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ABSTRACT 

In large lakes, it is usually impossible for logl.stic reasons to 
. ' 

collect enough samples to analyze spatial patterns of algae, zooplankton, 

nutrients or physical factors using available methods. Yet such an analysis 

would be ecologically useful. Using results fr'om synoplic measurements 

which most limnologists could gather, we had three objectives. First, 

to develop a statistical frequency distribution more suitable for aquatic 

. , plankton than existing ones. Second, to analyze the synoptic data using 

this distribution. Third, to use the results of our analy~is to quantify 

phytoplankton spatial relations and to investigate physical and ecological 

factors which control them. We analyzed forty-three sets of data (about 

thirty-two samples per set) representing eighteen freshwater phtoplankton 

genera and obtained reliable results ·using three fitted parameters for 

each set. We explicitly separated local and regional variabiiity, thus 

avoiding overestimates of regional variability (patchiness) caused by 

counting individual cells of colonial or locally associated species as 

independent units. Our patchiness estimates showed significant between-

species variations which could be related to ecological and environmental 

factors. 
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INTRODUCTION 

Spatial organizations of biotic communities are an important part 

of the dynamical structure of these communities. Floral and faunal 

terrestrial populations are often found in clumps or patches for a 

variety of reasons, including variations in nutrient supply (soil 

conditions) and water supply, limited dispersal in reproduction and pro

tection afforded from predation. In the aquatic environment, these 

effects are blurred by advective circulation and turbulent mixing. Because 

mixing is incomplete, a good deal of spatial coherence exists. For 

marine and freshwater phytoplankton, patchiness is common and appears 

to be ecologically significant (Richerson, Armstrong and Goldman, 1970; 

Steele, 1974; Riley, 1976),. A priori one would expect patchiness to be 

a disadvantage because of such drawbacks as nutrient depletion and 

predation by zooplankton or fungi. In spite of this, dense patches occur 

and one can speculate that patchiness may provide competitive advantages 

to some phytoplankton species. These might include shading of competing 

forms (Lund, 1965), generation and use of warm water surface lenses for 

rapid horizontal movement (Wrigley and Horne, 1975), secretion of algicides 

or chelation of toxic and beneficial metals, or avoidance of predation 

(Mullin and Brooks, 1976). 

Spatial variations have been measured in a variety of ways. Early 

studies (Bainbridge, 1957 and references therein) were chiefly qualita

tive. Recent quantitative studies can be grouped into two categories 

according to sampling strategy: transects and synoptics. Sampling along 
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transects, has been used extensively to Study spatial organizations of 

plankton (Margalef and Estrada, 1971). It is especially appropriate for 

systems with a linear gradient such as tidal zones and estuarine basins 

(Cassie, 1960), for systems with little transverse variation as is the 

case in many narrow freshwater lakes and reservoirs (Bittle, Grimm and 

Ochocki, 1965), or for marine systems where the area of study is large 

(Fasham, Angel and Roe, 1974). 

Iri a synoptic study, water samples are collected from many -sites 

representing a large·area. This is a useful technique for studying sys-

terns where horizontal·variation in more than one direction is present 

(Platt and Filion, 1975) or where it is desirable to understand circula-

tion, topographic and inflow effects (Horne, Dillard, Fujita, Goldman 

1972; Hbrne, Sandusky and Carmiggelt, 1977). Remote sensing by ~erial 

photography (visible or infrared) shows promise as another way of studying 

a few aspects of two dimensional variability (Horne and Wrigley, 1975) 

particularly when used together with "water truth" measurements gathered 

from synoptics. 

In this report we develop a systematic approach to interpret synoptic 

surveys using statistical methods to derive a distribution function for 

synoptic survey data. The resulting model is used to describe data on 

water chemistry and phytoplankton populations recorded during synoptic 

studies at Clear Lake, Calif. Parameters resulting from our analysis 

reveal interesting ecological features of these populations. We are 
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grateful to C.R. Goldman and P. Javornicky for providing us with some 

as yet unpublished survey data from 1969-70; to J. Neyman and P. Puri 

and E. Scott for contributions to the statistical theory. Useful 

discussions were also held with T. Powell and P. Richardson. 

THEORY 

An integral part of any quantitative experimental technique is 

the analytical methodology used to interpret the results. Sensible 

descriptive mechanisms can reduce experimental labor by eliciting 

maximal information from data and can provide insight into important 

ecological processes. In analyzing transect data, a major break

through carne through the use of power spectral analysis to reduce 

data (Platt and Denman, 1975). Central to this application is the 

explicit use of between station distance as the variable which para

meterizes population fluctuations. Use of power spectral analysis 

is also advantageous since many results from studies of hydrodynamic 

turbulence can be conveniently expressed in this framework and thus 

provide greater understanding of result!. 

For synoptic data, no such established methodology exists. Two 

dimensional power spectral analysis requires a far larger number of 

samples than are normally available in even the most ambitious synoptic 

survey. Reduction to one dimension using absolute distance between 

,, 
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stations as the spatial variable has obvious drawbacks. Advective 

current profiles in lake and estuarine systems are complicated. 

Because of topological irregularities and preferential wind direc-

tion, spatial fluctuations are seldom isotropic .. Thus, when stations 

are not collinear, between station distance is not an accurate 

measure of "real" distance (in terms of water movement). Unless current 

patterns are well known, it is difficult, if not impossible, to say 

what this real distance should be. 

Statistical models of spatial variations offer an alternate 

approach· toward (lnalysis of synoptic data. In t.errestrial ecology, 

clu::;tering models have been used extensively to understand two dimen-

sional spatial fluGtuations in floral and faunal populations (Patil, 

1968; Peilou, 1969). These models have also been used in aquatic 

ecology to analyze transect sampling experiments (Barnes and Marshall, 

1951; Cassie, 1963). In applying this method to analyze synoptic survey 

data, relative positions of stations are ignored. For most cases where 

current patterns are complicated or unknown, no loss of information 

occurs by this simplification. 

Much statistical work on patchiness has been based on the Poisson 

distribution. Sampling a randomly dispersed population and tabulating 

frequencies of observed numbers of individuals results in a frequency 

distribution, 

X 

f(xj") = -l.l ll 
tA e XT (1) 
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where f (x) = probability of finding x individuals and hi is the mean 

population density. A main feature of the Poisson distribution is equal 

variance and mean. For non-randomly dispersed populations, either mean 

exceeds variance (uniform) or variance exceeds mean (patchy). Fisher 

(1950) derived criterion for testing the significance of such deviations. 

Subsequent attempts to quantify these differences found several "patchiness 

indices" all based on ·the amount by which variance exceeds mean (Hi 11, 

1973). Most can be related to the parameter, 

2 
k = (mean) 

(variance mean) (2) 

which is the shape parameter for the negative binomial distribution. 

In applying this work to aquatic ecology, two questions immediately 

arise: 1) which ~e the optimal parameters (indices) to use? 2) What 

is the most accurate way to estimate them? The answer to both questions 

lies in the correct choice of an underlying probability distribution. 

If, for example, population counts from a sampling experiment are well 

described by a negative binomial distribution, then the two parameters 

to use in describing the population are the mean and shape parameter 

(defined above) and the best way to estimate them is to fit the 

negative binomial distribution to the observed population frequencies. 

Thus, our procedure for analyzing experimental data is to first find • 
an appropriate distribution function which contains descriptive para-

meters, then, to use the data to determine values for these parameters, 

and finally, to use these values to interpret the experiment. Choice 

of an optimal underlying distribution thus maximizes the information 

obtained from the experiment. 
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An important consideration in seeking a reliable probability 

distribution is that there is no unique one. ·Solutions to equations 

governing turbulent hydrodynamics and biological productivity do not 

exist. Even if they did, clustering is expected to··manifest itself 

differently depending on system and type of species within a system. 

Thus, statistical.distributions which worked well in describing terres-

trial populations may not apply in the aquatic case. The procedure for 

constructing these models, however, is quite general 'and we· will rely 

on it extensively here. In building a model, it is advantageous to 

utilize.· as much as p~ssible, prior information, without which" any model 

is merely an empirical device. 

For the use of synoptic sampling, we begin by assuming the following. 

First, stations are indistinguishable in the sense that plankton are 

equally likely to be at any of them and whether or not they are, is a 

random process. Notable exceptions to this (e.g., diatoms which may be 

more likely to be at edge stations than center ones in lakes) are 

treated after the analysis is made: Second, stations are far enough 

apart so that water mass coherence is lost when water flows from one 

station to the next. These assumptions are equivalent to the assump-

tion that population counts from each station form a sample space 

of independent, identically distributed events. To construct a 

distributiori which describes these events, it is convenient to pic-

ture aquatic processes in terms of a length scale, s. Results 

from many studies (Kierstead and Slobodkin, 1953; Platt, 1972 and 

Powell et al., 1975) indicate the existence of three spatial regions: 
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(1) a clustering zone (10 m ~ s); (2) a turbulence zone (lOOOm ~ s ~ 

lOm);and (3) a patchiness zone (s ~ lOOOm). The boundaries separating thes~ 

regions are variable. Those for open ocean are expected to exceed 

those for estuaries or lakes. We assume stations are far enough 

apart for phytoplankton to show patchiness, otherwise we are observing 

effects primarily of water turbulence. At each station, populations 

may show evidence of local clustering. We therefore construct a 

model which describes clustering at small scales, and allow parameters 

to vary fr.om station to station to describe patchiness. The inter

mediate zone is treated here, as a randomizing agent which assures 

the independence of station samples. 

Small Scale Clustering 

At a given station we are concerned with small scale variatioris 

in numbers. Work by Bernhard and Rampi (1965) and McAlice (1970) 

found significant overdispersion of phytoplankton on scales of 10 em 

to 10 m. In part, this clustering occurs because the fundamental 

unit for phytoplankton is not always a cell but is sometimes an 

association of cells (chains, clusters, filaments, or grouping of 

filaments). In this case, one unit is observed infrequently (using 

the Poisson distribution as a standard) relative to zero units or 

many units. Clustering also results when algae are vertically 

stratified either passively by wind induced currents (Stavn, 1971) or 

actively through positive buoyancy control.or swimming. Again, units 

are not spatially independent; plankton occur in spatial clusters 

of units. 
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We describe both cases by assuming that aggregates (a random 

number of individual units) are randomly distributed in space, 

Mathematically, this situation is conveniently described (Feller, 

1950) by use of probability generating functions (pgf), defined by 

00 

Gx (t) ::: E (tx) ::: ~ txP (x) ·. (3) 

x=o 

Here, G is the pgf for a probability distribution for the random 

variable, x.. The probability of observing X = x events is denoted 

by P(x); E(•) is expectation. Probabilities may be found from the 

pgf by differentiating with the dummy variable, t: 

1 dx 
P(x) = - -- G (t) I 

x! dtx X t=o ( 4} 

For the Poisson distribution, 

(5) 

where in this case X = number of clusters, and ~ = cluster density. 

If the pgf of the number of cells per cluster is denoted by 

' 
gX(sjA) with A = average number of clusters, and cluster$ are distri-

buted at random, it is easy to show (Feller, 1950) that the pgf 

for X =the number ofindividuals per sample is 

(6) 

There are manypossible choices for the distribution of the 

number of cells per cluster. It is unlikley that one distribution 

will satisfy all cases. Certianly the case of fairly passive clus-
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tering due to depth stratification as near a pycnocline is different 

from the case of clustering in multicellular forms. However, if we 

restrict ourselves to one free parameter, A = number of cells per 

cluster, and in addition require: 1) a unimodal distribution, 2) 

variance proportional to (mean)
2 

for large means, 3) probability of 

a cluster with zero units is zero; then one distribution which satis

fies these requirements is the goemetric distribution, 

(7) 

The resulting distribution for number of individuals per sample is 

called the Polya-Aeppli distribution (Polya, 1931) and has been used 

to describe many diverse clustering processes. Other unimodal dis

tributions are possible. For example, use of logarithmic or Poisson 

distributions for cluster sizes results in negative binomial or Neyman-A 

(Neyman, 1939), distributions for the number of individuals per sample 

Large Scale Patchiness 

We now consider what happens if we sample locations far enough 

apart to observe patchiness. The Poly-Aeppli distribution has two 

parameters, cluster density and cluster size and one or both of these 

will change. For simplicity, we will consider the phycologically more 

typical case where cluster density is a random variable and cluster 

size is fixed. Distributions where both parameters are random variables 

are interesting but tend to be mathematically intractable. If ~ , 

the cluster density, is a random variable, we can make the following 
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requirements on the distribution function, f(JJ): 1) f(]J) is unimodal 

and continuous over the operr domain (o,oo) and 2) f(JJ) depends on 

no more than two parameters. Two distributions which satisfy these 

requirements are Jog-normal and gamma. Both these distributions have 

found wide use in many diverse situations. 

Here, we use the gamma distribution as it results in simpler 

formulaes, and, in the analysis of data it gave a slightly better 

description. The generating function for the number of individuals 

per sample when patchiness is included is then 

00 

GxCslk,p,\) =J dli fCJJik,p)e-JJ(l -gxCsl!.)) (8) 

0 

Using the distribution function for the gamma dj std but ion, 

(k - 1) -k 
JJ P e-]J/p 

f(k) (9) 

(f(k) is the gamma function), we find 

G;(Csik,p,\) (10)' 

l~e probabilities are (equation 4) 

1 1 
P(x) 

~, (x - 1) (;\ - l)x-j 
L..J j 1 j! 
j=l 

f(j + k) 
f(k) (1 + 1/p)j 

For ease of reference, we will call this distribution the regionalized 

Poly-Acppli (RPA) distribution. Its mean and variance are 

(11) 
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+ m(ZA-1) 

This distribution has three parameters: 

k patchiness parameter 

p scale parameter 

A mean cluster size. 

If A is known then 

k = 
2 

m 

V - m 2m(:\ - 1) 

(12) 

(13) 

which is similar to the negative binomial patchiness index except 

that correction for small scale clustering is made. In fact, for the 

limit A~ l (no clustering), the RPA reduces to the negative binomial 

as may be seen from either the generating function or the probability 

distribution. For the case, k ~ oo (no patchiness) the RPA becomes 

the Poly-Aeppli distribution and in both limits, it reduces tb the 

Poisson. The RPA distribution is a very general distribution which 

we hope can accomodate many experimental situations. 

To estimate parameters, it is best to design an experiment so 

that several samples are taken at a few stations and used to estimate 

A and then several stations are sampled once to estimate k and p. 

Unfortunately, the data available to us is that normally collected by 

limnologists in large-scale lake experiments: it contained one sample 

from each station. Some direct evidence for cluster size was av:1ilablc, 

however, in m6st cases, it was necessary to estimate all three parameters 
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simultaneously. Because of this and because of the low number of 

stations sampled, we needed the most efficient estimates possible. We 

therefore used maximum likelihood to estimat,e all three parameters (Hoel 

Port, Stone, 1971). One likelihood equation reduces to kpA. = x , the 

sample mean. 1be other two involve summations and are solved n~merically 

by high speed computer (CDC 7600). 

APPLICATION 

We used our ~odel to reduce data from synoptic studies made at 

Clear Lake, California from fali, 1969 throu~h spring, 197~. Some of 

this data has been used to investigate the factors influencing nitro-

gen fixation in the lake (Horne; Dillard, Fujita and Goldman, 1972; 

llorne, Sandusky, and Carmiggelt, 1977), some to study algal ecology 

of the lake (Horne, Javoinicky and Goldman, 1971; unpublished data 

of C.R. 'Goldman, P. Javornicky and A.J. Horne). These studies were 

conducted by one of two methods. In September, 1969 and in A~ril, 1970 

water samples were taken with a Van Darn sampler (averagin,g the top 1/2 

meter of the water column) at 32 locations in the 17,000 hectares 

of the lake surface. Algae were counted to genus in all cases, to 

species in most, at all of the stations. In spring, 1972, samples 

were taken from the same 32 stations using a tube.sampler which averaged 

5 meters of water column. This synoptic was repeated at approximately 

3 Jay intervals for a total of six sampling periods ("supersynopt ic") ' 

which included much of the spring bloom of Aphanizomenon. Algae were 
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counted to genus in most cases. In addition, water chemistry measure-

ments (N03 , D.O. etc.) were made as well as biological facotrs 

(nitrogen fixation, carbon 14, etc.). Details concerning station 

locations, data ~ollection, and analytical procedures are given 

in the above mentioned articles. 

Some amalgamation of the data was necessary prior to analysis. 

Rare species were excluded in cases where non-zero cell counts at 

ten or less stations were found or where the largest number of cells 

.did not exceed five (we estimated patchiness for some species with 

smaller numbers). In the super-synoptic study, all 32 stations 

were sampled only on the 2nd and 4th sampling days. For the rest, 

data at only 15-16 stations was taken. Because this was too small 

a number to permit a reliable statistical analysis, data from the 

1st and 3rd periods was dropped, data from the 5th and 6th periods 

was combined to make 32 samples with 16 from each period. In all, 

we had 43 sets of data representing 18 genera. These genera and mean 

numbers of counts are listed in Table 1. 

To each set of data we fitted an RPA distribution, using the maxi-

mum likelihood method to compute values for the parameters. We tested 

goodness of fit using the likelihood ratio test statistic, 

x
2 

= -2 t oi log (:
1

1

:) 

i=l 
(14) 

.th 
where F and 0. are the expected and observed numbers of events in the J 

.l 1 
7 

cc II. For J a rgc numbers of events, this stati st".ic is eLi stri buteJ as X-

with m-r-1 degrees of freedom ( r is the estimated number of parameters). 

Fol' our data. we separ<Jted the counts into S "bins" (<)-7 events in each 
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bin for those cases where the number of zero counts was not excessive). 

This separation was made by computer, after the parameters were estimated 

and without reference to the observations by making the bins of approxi-

mately equal size in probability space. Thus, we expect an equal number 

of observations in each bin (some fluctuations are unavoidable because 

the distribution is discrete). Three parameters are estimated; therefore, 

the goodness of fit statistic will be asymptotically distributed as 2 
X 

with one degree of freedom. We remark that 32 events is not asymptopia 

and fluctuations in our goodness of fit statistic caused by extreme good 

(i 11) ·luck or by counting errors can be. large. We compare results for 

our statistic wi~h 2 
X tables, cautiously. 

For comparative purposes, we also fit a negative binomial distri-

bution to the data. This is the limiting case of large scale patchiness 

with no local clustering and we expect it to apply to certain groups of 

algae. Because the negative binomial can occur when there is no patchiness 

but local clustering, we checked two other distributions with two para-

meters, the discrete log-normal (patchiness without clustering) and 

the Neyman-A and Poly-Aeppeli distributions (clustering without patchiness). 

Results from this showed close correspondence with the discrete log-

normal but not with the others, thus no ambiguity is present here. We 

used four bins for the negative binomial to make the goodness of fit 

statistic again, an asymoptic 
2 X with one degree of freedom. We 

compared the goodness of fit statistics for the two distributions to 

test for local clustering. 
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Comparison ])ctween the RPA distribution and the negative binomj;J1 

also provides an interesting contrast in predicted values of the patchiness 

parameter. To study this parameter further, we fit a gamma distribution 

to the chemical-physical data. One of the parameters of the gamma distri-

hution, the shape parameter, ·should be directly analogous to the algal 

patchiness parameter and allows some discussion of the influences of 

lake physics and chemistry on algal patchiness. 

RESULTS 

Local Clustering 

When local clustering is present, we expect values of A, the 

average number of units per cluster in the RPA distribution to exceed 

one. In the case of colonial algae where individual cell numbers are 

recorded, A should be at least the average cells per colony. In Table ~. 

we 1 ist the cases where this occurred. Melosira is a chain diatom 

for which individual cells were counted. Aphanizomenon grows in 

bundles of large numbers of trichomes (as many as several hundred per 

bundle). When fixed with Lugols solution and shaken, these break up. 

The separation, however, is incomplete and several ftlaments often 

remain attached, thus, since individual filaments are counted, we 

expect clustering. The case for Anabaena and Qscillatoria is 

somewhat similar. While they do not occur in tightly attached bundles, 

many trichomes often stick together (sometimes to form large bundles) 

in numbers which depend upon lake conditions. Microcystis cells can 
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form colonies of a few to a few hundred thousand cells. Again, when 

fixed and shaken, it becomes difficult to decide what should be a 

separate entity since many of the clusters break apart. In fact, 

referring to Table 2, it is remarkable that while the Microcystis 

biomass changed considerably between the fall synoptic and the spring 

supcrsynoptic,.the cluster density, x/A 'was nearly the same (2.2 in 

the fall, 1. 8 average in the spring). The change seemed to come almost 

entire~y from a decrease in cluster size. This make biological sense 

for two reasons. First, fall aggregations occuring in a vigorous 

growth period are larger. Second, during such a period, the species 

is buoyant; thus separate aggregations may crowd each'bther, spatially. 

/\s we·remarkedearlier, replicate sampling at a few stations lS 

needed to provide reliable estimates of A. Because that was not done 

in these experiments, values of A found here are only approximate . 

. Nevertheless, we see from Table 2 that all values appear to be substan-

tially greater than one~ Further if we compare 2 
X values between RPA 

and negative binomial' (no clustering) in ten of twelve cases, RPA fit 

data more closely. This is further reflected in the totals. If we 

assume the totals are distributed as 2 x with 13 degrees of freedom 

this difference is about 2.1 standard deviations ( P < .02). That 

the total for RPA fails at 95% significance is not disturbing since 

nearly 8 points of 24 come from one set (Aphanizomenon, date 2). The 

tot;J! for the rest is well out of the critical region. 
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We expect little or no clustering for unicellular flagella and, 

referring to Table 3, we find strong evidence for this. Values for both 

A and X 2 differ markedly from those in Table 2. The negative binomial 

distribution fits better in most cases (with A = 1, the RPA distribution 

and the negative binomial are the same - the extra parameter used by 

the RPA results in a larger 
2 X since one more bin is used). The 

total x2 values di:'fer by4.9 standard deviations (P't.o). 

Non-random spatia I associations might ou~ur for non-motile 

~pecies at small distances if reproduction by fission is faster than 

diffusion or if a species grows epiphytically on other algae. Blue-

green algae may be clustered because they can regulate their depth 

by producing gas vacuoles as seems to be the case for Microcystis. 

In 'fable 4 we list non-flagellated species where the proper unit (he 

it cell or filament) was counted. Referring to estimated values of A , 

little clustering seems evident for the centric diatoms. For the green 

algae, clustering may occur. If association distances involved are 

between 0.5 m and 5 m, a difference should he noticeable between the 

two sampling methods. No clear difference is present and stronger 

conclusions concerning local associations await further experimentation. 

Patchiness 

Values for algal patchiness depend on the method used to estimate 

it. Our results for clustering indicate that it is best to use RPA 

distribution parameter for blue-green, non-motile green and all colonial 
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algae (where cells or subunits are counted). Since no evidence of local 

clustering was found for unicellular flagellates or for centric diatoms 

(when filaments were counted), we use the negative binomial distrihu-

tion (i.e. the no-clustering limit of the RPA) to estimate patchines§ 

for these algae. As large values of k carry large errors and as it 

Is. desirable to have an index which increases with increasing patchiness, 

we transform the RPA (negative binomial) parameter to 

L = 1 + 1/k (15) 

If no clustering is present and if the method of moments is used to 

estimate k, this parameter is the same as Lloyd's index (Lloyd, 1967). 

A value of L = 1 denotes a random distribution. Large values of L 

signify patchy distribution~. In Table l, we list values for ~atthiness. 

Although the maximum likelihood method does allow calculation of error 

in parameter·estimation, we do not list the error estimates ~ince for 

our sample numbers they are unreliable. Errors did tend to increase 

with increasing patchiness. An alternate estimate of the reliability 

of our index is obtained -by comparing the 3 different periods of the 

supcrsynoptic. Only some between-day variability is present, notably 

in those species with low mean counts. Differentiation between species 

is clearly feasible and we can use it to understand some basic mechanisms 

causing patchiness. 

Experimental methodology is an important consideration in measuring 

patchiness. If a lake is stratified and ohly part of the photic zone is 

sampled, increased variability (hence an erroneously high estimate of 

patchiness) may be observed for non-motile organisms whose vertical 
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position is dependent on sieche waves (Platt and Conover, 1971). 

Clear Lake is well mixed during spring and fall blooms when the sampling 

was done and the only group whose patchiness might depend on sampling 

strategy is the blue-green algae. In Table 1, we see both Aphanizomenon 

and Microcystis show considerably greater patchiness when sampled using 

a Van Dorn sampler (0-.5 m) than when sampled with a depth integrating 

tube. For reasons discussed in the next paragraph, the result for 

Microcystis may be coincidental. Aphanizomenon, however, seems to show 

substantial difference. 

A second consideration in sampling strategy is station bias since 

all station positions may pot be equivalent. In Fig. la, we see that 

Microcystis is growing only in the Lower and Oaks Arms due most likely 

to ammonia releases related to sediment content. While the bloom 

eventually spread to the Upper Arm, the degree of patchiness is inflated 

because of station differences. Another example of deterministic 

influences is Peridinium (Fig. lb) which grows best in the Upper Arm 

due to favorable inflow and temperature conditions (Horne, Javornicky 

and Goldman, 1971). Other species showed little or no evident bias. 

Spatial patterns of nutrients, chemical and physical factors are 

closely linked with phytoplankton patterns. In the supersynoptic 

study, many of these quantities were measured. To compare their 

patchiness with that of algae, we fit a gamma distribution to those 

data sets where enough measurements were made to yield reliable results. 

In Table 5, we list values for the shape parameter, the continuous 
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analogue of the patchiness parameter for phytoplankton. For easy tom-

parison, we again transform to L ~ 1 + 1/k. Major nutrients, NH
4

, P0
4

, 

and N03 exhibited patchiness comparable to the algae. Nitrate is the 

most patchy of the three; it is interesting conjecture that many of the 

nitrate limited species are more patchy than those limited by other 

factors. Biological factors, c14 , acetylene reduction (nitrogen 

fixation) and Chi. a are approximately the same as Aphizomenon, the 

dominant algae, as would be expected. Physical parameters are less 

patchy. Temperature fluctuations are underestimated since the zero 

temperature is arbitrary (hence, by a change of zero, we could change 

the variance to mean ratio) and since.phtoplankton-temperature relationships 

arc complicated. 

Patchiness of a particular species changes from season to season. 

For a given species of algae we conjecture that envirorimental fluctua-

tions occuring during a dominant period are less likely to affect growth 

than those occuring in a subdominant one. Thus, if we compare patchiness 

of a particular species at two different seasons, we expect this species 

to be less patchy during the period for which its biomass is greater. 

Using Table 1, we see that Aphanizomenon, Rhodomonas, and Cryptomonas 

Marssonii increased in numbers between fall and spring and showed 

.decreased patchiness. Scenedesmus was unchanged in both numbers and 

patchiness. Cryptomonas Reflexa showed increased patchiness but no · 

change in numbers, :tl though in both seasons it was rare and est 1mates 

of its patchiness could be unreliable. Comparisons between synoptic 
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and supersynoptic are supportive for Cyclotell~ and Cryptomonas when 

combined species are considered (comparisons for blue-greens are not 

meaningful because of sampling differences). 

A major ecological factor influencing patchiness, here, is what 

can be called species sensitivity or niche width. A partially mixed 

lake presents a variety of habitats of different chemical-physical 

makeup. Algae which are extremely adaptable should do well in many 

of them and thus be found in similar quantity at all stations (random 

distribution). Algae which are extremely sensitive to environmental 

fluctuations will manifest greater patchiness since their expected 

numbers depend greatly on local water conditions. We can see some 

evidence for this conjecture from Table 1. Blue-green algae which 

are adaptable to a variety of conditions are less patchy 

then either flagella or centric diatoms (not enough species of green 

algae are available for a comparison, although the ones shown show 

little patchiness). 

An interesting way to further explore the relationship of nitch 

width and patchiness comes by studying combinations of algal species. 

If two closely related species (say, two cryptomonads of about the same 

size) are summed, we expect decreased patchiness since the niche occupied 

by the combination is larger than for either separately. Theoretically, 

this concept is built into the RPA distribution since if two independent 

variables which have a gamma distribution with the same scale parameter 

are combined, their sum will be gamma distributed with the shape 
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parameter equal to the sum of the individual shape parameters. If the 

two variables are linearly dependent, their sum will be gamma distri

buted with the same shape parameter. For partially dependent variables, 

the result lies (approximately) between. This carries over (approxi

mately) to discrete distributions which are based on a gamma distri

bution as are the RPA and negative binomial. In short, if the niche 

is not expanded by combining two species the patchiness parameter 

will remain unchanged (for our case, it can be estimated by the· 

weighted average of the two individual parameters if they differ). If 

it is increased due to partial or total variable independence, the 

patchiness decreases. In Table 6, we list several combinations of 

related species which had about the same scale parameter. As expec

ted, comhinat ions of spec:i es have combined patchiness close to the 

dcpcnJent case ( LD). Values of pat·chiness obtaineJ for combinations of 

two phyla are closer to the independent case (LI). 

DISCUSSION 

Conceptually, experimental studies of patchiness can be categorized 

as deterministic or stochastic. A deterministic approach has as its 

objective, measurements of size, shape, density and/or evolution of 

plankton patches. It. is useful for qualitative or semiquantitative 

Jescriptions of mesoscale patches (Bainbridge, 1957) caused by regional 

environmental conditions favorable for production (Cushing, 1955) or 
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favoring .particular species (Holland and Beeton, 1972). These large 

scale patches are thought to be stable (Kierstead and Slobodkin, 1953). 

A deterministic approach is also useful for descriptions of vertically 

stratified plankton. 

Stochastic descriptions apply in two cases: (1) where insufficient 

data is present to permit characterization of a patch or (2), where no 

fixed differences in environmental factors occur among sampling points. 

For these studies, spatial variability is often of primary interest. 

Sizes are "measured" not of individual patches but as correlations 

observed as a function of distance (Platt and Denman, 1975; Powell et al., 

1975) or as fitted paramet~rs of a hypothesized frequency distrihution 

(rasham, Angel and Roe, 1974). 

Our description of patchiness was stochastic. Because our samples 

were not made at stations with clear spatial relationships, we did not 

attempt to include patch size as a variable. To describe transect 

data, our model could be expanded. However, inclusion of fallacious 

assumptions concerning patch size or shape could lead to an untrust-

worthy analysis. A better approach is to use our distributions as a 

"normalizing" transformation to use prior to other analyses. Power 

spectral analysis or other techniques based on normal distributions 

could then be used with greater accuracy. For the RPA distribution, 

this transformation is 

f(x) x(L-1) 
(2\-1) 

(16) 
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where L = 1 + 1/k , as before. For A. -+ 1 ~his becomes identical 

with the negative binomial transformation. For large sample numbers, 

it reduces to log(x). 

Local Associations 

A major problem with many quantitative studies on patchiness has 

been the one of deciding upon a fundamental unit (Pielou, 1969). In 

terrestrial and in ·aquatic benthic studies, plants aggregate (cluster) 

because of limited dispersal ability. Many phytoplankton species also 

occur in colonies or filaments (aggregates). In principle, this problem 

is avoided by counting aggregates. In practice, it is often difficult 

or impossible to decide which cells belong to which aggregate. This is 

especially true for loosly attached species, for 'example, most bloom 

forming cyanophytes, which break up when preserved and shaken. Further, 

i~ plankton arc vertically stratified, aggregates may b~ concentrated, 

physically, and the unit for counting will be some ill-determined "super-

aggregate". We provided for local associations in our model. Because 

the data which we analyzed was recorded regionally, our conclusions about 

local associations are indirect. With the exception of buoyancy 

controlled cyanophytes, we found little evidence for spatial associatior1s, 

locally. This is in contrast with work by several authors (Cassie, 1963, 

and references therein). The discrepancy is easily understood since· 

Clear Lake is shallow and well mixed (vertically) at the time of sampling. 

Most of the n6n-randcim spatial associations observed in the literature 
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occur for depth stratification of stronger swimming marine zooplankton 

or dinoflagellates or for passive organisms in stratified systems 

(Cassie, 1960). In some cases, local association was significant but not 

pronounced. Barnes and Marshall (1951) used· contagious distributions to 

fit samples taken from a drifting boat. Their frequency spectra are all 

unimodal and it appears that our distribution describing local associa-

tions (Poly-Aeppli) would fit them. Using their means and variances, 

we estimated values of ~ for the various species arid hauls. Our 

average value for all their listed species was \ = 1.44. This is greater 

than the values we found for most unicellular algae. The difference is 

probably due to sampling differences and to the greater salinity (pres-

sure) gradients observed by these authors. 

In addition to the intrinsic interest in local associations, proper 

account of them is necessary for a good estimate of regional associations. 

If we underestimate clustering, we will overestimate patchiness. A quan-

titative description of this inay be found using the RPA distribution. 

The classic patchiness index (Fisher, 1950; Cassie, 1963) is the difference 

between variance and mean. From Equations (13) and (15). 

V-m 
--- = m (I. - 1) + 2 (\ - l) m .. (] 7) 

Both regional overdispersion (L > 1) and local overdispersion (\ > 1) 

contribute to a large variance. This explicit partitioning of variance 

jnto local and regional spatial patterns is an interesting conceptual 

feature of the RPA distribution. 
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Regional Associations 

When solitary plankters are counted and when local mixing diminishes 

local associations, no clustering is expected, thus.the RPA distribu-

tion reduces to the negative binomial (A= 1). Other applications of 

the negative b1nomial to regionally sampled plankton populations have 

been successful. Colebrook (1960) approximated a hydrodynamical model 

of Like mixing with a negative binomial and found good fits to observed 

numbers of zooplankton. Cassie (1962) found comparable fits for a nega-

tive binomial and truncated log-normal. He proposed use of the discrete 

log-normal distribution, however, he was unable to use it effectively 

since the evaluation of probabilities necessitated a·numerical approxi-

mation to an integral. We were able to accurately evaluate this integral 

using Gaussian quadratures arid a high speed computer. Comparison of 

fits to our observed frequencies of unicellular flagella for the discrete 

log-normal and the negative binomial distributions revealed close simi-

larity between the two with slightly smaller 2 
X values for the latter. 

Both distributions are derived by assuming that patchiness (overdispersion) 

is due to regional fluctuations in water mass chemistry and expected plank-

ton numbers not by assuming random spatial distributions of clusters as we 

did for local fluctuations. 

Patchiness indices in general and our index in particular are derived 

with reference to some standard of randomness. Because of uncertainties 

in values of this index caused by sampling procedures and hydrodynamic 

mixing, perhaps a better concept is "relative patchiness" where one 

looks simultaneously at species patchiness relative to other species or 
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nutrients or at patchiness of the same species sampled on different days 

but mc:Jsured using the same technique. Such comparisons were useful for us. 

We found similar patchiness of limiting nutrients and phytoplankton. Our 

results linked relative phytoplankton patchiness to relative dominance 

(same species, different seasons) and to species sensitivity or niche 

width (different species, same sampling period). Our results also 

showed that relative patchiness decreased when similar spetieS were coniliincid 

(enlarged niche). This has possible applications to survey experiments 

where the effects of an environmental disturbance are measured for a 

group containing several species (Niebold, 1977) or where spatial fluc

tuations in a biological indicator such as chlorophyll are meas~red 

(Powell ct al., 1975; Platt and Denman, 1975). For the latter c:.Jse, our 

results suggest the degree of plankton spatial organization may he 

underestimated when several species are present. In future work, we 

hope to investigate more systematically these relationships between 

patchiness and algal ecology. 
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TABLE AND FIGURE CAPTIONS 

Table 1: Mean frequencies and patchiness indices for phytoplankton. 
Patchiness values (Equation 15) are italicized. The dates corres
ponding to the letters are September, 1969 (F); April, 1970 (S); 
2 June 1972 (2) and 12 June, 1974 (4). The data for date (5) was 
compiled from samples taken on 15 June and 19 June. 

Table 2: Cluster sizes and x2 values for colonial or filamentous 
phytoplankton species for which the counting unit was a cell or 
subaggregate of the cluster of cells. Dates are the same as for 
Table 1. To avoid excessive computer costs, values of A for 
A. f1os-aquae denoted by an asterisk were set equal to 7.0, the 
value obtained for the September, 1969 data. The average value 
for A is a geometrical average. 

2 Table 3: Cluster sizes and X values for unicellular flagella. 
Dates are the same as for Table 1. 

. d 2 f . . h Table 4: Cluster s1zes an X values _or non-mot1le spec1es w ere 
the proper unit (cell or filament) was counted. Dates are the s:nnc 
as for Tab1 e 1. 

l~1hle 5: Patchiness of major nutrients, physical and biological factors. 
Dates are as in Table 1 except for C14 (asterisk) which is 6 .June and 
12 June, 1972 combined. 

Table 6: Patchiness of phytoplankton groups. LA+B is the patchiness 
parameter (Equation 15) obtained by fitting a negative binomial 
distribution to the total of observed frequencies for species A 
and B. Lr is the expected value if the two species were independent, 
L1 = 1 + 1/ (kA + ks). LD is the expected value if species were 
dependent, Lo = 1 + (PA + P8)/(PAkA + P8k8). 

Pigure: Spatial distribution of Microcystis aeruginosa and Peridinium 
penardii in Clear Lake. Data taken in September, 1969 (Microcystis) 
and April, 1970 (Peridinium). 



TABLE 1 

PHYLU~! GE:\US 

F s 

CY.-1..\0PHHA Anabaena c:ircinalis 560. 2.1 

Aphanizomenon flos-aquae 22. 5.8 680. 3.0 

Microcystis spp. -
~!. aeruginosa 1100.; 4.2 

Oscillatoria spp. 

CHRYSOPHHA Coscinodsicus spp. 

Cyc1ote11a spp. 

C. sp. 17. 4.4 

C. atomus 530. 1.8 

Mallomonas spp. 3.5 1.4 

Melosira granulata v. 87. 1.5 
granulata 

M. ita1ica .36 1.3 

DINOPHYCAE Peridinium penardii 4.8 1 ?. ? 

CRYPTOPHYCEAE Chroomonas sp. 290. 1. 9' 

Cryptomonas spp. 2.3 1.2 

c. eros a 5.8 2.6 

C. marssonii 3.6 2.8 

c. reflexa 1.9 6.0 

Flagellates 

Rhodomonas pusilla 23. 1.9 100. 1.5 

CHLOROPHYTA Chlamydomonas spp. and 75. 2.5 
zoospore 

~!onoraphidium contortum 4.7 2.1 

Oocystis lacustris .47 1.0 

Scenedesmus spp. 2. 1 1. 1 1.6 '? -: 
.L • .1. 

Schroederia spp. 

DATES 

2 4 

700. 2.2 380. 1.e 760. 

11. 1.8 7.9 

6.4 1.9 5.2 1. 1 2.8 

.45 5.0 . 84 

1.0 4.3 1.2 

3.1 5.5 .64 5.2 .41 

2.6 2.4 7.8 1.? .84 

4.4 1. 1 3.5 1. 1 1.4 
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TABLE 2 

Species Date 
2 

X Best f. 
RPA NB Fit! 

Anabaena circinalis F 0.53 0.73 RPA 20. 
Aphanizo~enon flos-aquae F 0.33 2.92 RPA 7.0* 

Aphanizomenon flos-aquae s 0.49 1. 27 RPA 7.0 
Aphanizomenon· flos-aquae 2 7.66 7.66 - 7.0* 

Aphanizomenon flos-aquae 4 3. 01 1. 50 NB 7.0* 

Aphanizomenon flos-aquae 5 1.02 1. 01 NB 7.0* 
Melosira italica s 0.13 0.88 RPA 3.4 
Microcystis aeruginosa F 4.23 5.43 RPA 500. 

Microcystis spp. 2 0.01 3.71 RPA 11. l 

Microcystis spp. 5 0.76 0.84 · RPA 3.0 

Oscillatoria sp. 2 0.70 1.60 RPA 2.4 

Oscillatoria sp. 4 0.80 1.60 -RPA 6.1 

Oscillatoria sp. 5 4.46 5.47 RPA 2.2 

Totals 24.13 34.62 RPA 8.1 



TABLE 3 

Species Date 2 
A. X Best 

RPA NB Fit 

Chroomonas sp. s 1. 56 1.29 NB 3.0 
.. 

Chlamydomonas spp. s 6.73 0. 72 NB 1.0 

Cryptomonas spp. 2 7.93 0.33 NB 1.0 

C. erosa s 7.59 2.33 NB 1.0 

C. marssonii s 5.53 7.21 RPA 1.0 

C. reflexa s 2.00 0.07 NB 1.3 

. Flagellates 2 2.01 0.08 NB 1.04 

Flagellates 4 2.93 4.29 RPA 1.0 

Mallomonas spp. s 3.76 2.65 NB l. 61 

Rhodomonas pusilla F 5.47 2.89 NB 1.0 

Rhodomonas pus ill a s 1.08 l. 94 RPA 1.0 

Total 46.59 23.80 NB 1.2 
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TABLE 4 

Species Date x2 Best 
RPA NB Fit A 

Cycl otell a spp. 2 1. 58 0.18 NB 1.1 

c. sp. s 2.36 0.79 NB 1.0 

C .. atomus s 4.14 1.89 NB 1.8 

Melosira granulata F 1.06 3. 77 RPA 1.0 

Monoraphidium contortum s 1.77 1.65 NB 1.5 

Schroederia spp. 2 6.06 6.07 RPA 1.9 

Schroederia spp. 4 1.84 5.84 RPA 2.6 

total 18.81 20.19 RPA 1.5 



Date 

Temperature 
Turbidity 
NH4 
N03 
P04 
acetylene 
reduction 

c14 
Chl. a 
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t';·; f~; I 4 :0 5 

TABLE 5 

2 4 5+6 

1.0 1.0 1.0 

1.2 1.1 
2.1 1.8 

2.1 2.9 

1.5 1.3 

1.8 1.9 .. 1.6 

1. 7* 1.4 

1.8 1.7 1.7 



TABLE 6 

Combination A B Date 
Type 

species Cryptomonas erosa Cryptomonas reflexa s 
species Cryptomonas erosa Cryptomonas marssoni s 
genus Rhodomonas pusilla Chroomonas sp. s 
genus Cyclotella spp. Coscinodiscus spp. 2 

genus Cyclotella spp. Coscinodiscus spp. 5 

family Oocystis lacustris Scenedesmus SPR· F 

' phylum Flagellates Cryptomonas spp. 2 

phylum Flagellates Cryptomonas spp. 4 

phylum Flagellates Cryptomonas spp. 5 

,o 

Cluster 
Frequency 

PA PB 

9.3 9.5 
9.3 6.6 

51.0 255 .. 

3.4 1.8 

10.9 2.9 

2. 1 17.4 

3,9 14.0 

5.3 2.7 

5.9 1.4 

Patchiness 

LI LA+ B 

2.2 2.6 

1.8 2.4 

1.3 1.7 

2.8 3.3 

3.5 3.8 

3.9 6.6 

2. 1 2.6 

1. 6 1.7 
3;3 3.3 

Lo 

3.4 

2.7 

1.8 

4.5 

7.6 

8.7 

4.1 

1.9 

6.8 
I 
w 
00 
I 
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