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Abstract

Background The role of bone structure, one component

of bone quality, has emerged as a contributor to bone

strength. The application of high-resolution imaging in

evaluating bone structure has evolved from an in vitro

technology for small specimens to an emerging clinical

research tool for in vivo studies in humans. However, many

technical and practical challenges remain to translate these

techniques into established clinical outcomes.

Questions/purposes We reviewed use of high-resolution

CT for evaluating trabecular microarchitecture and cortical

ultrastructure of bone specimens ex vivo, extension of

these techniques to in vivo human imaging studies, and

recent studies involving application of high-resolution CT

to characterize bone structure in the context of skeletal

disease.

Methods We performed the literature review using Pub-

Med and Google Scholar. Keywords included CT, MDCT,

micro-CT, high-resolution peripheral CT, bone microar-

chitecture, and bone quality.

Results Specimens can be imaged by micro-CT at a res-

olution starting at 1 lm, but in vivo human imaging is

restricted to a voxel size of 82 lm (with actual spatial

resolution of * 130 lm) due to technical limitations and

radiation dose considerations. Presently, this mode is lim-

ited to peripheral skeletal regions, such as the wrist and

tibia. In contrast, multidetector CT can assess the central

skeleton but incurs a higher radiation burden on the subject

and provides lower resolution (200–500 lm).

Conclusions CT currently provides quantitative measures

of bone structure and may be used for estimating bone

strength mathematically. The techniques may provide

clinically relevant information by enhancing our under-

standing of fracture risk and establishing the efficacy of

antifracture for osteoporosis and other bone metabolic

disorders.

Introduction

The skeleton is composed of cortical and trabecular bone,

both contributing to bone strength and the resistance of

bone to fracture. The strength of bone and risk of fracture

are important outcomes in the study of growth and peak

bone accrual, aging, postmenopausal bone loss, cancer-

related bone loss, and for conditions such as diabetes,

osteogenesis imperfecta, osteoarthritis, rheumatoid arthri-

tis, and others. Typically, clinical assessment of skeletal

health is based on measures of bone mineral density

(BMD), usually obtained using dual-energy xray absorpti-

ometry (DXA), a two-dimensional, projection-based

radiographic technique that measures integral BMD of both

cortical and trabecular bone (areal BMD). In addition to

DXA, three-dimensional quantitative CT (QCT) is used to

assess BMD. This three-dimensional technique measures

volumetric BMD and permits characterization of bone

geometry and density as elements of fracture risk.
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Furthermore, QCT can examine cortical and trabecular

bone independently.

BMD only explains about 70% to 75% of the variance in

strength [2], while the remaining variance is due to the

cumulative and synergistic effect of factors such as bone

macro- and microarchitecture, tissue composition, and

microdamage [30, 132]. In a multicenter fracture inter-

vention trial, the antifracture efficacy of all drugs tested

was only partially explained by their effects on BMD [9].

In this context, and specifically in osteoporosis, the concept

of bone quality emerged [132]. Bone quality represents

different properties of bone to researchers and could

encompass one or all of the factors mentioned. Trabecular

and cortical bone play important roles in the prediction of

bone strength and are affected by age, gender, and meta-

bolic conditions and have varying responses to therapy.

Sites containing predominantly trabecular bone, such as the

hip, spine, and wrist, are most frequently associated with

increased fracture risk [39]. Traditionally, trabecular mic-

roarchitecture is assessed from bone biopsies by two-

dimensional histomorphometry [116], applying stereologic

principals to measure trabecular bone volume fraction (the

ratio of mineralized bone volume to total volume [BV/

TV]), trabecular thickness (Tb.Th), trabecular separation

(Tb.Sp), and trabecular number (Tb.N). On the other hand,

cortical bone constitutes about 80% of total bone mass. In

previous studies, cortical thinning [119] and increased

cortical porosity [13] were important factors in the

assessment of osteoporosis and bone strength. Recently,

focus increased on the ultrastructure of cortical bone that

can be attributed to resorption spaces, merging of Haver-

sian canals, and clustering of osteons [6, 77]. Since the

ultrastructure of cortical bone has a major impact on its

mechanical properties [131, 152], characterizing cortical

ultrastructure is also important in the context of bone

strength and prediction of fracture risk. With the advent

of improved three-dimensional imaging techniques, such

as micro-CT [51, 126], high-resolution peripheral QCT

(HR-pQCT) [14, 82], and multidetector CT (MDCT) [73],

it is possible to perform in vitro and in vivo imaging of

bone across different structural scales from the whole bone

to the ultrastructural level.

In a recent publication for the radiographic imaging

communities, we reviewed three-dimensional techniques

for assessing bone structure in osteoporosis [86]. We

described MRI, image processing, and CT, concluding

these modalities have the potential to play an important

role in imaging three-dimensional trabecular microarchi-

tecture in osteoporosis. In this review, we focus on the

development and application of high-resolution CT for

quantifying cortical and trabecular bone structure covering

specific clinical applications of interest to the orthopaedic

research community.

We reviewed (1) the fundamentals of high-resolution

CT for evaluating trabecular microarchitecture and cortical

ultrastructure, (2) use of micro-CT for studying bone

specimens ex vivo, (3) use of MDCT for in vivo human

imaging studies, and (4) recent studies using HR-pQCT to

characterize bone structure in the context of skeletal dis-

ease, particularly its ability to discriminate between

subjects with and without fractures and monitor longitu-

dinal response to therapeutic intervention.

Search Strategy and Criteria

To determine the relevant articles, we used the PubMed

(PM) and Google Scholar (GS) search engines. The fol-

lowing list of search phrases was used, with the number of

results reported parenthetically: ‘‘CT’’ AND ‘‘trabecular

bone microarchitecture’’ (PM: 14; GS: 549); ‘‘microCT

iliac crest biopsy’’ (PM: 17; GS: 122); ‘‘microct’’ AND

‘‘cortical bone porosity’’ (PM: 19; GS: 74); ‘‘XtremeCT’’

(PM: 8; GS: 139); ‘‘HR-pQCT’’ (PM: 68; GS: 247);

‘‘MDCT’’ AND ‘‘bone structure’’ (PM: 7; GS: 111);

‘‘SR-lCT’’ AND ‘‘bone structure’’ (PM: 8; GS: 82). From

these, we selected those articles we believed most relevant.

Fundamentals of CT Imaging

CT is a three-dimensional radiographic imaging technique.

The image formation process begins with the acquisition of

sequential radiographic projections captured over a range

of angular positions around the object of interest. The

cross-sectional field of view is reconstructed using estab-

lished computational techniques based on radon projection

theory [50]. Similar to simple radiography, the recon-

structed image’s intensity values represent the local

radiographic attenuation: a material property related to the

object’s electron density (atomic number and mass den-

sity). The contrast between soft and mineralized tissue in

CT is high, due to the relative electron-dense inorganic

component (calcium hydroxyapatite) of the bone matrix

[8]. Since the logarithm of the measured absorption scales

linearly with the length of material the beam has pene-

trated, simultaneous quantitative measurements of bone

density are possible. Calibration of grayscale linear atten-

uation to BMD is accomplished by imaging reference

phantoms containing objects with known hydroxyapatite

concentrations [21, 49].

These principles capture high-resolution images of bone

across a range of structural scales. Several classes of CT

devices are presently used for high-resolution imaging of

trabecular microarchitecture and cortical ultrastructure

(Table 1). Techniques with spatial resolution between 1
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and 100 lm are referred to as micro-CT and may replace

tedious serial staining procedures required by histomor-

phometric analysis of thin sections and offer the possibility

of longitudinal in vivo investigations in small animals, such

as mice and rats. Many early micro-CT approaches used

synchrotron radiation (SR) [59], which is still the method

of choice for ultrahigh-resolution applications. The use of

desktop laboratory scanners equipped with xray tubes is

much more convenient than performing an experiment at

one of the few synchrotron facilities available worldwide.

Initial and ongoing university-based research in the past

decade has led to the development of a variety of com-

mercial xray tube-based micro-CT scanners (Table 1).

Application of standard whole-body MDCT to imaging

trabecular bone in the central and peripheral skeleton was

investigated at several research institutes [5, 43, 58, 70,

73]. Compared to standard two-dimensional QCT, volu-

metric MDCT imaging studies use higher-dose acquisition

protocols (3 mSv versus 0.06–0.3 mSv) with a higher

in plane resolution (200–300 lm versus 500–1000 lm)

and smaller slice thickness and spacing (500 lm versus

1–10 mm). Recently, a standard MDCT gantry was com-

bined with two-dimensional flat panel detector technology

to provide rapid continuous acquisitions at high isotropic

spatial resolution [60, 124]. In the last 5 years, a high-

resolution, limited-field-of-view CT device became com-

mercially available for dedicated imaging of bone structure

in the peripheral skeleton [14, 80, 82, 97]. The HR-pQCT

imaging system consists of a microfocus xray source and

high-resolution charge-coupled device (CCD) detector that

can produce tomographic images with a nominal resolution

as high as 41 lm for a 12.6-mm field of view.

Micro-CT

Micro-CT has achieved widespread use in the laboratory

for rapid, nondestructive imaging of bone specimens [47,

51, 108] and noninvasive imaging in animal models [54,

148]. The pervasive use of this technology at many

research institutes invested in bone science research has

widely eclipsed traditional histomorphometry for evaluat-

ing bone microarchitecture. However, micro-CT does not

provide direct information on cellular function and

remodeling activity, which continues to be the domain of

bone histology.

Conventional laboratory micro-CT typically uses a cone-

beam, polychromatic xray source, which produces photons

spanning a broad range of energies. In contrast, SR micro-

CT, only available at a limited number of particle acceler-

ator facilities worldwide, is typically performed using a

parallel, monochromatic beam [72, 83, 127, 141]. While the

first commercial micro-CT scanner consisted of a single-

row 512-pixel detector [126], modern scanners employ

areal CCD detectors up to 11 megapixels and are capable of

acquiring projection data for more than 1000 slices simul-

taneously [129, 135, 151]. Dedicated specimen ex vivo

scanners are typically designed with the specimen oriented

Table 1. Descriptive summary of high-resolution CT technologies available

Modality References Primary manufacturers Skeletal

sites

Field of

view size

(mm)

Voxel

size (lm)

Effective

dose

Typical

scan time

Micro-CT 55, 129,

135, 151

GE Heathcare (Waukesha, WI)

Scanco Medical AG

(Brüttisellen, Switzerland)

Siemens (New York, NY)

SkyScan (Kontich, Belgium)

Xradia (Pleasanton, CA)

Specimens

Biopsies

(ex vivo)

2–100 0.3–100

(isotropic)

NA 30 minutes

to 3 hours

MDCT/fp-vCT 5, 41, 43, 44,

69, 70, 73,

85, 118, 124

GE Heathcare (Waukesha, WI)

Philips (Amsterdam, The

Netherlands)

Siemens (New York, NY)

Toshiba Corp (Tokyo, Japan)

Specimens

(ex vivo)

Spine

Femur

Forearm

(in vivo)

100–250 156–300

(in plane)

300–500 (slice

thickness)

0.1–5 mSv \ 30 seconds

HR-pQCT 14, 82, 130 Scanco Medical AG

(Brüttisellen, Switzerland)

Specimens

(ex vivo)

Distal radius

Distal tibia

(in vivo)

126 41–123

(isotropic)

3–4 lSv 3 minutes

NA = not applicable; MDCT = multidetector CT; fp-vCT = flat-panel volumetric CT; HR-pQCT = high-resolution quantitative CT.
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on a high-resolution motorized stage for translation and

rotation. In this scenario, the source and detector remain in a

fixed position during the scan, while the specimen rotates in

the field of view. Conversely, preclinical micro-CT systems

designed for in vivo imaging of small animals utilize a fixed

gantry with the xray source and detector rotating and

translating about the field of view [54, 147].

Analogous to clinical QCT, the grayscale attenuation

values of reconstructed micro-CT images can be converted

to hydroxyapatite concentration. Various calibration pro-

cedures based on idealized phantoms or theoretical

calculations were established to derive relations between

attenuation and BMD [21, 72, 102, 107, 110, 113]. How-

ever, micro-CT imaging is subject to xray scattering (SR

and polychromatic micro-CT) and beam-hardening effects

(polychromatic micro-CT) that can introduce nonnegligible

error in the depiction of mineralization that is spatially

variant and dependent on the geometry and composition of

the object imaged [48, 79, 102]. Methods to minimize

beam-hardening effects in conventional micro-CT include

xray filtration to block ‘‘soft’’ low-energy xrays [102]

and empirical corrections based on phantom measure-

ments [21]. Using these procedures, apparent BMD

and tissue level mineral density can be accurately mea-

sured (r2 = 0.78–0.99) in specimens of similar size and

composition [21, 79].

Morphometric indices analogous to classical histomor-

phometry can be calculated from micro-CT images of

trabecular and cortical bone. Comparison of structural

parameters of specimens scanned with these systems and

mechanical testing suggest the amount of bone and the

architecture of trabecular bone contribute to mechanical

strength [57]. Advanced image-processing methodologies

are used to quantify trabecular bone microarchitecture

beyond measures of bone volume fraction (BV/TV). Spe-

cifically, direct three-dimensional measures of mean

distances and measures of structural heterogeneity are used

to characterize trabeculae and marrow spaces [64, 65]

(Fig. 1). The degree of anisotropy, a measure of the degree

of structural orientation of the trabecular network, can be

calculated from the principal structural directions calcu-

lated by the mean intercept length techniques [63] and is

highly related to the directional dependence of bone’s

biomechanical properties [115]. A measure of the structural

connectedness was also adapted to bone, based on the Euler

number [114]. The shape of the trabecular structure is

characterized using the structure model index (SMI), an

index of surface convexity that estimates the degree to

which the structure consists of rod-like or plate-like

elements [66]. Furthermore, several groups developed

algorithms to decompose the trabecular structure to inde-

pendently quantify the volume and scale of rod-like and

plate-like elements [92, 117, 139].

The ultrastructure of cortical bone is an important

determinant of bone strength [128, 131], critical in fracture

initiation and propagation [146], and known to change with

age [37], disease [7], and therapy [11]. Volumetric and

morphologic characterization of the cortical ultrastructure

has predominantly focused on Haversian and Volkmann

canal network of cadaveric femoral neck specimens [13,

32, 36, 38, 153]. Resolution improvements heralding the

evolution of nano-CT (CT with submicron resolution)

recently paved the way for a complete evaluation of cor-

tical bone ultrastructure, including the distribution of

osteocyte lacunae [131, 146].

While volumetric density and microarchitecture infor-

mation provide improved fracture risk prediction and some

explanation for treatment efficacy, more direct estimates of

bone mechanical strength that inherently account for

geometry, microarchitecture, and even composition are the

ultimate goal for improving fracture risk prediction and

Fig. 1A–B Three-dimensional micro-CT images (16-lm isotropic

voxel size) show (A) the spatial distribution of thickness and (B) the

spatial distribution of the diameters of the intertrabecular marrow

space in two specimens of human trabecular bone calculated by

the direct three-dimensional distance transformation method of

Hildebrand and Ruegsegger [65].
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management of osteoporosis. Computational modeling

approaches were introduced to take advantage of the

detailed information in high-resolution images of bone.

Finite element analysis (FEA) is a common computational

tool in engineering fields, critical to design and failure

analysis. Applied to high-resolution images of bone, the

apparent biomechanical properties (stiffness, elastic modu-

lus) of a biologically complex microstructure are computed

by decomposing the structure into small cubic elements (the

voxels) with assumed mechanical properties [109, 143]

(Fig. 2). Numerous studies have utilized micro-FEA tech-

niques to investigate the micromechanics of bone strength,

failure, and relation to bone microarchitecture [81, 142].

As an ex vivo imaging modality, the application of

micro-CT to clinical research is limited to examining small

bone biopsy specimens. There are numerous data over the

last 20 years characterizing age, gender, and anatomic

differences in cadaveric specimens of bone [13, 45, 52, 64,

67, 68, 94]. Clinical applications generally preclude access

to the most relevant sites, such as the spine and proximal

femur. Accordingly, a minimally invasive bone biopsy is

typically acquired from the iliac crest [75]. Trabecular

microarchitecture at the iliac crest reflects vertebral frac-

ture status [56, 74] and changes after the onset of

menopause [1]. Quantification of bone structure from iliac

crest biopsies is also an important end point in longitudinal

drug efficacy studies of parathyroid hormone [33, 53, 76,

121], strontium ranelate [3], and various bisphosphonates

[11, 12, 46, 112, 120, 122, 123]. Borah et al. [11] recently

reported major ultrastructural changes to the cortical bone

of the iliac crest after 5 years of treatment with risedronate.

Despite the resolution advantages of in vitro imaging

studies, the invasiveness of the procedure, inherent vari-

ability in specimen collection [28, 29], and the limited

correlation to bone quality at clinically relevant sites for

fragility fracture (proximal femur, lumbar spine, distal

radius) [35] are drawbacks to the clinical application of

micro-CT.

MDCT

MDCT is a clinical CT technique available in most diag-

nostic imaging departments, using scanners from a number

of manufacturers (Table 1). Therefore, a dedicated scanner

is not required. The spatial resolution of this technique is

limited, with an in-plane resolution ranging from 150 to

300 lm and a minimum slice thickness of around 300 lm.

These spatial resolutions are above trabecular dimensions,

and imaging of individual trabeculae is subject to consid-

erable partial-volume effects. However, given the larger

size of intertrabecular spaces, trabecular bone parameters

obtained with this technique are observed to correlate

moderately well with those determined by contact radiog-

raphy and micro-CT of bone specimens (r = 0.53–0.70)

[71, 91], as well as micro-CT (r = 0.44–0.99) [43, 44, 69,

70, 85, 118]. The advantage of the MDCT technique is that

central regions of the skeleton critically relevant to osteo-

porosis and fracture risk assessment, such as the spine [70,

73, 85] and proximal femur [5, 43], can be visualized.

However, to achieve adequate spatial resolution and image

quality, the required radiation exposure is substantial, off-

setting the technique’s applicability in clinical, routine, and

scientific studies (Table 1). High-resolution CT protocols

are typically associated with an effective dose of approxi-

mately 3 mSv (1.5 years of natural background radiation),

several orders of magnitude greater than standard DXA or

HR-pQCT (4–13 lSv) and an order of magnitude higher

than standard two-dimensional QCT (0.06–0.3 mSv) [41].

While early MDCT systems used for bone structure

imaging typically consisted of four to 16 rows of detector

elements [73], modern systems have 64 to 320 rows [69].

Most recently, high-resolution areal CCD detectors have

been combined with a standard clinical CT gantry to pro-

vide substantial improvements in scan time and resolution

[124]. In each case, the tomographic acquisition is per-

formed with the subject lying supine on the scan table

within the gantry. The xray source and detector ensemble

continuously rotate about the field of view while the gantry

Fig. 2 A micro-CT image shows the distribution of stresses in a

human vertebral trabecular bone specimen under a simulated 1%

compressive strain by micro-FEA. Red areas correspond to the

locations of highest stress and blue to the areas of low stress.

FEA = finite element analysis.
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translates along the rotational axis, effectively producing a

helical series of projections [78]. Simultaneous calibration

of Hounsfield units to mineral density is typically accom-

plished by placement of a solid hydroxyapatite phantom

below the patient [49].

The analysis of trabecular microarchitecture from

MDCT and flat-panel volumetric CT image data primarily

involves the application of traditional histomorphometry

[5, 17, 43, 70, 118], where BV/TV, Tb.N, Tb.Th, and

Tb.Sp are calculated two-dimensionally using plate model

assumptions [116]. In contrast, Ito et al. [73] used direct

three-dimensional measures of trabecular dimensions,

connectivity, and SMI in a MDCT study of the lumbar

spine, finding a strong correlation (r = 0.98) between BV/

TV measured by micro-CT and MDCT. Other specialized

measures of trabecular dimensions using the fuzzy distance

transform (which does not require a threshold binarization

process) have been proposed by Krebs et al. [85].

To date, in vivo human studies using MDCT to assess

bone structure are limited due to radiation dose concerns.

Ito et al. [73] demonstrated SMI and BV/TV measured

from MDCT images of the lumbar spine provided superior

fracture discrimination to areal BMD by DXA. Graeff et al.

[58] showed teriparatide treatment effects are better mon-

itored by architectural parameters of the spine obtained

through MDCT than by BMD (Fig. 3). In a cross-sectional

cohort study of adolescent girls with and without

anorexia nervosa, Bredella et al. [17] observed diminished

trabecular microarchitecture at the distal radius in subjects

with anorexia nervosa compared to controls, despite no

differences in lumbar areal BMD. In a companion study,

Lawson et al. [89] observed the abnormal trabecular mic-

roarchitecture in these patients are predicted by IGF-1,

leptin, and androgen levels, with positive correlations

(r = 0.32–0.72) to BV/TV, Tb.Th, and Tb.N.

HR-pQCT

A dedicated extremity imaging system designed for

trabecular-scale imaging is currently available from a

single manufacturer (XtremeCT; Scanco Medical AG,

Brüttisellen, Switzerland). This device has the advantage of

a higher signal-to-noise ratio and spatial resolution (nom-

inal isotropic voxel dimension of 82 lm) when compared

to MDCT. Furthermore, the radiation dose is lower when

compared to whole-body CT and does not involve critical,

radiosensitive organs in skeletally mature adults. There are

several disadvantages to this technology. It is limited to

peripheral skeletal sites and provides no direct insight into

bone quality in the lumbar spine or proximal femur,

common sites for osteoporotic fragility fractures. Addi-

tionally, there are currently a limited number of devices

installed globally, which are primarily located at major

research institutions with few available in clinical radiol-

ogy departments.

Fig. 3A–D In vivo MDCT images of

the vertebral body show three-dimen-

sional reconstructions (A) pre- and

(B) postteriparatide therapy for 6 months,

(C) 12 months, and (D) 24 months.

Images provided by and printed with

permission of Claus C. Glüer, Mediz-

inische Physik, Klinik für Diagnosti-

sche Radiologie, Universitätsklinikum

Schleswig Holstein–Campus Kiel, Kiel,

Germany. MDCT = multidetector CT.
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In HR-pQCT, a standard protocol recommended by the

manufacturer is utilized for most studies [14, 82]. The

patient’s forearm or ankle is immobilized in a carbon fiber

cast fixed within the gantry of the scanner. A single scout

projection image of the distal radius or tibia is acquired to

define the tomographic scan region. This scout image is

acquired at an AP orientation at the wrist and at an oblique

(45�) anterolateral-posteromedial orientation at the ankle.

This tomographic region spans 9.02 mm in length (110 slices)

and is localized to a fixed offset proximal from either the

radial or tibial midjoint line and extends proximally. The

offset is 9.5 mm in the radius and 22.5 mm in the tibia

(Fig. 4). This method does not account for differences in

bone length and may be a confounding source of variability

in cross-sectional studies [16]. In the radius, the default axial

scan location partially includes the most common site for

fracture and location, where the bone microstructure is most

strongly correlated to experimental strength of the forearm

under a simulated falling load [106].

There are several different protocol modifications for

developmental studies in children and adolescents [26, 84]

to account for patient size and age-related changes in bone

length and to avoid radiation exposure to the epiphyseal

growth plate and inclusion of provisional mineralized tis-

sues from this region. In a cross-sectional study of age- and

gender-related differences in the microarchitecture of the

distal forearm of adolescents, Kirmani et al. [84] used a

fixed offset (1 mm) with respect to the proximal extent of

the distal epiphyseal growth plate of the radius. In contrast,

Burrows et al. [26] selected a region offset of 8% of the

total tibial length proximal to the tibial endplate. While

there are a number of studies underway investigating other

scan locations in adults, including more proximal sites

dominated by cortical bone, the internal configuration of

the XtremeCT gantry prohibits the positioning of true

diaphyseal sites in the radius or tibia within the limited

15-cm longitudinal range of the source-detector ensemble.

The reconstructed images are analyzed using a standard

protocol provided by the manufacturer. The operator

chaperones a semiautomated contouring process to identify

the periosteal boundary and segment the cortical and tra-

becular compartments [42]. The trabecular bone structure

is extracted using an edge enhancement and threshold

procedure [88]. While the importance of threshold selec-

tion for morphometric analysis is well described for other

CT devices [61], few studies to date investigate threshold

effects or propose new methods for HR-pQCT [23, 42].

The default compartmental and structural segmentation

provides the basis for the subsequent densitometric, mor-

phometric, and biomechanical analyses. For subjects with

very thin or highly porous cortical bone, this segmentation

procedure may fail to capture the cortical structure [42,

80]; therefore, more sophisticated autocontouring tech-

niques that operate on the fine-structure segmentation have

been proposed [18, 23]. For the XtremeCT, reproducibility

of densitometric measures is very high (coefficient of

variation \ 1%), while biomechanical and morphometric

measures typically have a coefficient of variation of 4% to

5% [14, 80, 82, 100, 105].

The linear attenuation values of the tomographic images

are converted to hydroxyapatite mineral densities using a

beam-hardening correction and phantom calibration pro-

cedure previously described for the ex vivo micro-CT

system [21]. Based on this calibration, volumetric BMD is

determined independently for cortical and trabecular bone

compartments using the segmentation process described

previously. HR-pQCT images are used to derive surrogate

measures of areal BMD in the ultradistal radius [22]. This

technique is associated with a high level of agreement

(r2 [ 0.8) with multiple clinical DXA devices.

Unlike MDCT, which has a large slice thickness relative

to the in-plane resolution, the high isotropic resolution of

HR-pQCT (82 lm) permits direct three-dimensional

assessment of intertrabecular distances. These measures

Fig. 4A–B Scout acquisition is

used to define the HR-pQCT

scan region for (A) the distal

radius and (B) the distal tibia.

The solid green region corre-

sponds to the imaging location

and consists of 110 slices span-

ning 9.02 mm longitudinally. In

the radius the scan region is fixed

9.5 mm proximal from the mid-

joint line, while in the tibia

the scan region is 22.5 mm prox-

imal from the tibial plafond.

HR-pQCT = high-resolution peri-

pheral quantitative CT.
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were validated against micro-CT gold standards [23, 93,

97]. From the binary image of the extracted trabecular

structure, three-dimensional distance transformation tech-

niques are used to calculated trabecular number [65].

While the intertrabecular distances are large compared to

the voxel dimension, the average trabecular thickness

(100–150 lm) is only one to two voxels wide. Accord-

ingly, direct measures of thickness and bone volume are

complicated by considerable partial-volume effects. In the

standard analysis protocol, BV/TV is derived from the

trabecular volumetric BMD, assuming a fixed mineraliza-

tion of 1200 mg hydroxyapatite per cm3 for compact bone

(BV/TV = Tb.BMD/1200). Trabecular BMD is deter-

mined by calculating the mean mineral density of the full

medullary compartment. From the direct measure of Tb.N

and the densitometrically derived BV/TV, Tb.Th and

Tb.Sp are derived using standard stereologic relations,

assuming plate model geometry [87, 116].

There are several potential concerns with this approach.

First, Sekhon et al. [134] documented substantial errors in

the measurement of trabecular BMD related to biologically

relevant variations in cortical thickness and the magnitude

of trabecular BMD itself. This may be related to xray scatter

effects and residual beam-hardening artifacts. These errors

are primarily a concern for cross-sectional studies, when

cortical thickness and trabecular BMD may span a broad

range. It is less of a concern in longitudinal studies, where

the percent of change as the primary end point, such as age-,

disease-, and therapy-related changes in cortical thickness

and trabecular BMD, is comparatively small. Second, the

assumption of a fixed-matrix mineralization is inconsistent

with the established action of many common antifracture

therapeutics [10]. Changes in matrix mineral density is

expected to cause an increase in BMD, irrespective of bone

volume changes, and result in an overestimation of BV/TV

and propagate error to the derivative measures of Tb.Th and

Tb.Sp, confounding any actual therapy-related effect on

trabecular bone volume and structure.

Several studies investigate other measures of bone

microarchitecture and topology from HR-pQCT images,

including connectivity, SMI, and anisotropy; however,

there is mixed evidence of their reliability at in vivo

resolutions [23, 93, 97, 136]. Recently, more sophisticated

approaches to cortical bone segmentation have been pro-

posed [18] that allow direct three-dimensional assessment

of cortical thickness and quantification of cortical ultra-

structure (Fig. 5), including intracortical porosity and canal

diameter [24, 111]

The ability of HR-pQCT to resolve the trabecular

microarchitecture and a level of the cortical ultrastructure

lends itself to calculating direct estimates of bone strength

by voxel-based micro-FEA. For HR-pQCT scans of the

distal radius and tibia, this is typically used to estimate

strength under uniaxial compression, which approximates

to the common loading condition for Colles’ fracture of the

radius [106] and normal gaited loading for the tibia. This

technique was validated against both higher-resolution

models (based on micro-CT images) and empirical mea-

sures of strength [93, 99]. The application of micro-FEA is

primarily performed assuming homogeneous material

Fig. 5A–D (A, B) Cross-sectional

HR-pQCT images through the

distal radius show two individuals

with identical areal BMD by

DXA at the ultradistal radius

but substantial differences in tra-

becular and cortical structure.

(C, D) Three-dimensional ren-

derings of the cortical and

trabecular bone compartments

and intracortical porosity (high-

lighted in red) were segmented

using software described by

Burghardt et al. [19]. HR-pQCT =

high-resolution peripheral quan-

titative CT; BMD = bone min-

eral density; DXA =dual-energy

xray absorptiometry.
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properties [15, 24, 40, 93, 99, 105], although it is also

possible to produce models with material properties scaled

according to mineralization [95, 99]. In addition to whole-

bone mechanics, micro-FEA can be used to determine the

relative load distribution between cortical and trabecular

compartments [98] and estimate mechanical implications

of specific structural features, such as the resolvable cor-

tical ultrastructure [24].

For clinical investigations into longitudinal changes in

HR-pQCT-derived measures of bone quality, it is critical

baseline and followup scans be matched, since bone

structure and geometry vary substantially along the axial

direction [16]. Operator positioning for followup scans are

aided by visual reference to the positioning of the baseline

scan. Furthermore, postprocess image registration is per-

formed to ensure comparable regions of interest are used

for the image analysis. The manufacturer provides software

that matches slices based on the periosteal cross-sectional

area and limits the analyzed region to the slices common in

baseline and followup [87]. Alternatively, MacNeil and

Boyd [100] demonstrated three-dimensional image regis-

tration techniques can provide improved short- and

medium-term reproducibility when compared to the default

slice-matching approach. This approach may be more

appropriate in longitudinal studies (long-term studies,

anabolic therapy trials) where periosteal apposition would

confound registration based strictly on cross-sectional area.

As discussed earlier, the challenge in obtaining meaningful

results in longitudinal studies in children or adolescents

experiencing rapid growth is not trivial and requires careful

consideration of standardized procedures for scan posi-

tioning and analysis [26, 101].

There is a growing body of literature featuring

HR-pQCT assessment of bone quality. The first cross-

sectional studies by Boutroy et al. [14] and Khosla et al.

[82] reported gender-specific, age-related differences in

trabecular bone microarchitecture. Several centers have

observed age-related differences in micro-FEA estimates

of bone strength in normative cross-sectional cohorts [24,

40, 96]. Furthermore, Burghardt et al. [24] and Macdonald

et al. [96] demonstrated the ability of HR-pQCT to detect

dramatic age-related differences in cortical porosity in

females using new techniques for the analysis of cortical

ultrastructure [19]. A microstructural basis for ethnicity-

related differences in bone strength between East Asian

and white women was reported in two studies [149, 150].

Sornay-Rendu et al. [137] suggested cortical and trabecular

morphology provided additional fracture discrimination

independent of areal BMD in osteopenic women. In the

same cohort, Boutroy et al. [15] showed micro-FEA

mechanical measures provided additional discriminatory

power between osteopenic women with and without distal

radius fractures. While the initial focus was predominantly

related to fracture discrimination in postmenopausal

osteopenia and osteoporosis [15, 103, 104, 137, 138, 140,

144, 145], a number of studies have utilized HR-pQCT to

investigate developmental changes in bone quality and

fracture risk [27, 34, 84], as well as secondary causes of

bone loss [4, 20, 31, 62, 90].

Most recently, data from the first HR-pQCT single- and

multicenter longitudinal trials were published. In a multi-

center, head-to-head, randomized, placebo-controlled trial

of denosumab (a RANKL inhibitor) and alendronate (a

bisphosphonate), Seeman et al. [133] reported more pro-

nounced antiresorptive efficacy with denosumab than

alendronate. In particular, cortical thickness was preserved

or improved at the radius and tibia with either treatment,

while cortical bone loss progressed in the control group.

Burghardt et al. [25] reported similar cortical bone changes

and additionally showed a preservation of compressive

bone strength by micro-FEA after 24 months of alendronate

treatment. Longitudinal microarchitectural changes also

occurred with strontium ranelate [125] and teriparatide [95].

Discussion

With the advent of new imaging equipment, image-

processing methods, and mathematical modeling tech-

niques, the importance of trabecular microarchitecture and

cortical ultrastructure in the context of bone strength and

fracture risk has received considerable attention. This

review provided the essential background of high-resolution

CT techniques now in use for clinical skeletal research and

summarized the important clinical applications of this

technology reported to date.

In focusing on the clinical applications of CT imaging,

we did not directly cover a number of important applica-

tions of this technology in basic skeletal research. In

particular, we did not review (1) numerous ex vivo cadav-

eric studies conducted to investigate structure-function

relationships in cortical and trabecular bone; (2) preclinical

imaging studies in animal models of disease, genetic

intervention, and environmental effects on skeletal health;

and (3) analysis of microarchitecture using texture analysis.

Furthermore, it is important to recognize other imaging

modalities, such as high-resolution projection radiography,

MRI, and phase-contrast xray imaging, may also be used to

assess bone microarchitecture. This review did not cover

the substantial body of literature on these subjects.

Ex vivo micro-CT is the longest-standing technology

used for nondestructive three-dimensional imaging of bone

microstructure. Micro-CT scanners resolve the cortical

and trabecular structure of human bone specimens and are

used to evaluate aspects of bone quality in the context of

skeletal disease and therapeutic interventions. However,
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their clinical utility is limited to small biopsy samples,

typically taken from the iliac crest.

Translation of these techniques to in vivo imaging

modalities, such as the MDCT and HR-pQCT, are subject

to technical limitations related to image quality, radiation

dose considerations, and subject motion. They provide

images at resolutions approximately equal to Tb.Th

(HR-pQCT) or intertrabecular distances (MDCT). Further-

more, while MDCT has the advantage of being able to

image central skeletal sites, such as the spine and proximal

femur, the images represent trabecular texture more than a

true visualization of the individual trabecular structure.

Similarly, HR-pQCT may not resolve the finest trabeculae

or the complete scale of cortical ultrastructure features.

Despite the challenges and limitations facing current in

vivo CT imaging technologies, morphologic and biome-

chanical indices determined from these techniques

correlate well with micro-CT [73, 97].

Finally, we demonstrated trabecular microarchitecture

and cortical ultrastructure measured in vivo show age-,

gender-, and race-dependent differences and provide

improved fracture discrimination. Early longitudinal

HR-pQCT observations suggest it is possible to detect

structural changes induced by treatment. Ongoing studies

and new results from therapeutic trials will provide a clearer

indication as to whether trabecular microarchitecture and

cortical ultrastructure measured using these in vivo meth-

ods will play a role in further understanding the affect of

aging, disease, and interventions on skeletal health.

To date, there are no prospective fracture trials or large

therapeutic trials used to draw conclusions regarding the

role of in vivo assessment of trabecular microarchitecture

and cortical ultrastructure in predicting bone strength and

fracture status. These studies are warranted, and it would

greatly enhance the field to establish a new set of diag-

nostic biomarkers that complement or improve upon areal

BMD measured by DXA. The primary obstacles to

achieving this goal are the substantial cost of large-scale

human studies, the limited dissemination of the technol-

ogy to clinical centers, the minimal standardization of

image acquisition and image-processing protocols, and a

lack of crosscalibration and quality control procedures

(including standardized subject motion detection) for

reliable data pooling in multicenter trials. Efforts to

overcome the calibration issues, standardization, and

multicenter comparative studies are needed to lay the

groundwork for future large-scale multicenter trials and

prospective studies.
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