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Does Reweighted Least Squares (RLS) perform better in small samples than maximum 

likelihood (ML) for mean and covariance structure? ML statistics in covariance structure 

analysis are based on the asymptotic normality assumption; however, actual applications of 

structural equation modeling (SEM) in social and behavioral science research usually involve 

small samples. It has been found that chi-square tests often incorrectly over-reject the null 

hypothesis: Σ = Σ(𝜃), because when sample is small the sample covariance matrix becomes ill-

conditioned and entails unstable estimates. In certain SEM models, the vector of parameter must 

contain both means, variances and covariances. Yet, whether RLS also works in mean and 

covariance structure remains unexamined. This research is an extended examination of 
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reweighted least squares in mean and covariance structure. Specifically, we replace biased 

covariance matrix in traditional GLS function (Browne, 1974) with the unbiased sample 

covariance matrix that derives from ML estimation. Moreover, under the assumption of 

multivariate normality, a Monte Carlo simulation study was carried out to examine the statistical 

performance as compared with ML methods in different sample sizes. Based on empirical 

rejection frequencies and empirical averages of test statistic, this study shows that RLS performs 

much better than ML in mean and covariance structure models when sample sizes are small.   
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1. Introduction 
 

  

It is well documented that structural equation modeling is based on asymptotic properties, in 

which sample size and the observed variables are assumed to be large and multivariate normally 

distributed to follow a 𝜒2 distribution. Yet, in actual applications of covariance structure analysis 

in social science research, particularly in analyzing longitudinal data with growth curve 

modeling (GCM), this asymptotic assumption can be violated easily. This is because most social 

and behavioral data contain small or modest sample sizes and are not necessarily multivariate 

normally distributed (Hu, Bentler, & Kano, 1992; Yuan & Bentler, 1997). As a result, normal-

theory methods such as maximum likelihood (ML) put forth by (Jöreskog, 1969) too often 

incorrectly reject the null hypothesis in 𝜒2  goodness-of-fit tests in the cases where model 

specifications are correct. The high frequent rejection rate renders a structural bias against small 

sample sizes (Arruda & Bentler, 2017; Hayakawa, 2019; Jalal & Bentler, 2018). Other scholars 

also pointed out that the primary reason of over-rejection problem is due to the number of the 

manifest variables; as a result when the size of covariance matrix is large, it is more likely to 

reject the null hypothesis (Moshagen, 2012; Shi, Lee, & Terry, 2018). Along with this 

perspective, some scholars also argue that the over-rejection problem is also due to the number 

of free parameters or degrees of freedom of the model (Herzog, Boomsma, & Reinecke, 2007; 

Hoogland & Boomsma, 1998; Jackson, 2003).  

Over the last decades, scholars have proposed new corrected goodness-of-fit tests such as 

reweighted least squares (RLS) and regularized GLS (Arruda & Bentler, 2017). Lee (2007) also 

proposed that the sampling-based Bayesian methods may produce more reliable parameter 
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estimates when the sample size is small, because they rely less on asymptotic theory. Although 

these methods can effectively reduce the bias when sample sizes are small, the extent to which 

these methods can also be applied to mean and covariance structure 1  remain unexamined. 

Therefore, building on the existing reweighted least squares that introduced by Browne (1974), 

this research aims to test the performances of the RLS on mean and covariance structure.  

The research method undertaking in this research is quite straightforward. It relies on 

Monte Carlo simulation to draw different sample sizes from N=50 to 10,000, to compare the 

performances of chi-square model fit statistics from different estimators of interest in both 

covariance structure, as well as mean and covariance structure. The chi-square tests that will be 

compared are from maximum likelihood (ML), generalized least squares (GLS), reweighted least 

squares (RLS), maximum likelihood mean and covariance structure (𝑀𝐿𝑀𝑆) and reweighted least 

squares mean and covariance structure (𝑅𝐿𝑆𝑀𝑆) estimation. Based on Monte Carlo simulation 

and 1,000 replications on different sample sizes, we find that reweighted least squares method 

outperforms conventional ML on mean and covariance structure and offers highly consistent 

goodness-of-fit chi-square model tests across different sample sizes.  

 This study proceeds as follows. It first reviews the theories in covariance structure 

analysis and traditional estimators: Maximum Likelihood and Generalized Least Squares (GLS) 

method. The next section is the literature review of covariance structure in tandem with mean 

structure. Within this context we will introduce the reweighted least squares (RLS) and its 

relationship with GLS, as well as the application of RLS to estimate mean and covariance 

structure. The fourth section discusses data generation and the simulation procedures. The fifth 

section is about testing methods and results. The last section is discussion and conclusion.  

 
1 In this paper, I use the terms “mean structure” and “structured means” to convey the same meaning.  
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1.1 Bias and Sample Size 
 

To demonstrate how sample size affects the covariance structure, one must understand how 

sample sizes affect eigenvalues. Following the example of Chi and Lange (2014), we conduct a 

series of Monte Carlo simulations by drawing 100 ×  10 multivariate normal distributions on 

varying sample sizes, n=5, 10, 50, 250 and 500, and setting the population eigenvalues to be 1 

for all samples.  Based on these samples, we extract the sample covariance matrix S and compute 

the eigenvalues on each sample size. Because these covariance structure S are 10-dimensional 

(𝑝=10), there are 10 eigenvalues in each simulated sample. To visualize the effects, the boxplots 

in Figure 1 are sorted from biggest eigenvalues to smallest. Across different sample sizes, we can 

see that large eigenvalues are increasingly inflated as the sample size decreases, while in the 

same processes the small eigenvalues are correspondingly deflated. When the sample size 

increases to 500, the eigenvalues are asymptotically collapsed to the expected value of 1.  
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Figure 1. Multivariate simulation and sorted eigenvalues 

 

 

 This example illustrates that sample covariance structure is sensitive to sample size. 

Scholars have documented that when the number of variables is greater than the number of 

observations, that is, 𝑝 > 𝑁, the sample covariance matrix is not invertible, in part because the 

covariance matrix may not be positive definite. Moreover, when the ratio of 
𝑝

𝑁
 is less than 1 by 

slight amount, the sample covariance matrix can be ill conditioned, and generates a large 

condition number.2 As a result, the parameter estimates can be unstable in covariance structure 

analysis (Arruda & Bentler, 2017; Chi & Lange, 2014; Hayakawa, 2019), as well as in mean and 

 
2 The condition number refers to the ratio between largest and smallest eigenvalues.   
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covariance structure (Bentler, 1989). In what follows we briefly introduce the statistical 

procedures that aims to correct these biases caused by small sample sizes.   

 

2.  Covariance Structure 
 

In this section, we will first review the traditional covariance structure and the existing methods 

to derive the parameter estimates and model fit tests. Let {𝑥1, … . , 𝑥𝑛} be a random sample of 𝑥, 

and all 𝑥𝑖  are identically and independently distributed according to a multivariate normal 

distribution N [0, 𝚺0]. That is, we assume a random vector 𝑥 (𝑝 × 1) has a mean 0 and a positive 

definite covariance matrix 𝚺0. Also, we assume that 𝚺0  is a matrix function of an unknown 

population parameters 𝜽0 (𝑞 × 1), and 𝚺0 = 𝚺(𝜽0). Therefore, the sample covariance matrix is  

 

𝑺 =  
1

𝑛−1
 ∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)′𝑛

𝑖=1                                               (1) 

 

where the sample mean 𝑥̅ =  
1

𝑛
∑ (𝑛

𝑖=1 𝑥1, … . , 𝑥𝑛). When the sample size 𝑛 is significantly large 

the difference between 
1

𝑛
  and 

1

𝑛−1
 can be neglected.  According to the Multivariate Central Limit 

Theorem (Anderson, 1984), the sample covariance matrix 𝑺 is positive definite with probability 

1, and 𝑺 is an unbiased estimator of population covariance structure 𝚺0, and also converges to 𝚺0 

in probability. That is,  

 

𝑛1/2{vec(𝒔 − 𝝈)}
𝐿
→ N [0, 2𝑲𝑝

′ (𝚺0 ⨂ 𝚺0)𝑲𝑝]                (2) 
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where ‘ 
𝐿
→’ denotes convergence in distribution. As 𝑺  (𝑝 × 𝑝)   is a symmetric matrix, the 

𝑝(𝑝+1)

2
× 1 vec(𝒔) may be expressed in terms of the 𝑝2 × 1 vec(𝑺), and similarly for 𝜎(𝜃)  and 

𝚺𝟎(𝜃). Thus 𝑲𝑝 is of order 𝑝2 × 𝑝(𝑝 + 1)/2.  As Lee (2007) points out, the quadratic functions 

of  {𝑥1, … , 𝑥𝑛} can be considered as the covariances and variances of elements of the sample 

covariance matrix 𝑺, which can be expressed in terms of 𝚺0. This is the most fundamental result 

for building the covariance structure analysis theory.  

Moreover, in a confirmatory factor analysis (CFA) model 

 

𝒙𝒊 = 𝚲𝝃𝒊 + 𝝐𝒊,         𝑖 = 1, … , 𝑛 

 

where 𝑥𝑖 is a random sample, 𝚲 (𝑝 × 𝑞) is a matrix of factor loadings, 𝝃𝒊 (𝑝 × 1)  is a vector of 

latent factors, and 𝝐𝒊  (𝑝 × 1)  is a vector of residuals. In SEM, the parameters involved in the 

model are contained in the covariance matrix of the observed variable 𝚺. 𝚺 = 𝚲𝚽𝚲′ + 𝚿, where 

𝚲 again is a 𝑝 × 𝑞 factor loading matrix, and 𝚽 is a 𝑞 × 𝑞 covariance matrix of the factors, and 

𝚿 is a 𝑞 × 𝑞 covariance matrix of unique scores. In SEM, the population covariance matrix 𝚺 has 

a hypothesized structure 𝚺 = 𝚺(𝜽), where 𝚺(𝜽) is a model implied covariance matrix, and 𝜽 

contains a vector of free parameters. In the following text 𝚺(𝜽) will be denoted by 𝚺, should the 

context be clear. Since the sample covariance matrix 𝑺 is an unbiased estimator of the population 

covariance matrix, an objective function 𝐹[𝚺(𝜽), 𝑺] measures the discrepancy between 𝚺(𝜽) and 

𝑺 (Browne, 1974; Jöreskog, 1969). Supposed that 𝜽′ = {𝜃1, … , 𝜃𝑞} is an unknown parameter 

vector and we want to estimate 𝜽 by minimizing a real objective function 𝐹[𝚺(𝜽), 𝑺]. The major 

purpose of nonlinear programming is to locate 𝜽̂ , the best estimated value of 𝜽  for which  
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𝐹[𝚺(𝜽), 𝑺] is minimized. That is, we start with an initial and arbitrary guess 𝜃𝑖 ∈ {𝜃1, … , 𝜃𝑞} , 

and iteratively generate a sequence of 𝜃1, … , 𝜃𝑞  until it converges to 𝜽̂, assuming that the second 

order partial derivatives of 𝐹[𝚺(𝜽), 𝑺] with respect to 𝜽 exist and are continuous.  

Furthermore, estimation of a discrepancy function 𝐹[𝚺(𝜽), 𝑺]  involves the choice of 

iterative procedures. The Newton-Raphson and the Fletcher-Powell algorithms can be used for 

minimizing any arbitrary objective functions. Whereas the scoring algorithm is most appropriate 

for minimizing the likelihood function, while the Gauss-Newton algorithm is most appropriate 

for minimizing the GLS function (Lee, 2007). 

In classical covariance structure analysis and based on multivariate normally distributed 

variables, the maximum likelihood (ML) and generalized least squares (GLS) are the most 

common methods to obtain the test statistics for evaluating the goodness-of-fit. In this study we 

use ML discrepancy function 𝑇𝑀𝐿 (Jöreskog, 1969) to derive the goodness-of-fit test statistic. As 

equation 3 shows, the model implied covariance matrix 𝚺(𝜽) is fitted to the sample covariance 

matrix S using the Wishart likelihood function.  

 

𝐹𝑀𝐿(𝜃) = log|𝚺 (𝜽) − log|𝑺| + 𝑡𝑟(𝑺𝚺(𝛉)−1) − 𝑝           (3) 

             

 

𝜽̂𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐹𝑀𝐿(𝜽)             (4)

     

As equation 4 shows, at the minimum of the fit function 𝐹𝑀𝐿(𝜽), 𝜽̂𝑀𝐿 contains parameter 

estimates 𝚲̂, 𝚽̂, and 𝚿̂, where 𝚲̂ is a matrix of estimated factor loadings, 𝚽̂ is a estimated factor 

covariance, and 𝚿̂ is the covariance matrix of error variables. Through these parameter estimates, 

we can reproduce the covariance matrix of the observed variables, that is, 𝚺(𝛉̂) =  𝚲̂𝚽̂𝚲̂′ +  𝚿̂.  
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 Moreover, the goodness-of-fit test statistic is defined by  

 

𝑇𝑀𝐿 = (𝑁 − 1)𝐹𝑀𝐿(𝜽̂),           (5) 

             

where 𝑇𝑀𝐿 is a test statistic, which is evaluated at the final parameter estimates, and multiplied 

by (N-1). As 𝑁 →  ∞, 𝑇𝑀𝐿 should asymptotically follow a chi-square distribution with degrees of 

freedom 𝑑𝑓 = 𝑝∗ − 𝑞 , where 𝑝∗ = 𝑝(𝑝 + 1)/2 and 𝑞  is the number of free parameters. Chi-

square test is a likelihood ratio test statistic for testing the model against the alternative model, in 

which the 𝚺(𝜽) is unconstrained.  

 The function minimized by GLS is given by  

 

𝑸 = (𝒔 − 𝛔(𝜽))
′
𝑾(𝒔 − 𝛔(𝜽)) ,           (6) 

 

where 𝒔 and 𝛔(𝜽) were defined previously, and 𝑾 is a weight matrix. When 𝜽 is a vector of 

parameter estimates, the optimal parameter estimates contained in 𝜽̂ are those that minimize the 

function 𝑸. The test statistic T is usually computed as  (𝑁 − 1)𝑸(𝜽̂) →  𝜒𝑝∗−𝑞
2 , that is, when the 

sample size is large, the test statistic T will follow a chi-square distribution.  

In covariance structure analysis, 𝐻𝑜: 𝚺 = 𝚺 (𝜽), that is, population covariance matrix is 

equal to model implied covariance matrix. The critical value is given by the chi-square test with 

𝑝∗ − 𝑞  degrees of freedom. If the proposed model implied covariance structure 𝚺(𝛉)  is not 

rejected by (𝑁 − 1)𝑸(𝜽̂), then it is considered a plausible model.  

 

2.1 Mean and Covariance Structure 
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𝑇∗ =  𝑇Σ +  𝑇𝜇                           (7)  

    
             

 Let 𝑇Σ  be either 𝑇𝑀𝐿  or 𝑇 . Then, the mean and covariance structure test statistic 𝑇∗ 

consists of two parts 𝑇Σ and 𝑇𝜇, where 𝑇𝜇 derives from (𝑥̅ − 𝜇)′Σ̂−1(𝑥̅ − 𝜇). We can use different 

estimating methods to derive mean and covariance structure parameter estimates. When 

modeling means and covariances, data and model vectors must take both of them into account 

(Bentler, 1989; Yuan, Zhang, & Deng, 2019). That is, if the covariance structure function 𝑇Σ is 

inflated, 𝑇∗
 will be inflated, even if the structured means fit perfectly. On the flip side, a good 

covariance structure with badly modeled means will behave badly as well. Nonetheless, most 

SEM-based fit indices tend to concentrate on factor covariances and factor loadings, while 

ignoring mean structures (Wu & West, 2010).  

  Bollen & Curran (2005) put that, the overall goodness-of-fit test of the mean and 

covariance structure can be defined using ML fitting function estimator by setting the 

simultaneous null hypotheses  

 

𝐻𝑜: 𝝁 = 𝝁(𝜃) and 𝚺 = 𝚺(𝜃)     

 

 Nonetheless, according to Bollen and Curran (2006), there are two problems: 1) the 

observed variables might derive from multivariate distributions that exhibit excess kurtosis, 

which would cause the test statistic to be too high. 2) The power of the chi-square test, which can 

be sensitive with sample sizes. Yuan et al. (2019) proposed that we can use hybrid methods to 

model covariance structure and structured means separately, because the method that works well 
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in covariance structure part may not necessarily work efficiently for structured means part, and 

vice versa. Despite we agree with Yuan et al. (2019), the detailed discussions of fit indices for 

the structured means is beyond the scope of this paper. In this study, we only focus on the 

reweighted least squares method to test both mean and covariance structure in the context of 

multivariate normal data.  

 

2.2 Reweighted Least Squares 
 

  

In this section we propose to test the both mean and covariance structure jointly using 

reweighted least squares (RLS) and compare the results produced by maximum likelihood (ML). 

Reweighted least squares method is not novel to SEM; whereas its performance has not been 

tested and thoroughly compared with ML until recently by Hayakawa (2019). Using Monte 

Carlo simulation, Hayakawa (2019) finds that reweighted least squares (RLS) overcome the 

over-rejection problem and performs better than ML in the context of a confirmatory factor 

model, a panel autoregressive model and cross-lagged panel model. However, whether RLS also 

efficiently work in mean and covariance structure models remains unexamined in the field of 

SEM.  

 Reweighted least squares method was built based on the generalized least squares (GLS) 

fit function. As equation 6 shows, it is specialized to multivariate normal populations. The 

definition of the GLS function is motivated from the residual quadratic form:  

 

{vec(𝑺 − 𝚺(𝜽))}′{2𝑛−1𝑲𝑝
′ (𝚺0⨂𝚺0)𝑲𝑝}−1{vecs(𝑺 − 𝚺(𝜽))}        (8) 
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where 𝚺0 is population covariance matrix, and 𝑲𝑝 is of order 𝑝2 × 𝑝(𝑝 + 1)/2. The inverse of 

𝑲𝑝
′ (𝚺0⨂𝚺0)𝑲𝑝 is 𝑲𝑝

−(𝚺0⨂𝚺0)−1𝑲𝑝
−′ , hence substituting it into equation 8, we have  

 

𝑛2−1{vecs(𝑺 − 𝚺(𝜽))}′𝑲𝑝
−(𝚺0⨂𝚺0)−1𝑲𝑝

−′{vecs(𝑺 − 𝚺(𝜽))} 

=  𝑛2−1{vec(𝑺 − 𝚺(𝜽))}′ (𝚺0
−1⨂𝚺0

−1){vec(𝑺 − 𝚺(𝜽))}.        (9) 

 

This residual quadratic form is a function of 𝚺0
−1. As 𝚺0 is unknown, 𝚺0

−1 should be replaced by 

𝑽 (𝑝 × 𝑝), which is a positive definite matrix. This GLS function (equation 10) was proposed by 

(Browne, 1974),  

 

𝐹𝐺𝐿𝑆 =  2−1[vec (𝑺 − 𝚺(𝜽))′(𝑽⨂𝑽)vec(𝑺 − 𝚺(𝜽))] 

=  2−1 𝑡𝑟[{(𝑺 − 𝚺(𝜽))𝑽}2]          (10) 
             

 

where vec() is a matrix operator that transforms a matrix into a vector by staking rows of the 

matrix, and ⨂ is the Kronecker product. 𝑽 can be constant definite matrix or a stochastic matrix 

that converges to a positive definite matrix (Lee, 2007), and 𝑽 is a consistent estimator of 𝚺0
−1.  

  Following equation 10, at the minimum of 𝐹̂𝐺𝐿𝑆, we will obtain parameter estimates 𝜽̂𝐺𝐿𝑆. 

The method of reweighted least squares is based on this platform and modify only 𝑽. When 𝑽 

becomes an identity matrix, the GLS function reduces to a least squares function (Lee, 2007).  

Browne (1974) showed that when 𝑽= 𝚺0
−1, the weighted least squares estimator shares most of 

the nice asymptotic properties of ML estimate such as consistency, asymptotic normality and 

efficiency. Lee and Jennrich (1979) show that the standard Gauss-Newton algorithm produces 

weighted least squares estimates that can produce maximum likelihood estimates in iteratively 
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reweighted form as well. Therefore, the test statistic of the reweighted least squares TRLS can be 

expressed as 

 

𝑇𝑅𝐿𝑆 =  
𝑛

2
 𝑡𝑟{(𝑺 − 𝚺̂𝑀𝐿) 𝚺̂𝑀𝐿

−1 }
2
 

 

=
𝑛

2
{𝑺 − 𝝈̂}′𝐷𝑝

′ (𝚺̂𝑀𝐿
−1 ⨂𝚺̂𝑀𝐿

−1 )𝐷𝑝{𝑺 − 𝝈̂}                    (11) 

          

Where 𝚺̂𝑀𝐿
−1  is an unbiased sample covariance matrix derived from maximum likelihood fit 

function as illustrated in equation 3, and is updated iteratively. 𝝈̂ =vech(Σ̂𝑀𝐿), and 𝑺 =vech(𝑠), 

𝐷𝑝 is a 𝑝2 ×
𝑝(𝑝+1)

2
 duplication matrix. That is, after we run the ML function, we extract the 

estimated covariance matrix 𝚺̂𝑀𝐿
−1  and replace the biased weight matrix 𝑽 in equation 10, which 

becomes equation 11.  

 One of the most important properties of 𝑇𝑅𝐿𝑆 is that it can efficiently estimate the test 

statistic across various sample sizes, and also asymptotically follow a chi-square distribution, 

that is, 𝑇𝑅𝐿𝑆  
𝑑
→  𝜒𝑑𝑓

2  as 𝑁 → ∞. Moreover, similar to 𝑇𝑀𝐿, 𝑇𝑅𝐿𝑆 also demonstrates the asymptotic 

robustness to non-normality (Amemiya & Anderson, 1990; Hayakawa, 2019). All these flexible 

properties are due to the endogenous relationship between 𝑇𝑀𝐿 and 𝑇𝑅𝐿𝑆, that is,  

 

𝑇𝑀𝐿 = 𝑇𝑅𝐿𝑆 + 𝐵 

𝐵 = 𝑛 ∑
1

𝑘
𝑡𝑟{𝐼𝑝 − 𝑆Σ̂−1}

𝑘∞
𝑘=3                    (12) 
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 Browne (1974) has shown that 𝑇𝑀𝐿 can be decomposed into 𝑇𝑅𝐿𝑆 and a vanishing term 𝐵 

as indicated in equation 12, and both 𝑇𝑀𝐿 and 𝑇𝑅𝐿𝑆 will follow a chi-square distribution as 𝑁 →

∞. As illustrated in Figure 1, the ratios of the dimensions of the estimated matrix and sample 

size, 𝑝/𝑛, affect the behavior of eigenvalues, and the same ratios can also affect the magnitude of 

the second term 𝐵. Hayakawa (2019) points out that the second term 𝐵  can be positive and 

negative values; however, when the dimension 𝑝 is large, the vanishing term 𝐵 is mostly positive. 

As 𝑝 gets larger, the relative magnitude of 𝐵 to the degrees of freedom also increases; however, 

the test statistic of 𝑇𝑅𝐿𝑆  is closer to its expected value. Simply put, when sample size is small, the 

second term 𝐵 will be positive, which means that 𝑇𝑀𝐿 will be too large, while 𝑇𝑅𝐿𝑆 is about right. 

When sample size is sufficiently large, the B part will vanish, the best GLS estimator is 

asymptotically equivalent to the ML estimator.  Therefore, equation 12 precisely explains why 

𝑇𝑅𝐿𝑆 can generate highly consistent test statistics across different sample sizes, and have a well 

behaved asymptotic distribution of the goodness-of-fit test statistics (Lee, 2007).  

 

2.3 Mean Structure 
 

Compared to covariance structure, mean structure is less intuitive. To illustrate the concept of 

mean structure, we can consider a simple regression model:   

 

𝑦 = 𝛼 + 𝛽𝑥 + 𝜖. 

 

According to Bentler (2006b), 𝛼 is an intercept parameter, which helps define the mean of 𝑦; 

whereas it is not equal to the mean. Taking expectations of both sides, and assuming that 𝐸(𝜖) =

0, we have 

𝜇𝑦 = 𝛼 + 𝛽𝜇𝑥, 
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where 𝜇𝑦 is the mean of 𝑦, and 𝜇𝑥 is the mean of 𝑥. In this case, 𝜇𝑦 can be considered in terms of 

the model parameters 𝛼, 𝛽, and 𝜇𝑥. This decomposition of the mean of the dependent variable 

provides an illustration of structured means, in which the means of dependent variables are 

structured in terms of the means of independent variables 𝜇𝑥 and structural coefficients 𝛽. Hence, 

adding means extends a basic idea used in covariance structure analysis. Specifically, when 

incorporating a mean structure into the SEM models, we introduce the new parameters to 𝛼 and 

𝜇𝑥 into the same model.3  Extension of this idea leads to the development of latent growth curve 

modeling, that is, parameterizing the mean and covariance structure of repeated measures of 

latent factors, in which the growth trajectories measured by latent factors represent the 

polynomial influences of time (Bentler, 2018; Yuan et al., 2019), whereas this is beyond the 

scope of the present study.  

 The structured means function (x̅ − μ)′Σ̂−1(x̅ − μ)  is the generalized least squares 

function, where 𝑥̅  is a vector of sample means and 𝜇  is a vector of means of the observed 

variables that depends on parameters, and Σ̂−1  is a weight function. Similar to covariance 

structure part, we can minimize (x̅ − μ)′Σ̂−1(x̅ − μ) for the parameters, and as 𝑁 →  ∞ the test 

statistic will be close to the degrees of freedom. Because the test statistics of both the mean and 

covariance structure can independently follow a chi-square distribution when variables 𝑥  are 

multivariate normal, we can treat the test statistic of mean and covariance structure as the sum of 

the test statistics of the mean and covariance structure parts.  

To estimate 𝜇, we need a vector of factors 𝜉. Like other random variables, each factor has 

a mean and variance, and may correlate with other factors. 𝐸(𝜉)=𝜇𝜉  is a vector of model-implied 

latent factor means. Therefore, taking the expectation of 𝑋 = 𝜇𝑥 + Λξ + ϵ, we have 

 
3 For details, see EQS Structural Equations Program Manual (Bentler 1989: p165).  
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𝑋 = 𝜇𝑥 + 𝐸(𝛬𝜉) + 𝐸(𝜖).          (13) 

                                                                    

Suppose that 𝜇𝑥 = 0  and 𝐸(𝜖) = 0 , then 𝜇 = 𝛬𝜇𝜉 . Based on this equation, we can 

reconstruct estimated 𝜇̂ of the observed variables, which is vector of p x1, the dimension of Λ is 

a p x q matrix, and ξ is a 𝑞 ×  1 vector. Thus we can rewrite the structured means function 

(x̅ − μ)′Σ̂−1(x̅ − μ) as 

    (𝑥̅ − Λ𝜇𝜉)
′
Σ̂−1(𝑥̅ − Λ𝜇𝜉)                   (14) 

 

The evaluation of the structured mean model fit is based on residual moments. The chi-

square test statistic offers an overall assessment of the degree to which the model implied 

moments fit the moments of the observed variables. That is, structured mean models reflects how 

closely the sample mean vector 𝑥̅ is reproduced by the estimated population mean vector 𝜇̂, that 

is, (𝑥̅ − 𝛬𝜇𝜉), as well as how closely the sample covariance matrix S is reproduced by the 

estimated model covariance matrix 𝚺̂, that is, 𝑺 − 𝚺(𝜽). The ways in which we derive the test 

statistic is to minimize equation 14, where 𝚺̂−1 is obtained from the ML fit function as shown in 

equation 3.  Therefore, the asymptotic distribution of 𝐹 (𝜽̂) is a chi-square test with 𝑝∗ − 𝑞 

degrees of freedom, that is, 

(𝑁 − 1)𝐹(𝜽̂) →  𝜒𝑝∗−𝑞
2           (15) 

 

 

3. Data Generation and Simulation 
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In this study, the data generation scheme follows a traditional confirmatory factor model  

 

𝑿𝒊 = 𝜦𝝃𝒊 + 𝝐𝒊                                (16) 

            

where 𝑿𝒊 = (𝑋𝑖1, 𝑋𝑖2, … 𝑋𝑖𝑝)′ is a vector of 𝑝 observations on person 𝑖 in a population, and 𝑖 =

1,2, . . . 𝑛. 𝜦 is a matrix of factor loadings, and 𝝐𝒊 = (𝜖𝑖1,𝜖𝑖2, … . 𝜖𝑖𝑝)′ is a vector of error terms, 

and var(𝜖) = 𝚿. 𝝃𝒊 = (𝜉𝑖1,𝜉𝑖2,…𝜉𝑖𝑚)′ is a vector of latent factors, and var(𝜉) = 𝚽. Each latent 

factor 𝝃𝒊 has a mean and a variance, and may correlate with other latent factors 𝝃𝒊; whereas 𝝃𝒊 

and 𝝐𝒊 are uncorrelated, so that 𝐸(𝜉) = 𝜇𝜉, which is the mean of the factors. Moreover, using the 

notation of the covariance structure, the population matrix is  

𝚺 = 𝚲𝚽𝚲′ +  𝚿     (17) 

 where 𝚺 = 𝚺(𝜽), and 𝜽 contains a vector of parameters 𝜇𝜉, 𝚲, 𝚽, and 𝚿. 

Moreover, the means of observed variables can be simulated according to equation 16. 

Suppose that we take the expectation on both sides of the equation, and assume 𝐸(𝜖)=0, we 

derive 

 𝐸(𝑥) = 𝐸(Λ𝜉) + 𝐸(𝜖)          (18) 

𝐸(𝑥) = 𝜇 =  Λ𝜇𝜉 

        

where 𝜇 =  Λ𝜇𝜉 indicates that the means of the observed variables are functions of the means of 

the latent variable. In classical covariance structure models, structured means are not of interest, 

latent factor means are usually assumed to be zero, 𝜇𝜉 = 0, and 𝜇 does not have structure as  

equation 18. Hence then 𝑋̅ = 𝜇̂.  
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 This implies that the ML test statistic in equation 5 can add the mean structure part:  

 

𝑇𝑀𝐿∗ = 𝑇Σ𝑀𝐿
+ (𝑛 − 1)(𝑥̅ − Λ𝜇𝜉)

′
 Σ̂−1(𝑥̅ − Λ𝜇𝜉)        (19) 

 

 

where 𝑇𝑀𝐿∗ is the test statistics of mean and covariance structure, and 𝑇Σ𝑀𝐿
 is the covariance 

structure that derives from the ML function. The structured means part is a quadratic function 

that is formed by residual matrix of (𝑥̅ − Λ𝜇𝜉) and weight function is inverse of the model 

covariance matrix 𝚺. Therefore, when we have simulated data, we will derive sample means and 

sample covariances. At the minimum of above ML fit function 𝐹𝑀𝐿 (See Equation 3), 𝜽̂𝑀𝐿 will 

contain parameter estimates 𝚲,̂ 𝛍̂𝛏, 𝚽̂, and 𝚺̂.   

 Following the above data generation scheme, we can determine our population from 

which we draw samples using Monte Carlo simulation. We have the following factor loading and 

factor correlation matrix. Where there are three latent factors, and each comes with five 

indicators, which yield 15 variables. The factor loading 𝚲′ is defined as  

 

𝚲′ = [
0.7 0.7 0.75
0 0 0
0 0 0

    
0.8 0.8 0
0 0 0.7
0 0 0

    
0 0 0

0.7 0.75  0.8 
0 0 0

   
0 0 0

0.8 0 0
0 0.7 0.7

    
0 0 0
0 0 0

0.75 0.8 0.8
] 

 

 

𝚽 =

















15.04.0

13.0

1

 

 

 When diag(Σ)=Ι, the unique variances can be determined as suggested by 𝚿 = I15x15 −

diag(𝚲𝚽𝚲′). We also set 𝜇′𝑠=(0, 0, 0). The data generating process consists of two steps. 1) We 

draw from a multivariate normal distribution with zero mean and covariance matrix 𝚽 , as 

indicated in equation 17.  Unique factors 𝝐𝒊 are drawn from a multivariate normal distribution 
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with zero mean and covariance 𝚿. This procedure generates multivariate normal observations 

with mean and covariance 𝚺(𝜽).  

This population model has been used by Hu et al. (1992), Huang and Bentler (2015), 

Arruda and Bentler (2017), and Jalal and Bentler (2018) in their research of covariance structure 

analysis.  Adopting the same population model in existing research by other scholars offer a 

means of validating results from simulations. Nevertheless, the choice of other population 

models will not change the statistical performance.   

 Data generation was accomplished with ‘lavaan’ package (Rosseel, 2012) in R, based on 

the aforementioned population, under the assumption of multivariate normality. The simulation 

studies include the numbers of sample sizes range from 50 to 10,000, which is enough to 

examine the performance of different estimators. The results from R programming, parameter 

estimates and test statistics were verified by EQS software Version 6.4 (Bentler, 2006a) 

 For the covariance structure part, our testing models have 15 observed variables (p=15), 3 

latent factors. Thus, the covariance component 𝑝∗ =
15(15+1)

2
= 120, with 33 free parameters to 

estimate. Our testing models, therefore, have 87 degrees of freedom. For structured means part, 

there are 15 sample means derived from 15 observed variables, and 3 factor means. Thus, it has 

12 degrees of freedom. Altogether the mean and covariance structure have 135 data points and 

36 free parameters, which yields 99 degrees of freedom. Under the asymptotic properties and 

multivariate normality, the expected test statistic of covariance structure should be about 87, 

while the expected test statistic of the mean and covariance structure should be around 99.  

 

4. Testing Method 
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The Monte Carlo simulation will be conducted to compare the reweighted least squares and ML 

at varying sample sizes range from 50 to 10,000. Both ‘lavaan’ and EQS program (Bentler, 

2006a)  can estimate ML mean and covariance structure jointly, whereas there is no statistical 

software or R packages that directly estimate reweighted least squares in mean and covariance 

structure. Therefore, we have to write the R code for computing RLS test statistics.  

We will focus on two tests: Test statistic and empirical rejection frequency by different 

sample sizes. Each of 1,000 independent normal samples of each sample size will be analyzed by 

employing maximum likelihood (𝑇𝑀𝐿), generalized least squares (𝑇𝐺𝐿𝑆), reweighted least squares 

(𝑇𝑅𝐿𝑆), ML in mean and covariance structure (𝑇𝑀𝐿_𝑀𝑆), and reweight least squares in mean and 

covariance structure (𝑇𝑅𝐿𝑆_𝑀𝑆) estimator methods. In this study, 𝑇𝐺𝐿𝑆 is included for covariance 

structure analysis and for reference purpose only, and we will not test mean and covariance 

structure employing 𝑇𝐺𝐿𝑆.  

 For covariance structure models, we will conduct 1,000 replications, and calculate the 

means and standard deviations on all test statistics. The correct mean test statistic reference is 87, 

because the degrees of freedom is 87 and 𝑝∗ =
15×16

2
= 120 . Thus, the average of 1,000 

replications, the test statistics across different estimators will follow the asymptotic normality 

and a chi-square distribution, 𝑇 
𝑑
→ 𝜒87

2 , when sample size is large. The expected mean standard 

deviation of 1,000 replications is √2𝑑𝑓 ≈ 13.19. Similarly, for mean and covariance structure 

model, the average test statistics for 𝑇𝑀𝐿_𝑀𝑆 and 𝑇𝑅𝐿𝑆_𝑀𝑆 should be about 99, because df = 99 and 

𝑝∗ = 135, and the expected mean standard deviation of 1,000 replications is √2𝑑𝑓 ≈ 14.07.   

Moreover, p-values are the criteria by which the null hypothesis is being rejected at 

α=0.05. Each replication will generate a corresponding p-value of the fitted model. The average 
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p-values of all models will be calculated. Also, considering the variability in p-values, we will 

also use empirical rejection frequencies as one of the benchmarks by which to evaluate the 

performances of the estimation methods. Empirical rejection frequencies are the ratio of the 

number of p-values that are less than 0.05 with total number of replication (1,000). Specifically, 

it is calculated by summing number of replications for which the model is rejected based on 

significance level 𝛼 = 0.05, and divided by the number of replications. Across all estimators, if 

the models perform correctly and follow asymptotic properties, their mean rejection rates should 

be around 0.05 when the sample sizes are sufficiently large. Any deviations far from 𝛼 level 0.05 

indicate that chi-square distribution is not an adequate reference distribution for evaluating 

model fit.  

4.1 Results 
 

Test Statistics  

 
Table 1. Mean test statistics and standard deviations by sample size 

 

Table 1 shows that 𝑇𝑀𝐿 tends to work efficiently and follows two asymptotic properties when the 

samples are greater than 400. First, the test statistics converge to the expected value of 87 as the 
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sample size becomes large. Whereas when sample sizes are less than 400, the test statistics start 

to deviate from the expected value. When sample sizes are less than 100, the rate of deviation 

increased radically, as evident that when N=50, the mean test statistics increased to 102.32. The 

test statistics of 𝑇𝐺𝐿𝑆 also follow asymptotic behavior when sample sizes are large; however, 

when sample sizes are smaller than 500, they are increasingly biased. Quite opposite from 𝑇𝑀𝐿, 

when N=50, the mean test statistics of 𝑇𝐺𝐿𝑆 decreased to 76.71. In sharp contrast, the mean test 

statistics of 𝑇𝑅𝐿𝑆 are highly consistent across all samples. As Table 1 shows, when the sample 

size varies from 50 to 10,000, the corresponding mean test statistics are still very close to the 

expected value of 87. These findings are consistent with those of Hayakawa (2019) in his study.  

 The mean and covariance structure models follow similar patterns. The mean of test 

statistics 𝑇𝑀𝐿_𝑀𝑆  asymptotically converge to the expected value of 99 when sample sizes are 

greater than 1,000. When sample sizes are smaller, the mean estimates become increasingly 

inaccurate. Specifically, when N=50, the mean test statistic increased to 115.92. The rate of 

deviation from the expected value is slightly more than that of 𝑇𝑀𝐿. In contrast, the mean test 

statistics of 𝑇𝑅𝐿𝑆_𝑀𝑆  are highly stable across all sample sizes, which are very close to the 

expected value of 99.  
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Figure 2. The effect of sample size on mean test statistics 

 

 Figure 2 summarizes mean the test statistics of all the estimation methods in Table 1, 

except for 𝑇𝐺𝐿𝑆. At a glance, the test statistics of 𝑇𝑀𝐿 and 𝑇𝑀𝐿_𝑀𝑆 are highly parallel to each other 

across all samples. The test statistics of 𝑇𝑅𝐿𝑆  and 𝑇𝑅𝐿𝑆_𝑀𝑆  are also similar to each other, and 

𝑇𝑅𝐿𝑆_𝑀𝑆 tends to be slightly less consistent when sample sizes are than 200, as compared to 𝑇𝑅𝐿𝑆. 

 In terms of mean standard deviation derived from the 1,000 replications, we expect them 

to be about 13.19 and 14.07 for covariance structure alone and mean and covariance structure 

respectively. Table 1 shows that all models meet our expectations on standard deviations when 

N>400. However, when sample sizes are smaller, the mean standard deviations of 𝑇𝑀𝐿  and 

𝑇𝑀𝐿_𝑀𝑆 start to become larger than those of 𝑇𝐺𝐿𝑆, 𝑇𝑅𝐿𝑆, and 𝑇𝑅𝐿𝑆_𝑀𝑆. In sharp contrast, the mean 

standard deviations of 𝑇𝑅𝐿𝑆 and 𝑇𝑅𝐿𝑆_𝑀𝑆 tend to be relatively consistent across all sample sizes. 

This is to say, test statistic of 𝑇𝑅𝐿𝑆 and 𝑇𝑅𝐿𝑆_𝑀𝑆 produce very stable estimates.  
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4.2 Average P-values and Empirical Rejection Rates 
 

 

Another perspective to examine the performances is average p-values and empirical rejection 

frequencies. Since we use significance level 𝛼 = 0.05 for hypothesis tests, our expected value 

for the empirical rejection frequencies should be about 0.05. To validate the performance of 

statistical simulations, we use the largest sample size (N=10,000) as a baseline to evaluate 

different estimators and sample sizes. For each sample size, we calculate the average mean p-

values on the 1,000 replications and calculate the mean empirical rejection frequencies of the p-

values that are less than 0.05. That is, we calculate the percentages on each 1,000 replications 

and see how often these models reject the null hypothesis. As Table 2 shows, when N=10,000 

the mean empirical rejection rates of all models are in the ballpark of 0.05. 

 
Table 2. Simulation concerning mean empirical rejection rates 

 

 Table 2 shows that 𝑇𝑀𝐿 tends to have large variations in average p-values across different 

samples. When N=10,000, the mean p-values is about 0.5, while when N=50, it decreased to 

0.226. This pattern is highly identical to 𝑇𝑀𝐿_𝑀𝑆 model. In contrast, 𝑇𝑅𝐿𝑆 and 𝑇𝑅𝐿𝑆_𝑀𝑆 also have 

similar mean p-values across all samples, whereas 𝑇𝑅𝐿𝑆_𝑀𝑆 tend to have slightly large mean p-

values when N<100.  𝑇𝐺𝐿𝑆 has 0.5 average p-value when N=10,000; however, when N<400, the 
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number increased rapidly. In terms of mean empirical rejection frequency, 𝑇𝑀𝐿 and 𝑇𝑀𝐿_𝑀𝑆 share 

identical patterns. When N is large, they both have about 5 percent mean rejection rates; while 

when N<400, the rejection rates start to increase rapidly. When N=50, the mean rejection rate 

increased to about 0.31. In contrast, both 𝑇𝑅𝐿𝑆 and 𝑇𝑅𝐿𝑆_𝑀𝑆 have very consistent rejection rates 

almost across all samples. However, when N<200 𝑇𝑅𝐿𝑆_𝑀𝑆 tends to slight under-reject the true 

model.  

 
Figure 3. The effect of sample size on empirical rejection frequency 

 

 

 Figure 3 visualizes the different performances between these methods. In terms of 

empirical rejection rates, the different performances of 𝑇𝑀𝐿 and 𝑇𝑅𝐿𝑆 are parallel to what we have 

discussed. That is, when sample sizes become less than 400, we start to see 𝑇𝑀𝐿 and 𝑇𝑀𝐿_𝑀𝑆 tend 

to incorrectly over-reject the null hypothesis frequently.  
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5. Discussion & Conclusion 
 

Scholars in the field of SEM have documented that sample covariance matrix 𝑺 can be ill-

conditioned when sample sizes are small. This has an effect on 𝑇𝑀𝐿, specifically its behavior is 

not 𝜒2 when sample size is small. Two solutions have been proposed to remedy this problem: 

Regularized GLS function and reweighted least squares. Regularized GLS is based on Chi and 

Lange’s (2014) MAP covariance matrix estimator. The basic idea is to extract eigenvalues from 

a poorly conditioned covariance matrix and correct the inflated eigenvalues by adding a penalty 

function to a standard function to steer the estimated eigenvalues toward the geometric mean of 

sample covariances. Arruda and Bentler (2017) have shown that regularized GLS method can 

produce consistent test statistics in small samples. This method can be easily extended to 

estimate the mean and covariance structure models, whereas the programing of the regularized 

GLS is relatively complicated.  

  In contrast, the 𝑇𝑅𝐿𝑆 function is much easier to program and requires less computational 

power. As we have discussed, 𝑇𝑅𝐿𝑆 relies on replacing the sample covariance 𝚺̂−1 in both mean 

and covariance structure with 𝚺̂𝑀𝐿
−1  that derives from the 𝐹𝑀𝐿  function. As Harlow (1985) has 

found, the covariance structure 𝑇𝑅𝐿𝑆 and 𝑇𝑀𝐿 perform similarly well when sample sizes are large. 

Moreover, recently Hayakawa (2019) also finds that when the sample sizes are small, 𝑇𝑅𝐿𝑆 

obviously outperforms 𝑇𝑀𝐿 in a confirmatory factor model, a panel autoregressive model, and a 

cross-lagged panel model. This study not only affirms the previous findings in the literature, but 

also extends the statistical power of 𝑇𝑅𝐿𝑆. We find the similar patterns hold with the mean and 

covariance structure models. That is, 𝑇𝑅𝐿𝑆_𝑀𝑆 and 𝑇𝑀𝐿_𝑀𝑆 perform equally well when the samples 

are large enough, and both of these methods follow the asymptotic properties; whereas in the 

context of small samples and under the assumption of multivariate normality, 𝑇𝑅𝐿𝑆_𝑀𝑆  performs 
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better than 𝑇𝑀𝐿_𝑀𝑆  in terms of chi-square test statistics as shown by empirical rejection 

frequencies. A finding in this report is that the near-ideal performance of RLS in covariance 

structures is not fully maintained in mean and covariance structures. That is, at N<200, we found 

a slight under-rejection in 𝑇𝑅𝐿𝑆_𝑀𝑆. This implies some over-acceptance of the mean structure in 

equation 18. At this time, we do not have a proposal on how to avoid this problem.  

 For our future study in covariance structure analysis, we have yet to test the mean 

structure part with different estimators. It would be of interest to investigate the performances of 

different estimators on mean structure and covariance structure respectively. As mentioned 

earlier, regularized GLS performs equally efficient in reducing the overrejection problem of 𝑇𝑀𝐿.  

It is thus important to thoroughly compare the performances of 𝑇𝑅𝐿𝑆 and 𝑇𝑅𝐺𝐿𝑆 in various sample 

sizes, and examine their comparative characteristics and advantages. Finally, no studies have 

tested mean and convariance structure analysis using 𝑇𝑅𝐺𝐿𝑆. As such, the extent to which the 

performance of 𝑇𝑅𝐿𝑆_𝑀𝑆  vis-à-vis r 𝑇𝑅𝐺𝐿𝑆  in mean and covariance structure models remain 

unexamined. In particular, the applications of reweighted least squares with other estimation in 

SEM require further examinations of these two new methods.  
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