children (28), which fits very well with the present results. The
anterior cingulate cortex is implied as a critical region for execu-
tive attention, cognitive control, and self-regulation (15, 22, 48,
49), and its structural characteristics have been found to be related
to self-regulation in a number of neurodevelopmental conditions (9–
13, 32, 50, 51). An intriguing possibility is that individual variation in
cortical morphology is related to problems with self-regulation and
executive attention on a continuous scale from normality to pa-
thology. Even in normally developing children, variations in the
same brain structural features that are seen in groups with dif-
ferent risk factors, conditions, or pathology emerge as predictors
of cognitive function. Two recent studies of normal children found
that parent-reported hyperactivity, impulsivity (11), and conduct
problems (32) were related to cortical thickness in several areas,
including the anterior cingulate. The present results suggest that
a similar phenomenon is observed even in a controlled experi-
mental situation. This finding also yields support from a previous
study of adults and the elderly, where executive control was related

to anterior cingulate thickness, and it was suggested that cortical
maturation could be the driving causal factor (52). Other studies
have not found cognitive control to correlate with cortical mor-
phometry in the anterior cingulate (46). However, cortical surface
area has, to our knowledge, not been directly investigated in pre-
vious studies.
Improvement in cognitive control and self-regulation may be

tightly coupled to differentiation of the executive attentional sub-
system fromother attentional networks in the brain, likely depending
on maturation of major long-distance projection tracts and en-
abling anterior cingulate and likely, other prefrontal structures to
take more dominating roles (22). Although the present data can-
not be used to test this idea of network differentiation, it is in-
teresting to note that, although anterior cingulate area shared
unique variance with cognitive control, the relationship between
characteristics of the WM tracts and cognitive control was de-
pendent on mental speed as measured by congruent RT. Thus,
cortical surface area was a more specific predictor of cognitive
control thanWMmaturation, which in the present data, was more
related to general improvement in mental speed. WM character-
istics may be a general factor of importance for a range of cog-
nitive tasks, including general intellectual abilities or g (53–56).
Furthermore, forceps major is not assumed to be especially im-
portant for cognitive control. This assumption does not exclude
the possibility that maturation of specificWM tracts can be related
to more specific cognitive functions (57–60), but it will likely
also have general beneficial effects on major cognitive functions
through facilitation of processing speed (61–71).
The independence of cortical area and WM properties in

explaining cognition was also evident when testing how the brain–
cognition relationship varied continuously as a function of age.
Although the relationship between cortical area and control was
strongest for the young participants and linearly dropped off with
increasing age, the DTI–cognition relationships showed a more
complex age function. Different developmental slopes for cortical
structure and WM properties (27), only weakly related and com-
plementary in explaining intellectual development (54), have been
shown previously. Varying brain–cognition relationships across age
have also been shown (55, 72) but seldomwith multimodal imaging
data (73). The time-varying relationship may reflect the processes
that are of most importance at different stages in development.
One limitation is the cross-sectional design, which prevents

depiction of individual trajectories and differences in change and
direct estimation of relationships between change across different
variables. The conclusions from the present study should be rep-
licated in longitudinal studies, but very few such studies exist.
Another limitation is the use of a single standardized measure of
cognitive control. Self-regulation is a wide concept, which could be
measured both inside and outside the laboratory with different
tasks and procedures, and the generalizability of the findings needs
to be investigated in a wider context in future studies.

Conclusion. Cognitive control develops rapidly during childhood
years, with protracted development in adolescence, and it was re-
lated to an area of the anterior cingulate. This finding is intriguing,
because anterior cingulate is related to impulse, attention, and
executive problems in a range of neurodevelopmental disorders,
indicating an overlapping neural foundation for self-regulation
abilities from normality to a spectrum of neurodevelopmental
disorders. WM properties added to the picture by explaining ad-
ditional variance in cognitive control.

Materials and Methods
Sample. Data used in the preparation of this study were obtained from the
Pediatric Imaging, Neurocognition, and Genetics (PING) Study database (http://
ping.chd.ucsd.edu), which was funded in 2009 by the National Institute on
Drug Abuse and the Eunice Kennedy Shriver National Institute of Child
Health & Human Development as a 2-y project of the American Recovery and

Fig. 4. Probabilistic tractography. Selected tracts in individual participants
of different ages. These tracts were all significantly related to incongruent
RT at P < 0.05 (ADC: corpus callosum and superior longitudinal fasciculus; FA:
corpus callosum and inferior longitudinal fasciculus), but only forceps major
survived Bonferroni corrections (ADC and FA).
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Reinvestment Act (SI Text). The human research protections programs and
institutional review boards at the universities participating in the PING project
approved all experimental and consenting procedures, and all participants or
their legal guardian gave informed consent. Participants were screened for
history of major developmental, psychiatric, or neurological disorders, brain
injury, or other medical conditions that affect development. The sample used
for the present analyses included participants registered and processed at the
University of California at San Diego by February 12, 2012. Only participants
with cortical and subcortical segmentations that passed quality check who
were not twins or triplets and met the flanker task performance criteria (see
below) were included. The final sample consisted of 735 children ages 4.7–21 y
(mean = 14.3 y, SD = 4.2, 354 girls). Of these children, 684 children had usable
DTI scans. A GAF was calculated as a proportion of European, African, Native
American, East Asian, Central Asian, and Oceanic decent based on genotype
analysis, or whenmissing (n = 38), values from self-report were used to predict
GAF. Each of nine US sites (Weil Cornell Medical College, University of Cal-
ifornia at Davis, University of Hawaii, Kennedy Krieger Institute, Massachu-
setts General Hospital, University of California at Los Angeles, University of
California at San Diego, University of Massachusetts Medical School, and Yale
University) contributed to the sample.

Cognitive Task. Amodified version of the Eriksen flanker task (35) included in
the National Institutes of Health Toolbox Cognitive Function Battery was
used (37) (SI Text). This well-validated task is suitable to induce response
conflict, reflecting more complex cognitive processing, including inhibitory
processes and generally, more top-down and controlled attention (74). The
participants are required to press a button to indicate to which direction
a target arrow points. The target is surrounded by arrows (flankers) that
point in the same (congruent) or opposite (incongruent) direction of the
target. After a practice block, 20 trials (13 congruent and 7 incongruent)
were presented; 75 of 836 participants were excluded, because they did not
meet performance criteria of accuracy and RT (26 participants were excluded
because of the additional exclusion criteria described above).

Imaging Data Acquisition and Processing. Across nine sites and 12 3T scanners,
a standardized multiple-modality high-resolution structural MRI protocol was
implemented involving 3D T1-weighted volumes and a set of diffusion-

weighted scans (SI Text). Acquisition protocols were identical or nearly iden-
tical across all sites. Image postprocessing and analysis were performed using
a fully automated set of tools available in the Freesurfer software suite (http://
surfer.nmr.mgh.harvard.edu/) (75–81) as well as an atlas-based method for
delineating and labeling WM fiber tracts (82). Continuous maps of cortical
surface area were obtained by computing the area of each triangle of a
standardized tessellation mapped to each subject’s native space using a
spherical atlas registration procedure (76) (SI Text).

Statistical Analyses. Scanner,age, sex,andGAFwere includedascovariates inall
analyses of brain–cognition relationships. All analyses were run for the whole
age range and the youngest (age ≤ 12 y) and oldest (age > 12 y) parts of the
sample separately because of substantial nonlinearity in RT across age. De-
velopmental trajectories were estimated by use of a nonparametric approach,
the smoothing spline (SI Text) (40), without any restrictions on the shape of the
curve. To show effect sizes in regions and tracts, Pearson correlationwere used
for approximate linear relationships, and Spearman ρ was used for nonlinear
relationships. Relationships between RT and cortical thickness and areal were
tested vertexwise by general linear models. z Monte Carlo simulations, as
implemented in FreeSurfer (83, 84), were used for multiple comparison cor-
rections across space and synthesized with a cluster-forming threshold of P <
0.05 (two-sided). The results were thresholded at P < 0.05, corrected. FA and
ADC in 14 tracts of interest were tested by multiple regression analyses, and P
values were Bonferroni-corrected by a factor of 28 (14 tracts × 2 metrics).
Additional analyses were run with LDC and TDC.
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