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INTRODUCTION 

 

This report considers the application of number of different indirect (remote sensing) 

geophysical techniques for monitoring geologic sequestration of CO2 in brine-bearing 

formations. The time-lapse monitoring using seismic, gravity, electrical and electromagnetic 

techniques is described. Geophysical models used for numerical modeling are based on flow 

simulations of various CO2 sequestration scenarios. Different monitoring approaches are suitable 

for a site characterization prior to CO2 injection, for monitoring while injecting CO2, or for a 

post-injection stage. Basic principles of each technique are described. Workflows are described 

using various examples. Each of the techniques is sensitive to a different subsurface property. 

The seismic velocity depends on the bulk and shear modulus and density, the gravity response 

depends on density, and the electrical resistivity is sensitive to changes in formation properties 

such as porosity, pore fluid resistivity, and fluid saturation. For this reason these techniques are 

complementary to each other, and when used together they could provide improved 

characterization of the subsurface. In addition to individual techniques, incorporating an 

electrical resistance tomography (ERT) into DREAM (Designs for Risk Evaluation and 

Management) tool is also described.  

 

(1) SEISMIC MONITORING  

 

1.1 Introduction  

Seismic monitoring utilizes seismic wave propagation in the earth (elastic waves) to determine 

changes in subsurface physical properties, and is typically the key monitoring tool for CO2 

storage projects. Seismic monitoring includes many types of data acquisition and analysis 

including passive monitoring of natural sources, i.e. microseismic events, and data acquisition 

with active (man-made) sources. Large-scale use of active-source seismic began in the early 

1900’s as a tool for resource exploration, and grew in both industrial application and academic 

research through the 20th century. Seismic monitoring is most often done from the surface 

generating either 2D ‘lines’ or 3D ‘volumes’ of data. This data is typically processed to generate 

images of reflecting interfaces or ‘horizons’, and then analyzed for the properties of those 

horizons that can be related to rock properties through rock physics models. A subset of seismic 

monitoring includes data recorded in boreholes, e.g., vertical seismic profiles (VSP). 3D surface 

seismic is probably the most advanced (and most expensive) method. When 3D seismic is used 

for repeated monitoring of the same site, it is termed ‘4D’ seismic (with repeats over calendar 

time being the fourth dimension). 
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1.2 3D/4D Surface Seismic 

3D seismic is acquired by recording data from sources and sensors covering a 2D area (in a grid 

or other pattern) and recording for a time period which allows the waves to reflect from the 

deepest horizons of interest – typically ~10 seconds of seismic travel time. The initial 3D images 

typically have time as the third dimension (along with x and y in meters or latitude and longitude 

on the surface). These ‘time sections’ are then converted to ‘depth sections’ using the inferred 

velocity of the subsurface materials. The depth section provides a true 3D image of reflecting 

horizons in the subsurface. Figure 1.1 shows an example 3D seismic data cube from a marine 

seismic survey. 

 

Figure 1.1. An example 3D seismic data volume with a photo of marine seismic data acquisition 

on the surface. Many coherent seismic reflections can be seen on the two sides of the data cube. 

From SEP, 2017. 

 

The use 4D seismic to monitor injected CO2 is best demonstrated by the Sleipner project which 

has been conducting 3D seismic surveys over an increasing volume of injected CO2 since the 

mid 1990’s. An example of the Sleipner results is shown in Figure 1.2 which has 2D ‘slices’ of 

the 3D data for both vertical (right) and horizontal (map view) (lower left). The results shown in 

Figure 1.2 are for seven surveys over 14 years (through 2008) and monitoring at the site 

continues to the present (2017). Sleipner is an example of marine 3D seismic in which data is 

acquired by a ship (or multiple ships) deploying seismic sources and sensors in the ocean (Figure 

1.1).  
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Figure 1.2. 4D seismic monitoring for the Sleipner storage project. Upper left shows a schematic 

of the injection into the Utsira formation with the rising buoyant CO2 plume (blue and red). 

Right side figure shows a series of 2D vertical slices through the 3D data volume and through the 

injected CO2 plume with the changing reflection amplitude clearly visible. The lower left is a 

series of horizon slices through the top layer containing CO2 (layer 9 as indicated on the 2008 

vertical slice) and plotted to show the interpreted extent of the amplitude change caused by CO2 

(purple, blue, green and red indicate different reflection amplitude changes). Figure courtesy P. 

Ringrose, see also Chadwick et al. (2010). 

 

1.3 Data Acquisition and Processing 

In general seismic monitoring data can be divided into marine and land surveys. Seismic data 

acquisition is a field rich in research with many books and journal articles published (see 

library.seg.org; e.g., Evans, 1997) and similarly the processing of seismic data has its own 

literature (e.g., Yilmaz, 2001). There are distinct differences in both data acquisition and 

processing between marine and land data. However, in the simplest conceptual model, both 

marine and land acquisition can be considered as a group of seismic sensors recording the waves 

generated by a single seismic source, as in Figure 1.3. 
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Figure 1.3. Schematic of surface seismic data acquisition for land (left) and marine (right) 

environments. The land acquisition shows the use of an explosive source deployed with a shot-

hole drilling rig and surface geophone sensors connected to a recording truck. The marine 

acquisition shows a towed ‘array’ of hydrophone sensors and a shot source (typically 

compressed air ‘guns’) also towed from the seismic ship. Figures from Evans (1997). 

 

The data shown in Figure 1.3 is acquired as shot ‘gathers’, with one source, S1, and many 

receivers, R1-RN.  A key step in imaging the reflecting interfaces is converting the shot gathers to 

common midpoint (CMP) gathers, as shown in Figure 1.4. For each CMP point on a reflecting 

horizon, many source-receiver pairs are ‘stacked’ together to create the CMP value. The number 

of traces stacked is called the ‘fold’ and is a measure of data quality (where larger fold is 

generally better quality data). Connecting the CMP points in depth for each reflecting layer leads 

to defining the location of a CMP ‘trace’ – the equivalent seismic recording – and this CMP trace 

is what is used to build a final image, such as in Figures 1.1 and 1.2. 

 

 

Figure 1.4. Schematic of surface seismic data from many sources (S1 to SN) and many receivers 

(R1 to RN) arranged so that they have a common midpoint (CMP) for horizontal reflecting 

interfaces. From Evans (1997). 
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1.4 Parameters important to seismic monitoring 

In practice, allowing for the variable geometry of acquisition (the true x, y, z location of both 

sources and sensors) is a key initial step in data processing. Another very important task in data 

processing is determining the seismic wave velocity of each layer. While conceptual models 

often assume constant layer velocity, in practice the velocity is a 3-dimensional (3D) variable as 

are the layer interface locations. Thus determining the velocity ‘model’ – a 3D description of 

velocity in the subsurface – is crucial to proper use of seismic data. Initially, seismic velocity is 

determined from the data itself, with other information (such as well measurements) added as 

available. The seismic velocity depends on the bulk and shear modulus and density (see rock 

physics section). These three parameters uniquely determine both P-wave and S-wave velocities 

for isotropic media. Inversely, obtaining P-wave and S-wave velocities from seismic monitoring 

data allows determination of elastic moduli (e.g., bulk and shear moduli) and density. Then, 

using rock physics relationships; reservoir parameters such as fluid saturation, porosity and 

pressure can be determined from the elastic moduli.   

In practice, the use of seismic monitoring data to understand reservoir properties is usually a loop 

between modeling of the data and processing/analysis of the data. For example, the reflection 

amplitude change shown in Figure 1.2 can be, and has been, inverted for CO2 saturation in work 

which includes forward modeling (e.g., flow modeling in Chadwick and Noy, 2011). Because of 

the large number of reservoir properties impacting the seismic response, as well as varying 

complexity in rock physics models, forward modeling is important to increase confidence in 

quantitative interpretations. 

 

1.5 Workflow for Modeling of Seismic Monitoring 

Time-lapse seismic data analysis has been used at several CO2 sequestration sites as an essential 

method for site characterization, imaging subsurface CO2 plume migration and detecting 

potential CO2 leakage. Monitoring in the aquifer above the primary seal is important for early 

detection of CO2 leakage from the storage reservoir. Forward modeling of seismic data can be 

used to assess the ability of seismic methods for CO2 leakage detection. We develop a workflow 

for forward modeling of seismic data, including constructing seismic velocity models using flow 

simulation results, modeling of synthetic seismic data followed by a basic processing sequence 

and analysis of stacked migrated synthetic seismic data. FutureGen 2.0 leakage simulations 

(Williams et al., 2014) are used to illustrate the process of forward modeling and analysis of 

synthetic seismic monitoring data (Figure 1.5).  
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Figure 1.5. Schematic flow chart of forward modeling and analysis of synthetic seismic 

monitoring data 

 

1.6 Rock physics modeling 

To model the synthetic time-lapse seismograms, seismic velocity models need to be constructed 

at each time step. The initial seismic velocity model (i.e., before the CO2 leakage) was 

constructed using the processed wireline log data (P- and S-wave slowness measurements) from 

the initial stratigraphic borehole (FutureGen Industrial Alliance, 2012). The slowness 

measurements are averaged over the interval of each stratigraphic unit. The seismic velocity for 

each stratigraphic unit is calculated as the reciprocal of the averaged slowness. 

For the simulated CO2 leakage scenarios at the FutureGen 2.0 site (Williams et al., 2014), 

changes in seismic velocity due to CO2 leakage from the storage reservoir are calculated at each 

time step based on the Gassmann-Biot fluid substitution theory (Gassmann, 1951) and the Hertz-

Mindlin contact theory (Mindlin, 1949). The instantaneous velocity field in the model domain is 

related to moduli and density of the rock by: 

𝑉𝑝 = √
𝐾𝑠𝑎𝑡 + 4𝜇/3

𝜌𝑠𝑎𝑡
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𝑉𝑠 = √
𝜇

𝜌𝑠𝑎𝑡
 

Where 𝑉𝑝 and 𝑉𝑠 are the P-wave and S-wave velocities; 𝐾𝑠𝑎𝑡 is the bulk modulus of the rock after 

fluid substitution; 𝜇 is the shear modulus of the rock, which is constant during the fluid 

substitution in the Gassmann-Biot theory. 𝜌𝑠𝑎𝑡, the density of rock after fluid substitution is 

calculated as: 

𝜌𝑠𝑎𝑡 = 𝜌𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝜑(𝜌𝑓𝑙𝑢𝑖𝑑
𝑢𝑝𝑑𝑎𝑡𝑒 − 𝜌𝑓𝑙𝑢𝑖𝑑

𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

Where 𝜌𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial bulk density of the rock, which can be obtained from the density log 

in the site characterization; 𝜌𝑓𝑙𝑢𝑖𝑑
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝜌𝑓𝑙𝑢𝑖𝑑

𝑢𝑝𝑑𝑎𝑡𝑒
 are the densities of the fluid phase before and 

after CO2 invasion, respectively. 

The bulk modulus of the rock after fluid substitution (𝐾𝑠𝑎𝑡) at each node in the model domain is 

estimated using the low frequency Gassmann equation (Gassmann, 1951): 

𝐾𝑠𝑎𝑡  =  𝐾𝑓𝑟𝑎𝑚𝑒  +  
(1  −   

𝐾𝑓𝑟𝑎𝑚𝑒

𝐾𝑚𝑖𝑛𝑒𝑟𝑎𝑙
)

2

𝜑
𝐾𝑓𝑙

  +   
1 −  𝜑

𝐾𝑚𝑖𝑛𝑒𝑟𝑎𝑙
  −  

𝐾𝑓𝑟𝑎𝑚𝑒

𝐾𝑚𝑖𝑛𝑒𝑟𝑎𝑙
2

 

where 𝐾𝑓𝑟𝑎𝑚𝑒, 𝐾𝑚𝑖𝑛𝑒𝑟𝑎𝑙, and 𝐾𝑓𝑙 are the bulk moduli of dry rock frame, mineral grains and 

effective pore fluid (mixed pore fluid phases), respectively; 𝜑 is the porosity of the rock as a 

volume fraction, which can be obtained either from the wireline log data or the input parameters 

of the flow simulations.  

The bulk modulus and density of effective pore fluid (𝐾𝑓𝑙 and 𝜌𝑓𝑙) can be estimated by inverse 

bulk modulus averaging and arithmetic averaging of densities of the separate fluid phases (brine 

phase and supercritical CO2 phase), respectively (Kumar, 2006): 

1

𝐾𝑓𝑙
=

𝑆𝑤

𝐾𝑏𝑟𝑖𝑛𝑒
+

𝑆𝑔

𝐾𝑐𝑜2
     and     𝜌𝑓𝑙 = 𝑆𝑤𝜌𝑏𝑟𝑖𝑛𝑒 + 𝑆𝑔𝜌𝑐𝑜2 

where 𝑆𝑔 is the CO2 saturation (as volume fraction) and 𝑆𝑤 (= 1 − 𝑆𝑔) is the brine saturation. 

The bulk moduli and densities of pure brine and supercritical CO2 (𝐾𝑏𝑟𝑖𝑛𝑒, 𝐾𝑐𝑜2 and 𝜌𝑏𝑟𝑖𝑛𝑒 , 𝜌𝑐𝑜2) 

are calculated as a function of temperature, pore pressure and salinity using relationships 

developed by Batzle and Wang (1992) . The input parameters (i.e., temperature, pore pressure, 

salinity and CO2 saturation) at each node in the model domain at each time step are obtained 

from flow simulation outputs. Example outputs from the FutureGen 2.0 leakage simulations at t= 

20 years in the 20-year leakage scenario are shown in Figure 1.6. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 1.6. Example outputs from FutureGen 2.0 leakage simulations: a) temperature; b) pore 

pressure; c) salt concentration; d) CO2 saturation profiles for a x-z cross section at y=0 location 

in the leakage zone (Ironton Sandstone) and the unit directly above the leakage zone (Davis 

Dolomite) at t =20 years in the 20-year leakage scenario. 

 

The bulk and shear moduli of mineral grains (𝐾𝑚𝑖𝑛𝑒𝑟𝑎𝑙 and 𝜇𝑚𝑖𝑛𝑒𝑟𝑎𝑙) are estimated by taking 

Voigt-Reuss-Hill averaging (Hill, 1952) of the mineral constituents. The mineral composition of 

each stratigraphic unit (volume fraction), is obtained from the processed wireline log data in the 

site characterization. Computed elemental analysis lithology from the wireline log data indicates 

that the mineral constituents at the FutureGen 2.0 site are quartz, dolomite, calcite, K-feldspar, 

kaolinite, illite and pyrite. The moduli of the mineral constituents can be obtained from papers 

and textbooks (e.g., Mavko et al., 2009; Mondol et al., 2008; Roach et al., 2015). 𝐾𝑚𝑖𝑛𝑒𝑟𝑎𝑙 

remains constant during the Gassmann fluid substitution. 

𝑘𝑣𝑜𝑖𝑔𝑡 = ∑ 𝑣𝑖 ∗ 𝑘𝑖
𝑛
𝑖=1 ;    𝑘𝑟𝑒𝑢𝑠𝑠 =

1

∑ 𝑣𝑖/𝑘𝑖
𝑛
𝑖=1

;    𝐾𝑚𝑖𝑛𝑒𝑟𝑎𝑙(𝑜𝑟 𝜇𝑚𝑖𝑛𝑒𝑟𝑎𝑙) = 0.5 ∗ (𝑘𝑣𝑜𝑖𝑔𝑡 + 𝑘𝑟𝑒𝑢𝑠𝑠) 
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where 𝑣𝑖 is the volume fraction and 𝑘𝑖 is the bulk/shear modulus of mineral constituent i; n is the 

number of mineral constituents, which is 7 for the FutureGen 2.0 site. 

The initial bulk modulus of the dry rock frame (𝐾𝑓𝑟𝑎𝑚𝑒
𝑖𝑛𝑖𝑡𝑖𝑎𝑙) can be derived from the wireline log 

data by rewriting the Gassmann equation for  𝐾𝑓𝑟𝑎𝑚𝑒 (Zhu and McMechan, 1990) as 

𝐾𝑓𝑟𝑎𝑚𝑒
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  =  

𝐾𝑠𝑎𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (

𝜑𝐾
𝑚𝑖𝑛𝑒𝑟𝑎𝑙

𝐾𝑓𝑙𝑢𝑖𝑑
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 1 − 𝜑) − 𝐾𝑚𝑖𝑛𝑒𝑟𝑎𝑙

𝜑𝐾𝑚𝑖𝑛𝑒𝑟𝑎𝑙

𝐾𝑓𝑙𝑢𝑖𝑑
𝑖𝑛𝑖𝑡𝑖𝑎𝑙   +   

𝐾𝑠𝑎𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐾𝑚𝑖𝑛𝑒𝑟𝑎𝑙
  −   1 − 𝜑

 

where 𝐾𝑠𝑎𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial bulk modulus of the wet rock, which can be derived from the wireline log 

data as 𝐾𝑠𝑎𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜌𝑖𝑛𝑖𝑡𝑖𝑎𝑙[(𝑉𝑃

𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
2

−
4

3
∗ (𝑉𝑠

𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
2
]. The other parameters are defined in the 

previous equations. 

The effects of pore pressure changes on bulk modulus of dry rock frame are modeled based on 

the Hertz-Mindlin contact theory (Mindlin, 1949). The effective elastic properties of rock at 

critical porosity φc are given by: 

Kmc = (
C2(1 − φc)2μmineral

2 pd

18π2(1 − vs)2
)

1/3

 

μmc =
5 − 4vs

5(2 − vs)
(

3C2(1 − φc)2μmineral
2 pd

2π2(1 − vs)2
)

1/3

 

where 𝑝𝑑 = 𝑝𝑐 − 𝑝 is the differential pressure calculated by subtracting the pore pressure (𝑝) 

from the confining pressure (𝑝𝑐). The pore pressure and the confining pressure are obtained from 

the flow simulation outputs and the wireline log data used in site characterization. vs is the 

Poisson’s ratio of the minerals; φc is the critical porosity and C is the average number of 

contacts per spherical mineral grain. Based on data by Murphy (Carcione et al., 2006; Murphy, 

1982), C = 2.8/φc. 

The effective bulk and shear moduli of dry rock frame at a different porosity 𝜑 can be estimated 

using the modified Hashin-Strikman lower bound (Dvorkin and Nur, 1996) based on the original 

Hashin-Strikman lower bound (Hashin and Shtrikman, 1963). 

𝐾𝑓𝑟𝑎𝑚𝑒 = [

𝜑
φc

Kmc +
4
3 μmc

+
1 −

𝜑
φc

Kmineral +
4
3 μmc

]−1 −
4

3
μmc 

𝜇 = [

𝜑
φc

μmc +
μmc

6 (
9Kmc + 8μmc

Kmc + 2μmc
)

+
1 −

𝜑
φc

μmineral +
μmc

6 (
9Kmc + 8μmc

Kmc + 2μmc
)
]−1 −

μmc

6
(
9Kmc + 8μmc

Kmc + 2μmc
) 
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where Kmineral and μmineral are the bulk and shear moduli of mineral grains, respectively. 

Figure 1.7 shows the predicted changes in seismic velocity from the rock physics modeling at t = 

20 years in the 20-year leakage scenario. 

 

a) 

 

b) 

 
Figure 1.7. Predicted changes in seismic velocity: a) P-wave velocity changes; b) S-wave 

velocity changes at t =20 years in the 20-year leakage scenario. 

 

1.7 Forward seismic modeling 

Two-dimensional (2D) acoustic seismic modeling was performed to infer the CO2 leakage. A 2D 

seismic line was shot through the constructed seismic velocity model at each time step. The 2D 

line is parallel to the x axis, at y=0 location so that the imaged x-z cross section intersects the 

leakage point. The extent of the seismic velocity model in x and z directions are 1,490 m and 

1,190 m, respectively. Along the 2D surface seismic line, there are 135 shots covering the x 

range of 80 m to 1,420 m and 299 receivers covering the x range of 0 m to 1,490 m. The shot 

point spacing is 10 m. The receiver station spacing is 5 m. The dominant frequency of the source 

wavelet, which is modeled as a Ricker wavelet, is 30 Hz. The sampling rate is 1 ms and the 

record length is 3 s. Synthetic shot gathers were generated using the 2D acoustic finite-difference 

modeling facility in the CREWES MATLAB Toolbox (Margrave, 2000). The computation time 

step in the finite-difference modeling is 0.2 ms and the computation grid is 5m×5m. The 

generated common shot gathers were converted to the common mid-point (CMP) gathers and the 

CMP stack was created. Then 2D depth migration was performed on the stacked section using 

the phase shift plus interpolation method implemented in the CREWES MATLAB Toolbox 

(Ferguson and Margrave, 2005). The post stack migrated seismic data at each time step are 

subtracted from the migrated synthetic data at the initial time step (t=0), to get the time-lapse 

amplitude difference datasets. The outcomes of the forward seismic modeling (i.e., amplitude 

changes in the migrated synthetic seismic data) are used to infer the CO2 leakage, which is a 
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combined effect of variations in geophysical parameters, including pore fluid type, pore fluid 

saturation and effective pressure. Figure 1.8 shows example outputs from the forward seismic 

modeling. Data in Figure 1.8a and Figure 1.8c are the post-stack, post-migration seismic data 

(amplitudes as a function of x and z) within the depth window of the leakage zone (Ironton 

Sandstone) and the unit directly above the leakage zone (Davis Dolomite) (z=975-1035 m) at t = 

0 (before the start of leakage) and t = 20 years (since the leakage starts), respectively. The 

amplitude difference data at t = 20 years are shown in Figure 1.8b. Figure 1.8d shows the percent 

amplitude changes at t = 20 years in the whole model domain (z=0-1035 m). 

 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 1.8. Example outputs from the forward seismic modeling. (a) Migrated depth section at t 

= 0, (c) migrated depth section at t = 20 years, (b) amplitude difference map at t = 20 years, and 

(d) percent amplitude changes at t = 20 years in the whole model domain. 
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1.8 2D seismic numerical modeling using acoustic-wave propagation in anisotropic media 

Acoustic-wave propagation in anisotropic media is considered as an approximation of elastic-

wave propagation in anisotropic media when considering only compressional waves. Numerical 

modeling of acoustic-wave propagation in anisotropic media is a useful tool for studying seismic 

monitoring modeling of ROM models. When inhomogeneity, e.g., fault might play a significant 

role in a storage reservoir behavior it is necessary to image the subsurface with a higher 

accuracy. A pseudo-spectral method for 2D numerical modeling of acoustic-wave propagation in 

anisotropic media is used to study acoustic-wave propagation and scattering from a fault (Figure 

1.9). The fault is considered as anisotropic medium - Tilted Transverse Isotropic (TTI) medium, 

with the Thomsen parameters within the fault  = 0.2,   = 0.1, and TTI tilted angle  = 80.0  .  

 

 

Figure 1.9: A 2D medium with a normal fault for numerical modeling of acoustic-wave 

propagation and scattering from the fault. 

 

Figure  shows a comparison of numerical modeling results of wavefield snapshots for acoustic-

wave propagation in the model in Figure 1.9 when considering the fault as an isotropic and 

anisotropic medium, and their wavefield snapshot difference. The source wavelet is a Ricker 

source function with a center frequency of 30 Hz. The source is located at the horizontal position 

of 1,050 m at the top surface of the model. The numerical modeling results shown in Figure 1.10 

demonstrate that the anisotropic properties in the fault can cause significant difference in 

wavefield snapshots and therefore, it is essential to properly account for anisotropic properties 

within the fault during seismic monitoring of possible CO2 leakage through the fault zone. 

Seismic reflection data are often used for seismic monitoring of possible CO2 leakage through 

fault zones. Figure 1.11 displays seismic reflection data recorded at receivers located at the top 

surface of the model in Figure 1.9 during numerical modeling of acoustic-wave propagation in 

the model in Figure 1.9 when considering the fault is an isotropic medium (a) and an anisotropic 
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media (b), together with the seismogram difference in (c). Figure 1.(c) shows again that the 

difference between acoustic-wave scattering from the TTI fault and that from the isotropic fault 

is significant. This difference could be larger than that caused of CO2 leakage. 

  

(a) (b) 

 

(c) 

Figure 1.10: Snapshots of numerical modeling of acoustic-wave propagation in the model in 

Figure 1.9 when considering the fault is an isotropic medium (a) and an anisotropic media (b), 

together with the snapshot difference in (c), for a source located at top surface of the model with 

the horizontal position of 1,050 m. Panels in (a)-(c) are plotted on the same scale. 
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(a )                                                               (b) 

 
(c) 

Figure 1.11: Seismograms at receivers located at the top surface of the model in Figure 1.9 

obtained using numerical modeling of acoustic-wave propagation in the model in Figure 1.9 

when considering the fault is an isotropic medium (a) and an anisotropic media (b), together with 

the seismogram difference in (c), for a source located at top surface of the model with the 

horizontal position of 1050 m. Panels in (a)-(c) are plotted on the same scale. 
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1.9 Fast detection and location of induced microseismicity for CO2 injection monitoring 

The injection of CO2 into the underground during geological carbon storage may induce 

microseismic events as a result of stress and/or pore-pressure change. The induced 

microseismicity helps monitor CO2 migration, and detect fault and cap rock leakage. Fast and 

accurate detection and location of induced microseismic events is crucial for the risk assessment 

and management for geological carbon storage. Below is a new tool for fast detection of CO2-

injection-induced microseismic events. This tool is based on pre-calculated waveforms of a 

number of microseismic events and comparison of seismic waveforms of nearby microseismic 

events. A machine learning algorithm is employed to quickly detect and locate microseismic 

events from continuously recorded data.  

In this tool, the first step is to pre-calculate waveforms for a group of microseismic events on a 

number of geophones (Figure a). Then, these waveforms are transformed into their envelopes 

(Figure b). By choosing a threshold and setting the value above the threshold to be 1 and the 

value below the threshold to be 0, these envelopes are further converted to images (Figure c). 

These steps simplify the data, and reduce the impact of noise. These pre-calculated images are 

then used to create a training dataset. By comparing the test data against the group of training 

dataset, using a machine learning algorithm (k-nearest neighbors algorithm) the detection test 

and the event location prediction is done for each seismic record. This algorithm measures the 

distance between test data and each of training data, and predicts the value for the test data based 

on the values of a few closest neighbors that have shortest distance. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 1.12: Illustration of seismic data processing steps: (a) waveform, (b) envelope, (c) image. 

 

A synthetic example that uses a model for the Kimberlina site located in southern San Joaquin 

Valley, California is used to demonstrate the capability of this new tool. The model and a 

distribution of synthetic seismic events and geophones is shown in Figure a. There are 19 
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geophones from the depth of 0.2 to 2.0 km with a spacing of 100 m. A total of 369 synthetic 

microseismic events are distributed in the reservoir (depth 2.1 – 2.5 km) with a regular spacing 

interval of 50 m in both horizontal and vertical directions. Synthetic data images for seismic 

events at different locations show different patterns (Figure b-1.13c). For each synthetic event, 

three data images and three labels are put into training dataset. The data images include the cases 

for P plus S phases, only P phase, and only S phase. The labels include spatial location x, z, and 

‘Yes’ to classify that it is a seismic event. Besides synthetic events, the training dataset contains 

also non-event samples, which include a white image and some random noise images with labels 

of ‘No’ to indicate that they are not seismic events. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 1.13: Synthetic example for training dataset. (a) Velocity model and distribution of 

microseismic events (black dots) and geophones (magenta triangles) for the Kimberlina site. (b-

c) Two examples of training data for microseismic events at two different locations.    

 

Examples in Figure 1.14 are some of this tool outputs. For a great range of seismic record, 

including imperfect data such as partial (Figure a) and noisy data (Figure b-1.14c), the tool 

performs well by predicting the locations of event close to their true locations. The standard 

deviation of spatial error is smaller than 50 m (Figure ). 
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(a) 

 

(b) 

 

(c) 

 

Figure 1.14: Synthetic test examples. (a) True location (x, z) = (1.98, 2.48) km, predicted 

location (x, z) = (2.00, 2.45) km. (b) True location (x, z) = (1.98, 2.48) km, predicted location (x, 

z) = (2.00, 2.45) km. (c) True location (x, z) = (1.98, 2.48) km, predicted location (x, z) = (1.90, 

2.43) km. 

 

(a) 

 

(b) 

 

Figure 1.15: Difference between predicted and true locations for (a) x direction and (b) z 

direction. 
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(2) GRAVITY MODELLING  

 

2.1 Introduction 

Gravity monitoring is one of the monitoring technologies available to evaluate and map the 

distribution of densities in the subsurface. This distribution of densities is reflected by changes in 

the local gravitational field. In the case of carbon sequestration, the injection of CO2 into a 

reservoir will induce density changes by replacing the original fluid contained in the pores of the 

rock matrix by CO2 (Figure 2.1). The CO2 injection will produce a bulk density decrease because 

the density of the injected CO2 is less than that of the brine. Further, any migration of the CO2 

underground will change the density distribution in the subsurface. The changes in density and 

the associated perturbations in the measured local gravitational field are referred to as anomalies. 

These gravity anomalies can be measured at the surface or in a borehole, using gravimeters. 

To determine the density changes over time in the reservoir after the start of the injection, the 

total density of a given volume for a specific time step must be determined. This density is given 

as the wet bulk density and takes into account the density of the solid matrix, the brine and CO2 

in the pore space: 

𝐷𝑤𝑒𝑡 𝑏𝑢𝑙𝑘 = (1 − 𝜙)𝐷𝑟𝑜𝑐𝑘 +  𝑆𝑤𝜙𝐷𝑤 + 𝑆𝐶𝑂2
𝜙𝐷𝐶𝑂2

 

where: 𝑆𝑤 +  𝑆𝐶𝑂2
= 1 and,  

𝐷𝑤𝑒𝑡 𝑏𝑢𝑙𝑘  = wet bulk density 

𝐷𝑟𝑜𝑐𝑘 = rock matrix density 

𝐷𝑤 = brine density 

𝐷𝐶𝑂2   = CO2 density 

 𝜙 = porosity 

𝑆𝑤 = brine saturation 

𝑆𝐶𝑂2
 = CO2 saturation (any phase) 

The form and the behavior of CO2 depend of the conditions i.e., temperature and pressure, in the 

subsurface, as illustrated in the phase diagram in Figure 2.2. This means for example that under 

supercritical conditions, obtained at depths greater than 800 m, CO2 takes a much smaller 

volume than a gas and is denser. On the other hand, if a migration of CO2 occurs toward the 

surface, and the CO2 undergoes a phase transition from supercritical to gas, the volume of CO2 
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could be much larger, and have also a lower density than displaced fluids. The gravity signal is 

directly proportional to changes in bulk density.  

 

Figure 2.1: Schematic illustrating how brine is replaced by CO2 . (A) Before injection, the pores 

are filled with brine. (B) During or after injection, the pores are filled with CO2 leading to a 

change in bulk density.   
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Figure 2.2: CO2 phase diagram. 

 

2.2 Gravity Forward Modeling  

Synthetic multiphase flow simulations (e.g., Kimberlina 1.1, Kimberlina 2) will be converted to 

density models, and forward modeling will be carried out to calculate resulting gravity 

anomalies. The calculations will be done for various scenarios (e.g., no leakage, fault with 

permeability changes, wellbore leakage) using both surface and borehole sensor locations. The 

workflow of gravity modeling and analysis is presented in Figure 2.7 and consists of three main 

steps.  

Step 1: From Multiphase Flow Simulator Output to GRAV3D Input 

The program GRAV3D v5.0 (University of British Columbia, Canada) will be used to conduct 

the gravity modelling. The program calculates the vertical component of the gravity response due 

to a 3D volume of density contrast. The density model is specified in the mesh of rectangular 

cells, each with a constant value of density contrast.  

The output file formats of multiphase flow simulators (e.g., TOUGH2, STOMP) may differ, and 

therefore additional preprocessing steps might be required in order to be compatible with 

GRAV3D required inputs (examples of STOMP outputs are provided in Figures 2.3 and 2.4). 

Density calculations are done for each cell (volume) for each time step. The required parameters 

are: (a) grid with nodes coordinates, and (b) at each grid node and for each time step: either 

Dwet_bulk or Drock , Dw , DCO2, , Sw, and SCO2  



-23- 

Additional information regarding the injection operations, or the geological setting is: 

 Injection point(s) or injection interval(s): x, y, z / x, y, zmin-zmax 

 mass conservation equation used in the multiphase flow simulator to compute 

density (if any) 

 General information regarding the geometry of the model such as presence and 

location of faults and location of monitoring points 

 

Figure 2.3: Example of output from STOMP multiphase flow simulator showing the CO2 

saturation at the end of the injection.  
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Figure 2.4: Example of density difference between the start and the end of CO2 injection 

centered on the injection point along the easting (A), and northing (B) directions and computed 

from STOMP output files. 

Step 2: Model Conversion 

Output from STOMP multiphase flow simulator 

STOMP output files provide the wet bulk density for any given point. A procedure has been 

written to convert the STOMP output files in a mesh that is directly readable by GRAV3D. The 

density distribution prior to injection (background) is subtracted from the post-injection 

distribution or from any desired time step. Then a MATLAB routine converts this file into the 

two input files required by GRAV3D: a regular mesh file and a density model file (Figure 2.5). 

This chain allows the user to directly compute the gravity anomalies linked to any distribution of 

densities generated by STOMP (Appriou et al., 2016). 
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Figure 2.5: Density anomaly associated with a CO2 plume after 30 years of injection 

Output from TOUGH2 multiphase flow simulator: 

Brine and CO2 saturations and porosity are provided in the TOUGH2 output files. The density of 

brine and CO2 are calculated using FORTRAN code for pressure and temperature values at each 

location. The output is an x, y, z, density file and the density distribution difference from any 

desired time step can be calculated. As for the STOMP case, then the Matlab subroutine converts 

this file into the two input files required by GRAV3D: a regular mesh file and a density model 

file. 

Output from other multiphase flow simulator 

If any additional multiphase flow simulator should be used to perform gravity forward 

modelling, similar steps, specific to the output formats of the simulator should be implemented in 

order to compute the required input files that would be used in GRAV3D. 

Step 3 Forward Modeling 

The files obtained in step 2 are then uploaded in GRAV3D, and the gravity anomalies can be 

computed based on the distribution of density between two time steps. Surface and borehole 

gravity anomalies due to the CO2 plume after 30 years of injection are shown in Figure 2.6.   
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Figure 2.6: Surface gravity anomaly associated with the CO2 plume after 30 years of injection 

(left) and borehole gravity anomaly associated with the CO2 plume after 30 years of 

injection (right) computed in GRAV3D.  
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Figure 2.7: Workflow of forward gravity modeling and analysis. 

 

2.3 References 
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(3) ELECTRICAL AND ELECTROMAGNETIC METHODS 

 

3.1 Introduction 

Electrical and electromagnetic (EM) techniques measure electric (E) and magnetic (B or H) 

fields caused by currents that are injected into the ground by contacting electrodes or a time-

varying magnetic field induced to flow into the ground by inductive sources. Electrical 

techniques, also called resistivity techniques, use only current and voltage measurements at 

frequencies low enough at which EM induction effects are negligible. Electrical Resistance 

Tomography (ERT) is one of them and it is described in Section 3.4. EM techniques require 

frequency-dependent sources to induce currents in the ground. Magnetic fields are produced 

from currents created from both types of sources. When the earth’s natural electromagnetic fields 

are used as a source the technique is called magnetotellurics (MT) (see Section 3.6). The basic 

concept in all these techniques is to measure these electric and magnetic fields and to infer from 

these measurements the configuration and amplitudes of the current in the subsurface and hence 

the distribution of electrical resistivity. 

Injected CO2 is expected to form plumes of a finite size and change the subsurface resistivity 

resulting in a resistivity contrast with the enclosing formation. The goal of the survey is to 

identify a local variation in resistivity relative to the background geology. The changes in 

resistivity and the associated perturbations in the measured electric and magnetic fields are 

referred to as anomalies. The process of continuously measuring field variations due to the 

anomalies is referred to as monitoring. 

The form and behavior of CO2 depend on temperature and pressure. CO2 behaves as a gas in air 

at standard pressure and temperature, as a solid (called dry ice) when frozen, or as a supercritical 

fluid at temperatures and pressures at or above the critical point (temperature of 31°C and 

pressure of 7.4 MPa) (Figure 3.1). Under supercritical conditions, which appear at depths greater 

than 800 m, CO2 takes a much smaller volume than in the gas phase. The resistivity of CO2 is 

high, similar to gas or air, independent of its state. Brine-bearing formations that are below and 

hydrologically separated from drinking water reservoirs have been widely recognized as having 

high potential for geologic CO2 sequestration. The resistivity of brine depends on the amount of 

total dissolved solids (TDS), but in general is low (TDS = 10,000 ppm and up; parts per million; 

1 ppm = 1 mg of salt in 1 liter of water). The relationship between fluid resistivity ( )w  and 

TDS and temperature is shown in Figure 3.2.  

The electrical resistivity of the subsurface is highly sensitive to changes in key formation 

properties such as porosity, pore fluid resistivity, and fluid saturation. A wide range of empirical 

relations exists for linking formation and electrical properties. Commonly used is Archie’s Law 

(Archie, 1942), which describes the electrical resistivity ( )b  of sedimentary rocks as a function 

of water saturation (Sw), porosity ( ) , and pore fluid resistivity ( )w , 
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m w
b n
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
    

where a is tortuosity, and m and n are constants with 1.8 < m < 2 and n  2. 

 

 

Figure 3.1. CO2 phase diagram 

 

 

Figure 3.2. Fluid resistivity as a function of NaCl concentration and temperature. 
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When CO2 is injected into a formation originally filled with brine, replacing brine with CO2 

results in a CO2 saturation  

2CO wS =1-S 1

n

w

m

b

a 

 



 
   

 
 

Figure 3.3 shows the rock bulk resistivity (b) as a function of CO2 saturation (SCO2) for the 

formation with brine resistivity of 0.3 Ohm-m and 25% porosity. The replacement of highly 

conductive (low resisitivity) saline fluids with resistive CO2 results in resistivity increase in the 

storage reservoir. When CO2 is present at shallow depths, dissolution of CO2 causes increase in 

TDS and results in resistivity decrease.  

 

 

Figure 3.3. Rock bulk resistivity (b) as a function of CO2 saturation (SCO2). Pore fluid resistivity 

is 0.3 Ohm-m, porosity is 35%, a =1, m = 2, and n=2. 

 

Electrical resistivity can be used to determine CO2 saturation:   

2CO wS = 1-S 1 w

m

b

a 

 
  . 

Complex mineral composition may affect bulk rock parameters, and estimates of CO2 saturations 

using Archie’s equation might not be accurate. In such situations, another useful and simple 

relationship between resistivity and brine saturation, the resistivity index (Gueguen, 1994), can 

be used: 
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where  is the resistivity of the rock partially saturated with brine, 0 is the resistivity of fully 

saturated rock with brine, and n is the saturation exponent. Again, in the case of CO2 injection, it 

is possible to estimate CO2 saturation from the initial resistivity of the fully saturated rock with 

brine and partial brine saturation during CO2 injection using: 

2

1/

CO
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S = 1-

n

RI

 
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 

. 

When a formation contains a substantial amount of clay, an additional parameter – the ratio of 

volume of sand to volume of clay – is necessary (e.g., Nakatsuka et al., 2010). 

In resistivity techniques, the resistivity of the ground is measured by injecting electrical currents 

into the ground and measuring the resulting potential differences. The electrodes can be on the 

surface as well as in boreholes. Figure 4 illustrates a decrease in the response with increasing 

distance between the target and where the measurements are made.  

 

 

Figure 3.4. Apparent resistivity response of 1000 Ohm-m and 50 m thick layer in a 100 Ohm-m 

half-space as a function of layer depth. 

 

Figure 3.5 illustrates that resistivity techniques are much more sensitive to low resistivities 

(conductive targets).  
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Figure 3.5. Apparent resistivity response of deep conductive and resistive layers. 

 

3.2 EM techniques for resistive targets 

An example of a deep resistive target is an electrical resistivity model derived from Kimberlina 1 

reservoir model. The model is ~15x10 km in x and y directions respectively and 5 km in the 

vertical direction. A vertical cross-section through the model along the x-direction (Easting) at 

the y-coordinate of the injection well is shown in Figure 3.6. The top of the reservoir near the 

fault is ~1 km, and there is no CO2 present outside of the reservoir, therefore upper 1 km is not 

shown. Figure 3.6 shows distribution of porosity, and CO2 saturations at years 49 and 175 since 

the start of injection. The injection well is located at Easting = 297,000 m. The CO2 was injected 

for 50 years. 

The baseline electrical resistivity model before CO2 injection is estimated using an equation 

described below. Inside the reservoir, the bulk resistivity is given as 

,  where a=1, m=2, and  is a pore fluid resistivity. m

b f fa       

It is assumed that the pore fluid resistivity (ρf) linearly changes from 0.16 Ohm-m at 3 km in 

depth to 0.3 Ohm-m at 2 km. These limits are based on the salinity and temperature values 

shown in Figure 3.7. This linear relationship is used to determine a pore fluid resistivity inside 

the reservoir as a function of depth. The resistivity between the top of the reservoir and z=1 km 

is determined by sedimentary rock types of model cells: 8 Ohm-m is used for clay and 19 Ohm-

m is used for sand. Resistivity values above z=1 km and below the bottom of reservoir are set to 

19 Ohm-m and 100 Ohm-m, respectively.  
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Figure 3.6. Kimberlina 1 reservoir porosity (upper panel) and CO2 saturations at 49 and 175 

years since the start of injection (bottom two panels). 

 

 

Figure 3.7. Kimberlina (a) pressure, (b) temperature, and (c) salinity profiles (solid lines) as a 

function of depth using available measurements (dots).  

 

The injection of CO2 increases the electrical resistivity inside the reservoir. In this example, we 

consider resistivity perturbations in the reservoir at two time intervals: 49 years and 175 years. 
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To calculate the increased electrical resistivity, a reservoir cell with a non-zero CO2 saturation 

value is updated using 

'

co2 2

co2

,  where m=2 and  is a CO  saturation at a given cell at a given year. 
(1 )m

S
S


 


 

Figure 3.8 shows resistivity models for the start of the injection, and at 49 and 175 years since 

the start of CO2 injection. 

 

 

Figure 3.8. Kimberlina 1 resistivity models: background (upper), 49 year (middle), and 175 year 

(bottom). 

 

To evaluate the sensitivity of a controlled-source electromagnetic (CSEM) method to the CO2 

plume (resistive target) using surface and borehole transmitters and surface receivers, CSEM 

responses of these three models were simulated using EMGEO, a 3D finite-difference 

electromagnetic modeling and imaging algorithm (Commer and Newman, 2008). The fine 

vertical cells faithfully delineate details of reservoir structures and resistivity perturbation due to 

CO2 injection. However, the direct use of the fine grids is computationally too expensive and 

unnecessary. In order to reduce the computational cost without affecting the solution accuracy, 

EMGEO employs a material averaging scheme based on a parallel-circuit integro-interpolation 

method (Moskow et al., 1999; Commer and Newman, 2008). The method maps the original 

dense grid models into coarse grids called simulation/computation grids. The mapping algorithm 
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has proven effective for modeling resistivity contrasts on the order of 103 or less (Hoversten et 

al., 2015). The simulation grids are designed based on a wave length for accurate solutions and 

are surrounded with about three skin-depth-thick buffer layers to attenuate the unwanted 

reflections of the electric fields from the boundaries. CSEM is one of EM techniques that is 

using a finite length transmitter and electric dipoles as receivers. The responses are calculated for 

each transmitter-receiver configuration at a specific frequency. Figure 3.9 is an example of 1D 

EM response for a borehole-to-surface configuration: amplitude, phase, real and imaginary parts 

of the electric field are plotted as a function of distance from the borehole for two times. The 

changes are relatively small. In order to identify a subsurface structure that produces signals 

measured by the array of receivers the use of an inversion algorithm is required.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3.9. Example of 1D EM responses: (a) amplitude, (b) phase, (c) real and (d) imaginary 

part of the electric field as a function of distance for a borehole-to-surface electrode 

configuration. Red is the background response, blue is the response at 49 years. 

 

3.3 EM techniques for conductive targets 

An example of a shallow conductive target is an electrical resistivity model derived from High 

Plains aquifer impact model (simulation 0040 is used as an example).  

A horizontal slice through the TDS plume at the time when the anomaly was the largest is shown 

in Figure 3.10. The background response is <600 ppm (not shown).  
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Figure 3.10. TDS anomaly as a function of x and y at the depth of 233 m. 

 

The resistivity model was constructed using 3D distributions of sand, clay, TDS values, and 

following parameters and formulas: 

The fluid resistivity was calculated using: 0.92418
18,  where  3549 /

1 ( 18)

C
f C c

t


 


 

 
 , c is the 

TDS value in ppm, and alpha = 0.025. 

The bulk resistivity was calculated using Archie’s law: 

,  where a=1,  is a pore fluid resistivity m

b f fa       

Values of porosity and m varied depending if the model cell contained sand or clay. The porosity 

and m for sand were 0.35 and 2, respectively, while the porosity and m for clay were 0.45 and 

1.1, respectively.  

Figure 3.11 shows that the models were accurately converted to resistivity models and the TDS 

changes up to 2000 ppm correspond to 50-80% decrease in bulk resistivity.  
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(a) 

 

(b) 
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(c) 

Figure 3.11. Resistivity model of (a) background, (b) TDS anomaly from Figure 3.10, and (c) 

difference between (a) and (b). 

Figure 3.12 shows a response for a CSEM configuration using an electric field dipole as a 

transmitter and grid of electric dipole receivers. 10-20% difference in the imaginary component 

of the electric field outlines the location and the lateral extent of the TDS plume very well. In 

order to find out the depth of the plume that produces these responses an inversion algorithm is 

required. 

 

 

Figure 3.12. Percent difference in the imaginary component of the surface electric field for one 

transmitter and a grid of receivers for the models shown in Figure 3.11. 
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3.4 Electrical Resistance Tomography (ERT) 

Electrical resistance tomography (ERT) is an indirect method for visualizing the movement of 

fluids in porous media that requires the use of inversion algorithms that convert raw 

measurements of electrical resistance to a tomographic image (resistivity or concentration) of a 

fluid plume. In an ERT survey, tens or hundreds of electrodes are deployed either in monitoring 

wells or on the ground surface. To take an ERT measurement, a known electric current is 

injected into the earth through a pair of electrodes and the induced electric potential difference is 

measured by another pair of electrodes. An apparent resistivity value is calculated from the 

injected current, observed voltage and electrode locations. Hundreds or thousands of 

measurements can be obtained by various combinations of electrodes. To monitor a subsurface 

process such as a CO2 leakage, a no-leak baseline data set is collected. Monitor data sets are 

collected at specific time intervals. The potential leakage may be detected by comparing the 

monitoring data with the baseline data. 

 

3.5 Surface ERT for conductive targets 

Geophysical models were created using simulated aquifer impact models based on a 

hypothetical, compartmentalized, CO2 storage reservoir in the Vedder Formation in Kimberlina, 

Kern County in California’s southern San Joaquin Basin (Buscheck et al., 2017). Figure 3.13 

shows the reservoir and wellbore models. Brine and CO2 leakage results in subsurface changes in 

pressure, CO2 saturation and total dissolved solids (TDS). CO2 buoyancy allows a significant 

fraction of leaked CO2 to reach shallower permeable zones (Figure 3.14).  

 

(a) (b) (c)
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Figure 3.13. Site location with reservoir model mesh (a), well locations (b), and conceptual 

wellbore model (c).  

 

 
Figure 3.14. Contour plots of total dissolved solids (TDS) increase above background (top) and 

CO2 saturation (bottom) are shown at 50 years for a leaking well 1 km from the CO2 injector, the 

P90S50 wellbore case, a high groundwater gradient, high wellbore permeability, and two leaky 

aquifers. 

 

Leakage of CO2 and brine into groundwater changes the pore species concentrations (Na+, Cl-, 

HCO3-, H+, Ca2+, CO2 (gas) and CO2 (aqueous)) and electrical conductivity (EC). The pore-

fluid EC can be estimated directly from these ion concentrations (Visconti et al., 2010) or from 

TDS values found in the Kimberlina simulation data (Walton, 1989). The equation used to 

convert TDS to water EC is:  

TDS (mg/L) = 8000 EC (S/m) 

The bulk formation conductivity (inverse of resistivity) was obtained through Archie’s equation 

(Archie, 1942) with knowledge of the formation porosity and water or gas saturation.  

In this study, the TDS changes in 140 models were converted into subsurface electrical 

conductivity distributions at seven time steps: 0, 10, 20, 50, 100, 150 and 200 years, which 

resulted in 980 electrical conductivity models. A uniform constant porosity was set to 0.35. The 

simulated TDS changes were added to a three-layer baseline TDS model (Table 1).  

 

 

Total dissolved solids (TDS)

50 years

CO2 saturation

50 years
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Table 1. Pre-leak baseline TDS model and electrical resistivity models 

Layer Number Depth (m) TDS (mg/L) Resistivity (Ohm-m) 

1 0-200 500 131 

2 200-500 1,000 65 

3 >500 2,000 33 

 

In a shallow aquifer, dissolved CO2 lowers fluid resistivity but gas-phase CO2 increases 

formation resistivity. These two opposite effects cancel each other to certain extent, but 

dissolved CO2 has a greater impact on formation resistivity, which results in overall decrease of 

formation resistivity (Yang et al., 2015). 

 

76 ERT electrodes were placed at 40-m spacing along the center line of likely leakage plumes 

(Figure 3.15). The 2-D ERT monitoring profile was 3000-m long, which gave an approximate 

depth of penetration of 600 m when the transmiter and receiver dipoles were on oposite ends of 

the profile. The regions near the two ends of the profile are poorly resolved. Therefore, the 

length of the profile is often much larger than the area of interest. The monitoring data were 

compared with the baseline data to estimate percent changes in apparent resistivity values. 

 

 

Figure 3.15. Layout of 76 ERT electrodes at 40-m spacing along the center line of a likely 

leakage plume. 

 

Figure 3.16 shows the ERT apparent resistivity pseudosections at six time steps. The pre-leakage 

(0 years) baseline model is a three-layer resistivity model (Table 1). As the plume grows, 

Leaky wellbore

Regional flow

1000
Plume

0 m

2000

1000 m0 3000

Plan view of ERT monitoring layout
(not to scale)

76 ERT electrodes 
on the surface
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electrical resistivity decreases mostly due to elevated TDS from dissolved CO2. The maximum 

vertical depth on the pseudosection is set to 750 m due to the limited depth of penetration. Figure 

3.17 was created by taking the percent difference between the monitoring and baseline data in 

Fig. 3.16. The percent changes in apparent resistivity illustrate clearly the effect of CO2 plume on 

the ERT data. No ERT anomaly is observed at 20 years. From 50 years to 200 years, the ERT 

anomaly grows larger. Note, the pseudosection is not an actual depth section, and a ‘pant-leg’ 

pattern visible especially in Figure 3.17 is due to the data plotting convetion. ERT inversion 

would be used to recover intrinsic subsurface resistivity changes and would be close to the TDS 

distribution similar to the one shown in Figure 3.14. 

 

 

Figure 3.16. ERT apparent resistivity pseudosections at six time steps for a leaking well 1 km 

from the CO2 injector, the P90S50 wellbore case, a high groundwater gradient, high wellbore 

permeability, and two leaky aquifers (Fig. 3.14). The vertical black line at 1000 m indicates the 

wellbore location. 
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Figure 3.17. ERT pseudosections of percent change in apparent resistivity at six time steps. 

 

3.6 Magnetotelluric method (MT) 

The magnetotelluric (MT) method is a passive surface EM technique that uses the earth’s natural 

EM fields to probe the electrical resistivity structure of the earth at depths of tens of meters to 

hundreds of kilometers (Chave and Jones, 2012; Simpson and Bahr, 2005). The natural EM 

source fields consist of (1) micro-pulsations (<1 Hz) due to the interaction of solar wind with the 

geomagnetic field; and (2) global lightning activities (>1 Hz). These large-scale source fields are 

treated as uniform plane waves propagating vertically into the earth. When the measurements are 

made in 1 Hz to 10 kHz frequency range, the method is referred to as audio-frequency or AMT. 

Advantages of AMT include rapid data collection and a large number of data stacks for noise 

reduction. A disadvantage is that AMT dead bands around 1 Hz, and 1 kHz to 5 kHz have an 

unstable energy source with diurnal and annual variation (Garcia and Jones, 2008; García and 

Jones, 2005; Iliceto and Santarato, 1999), which may compromise AMT data quality. To 

overcome this deficiency, researchers developed effective data acquisition and processing 

methods (Garcia and Jones, 2008; García and Jones, 2005). An alternative approach to improve 

the signal-to-noise ratio is to use an active source, and the technique is then called controlled 

source audio frequency MT (CSAMT) (Streich et al., 2010). 

 

10 years 20 years

50 years 100 years

150 years 200 years
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Time series of two electric field components (Ex and Ey) and three magnetic field components 

(Hx, Hy, and Hz) are measured at a station (Figure 3.18).  

 

 

Figure 3.18. The field setup of an MT station with two electric field dipoles (Ex and Ey) and 

three orthogonal magnetic coils (Hx, Hy, and Hz). The lower image shows MT equipment with 

magnetometer coils (black long cylinders) and four electrodes (gray and yellow). 

 

These electric and magnetic fields are then transformed into the frequency domain and related 

through the impedance tensor (Z):  

(
Ex

Ey
) = (

Zxx Zxy

Zyx Zyy
) (

Hx

Hy
) 

The EM fields are often decoupled into two independent modes. One mode has the electric field 

parallel to the strike of a structure, i.e., E-polarization or transverse electric (TE) mode, and 

another mode has the magnetic field parallel to the strike, i.e., B-polarization or transverse 

MT Station 
Layout

http://www.kmstechnologies.com/MT_survey_system.html

http://en.openei.org/wiki/Magnetotellurics

MT Survey System
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magnetic (TM) mode. Apparent resistivity and phase for TE and TM modes are calculated for 

ease of data visualization. In the TE mode, the apparent resistivity (xy) and phase (xy) are given 

by  

𝜌𝑥𝑦(𝜔) =
1

𝜇0𝜔
|𝑍𝑥𝑦(𝜔)|

2
 

𝜑𝑥𝑦(𝜔) = tan−1 (
Im{Zxy}

Re{Zxy}
) 

and in the TM mode:  

𝜌𝑦𝑥(𝜔) =
1

𝜇0𝜔
|𝑍𝑦𝑥(𝜔)|

2
 

𝜑𝑦𝑥(𝜔) = tan−1 (
Im{Zyx}

Re{Zyx}
) 

Both apparent resistivity and phase are functions of an angular frequency (=2f), and 0 = 

4×10-7 H/m is magnetic permeability in free space. For a uniform half space (1D), the apparent 

resistivity in both TE and TM modes is equal to the true resistivity of the earth with a phase of 

45, indicating that the electric field precedes the magnetic field by 45. These diagnostic 

measures are good indicator of MT forward model accuracy. 

The MT method is a frequency sounding technique. An EM signal at a lower frequency 

penetrates deeper. The depth of penetration (d in meters), the MT skin depth, can be estimated 

from the EM signal frequency (f in Hz) and material resistivity ( in m) by: 

𝑑 = 503√𝜌/𝑓  

For example, for a medium of 100 m and a frequency of 100 Hz the skin depth is ~500 m, 

while for the same medium resistivity and the frequency of 1 Hz the skin depth is ~ 5 km.  

 

3.7 AMT for conductive targets 

Same electrical resistivity models as described in Section 3.5 were used for AMT simulations. 

Seven MT stations at 100-m spacing were deployed along the center line of the leakage plume 

(Figure 3.19). Each MT data set consists of apparent resistivity and phase values at 17 

frequencies and at seven MT stations.  
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Figure 3.19. Locations of seven MT stations at 100-m spacing along the center line of a likely 

leakage plume. 

 

Brine and CO2 leakage results in changes in MT apparent resistivity and phase. Figure 3.20 

shows this effect at two MT stations (#2 and #5) for the same simulation described in Figure 

3.14. It is clear that MT signal changes with time and sensor location. The apparent resistivity is 

more sensitive to the plume growth than the phase data.  

 

 

Figure 3.20. MT apparent resistivity and phase versus signal frequency at seven time steps and 

two MT stations (#2 and #5).  

 

Yang et al. (2017a, 2017b) use these ERT and MT datasets to establish links between the plume 

mass estimated from TDS increase due to the leakage and it’s depth to the changes in apparent 

Leaky wellbore at
MT Station #2

Regional flow

1000

Plume

0 m

2000

500 m0 3000

Plan view of MT monitoring layout
(not to scale)

7 MT Station

1000

1 2 3 4 5 6 7

St. 2

Rho

St. 2

Phase

St. 5

Rho
St. 5

Phase



-47- 

resistivity and phase. These results are then used to estimate the likelihood of brine and CO2 leak 

detection.  
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(4) METHODOLOGY FOR INCORPORATING ERT MONITORING 

DATA INTO DREAM  

 

4.1 Overview 

One purpose of the DREAM tool is to optimize the locations of monitoring sensors for CO2 leak 

detection. Electrical conductivity is one property expected to be significantly altered by the 

presence of CO2 in the subsurface, making it a useful diagnostic property for CO2 monitoring. 

Furthermore, conductivity can be remotely estimated far from sensor locations using ERT, 

whereby an array of electrodes is used to collect ERT survey data, which is then inverted to 

estimate the subsurface conductivity distribution (e.g., Bergmann et al., 2017; Carcione et al., 

2012; Carrigan et al., 2013; Christensen et al.; 2006, Schmidt-Hattenberger et al., 2016; Commer 

et al., 2016; Strickland et al., 2014). Given adequate placement of electrodes, changes in 

conductivity distribution over time derived from time-lapse ERT monitoring may be used to 

monitor the location of the CO2 front during injection operations, including the presence of CO2 

in unwanted locations.  

For example, Figure 4.1 (top) shows the simulated change in subsurface electrical conductivity 

above a leaking cap rock zone, and a corresponding wellbore with ERT electrodes grouted in the 

annulus. Figure 4.1 (bottom) shows the corresponding change in the electrical potential field, 

given a current injection at the electrode position indicated, with the current sink electrode far 

from source. Measurement of the change in potential at any location within zone of altered 

potential (e.g. another electrode within the annulus) would be diagnostic of a potential leak 

condition. Furthermore, many such measurements in a single borehole can be tomographically 

inverted to produce an image of the change in conductivity near the borehole. If two boreholes 

are in relative proximity and instrument with electrodes, then crosshole ERT imaging for leak 

detection monitoring may be possible, whereby images of changes in conductivity between 

boreholes are produced. ERT can also be conducted using surface electrodes, although surface 

deployments have relatively low sensitivity to smaller scale changes in the deep subsurface.  
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Figure 4.1. (top) Simulated change in bulk electrical conductivity caused by a cap rock 

containment failure. (bottom) Change in subsurface electrical potential a current injection 

electrode within the wellbore annulus at the position indicated.   

 

The objective is to enable DREAM to incorporate ERT imaging capabilities in its leak detection 

monitoring optimization routine. To do this, DREAM must be made capable of assessing the 

utility of ERT for a particular monitoring objective, and the corresponding cost of implementing 

that capability. Although there are several useful metrics for evaluating the utility of a given ERT 

array for CO2 leak detection monitoring (e.g. location of the leak, size of leak zone, rate of leak 

zone growth, etc.) focus here is on initial leak detection. This represents the first enhancement to 

DREAM that utilizes geophysical sensing data, and will lay the groundwork for including other 
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types of geophysical data, and other metrics (e.g., in addition to leak detection) provided by 

those data.  

The following section outlines the strategy and software development that will enable DREAM 

to assimilate ERT data in a computationally tractable manner. To do this, DREAM will be 

loosely coupled with E4D (Johnson et al., 2010), a highly parallel ERT modelling and inversion 

tool. The resulting DREAM-E4D module will ingest data from DREAM, simulate ERT survey 

responses, and produce a matrix of estimated detection times for a given leak simulation scenario 

and set of candidate wellbore locations. DREAM-E4D simulations are expected to be 

computationally intensive, but tractable on modern multi-core workstations. Therefore, 

DREAM-E4D will run independently of the DREAM tool, but will provide output files (e.g., 

leak detection matrices) that will later be assimilated by the DREAM tool during wellbore 

placement optimization calculations.  

 

4.2 DREAM-E4D Workflow  

 

1. In the first step DREAM produces a set of output files describing the parameters for a 

particular leak scenario simulation that are necessary to compute the spatio-temporal 

evolution of bulk electrical conductivity. These parameters include the mesh dimensions and 

petrophysical function inputs such as porosity, concentrations of primary ionic phases, ionic 

strength, total dissolved solids, and Archie’s Law parameters (saturation exponent and 

cementation factor). DREAM will also provide the candidate set of wellbore locations for the 

current simulation. For a given wellbore configuration, it is likely that ERT survey data will 

be sensitive to changes in conductivity due to expansion of the primary plume during 

injection. For this reason, it is necessary to have baseline simulations results that describe the 

scenario response under no-leak conditions, in addition to the leak condition simulation 

results. Both simulations are necessary to enable the DREAM-E4D module to isolate the 

changes in ERT data that are attributable to the leak. Those changes in (simulated) ERT data 

will ultimately be used to determine the leak detection time for a wellbore set. 
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Figure 4.2. DREAM-E4D Flow Diagram 

 

2. In step 2 the DREAM-E4D module will construct the E4D simulation mesh based on the 

flow and transport simulation grid provided by DREAM and the candidate wellbore 

locations. Wellbore electrode points will be incorporated into the mesh based on a pre-

determined vertical spacing interval.  

 

3. In step 3 the baseline and leak scenario simulation results will be interpolated to the E4D 

mesh. Prior to interpolation, parameters provided by DREAM in the E4D input files will be 

transformed to bulk electrical conductivity on the simulation grid. Interpolation to the E4D 

mesh will be using an open source parallel mesh interpolation library called Data Transfer 

Kit, which was developed by University of Madison Wisconsin and Oakridge National 

Laboratory. 

 

4. The primary computational burden of the E4D module will be addressed in step 4, wherein 

the pole solutions are computed for each electrode and each flow simulation time step. The 

pole solution for a given electrode is the electrical potential field produced when that 

electrode is used as the current source, with the current sink at infinite distance from the 

source. Using the principle of superposition, the set of pole solutions can be used to 

reconstruct any possible ERT measurement given the current set of candidate monitoring 

wells, and therefore contains all of the information that can potentially be provided by that 

set of wells in terms of ERT imaging.  
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5. ERT imaging resolution is naturally dependent on the set of ERT measurements used to 

produce a given image. For N electrodes, the number of unique measurements that can be 

collected is N*(N-1)*(N-2)*(N-3)/8. Collecting every measurement quickly becomes 

untenable as the number of electrodes increases. Designing ERT surveys for optimal 

resolution is an area of active research, and currently proposed methods would be 

computationally prohibitive in DREAM-E4D. Therefore two assumptions are made: 1) ERT 

imaging will be conducted using either a single monitoring well, or a pair of monitoring 

wells (i.e., 1D or 2D), and 2) all ERT imaging surveys will be pole-pole surveys. Pole-Pole 

surveys assume four electrode measurements with the current sink and negative potential 

electrode at infinite distance. Under noise-free conditions, pole-pole surveys provide all of 

the information available for a given set of electrodes. However, in the presence of noise, the 

pole-pole survey typically doesn’t not provide optimal sensitivity to changing conditions, or 

optimal imaging resolution. Therefore, use of the pole-pole survey for estimating detection 

time is considered conservative. In step 5, the DREAM-E4D module uses the pole solutions 

to reconstruct the pole-pole surveys for each well alone, for each wellbore pair in the 

candidate set of wellbores, and for each time-step in the simulation. The baseline survey is 

then subtracted from the leak simulation at each time-step to produce the change in pole-pole 

survey data caused by the leak condition at each time-step.  

 

6. In step 6 the pole-pole difference surveys generated in step 5 are used to estimate the time of 

detection for each ERT imaging option (single well or wellbore pair). One approach for 

estimating detection time is to invert each survey at each time-step, and then to determine 

when changes in conductivity appear outside of the intended reservoir using a change 

detection algorithm. However, given the computational demands of ERT inversion, this 

approach is computationally untenable. Instead, the pole-pole difference surveys and, an 

assumed data change threshold are used to determine when CO2 would be apparent in the 

image outside of the primary reservoir (i.e., in the leak zone). For example, the change 

detection time for a given wellbore pair is the time at which 10% of the pole-pole difference 

data reach 120% of the noise threshold for a given measurement. Because these changes are 

caused by the CO2 leak alone, it is assumed that fitting those data in the inversion will require 

a corresponding change in conductivity in the region of the leak (within the limits of imaging 

resolution), thereby indicating a leak in the corresponding ERT image. As part of step 6, an 

inverse analysis will be executed on select surveys to verify that actual detection times occur 

before or at the estimated detection time.   

 

7. In step 7 all of the simulation results, and corresponding estimated detection times, are 

synthesized into a single matrix, one for each leak scenario. Each axis of the matrix will 

represent monitoring wellbore numbers. If (i,j) represents the matrix index, then element (i,j) 
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represents the detection time for wellbore i if i = j , and the detection time for wellbore pair 

(i,j) if (i ≠ j).  

Step 7 represents the completion of DREAM-E4D computations. One detection matrix is 

produced for each leak scenario. In the next step, DREAM uses each matrix to stochastically 

determine optimal wellbore locations in terms of leak detection time based ERT sensing 

capabilities in addition to other sensing modalities that are under consideration and 

accommodated by DREAM.  
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SUMMARY 

 

The use 4D seismic to monitor injected CO2 was best demonstrated by the Sleipner project 

which has been conducting 3D seismic surveys over an increasing volume of injected CO2 since 

the mid 1990’s. In this report, we focus on early detection of CO2 leakage from the storage 

reservoir, which means imaging much smaller volumes of CO2 than in Sleipner case. 

Determining the velocity model (a 3D description of velocity in the subsurface) is crucial to 

proper use of seismic data. The seismic velocity depends on the bulk and shear modulus and 

density (see rock physics section). These three parameters uniquely determine both P-wave and 

S-wave velocities for isotropic media. Inversely, obtaining P-wave and S-wave velocities from 

seismic monitoring data allows determination of elastic moduli (e.g., bulk and shear moduli) and 

density. Then, using rock physics relationships; reservoir parameters such as fluid saturation, 

porosity and pressure can be determined from the elastic moduli. In practice, the use of seismic 

monitoring data to understand reservoir properties is usually a loop between modeling of the data 

and processing/analysis of the data. Because of the large number of reservoir properties 

impacting the seismic response, as well as varying complexity in rock physics models, forward 

modeling is important to increase confidence in quantitative interpretations.  

Sections 1.5-1.7 describe workflow for forward modeling of seismic data and seismic data 

processing. The elastic parameters used in the rock physics modeling have significant effects on 

the constructed seismic velocity model and the generated synthetic seismic data. The 

uncertainties in the estimated seismic responses could be largely attributed to the uncertainties in 

these elastic parameters, especially the bulk and shear moduli of clay minerals. The model used 

to demonstrate the steps had a very small CO2 plume, and therefore the responses were very 

small, and not detectable under realistic field conditions. Applying this approach to models with 

different plume sizes will establish detection limits and identify scenarios for which this 

technique would be effective.  

Section 1.8 describes an approach when inhomogeneity, e.g., fault might play a significant role 

in a storage reservoir behavior and it is necessary to image the subsurface with a higher 

accuracy. On the other hand, Section 1.9 describes a tool for fast detection and location of 

induced microseismic events due to CO2 injection that may result in stress and/or pore-pressure 

changes.  

Gravity monitoring can be used to map subsurface density distribution by measuring changes in 

the local gravitational field either on the ground surface or in boreholes. Since the density of CO2 

is less than that of the brine, replacing the original fluid contained in the pores of the rock matrix 

by CO2 will produce a bulk density decrease, which in turn will produce perturbations in the 

measured local gravitational field. Similar to seismic monitoring, the model used to demonstrate 

the steps of gravity modeling produced small signals on the surface that might not be 
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measureable with current technology in realistic field conditions. The example of the response in 

nearby well showed the signal that would clearly indicate to location of CO2 plume.  

The electrical resistivity of the subsurface is highly sensitive to changes in formation properties 

such as porosity, pore fluid resistivity, and fluid saturation. Electrical and EM techniques infer 

the distribution of electrical resistivity in the subsurface from measured electric and magnetic 

fields. The resistivity of CO2 is high, similar to gas or air, while the resistivity of brine in storage 

formations that are hydrologically separated from drinking water reservoirs is low. A finite size 

CO2 plume would produce a resistivity contrast with the enclosing formation. The replacement 

of highly conductive (low resisitivity) saline fluids with resistive CO2 results in resistivity 

increase in the storage reservoir. When CO2 is present at shallow depths, dissolution of CO2 

causes increase in TDS and results in resistivity decrease. Resistivity techniques are much more 

sensitive to low resistivities (conductive targets), and hence deep resistive targets are much more  

difficult to detect. Examples in Section 3.2 and 3.3 illustrate that the response to a shallow 

conductive target is an order of magnitude larger than to the deep resistive target. There are 

many possible configurations of sources (transmitters) and receivers (sensors). Configurations in 

Sections 3.2-3.5 use an active source, while MT described in Section 3.6 uses a natural source. 

The advantage of passive techniques (e.g., MT) is an ease of deployment in the field, and that 

there are no source/configuration artifacts present in the data. However, as the natural field 

strength varies, the signals might not be strong enough to produce large enough signals from the 

regions of interest. The configuarions using the active source can be optimized for required 

spatial resolution, but the field deployment is more expensive and advanced data processing is 

required.  

One of the DREAM tool capabilities is to optimize locations of monitoring sensors for CO2 leak 

detection. Section 4 describes efforts to enable DREAM to incorporate ERT imaging capabilities 

in its leak detection monitoring optimization routine. This represents the first enhancement to 

DREAM that utilizes geophysical sensing data, and will lay the groundwork for including other 

types of geophysical data, and other metrics (e.g., in addition to leak detection) provided by 

those data.  
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ACRONYMS 

 

1D  One-dimensional 

2D  Two-dimensional 

3D  Three-dimensional 

4D  Time being the fourth dimension 

AMT  Audio-frequency Magnetotellurics 

B  Magnetic field 

CSAMT Controlled Source Audio Magnetotellurics 

CSEM   Controlled Source ElectroMagnetics  

CMP  Common Midpoint Gather 

CO2  Carbon Dioxide 

DC   Direct Current 

DREAM Designs for Risk Evaluation and Management 

E   Electric field 

EC  Electrical Conductivity 

EM  Electromagnetic 

ERT  Electrical Resistance Tomography 

H  Magnetic Field ( B H ) 

MT  Magnetotellurics 

ROM  Reduced Order Model 

STOMP PNNL Flow Simulator 

TDS  Total Dissolved Solids 

TOUGH2 LBNL Flow Simulator 

TTI  Tilted Transverse Isotropic  

VRH  Voigt-Reuss-Hill (averaging of mineral constituents) 

VSP  Vertical Seismic Profile 

Z  Impedance tensor 
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