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ABSTRACT

In large lakes, it is usually impossible for logistic reasons to
collect enough samples to analyze spatiél patterns of éigae,”zooplénkton,
nutrients or physical factors using available methods. Yet such an analysis
would be ecologically useful. Using results frbm synoptic mgasutements
which most- limnologists could gather, we had three objettives. First,
to develép a statistical frequency distribution more suitable for aquatic
plankton than exiéting.ones. Second, to analyze the'synobfic data using
fhis'distribution. Third, to use the‘results of our analy§is to quantifyi'
phytoplankton spatial relations and to investigate physical and eCologiéal
. factors which control fhem. We analyzed forty-three sets of data (about
.,thirty—tﬁo samples per set) representing eighteen freshwatér phtoplénktoh
genera and obtained reliable results -using three fitted paraméters for
each set. . We explicitly separated local and regional variability, thus
avoiding overéstimates of regional variability (patchiness) caused by
counting individﬁal cells of colonial or locally associatea species as
.iﬁdependent unitsg Our patchiness estimates showed Signifiéant between-
species variations which could be related to ecological and environmental

factors.



INTRODUCTION
Spatial'organizations of biotic cémmunities are an important part-

of the'dynamical structure of these communities. Floral and faunal
terrestrial populations are often found in clumps or patches foi a
variety of reasons, inéluding variations in nutrient supply (soil
conditiohs) and water supply, limited dispersal in reproduction and pro-
tection afforded from predation.‘ In the aquatic environment, these
etffects are blurred by advective circulation and turbulent mixing. Because
mixing is incomplete, a good deal of spatial coherence exists. For
marine and freshwater phytoplankton, patchiness is common and appears.
to be ecologically significanf (Richerson, Armsfrong and Goldman, 1970;
Steele, 1974j Riley, 1976). é_pfiori one would expect patchiness to be
a disadvantage because of such'drawbagks as nutrient depletion and
predation by zooplankton or fungi. In spite of this,:dénse patches occur
and one can speculate that patchiness may provide competitive advantages
to some phytoplankton species. These might include shading of competing
forms (Lﬁnd, 1965), generation and use of warm Watef surface lenses for
rapid horizontal-movement (Wrigley and Horne, 1975), secretion of algicides
or chelation of toxic and beneficial metais, or avoidance of predation
(Mullin_and Brooks, 1976). |

'"Spatial vafiationé have been measured in a variety'of ways. Early
studies (Bainbridge, 1957 and references therein) were chiefly qualita-
tive. Recent quantitative studies can be grouped into two categories

according to sampling strategy: transects and synoptics. Sampling along
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transects, Hhas been used extensively to Study spatial‘organizations of
planktbn.(Margalef‘and Estrada, 1971). It is especially appropriate for
systems with a linear gradient such as tidal'zbnes aﬁd>estuarine basins
(Cassie, 1960), for systems with little transversé variation as i§ the
case in many narrow freshwater lakes and reservoirs (Bittle,.Grimm and
Ochocki, 1965), or for marine systems where the area of study is large
(Fasham, Angel and Roe, 1974).

In a synoptic study, water samples are collected from many-sites‘ 
representing a large area. This is a useful technique for sfﬁdying Sys-
tems where horizontal variation in more than one direction ié present
(Platt and Filion, 1975) or where it is desirable to understand circula-
tion, topographic and inflow effects (Horne, Dillard, Fujita, Goldman
1972; HOrne,:Sandusky and Carmiggelt, 1977). Remote'éensing by aerial
photography (visible or infrared) shows promise as another way of studying
a few aspécts of two dimensional variability (Horne and Wrigley, 1975)
particularly when used together with 'water truth" measurements gathered
from synoptics. ' \

- In this report we develop a systematic approach to intefpret”syhdptic
" surveys using statistical methods to derive a distribution function for
synoptic survey data. The resuiting model is used to describe data on
water chemistry and phytoplankton populations recorded during synoptic
‘studies at Clear Léke;‘Calif. Parameters resulting from our analysis

reveal interesting ecological features of theése populations. We are



grateful to C.R. Goldman and P. Javornicky for providing us with some
as yet unpublished survey data from 1969-70; to J. Neyman and P. Puri
and E. Scott for contributions to the statistical theory. Useful

discussions were also held with T. Powell and P. Richardson.

THEORY

An integral part of any quantitative experimental'techniqﬁe is
the analytical methodology used to interpret the results. Sensible
descriptive mechanisms can reduce experimental labor by eliciting
maximal information from data and can provide insight into important
ecological processes. In analyéing transect data, a major bfeak—
through came through-the use of power spectral analysis to reduce
data (Platt and Denman, 1975). Central to this application is the
explicit use of between station distance as the variable which para-
meterizes population fluctuations. Use of power spectral analysis
is also advantageous since many results from studies of hydrodynamic
turbulence can be conveniently expressed in this framework and thus
provide greater‘undefstanding of results. |

For synoptié data, no such established methodology exists. Two
dimensional power spectral analysis requires a far larger number of
samples than are normally available in even the most ambitious -synoptic

survey. Reduction to one dimension using absolute distance between



‘s

stations as the spatial variable has obvious drawbacks. Advective

current profiles in lake and estuarine systems are complicated.

Because of topological irregularities and preferential wind difec-

tion, spatial fluctuétions are seldom isotropic. Thus, whén stations

are‘not collinear, between station distance is not an accurate

measure of "real" disténce (in terms of water ﬁov¢ment). Unless‘current

patterns are well known, it is difficult, if‘not impossible, to say

what this real distance should be. | |
Statistical models of spatial variations offér an alternate

apprdachutoward anélysis of synoptic data. In terrestrial ecology,

clustering models have been used extensively to understand two dimen-

sional spatial fluctuations in floral and faunal populations (Patil,

1968; Peilou, 1969). These models have also been used in aquatic

ecology to analyze transect sampling experiments (Barnes and Marshall,

1951; Cassie, .1963). In applying this method to analyze synoptic survey

data, relati?e positions. of stations are ignored. For most cases where
current patterns are complicated or unknown, no loss of information
occurs by this simplification.

Much statistical work on patchiness has been based on the Poisson
distribution. Sampling a randomly dispersed populatioﬁ and tdbulating
frequencies of observed numbers of individuals results in a‘frequency
distribution,

X

£xfw) = oML . W



where f(x) = prébability of finding x individuals and y is the mean
population density. A main feature of the Poisson distribution is‘equal
variance and mean. For non-randomly dispersed populations, either mean
exceeds variance (uniform) or variance exceeds mean (patchy). Fisher
(1950) derived criterion for testing the significance of sﬁch de&iations.
Subséquent attempts to quantify these differences found several ”patéhiness
indices" all based on the ambunt by which variance exceeds mean (Hill,

1973). Most can be related to the parameter,

2
N {mean)
~ (variance - mean) . ’ (2)

which is the shape parameter fof the hegative binomial distribution.

In applying this work to aquatic ecology, two questions immediately
arise: 1) which ae the optimal parémeters (indices) to use? 2) What
is the most accurate way to estimate them? The answer to both questions
lies in the correct choice of an underlying probability distribution.
If, for:example, population counts from a sampling experiment are well
described by a negative biﬁomial distribution, then the two parameters
to ﬁse in describing Fhe population are the mean and Shape parameter
(defined above) and the best way to estimate them is to fit the
negative binomial'distribution to the observed population frequenciés.
Thus, 0ur'pr§cedure for analyzing experimental data is to first find
an appropriate distribution function which contains descriptive para-
meters, then, to use the data to determine values for_these parameters,
and finally, to use these values to interpret the experiment. Choice

of an optimal underlying distribution thus maximizes the information

obtained from the experiment.
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An important conSiderationiJ\Qeeking a reliable probability‘
distribution is that there is no unique one. ' Solutions to equations
ﬁ'governing-turbulenf hydrodynamics and biological pdeuctivity’do not
exist. Even if they did, clustering is expected to-manifest itself
differently depending on sysbem and type of Species within a system.
Thus, statistical distributions which worked well in déscribing terres-
trial populations may not apply in the aquatic case.b The procedure for
-constructing these models, hewever, is quite general and we will relyv
on it exteneively here. ‘in building a model, -it is advantageous to |
utilize as much as possible, prior information, without which” any model
is merely an empirical device.

| For the nse of synoptic sampling, we begin by assuming the following.
First stations are 1ndlst1ngulshab1e 1n the ‘sense that plankton are
equally 11ke1y to be at any of them and whether or not they are, is a
hrandom process. Notable exceptions to thls {(e.g., diatoms which may be
more 1ikely to be at edge stations than center ones‘in lakee)'are |
tfeafed affer the:enalysis is made: Second, stations are fer enough
apart so thét water mass,coherence is lost when water f10Ws from one
station.to the next; These assumptlons are equlvalent to the assump-
tlon.that’populatlon counts from each statlon form a sample space
of independent, 1dent1cally dlstrlbuted events. To conetruct a
distribution which describes these events it is convenienblbe pie—
ture aquatlc.processes in terms of a length scale s. .Results |
from many studles (Klerstead and Slobodkln 1953‘ Platt, 1972 and

[

Powell et al., 1975) 1nd1cate the existence of three spatlal regions:



(1) a clustering zone (10 m R s); (2) a turbulence zone (1000m R s R

10m); and (3) a patchiness zone (s % 1000m). The boundaries separating these
regions are variable. Those for opén ocean are expected to exceed

thpse for estuaries or lakes. We assume stations.are far enough

apart for phytoplankton to show patchiness, othéfwise we are obéerving
effects primarily of water turbulence. At each.station, populations

may show evidence of local cluétering. We therefore construct a

model which describes clustering at small scales, and allow parameters

to vary from station to station to describe patchiness. The intef—

mediate zone is treated here, as a randomizing agent which assures

the independence of station samples.

Small Scale Clustering

At a given station we are concerned with small scale variations
in numbers. Work by Bernhard and Rémpi (1965) and McAlice‘(1970)
found significant overdispersion of phytoplankton on scales of iO cm
to 10 m. In part, this clustering occurs because the fundamental
unit for phytoplankton is not always a cell but is sometimes an
association of cells (chains, cluSters;'filaments,jor grouping of
vfilaments). In‘this case, one unit is observed iﬁfrequently {using
the Poisson distributibn'as a standard) relative to zero units or
many units. Clﬁstering also results when algae are vertically
stratified either passively by wind induced currents (Stavn, 1971) or-
actively through positive buoyahcy control or swimming.. Again, units
are nét spatially independent; plankton occur in spatial clustéré

of units.
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We describe both cases by assuming that aggregates (a random
number of individual units) are randomly distributed in space:
Mathematically, -this situation is conveniently described (Feller,

1950) by use of probability generating functiens (pgf), defined by .

G, (1) = Bt =)t - - (3
X=0

Here, G is the pgf for a probability distribution for the random
variable, X. The probability of observing X = x events is denoted
by P(x); E(+) is expectation. Probabilities may be found from the
pegf by differentiating with the.dummy variable, t:
‘ 1 4% v o
P(x) = ;T—E;E-Gx(t) t=0 . (4)

For the Poisson distribution,

GX(t[u) = u(-t) , V o (5)

where in this case X = number of clusters, and = cluster density.
If the pgf of the number of cells per cluster is denoted by

gx(slx) with A = average numbef of clusters, and clusters are distri-

buted at random, it is easy to show (Feller, 1950) that‘the”pgf

for X = the number of. individuals per sample is

Gx(SIU,Xi A G - (®

There are many possible choices for the distribution of the
number of cells per cluster. It is unlikley that one distribution

will satisfy all cases. Certianly the case of fairly passive clus-
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tering due to depth stratification as near a pycnocline is different
from the case of clustering in multicellular forms. However, if we
restrict ourselves to one free paraheter, A = number of cells per
cluster, and in addifion require: 1) a unimodal distribution, 2)
variance proportional to (mean)2 for large means, 3) probébility of
a ciuster with zero units is zero; then one distributionlwhich satis-

fies these requirements is the goemetric distribution,

g 1V = 25y . SR ¢)
The resulting distribution for number of individuals per sample is
cailed the Polya-Aeppli distribution (Polya, 1931) and has been used
to describe many diverse clustering processes. Other unimodal dis-
tributions are possible. For example, use of logarithﬁic or Poisson
distributions for cluster sizes results in negative binomial or Néyman-A

(Neyman, 1939), distributions for the number of individuals per sample

Large Scale Patchiness

| We now consider what happens if we sample locations far enough
apart to observe patchiness. The Poly-Aeppli distribution has two
paraheters, cluster density and cluster size and one or both of these
will change. For simplicity, we will consider the-phyéologically more
typical case where cluster density is a random variable and cluster

size is fixed. Distributions where both parametefs are random variables
are interesting but tend to be mathematically intractable. If u ,

the cluster density, is a random variable, we can make the following



»>

ORCROR N T
-11-

réquirements’on thé distribution function, f(u): 1) f(u) is unimodal
and céntinuous.dver the open domain (o,») and 2) f(u) depends.on

no mofe than two parameters. Two distributions which satisfy tﬂese
requirements are log—nofmal and gamma. Both these distributions have
found wide use in many diverse sitﬁations.

Here; we use the gamma distribution as it results in simpler.
formulaes, and, in tﬁe analysis of data it gave a slightly better
description. The generatingvfunction for the number of individuals
per sample when patchiness ié included is then

oo

Gy (s |k,p. ) =fdu falk,pye MO - exsy (8)
6]

Using the distribution function for the gamma distribution,

. - (k - 1) -k / . .
fulk,p) = “—m)—P” e WP - 9)

(T(k) is the gamma function), we find

-k
5 o L ._Pps L ‘
GX(slk,P,X) = (1 *P oY T s A)) . : - \(10)...

The probabilities are (equation 4)

; A ‘ o : g S

1 x -1} (A - 1) ' + k) 1

P(x) = ————~ ( ) ) : — - (11)
a s p)kxx.jz:; j 1 j! F(k). (1 + l/p)J_ .

For ease of reference, we will call this distribution the regionalized

Poly-Acppli (RPA) distribution. Its mean and variance are '
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m = kp)\ ,
2
V=2 + m(2x-1) ‘ (12)

This distribution has three parameters:

k = patchiness parameter
p = scale parameter
A = mean cluster size.

If A is known then

2
m

k:v-m_-2m()\’—1) : T _ | (13

which is similar to the negative binomial patchiness index except
that correction for small scale clusteriﬁg is made. In fact, for the
limit A > 1 (no clustering), the RPA reduces to-the negative binomial
as may be seen from either the generating function or the probability
distribution. For the case, k - » (no patchiness) the RPA becomes
thé’Poly—Aeppli distribution and in both limits, it reduces to the
. Poisson. The RPA distribution is a very general distribution which
we hope can accomodate many expérimental situations.

To estimate parameters, it is best to design an experiment so
that several samples are taken at a few stations and uséd to estimate
A and then several stations are sampled once to estimate k and p.
Unfortunately, the data available to us is that normally collected by
limnologists in large-scale lake experiments: it contained éncvsamplé'
from cach station. Some direct evidence for cluster size was available,

however, in most cases, it was necessary to estimate all three parameters



SR I I N e s DIy AN T R,
00 U0 s 0O a8l 47 46 2 s 97 30

-13-

simultaneously. Because of this and because of the low number of
stations sampled, we needed the most efficient estimates possible. We
therefore used maximum likelihood to estimate all three parametefs (Hoel
Port, Stone, 1971). One likelihood éqﬁation reduces to kp\ = x , the
‘sump]c mean. . The other two involve summations and are solved numerically

by high speed computer (CDC 7600).

.vAPPLICATION

We used our model to reduce data from syﬁbptic studies made éf
Clear Lake, California from fall, 1969 through spring, 1972. Some of
this data has been used to investigate the factors iﬁfluéncing nitro-
gen fixation in the lake (Horne, Dillard, Fujité and Géldman, 1972;ﬁ
liorne, Sanduéky; and Carmiggélt, 1977), some to study algal ecéldgy
of the lake (Horne, Javornicky and Goldman, 1971; unpublished data *
of‘C;k;'Goldman, P. Javornicky and A.J. Horne). These studies were
~conducted by one of two.methods. In September, 1969 and in Aprii, 1970
water samples were taken with a Van Dorn sampler (aVeragiﬁg the'top 1/2
meter of the watef column) at 32 locatiohs in the 17,000 hectares |
of the lake.suifaée. Algae were counted to genus in all cases, to
species in most, at all of the statiéns. Inlspfing, 1972, samplés
were taken from the same 32 stations'using a tube.sampler which averaged
5 ﬁéters of water column. This synoptic was‘repeated at apﬁroximateiy
3 day intervals for a total of six sampling periods (”éupersynoptic”)'

which included much of the spring bloom of Aphanizomenon. Algae were
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counted to genus in most cases. In addition, water chemistry measure-
ments (NOS,’D.O. etc.) were made as well as:biological facotrs
(nitrogen fixation, carbon 14, etc.). Details concerning station
locations, data éollection, and analytical procedures are given
in the above mentidned articles.

Some amalgamation of the dété was necessary prior to analysis.
Rare species were excluded in cases where non-zero cell counts at
ten or less stations were found or where the largest number of cells
did not exceed five (we estimated patchiness for some species with
smaller numbers). In the super-synoptic study, all 32’ stétions
were sampled only on the Zﬁd and 4th sampling days. For the re;t,
data at only 15-16 stations was taken. Because this was too small
a number to permit a reliable statistical anélysis, data from the
1st and 3rd periods was dropped, data from the 5th and 6th periods
was éombined to make 32 samples with 16 ffom each period. In all,
we had 43 sets of data representing 18 genera. These genera and mean
numbers of counts are listed in Table 1. |

To ea;h'set of data we fitted an RPA distribution, using the‘ﬁaxi-

mum likelihood method to compute values for the parameters. We tested

goodness of fit using the likelihood ratio test statistic,

mo . JE. '

2 . i X

X = 'ZE Oi 10g<’5_") , - (14)
i=1

i

where FE. and 0. are the expected and observed numbers of events inthe 1
i i

cell.  For large numbers of events, this statistic is distributed as ¥

with m-r-1 degrees of freedom (r is the estimated number of paramcters).

For our data, we scparated the counts into 5 "bins" (6-7 cvents in cach
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bin for those cases’where the number of zero counts was not excessive).
This separatioﬁ was made by computer,- after the parameters were éstimated
and without reference to the observations by making the bins of}approxi-
matély‘equal,size.in probability space. Thus, we expect an.eqqal number
of qbservations iﬁ each bin (somé fluctuations are unavbidéble Because
thevdistribution is discrete). Three parameter% aré eétim;ted; therefore,
the "goodness of fit statistic.will be asymptotically aistfibuted as XZ
with one degree of freedom. We remark that 32 eQents is not asymptopia
and fluctuations in our goodness of fit statistic caused.by extreme good
(111) luck or by counting errors can be large. We compare results_for
our‘statistiC~with Xz tables, cautiously. |

Fbr comparatiVe purposes, we also fit a negative binomial aistri—
bution to the datéf This is the limiting case of lérgé scéle_patchiness
with no local clustering and we expect.it to apply to certain groups of
algae. Eecause the negative binomial can occﬁr when there isﬂno patchiness
but local clu;tering, Qe checked two other distributions With.tWG para-
metér;, fhe discrete lbg-normél (pétchiness without clusferihg) and
the Neymaan and Poly-Aeppeli distributions (clustering without patchiness).
Results frém this éhowed‘clbse correspondence with’the discrete log-
normal bﬁt nét with theiothers, thus no ambiguify is présent.here. Wg
usedbfour bins for the negative binomial to make thé goodneés 6f fit
statistic again, an asymoptic XZ with oﬁe degreg‘of freedom. We
compared the goodness of fit étatistics for the_two distribufions to

test for local clustering.
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Comparison hetwéen the RPA distribution and the negative binomial
also provides an interesting contrast in predicted values of the patchiness
parameter. To study this parameter further, we fit a gamma distribution‘
to the chemicai—physical datg. One of the parameters of fhe gamma distri-
bution, the shabe parameter, should be directly anélogous to the algal
patchiness péfameter and allows some discussion of the influences of v

lake physics and chemistry on algal patchiness.

RESULTS

Local Clustering

When local clustering is present, we expect values of A, the
average number of unité per cluster in the RPA distribution to cxceed
onc. In the case of colonial algae where individual cell numbers are
reccorded, XA should be at least the average cells per-colony.r In Table 2,

we list the cases where this occurred. Melosira is a chain diatom

for which individual cells were counted. Aphanizomenon grows in
bundlés of large numbers of trichomes (as many as several hundred per
bundle). When fixed with Lugolsvsolution and shaken, thése break up.
The separation, however, is incomplete and several filaments often
remain attached, thus, since individual filaments are counted, we

expect clustering. The case for Anabaena and Oscillatoria is

somewhat similar. While they do not occur in tightly attached bundles,
many trichomes often stick together (sometimes to form large bundles)

in numbers which depend upon lake conditions. Microcystis cells can
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form colonies of a few to a few hundred thousand éells. Again, when
fixed and shaken, it becomes difficult to decide what should be a
sepafate entity since many of the clusters break apart.- In fact,
.referring to Table 2, it is remarkable that while the Miérocystis
biomass changed considerably between the fall synoptic aﬁd the spring
supersynoptic,.the cluster density, Xx/A , was nearly the same (2.2 in
the fall, 1.8 average in the spring). The change seemed to come almost
éntire}y from a decrease in cluster size. This maké_biOlogical.sense
for two reasons. First, fall aggregations occuring in a vigorous
growth period are larger. . Second, during éuch avperiod, the species
s buoyant;.thus separate  aggregations may crowd each other, spatia]]yt
Asvwefremarkcd'eérlier, replicate sampling at.a few stations is
~needed to provide reliable éstimates of 'A. Because that was not done
~in these experiments, values of X found here are only approximate.
‘Neévertheless, we see from Table 2 that all values appear to be substan-
tially greater than one. Further if we compare . XZ values between RPA
and negative binomial' (no clustering) in ten of twelve cases, RPA fit
data more closely. This is further reflected in the totals. 'If we
iassume the totals are distributed as X2 with 13 degrees of freedom
this.differenée is about 2.1 standard deviations ( ? < .02). That
.tho total for RPA fails at 95% significance is not disturbiné since
nearly 8 points of 24 come frém 5he set (Aphanizomenon, date 2): The

total for the rest is well out of the critical region.
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We expect little or no clustering for unicellular flagella and,
referring to Table 3, we find strong evidence for this. Values for both

A and ¥ 2 differ markedly from those in Table 2. The negative binomial

distribution fits better in most cases (with A = 1, the RPA distribution
and the negative binomial are the same — the extra parameter used by
the RPA results in a larger X  since one more bin is used). The

2 . . CoL
~total ¥~ values differ by 4.9 standard deviations (Pvo).

Non-random spatial associations might occur for non-motile

species at small distances if reproduction by fission is faster than
diffusion or if a speéiés gTrows epiphytically on other algae. Blue-
green algae may be clustered becausé they can regulate their depth

by producing gas vacuoles as seems to be the case for Microcystis.

In Table 4 we list non-flagellgted species where the proper unit (be

it cell dr filament) was counted. Referring to estimated values of A,
little clustering seems evident for the centric diatoms. For the green
algae, clustering may occur; If association distances involved are
between 0!5 m énd’S m, a difference should be noticeable between the

two sampling methods. No clear difference is present and stronger

conclusions concerning local associations await further experimentation.

Patchiness

Values for algal patchiness depend on the method used to estimate
it. Our results for clustering indicate that it is best to use RPA

distribution parameter for blue-green, non-motile green and all colonial
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algae (whére cells or éubunits are counted). Since no evidenée'of.ldca]
cluétering was found for unicellular flagellatés or for centric diatoms
(thn filaments were counted), we ﬁse the negative binomial distribu-
tion (i.e. the no-clustering limit.of the RPA) to estimate patchines§
for these algae. As large values of k carry large errors and‘as it
'is_desirable.tO'have an index which incréases with increasing patchiness,
‘we transform the RPA (negative binomial) pafameter to
L=13%1/k | (15)

If no clustering is present and if the method of moments is used to
estimate k , this parameter 'is the Saﬁe'as:Lioyd's index (Lloyd, 1967).
A value of L =1 denotes a random distribution. 'Lafge values of ‘L
signifyAbatchy distributions.- In'Table 1, we list values for patchiness.
Although the ﬁaximum likelihood method does allow calculation bf error
in parameter estimation, we do not list the error estimates $ince for
our sample'numbers they are‘unreliable. Errors did tend to increase
with increasing patchiness. An alternate estimate of the reliability
of our .index is obtained by comparing the 3 different periods of the
supcrsynoptic. Only some. between-day variability is présent,'ndtibly'
in those'species_with low mean counts. 'Differentiafiohlbetweeh species
is clearly feasible and we can use it to understand sbme basic mechanisms
causing patchiness. |

Experimental methodology is an important consideration in measuring
putchiness. If a lake is stratified and.ohly part of the photic zone is
sampled, increased variability (hence an‘erroneously high estimate of

patchiness) may be observed for non-motile organisms whose vertical
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'position is dependent on sieche waves (Platt and Conover, 1971).
Clear Lake is well mixed during spring and fall blooms when the sampling
was done and the only group whose patchiness might depend on sampling

strategy is the blue-green algae. ‘In Table i,'we see both Aphanizomenon

and Microcystis show considerably greater patchiness when sampled using
a Van Dorn sampler (0-.5 m) than when sampled with a depth integrating
tube. For reasons discussed in the next paragraph, the result for

Microcystis may be coincidental. Aphanizomenon, however, seems to show

substantial difference.

A second consideration.in sampling strategy is station bias since
all station positions may not be equivalent. In Fig. la, we see that
Microcystis is growing énly in the Lower aﬁd Oaks Arms due mést 1ike1y
to ammonia releases felated t§ sedimentlcontent. While the bloom .
eventually gpread to the Upper Arm, the degree of patchiness is inflated
because of station differences. Another example of deterministic
influences is Pefidiniumu(Fig. 1b) which grows best in the Upper Arm
due to favorable inflow and temperature conditions (Horne, Javornicky
and Goldman, 1971). Other species showed little or no evident bias.

Spatial paftefns of nutrients, chemical and physical factors are
closely linked with phytoplankton patterns. In the supersynoptic
study, many of these quantities were meésured.‘.To compare their
patchiness wifh that of algae, we fit a gamma distribution to those
data sets where enough measurements were made to yield reliable results.

In Table 5, we list values for the shape parameter, the continuous
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analogﬁe of the patchiness parameter for phytoplankton. For easy com-
parison, we again'transform to L=1+1/k. Major nutrients,vNH4,-PO4,
and NO3 exhibited patchiness comparable to the algae. ‘Nitrate'is the
most patchy of the three; it is interesting eonjecture that many of the
nitrate limited species are more patchy than those limited by other

factors. Biological factors, C acetylene reduction (nitrogen

14° v
fixation) and Chl. a are approximately the same as Aphizomenon, the
dominant algae; as would be expected. Physical parameters are less
patchy. Tempefature fluctuations are underestimated sincerthe zero
temperature is arbitrary (hence, by a change of zero, We could'chaﬁge
the variance to mean ratio) and since‘phtoplankton—temperature relationships
arc complicated. |

Patchiness of a particular species changes from season to season.
For a giVen species of elgae we conjecfure that environmental fiuctea—
tions occufing dering a dominant period are less likely to affecf growth
than those occuring in a subdominant one. Thus, if we compare patehiness
of a particular species at two different seaeoﬁs, we expect this speeies
to be less patchy during the period for which its biomass is greater.

Using Table 1, we see that Aphanizomenon, Rhodomonas, and Cryptomonas

Marssonii increased in numbers between fall and spring and showed
decreased patchiness. Scenedesmus was unchanged in both numbers and

patchiness. Cryptomonas Reflexa showed increased‘patchiness'but no

change in numbers, although in both seasons it was rare and estimates

ot its patchiness could be unreliable. Comparisons between synoptic
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énd supersynoptic are supportive.for Cyclofella and Cryptomonas Qhen
combined species are considered (comparisoné for blue-greens are not
meaningful because of sampljng differences).

A méjor ecological factor influencing patchiness, here, is what
can be called species sensitivity or niche width. A partially mixed
]Ake presents a variety of habitats of different chemical-physical
makeup. Algae which are extremely adaptable should do well in manyv
of them and thus be found in similar quantity at all stations (random
distribution). Algae which are extremely sensitive to environmental
fluctuations will manifest greater patchiness since their éxpected
numbérs depend greatly on local water conditions.. We can see some
evidence for this conjecture from Table 1. Blue-green algae which
are adaptable to a variety.of conditions are less patchy
then either flagella or centric diatoms (ﬁot énough species of green v
algae are availablebfor a combarison, although the ones shown show
little patchiness).. |

An interesting way to further expiore the relationship of nitch
width and patchiness comes by studying éombinations of algal species.

If two closely related species (say, two cryptomonads of about the same

size) are summed, we expect decreased patchiness since tﬁe niche occupied
by the combination is larger than for either separately.  Theoretically,
‘this coﬁcept is built into the RPA distribution since if two independent
variables which have a gamma distribution With the same.scale parameter

are combined; their sum will be gamma distributed with the shape
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parameter equal to the sum of the individual shape paraheters. If the
two variables are 1inear1y.dependen£, their sum will be gammd distri-
buted with the samevShape parameter. For partially dependent-variables,
the result lies (apprdximately) between. This carries over (approxi-
mately) to discrete distributions.ehich are based on a gamma distri-
bution as are the RPA and negative binomial. In short, if the niche.

is not expanded by combining two species the patchiness.parameter

will remain uhchanged (for our case, it can be estimated By the
weighted average of the two individual pérameters if they differ). If
it is increased due toipartial or total variable independence, the
paichihess decreases. In Table 6, we list several combinetieﬁs of
related species which had about the same scale parameter. As expec-
ted, combinations of species have combined patchiness close to the
dcpendont case (I,

D)‘ Values of patchiness obtained for combinations of

two phyla are closer to the independent case (L)

DISCUSSTON
Canepfually, experimental -studies of patchiness can be categorized
as deterministic or stochastic? A deterministic approach has as its
objective, measurements of size, shape, deneity and/or evolution of
plankton patches. It is useful for qualitative or semiquantitative
descriptions of mesoscale patches (Bainbridge, 1957) caused by regional

environmental conditions favorable for production (Cushing, 1955) or
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favofing.particular species (Holland and Beeton, 1972). These large
scale patches are thought to be stable (Kierstead and Slobodkin,’19$3).
A.deterministic approach is also useful for descriptions of vertically
stratified plankton.

Stochastic descriptions apply in two cases: (1) where insufficient
data is present to permit characterization of a patch or (2), where no
fixed differences in environmental factors occur among sampling points.
For these studiés, spatial variability is often of primary interest.
SiZes are '"'measured'" not of individual patches but -as correlations
observed as a function of distance (Platt and Denman, 1975; Powell et a].f
1975) or as fitted parameters of a hypothesizedvfrequency distribution
(Fasham, Angel and Roe, 1974).

Our description of patchiness was stochastic. Because: our samples
were not made at stations with clear spatial relationships, we did not
attempt to include patch size as a variable. To describe transect
data, our model could be éxpanded. However, inclusion of fallacious
assumptions concerning patch size or shape could lead to an untrust-
worthy analysis. A better approach is to use our distributions as a
"normalizing' transformation to use prior to other analyses. Power
speétra] analysis or other techniques based on nbrhal distributions
could then be used with greater accuracy. For the RPA distribution,

this transformation is

) = -2 sinn LR 16
£(x) " TT sinh ?éi-}% , _ (16)
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where L =1+ 1/k, as before. For X - 1, this becomes identical
with the negative binomial transformation. For large sample numbers,

it reduces to log(x).

LLocal Associations

A major probiem with ﬁany quantitative studies on patchiﬁess haé
been the.oné of deciding upon a fundamental unit (PielOu; 1969). In
‘terrestrial and in aquatic benthic studies, plants aggregate (cluster)
becausé of limited dispersal:ability. Many phytoplankton‘species also
occur in colonies or filaments (aggregateé). In principle, this problem
is avéided by éounting aggregates. Inbﬁractice, it is often difficult
>§r impossib]é to decidé which cells belong to which aggregate. This is
- especially true for loosly attached species, for example, most bloom
fofm{hg cyunéphytes, which break up whéh preserﬁed and shaken. Furthef,
ifjplénkton arc vertically étratified, éggregates may be concentrated,
phfsicaiiy, and thé unit for éounting willlbé some ill-determined ""'super-
aggrégate”. We provided for local associations in our model. Because
the daté wﬁich We analyzed was recorded regionaliy, éur ¢6nc1usions'about
local associations are indirect. With the exception of buoyancy
controlled cyanophytes, we found little evidence for spatial associations,
locally; This is in contrast with work by several authors (Cassie, 1963,
and referenées therein). The discrepancy is easiiy understood since:
Clear Léke islshallow and well mixed (vertically) at the time of sampling.

Most of the non-random spatial associations observed in the literature

r
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occur for dépthvstratification of stronger swimming marine zooplankton
or dinoflagellates or for passive organisms in stratified systems
(Cassie, 1960). 1In somevcases, local association wés éignificant but not
pronounced. Barnes and Marshall (1951) used contagious distributions to
fit samples takeﬁ from a'drifting boat. .Their frequency sﬁectra are all
unimodal and it appears that our distribution describing local associa-
tions (Poly-Aeppli) would fit them. Using their means and variances,
we estimated valges of A for the various species and hauls. Our
.average value for all their listed speciés was A = 1.44. This is greater
than the values we found for most unicellular algae. The difference is
probably 'due to sampling differences and to the greater salinity (pres-
sure) gradients observed by these authors.

In addition to the intrinsic interest in local associations, proper

account of them is necessary for a good estimate of regional associations.

If we underestimate clustering, we will overestimate patchiness. A quan-
titative description of this may be found using the RPA distribution.
The classic patchiness index (Fisher, 1950; Cassie, 1963) is the difference
between variance and mean. From Equations (13) and (15).

V-m

——=m(l - 1) +2(% - 1) . (17)

m
Both regional overdispersion (L > 1) and local overdispersion (X > 1)
contribute to a large variance. This explicit partitioning of variance,
into local and regional spatial patterns is an interesting conceptual

feature of the RPA distribution.
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Regional Associations

When sélitary plankters are counted and when local mixing diminishes
local -associations, no cluétering is expected, thus the RPA distribu-
tion reduces to the negative binomial (A = 1). Othef applications of
the negative binomial to‘regionaily sampled plankton populations have
been successful. Colebrook (1960) approximated a hydrodynamical model
of lake mixing with a negativevbinomial and found good fits to observed
‘numbers'of zooplankton. Cassie (1962) found comparable fits for a nega-
tive binomial and truncated log-normal. He proposed use of the discrete
log—normal distribution, hbwevér, he was unable to use it'effectively
sinée the evaluation of probabilities necessitated a -numerical approxi-
mation fo an integral. We were able to accurately evaluate this integral
usiﬁg Gaussian quadratures and a high speed computer. Comparison of
fitg to our observed frequehcies of unicellular flagella for the discrete
log-normal and the negative binomial distiibutions revealed close simi-
larity between the two with slightly smaller XZ values for the létter.
Both distributions are derived by assuming that patchiness (overdispersion)
is due to regional fluctuations in water mass chemistry aﬂd expected plank-
ton numbers not by assuming random spatial distributions of clusters as we
did for local fluctuations.

Patchiness indices in generai and our index in particular are derived
with reference to some standard of randomness. Because of uncertainties
in values of this index caused by sampling procedures and hydrodynamic
mixing, perhaps a better céncept is "relative patchiness” where one

looks simultaneously at species patchiness relative to other species or
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nutrients or at patchiness of the same species sampled on different days

but measured using the same technique. Such comparisons were uscful for us.
We found similar patchiness of limiting nutrients and phytoplankton. Our
results linked relative phytoplankton patchiness to relative dominance

(same species, different seasons) and to species sensitivity or niche

width (different species, same sampling period)}. Our results also

showéd that reclative patchiness decreased when similar species were combined
(enlarged niche). This has péssible applications to survey experiments
where the effecté of an environmental disturbance are measured for a

group containing several species (Niebold, 1977) or where spatial flug—
tuations in a biological indicator such as chlofophyll are measured

(Powcll et ul.; 1975; Platt and Denman, 1975)._ For the latter cdse, our
results suggest the degree of plankton spatial organization may be
-underestimated when severaivspecies are present. In future work, we
hope.to investigate more systematically these relationships between

patchiness and algal ecology.
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TABLE AND FIGURE CAPTIONS

AN

Table 1: Mean frequencies and patchiness indices for phytoplankton.
Patchiness values (Equation 15) are italicized. The dates corres-
ponding to the letters are September, 1969 (F); April, 1970 (S);
2 June 1972 (2) and 12 June, 1974 (4). The data for date (5) was
compiled from samples taken on 15 June and 19 June.

Table 2: Cluster sizes and XZ values for colonial or filamentous
phytoplankton species for which the counting unit was a cell or
subaggregate of the cluster of cells. Dates are the same as for
Table 1. To avoid excessive computer costs, values of A for
A. flos-aquae denoted by an asterisk were set equal to 7.0, the
value obtained for the September, 1969 data. The average value

~for ) 1is a geometrical average.

Table 3: Cluster sizes and X2 values for unicellular flagelia.
Dates are the same as for Table 1.

Table 4: Cluster sizes and X2 values for non-motile species where

the proper unit (cell or filament) was counted. Dates are the same
as for Table 1.

Table 5: Patchiness of major nutrients, physical and biological factors.

Dates are as in Table 1 except for Cy4 (asterisk) which is 6 June and
12 June, 1972 combined.

Table 6: Patchiness of phytoplankton groups. L,,p is the patchiness
parameter (Equation 15) obtained by fitting a negative binomial
distribution to the total of observed frequencies for species A
and B. Ly is the expected value if the two species were independent,

Ly = 1+1/(ka + k). Lp is the expected value if species were
dependent, Lp = 1+-(PA + PB)/(PAkA + PBkB).

Figure: Spatial distribution of Microcystis aeruginosa and Peridinium

penardii in Clear Lake. Data taken in September, 1969 (Microcystis)
and April, 1970 (Peridinium).



TABLE 1.
PHYLUM GENUS DATES
F S 2 4 5.
CYANOPHYTA Anabaena circinalis 560. L1
Aphanizomenon flos-aquae 22. 5.8 680. 3.0 700. 2.2 380. 1.¢ 760. 1.¢
Microcystis spp. 11. 7. 7.9 3.1
M. zeruginosa 1100-° 4.2:
Oscillatoria spp. 6.4 1.9 5.2 1.1 2.8 1.0
CHRYSOPHYTA Coécinodsicus Spp. .45 0 .84 4.4
Cyclotella spp. 1.0 4 1.2 9.7
C. sp. 17. 4.4
C. atomus 530. 1.8
Mallomonas spp. 3.5 1.4
Melosira granulata-v. 87. 1.5
granulata
M. italica .36 1.3
DINOPHYCAE Peridinium penardii 4.8 17.7
CRYPTOPHYCEAE Chroomonas sp. 290. 1.9
Cryptomonas spp. 2.3 1.2 3.1 5.6 .64 5.2 .41 4.4
C. erosa 5.8 2.6 v
C. marssonii 3.6 2.
C. reflexa 1.9 6.
Flagellates 2.6, 2.4 7.8  1.7. .84 8.1
Rhodomonas pusilla 23. 1.9 100. 1.5 '
CHLOROPHYTA Chlamydomonas spp. and 75. 2.8
zoospore
Monoraphidium contortum 4.7 2.1
Oocystis lacustris 47 1.0
Scenedesmus’ spp. 2.1 iz 1.6 I.I
4.4 1.1 3.5 1.1 1.4 1.0

Schroederia spp.
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TABLE 2

Species Date Best A
'RPA NB Fit!

Anabaena circinalis F 0.53 0.73 RPA 20,
Aphanizomenon flos-aquae F 0.33 2.92 RPA 7.0%
Aphanizomenon flos-aquae S 0.49  1.27  RPA 7.0
Aphanizomenon' flos-aquae 2 7.66 7.66- - 7.0*
“Aphanizomenon flos-aquae 4 3.01 1.50 NB 7.0*
Aphanizomenon flos-aquae 5 1.02 1.0 NB 7.0%
Melosira italica S 0.13 0.88 RPA 3.4
Microcystis aeruginosa F 4.23 5.43 RPA . 500.
Microcystis spp. | 2 0.01 3.71 RPA 1.1
Microcystis spp. 5 0.76 0.84 - RPA 3.0
Oscillatoria sp. 2 0.70 1.60  RPA 2.4
Oscillatoria sp. 4 0.80 1.60 RPA 6.1
Oscillatoria sp. 5 4.46 5.47 RPA 2.2
Totals 24.13 34.62 RPA 8.1
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'TABLE 3
Species Date 2
=P Best
RPA NB Fit
Chroomonas sp. S 1.56 1.29 NB 3.0
Chlamydomonas spp.. S 6.73 0.72 NB 1.0
Cryptomonas spp. 2 7.93 0.33 NB 1.0
C. erosa S - 7.59 - 2.33 NB 1.0
C. marssonii S 5.53 7.2 RPA 1.0
. C. reflexa S 2.00 0.07 NB 1.3
- Flagellates 2 2.00  0.08 NB 1.04
Flagellates 4 2.93 4.29 'RPA 1.0
Mallomonas spp. S 3.76 2.65 NB 1.61
- Rhodomonas pusilla F 5.47 2.89 NB 1.
Rhodomonas pusilla S 1.08 1.94 RPA 1.
Total . 23.80 NB- 1.2
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TABLE 4

Species Date Best

~RPA NB Fit
Cyclotella spp. 2 1.58  0.18 NB 1.1
C. sp. S 02.36 . 0.79 NB 1.0
C. atomus S 4.14  1.89 NB 1.8
Melosira granulata F 1.06 3.77 RPA 1.0
Monoraphidium contortum S 1.77 1.65 NB 1.5
Schroederia spp. 2 6.06 6.07 RPA 1.9
Schroederia spp. 4 1.84 5.84 - RPA 2.6
total 18.81 20.19 RPA 1.5
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TABLE 5
Date - 2 4 © 5+6
Temperature 1.0 1.0 1.0
Turbidity 1.2 1.1
NH4 : 2.1 1.8
NO3 2.0 2.9
P_O4 ' 1.5 1.3
acetylene
reduction 1.8 1.9 .1.6
C]4 _ 1.7*% ]74
Chl. a 1.8 1.7 1.7




TABLE 6

Cluster
Combination A B Date Frequency Patchiness
Type P P8 Lt tass | o
species Cryptomonas erosa Cryptomonas'reflexa S 9.3 9.5 2.2 2.6 3.4
speCies' Cryptomonas erosa Cryptomonas marssoni’ S 9.3 6.6'V 1.8 2.4 2.7
genus Rhodomonas pusilla Chroomonas sp. S 51.0 255. 1.3 1.7 1.8
genus Cyclotella spp.- Coscinodiscus spp. 2 3.4 1.8 2.8 3.3 4.5
genus Cyclotella spp. Coscinodiscus spp. 5 10.9 2.9 3.5 3.8 7.6 -
family Oocystis Tlacustris Scenedesmus spp. F 2.1 17.4 3.9 6.6 8.7
> phylum Flagellates Cryptomonas spp. 2 3.9 14.0 2.] 2.6 4.1
phyTum Flagellates Cryptomonas spp. 4 5.3 2.7 1.6 1.7 1.9
phylum Flagellates Cryptomonas spn. 5 5.9 1.4 3.3 3.3 6.8

_8((:_'
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Peridinium penardii

XBL 772=439

Fig. 1
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