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Elevated body temperature 
is associated with depressive 
symptoms: results 
from the TemPredict Study
Ashley E. Mason 1*, Patrick Kasl 2, Severine Soltani 2, Abigail Green 3, Wendy Hartogensis 1, 
Stephan Dilchert 4, Anoushka Chowdhary 5, Leena S. Pandya 1, Chelsea J. Siwik 6, 
Simmie L. Foster 7,8, Maren Nyer 7,8, Christopher A. Lowry 9, Charles L. Raison 10, 
Frederick M. Hecht 1,12 & Benjamin L. Smarr 2,11,12

Correlations between altered body temperature and depression have been reported in small samples; 
greater confidence in these associations would provide a rationale for further examining potential 
mechanisms of depression related to body temperature regulation. We sought to test the hypotheses 
that greater depression symptom severity is associated with (1) higher body temperature, (2) smaller 
differences between body temperature when awake versus asleep, and (3) lower diurnal body 
temperature amplitude. Data collected included both self-reported body temperature (using standard 
thermometers), wearable sensor-assessed distal body temperature (using an off-the-shelf wearable 
sensor that collected minute-level physiological data), and self-reported depressive symptoms 
from > 20,000 participants over the course of ~ 7 months as part of the TemPredict Study. Higher self-
reported and wearable sensor-assessed body temperatures when awake were associated with greater 
depression symptom severity. Lower diurnal body temperature amplitude, computed using wearable 
sensor-assessed distal body temperature data, tended to be associated with greater depression 
symptom severity, though this association did not achieve statistical significance. These findings, 
drawn from a large sample, replicate and expand upon prior data pointing to body temperature 
alterations as potentially relevant factors in depression etiology and may hold implications for 
development of novel approaches to the treatment of major depressive disorder.

Depression has become a health crisis of epidemic  proportions1. Globally, the prevalence of major depressive 
disorder (MDD) has risen over the last several generations in countries across the  world2. The last decade has 
seen a particularly significant increase in depression in the United States, with prevalence rates increasing by 
33% between 2013 and 2016, with the largest increase among youth and young  adults3,4. This is particularly 
concerning as the disease course is most likely to be malignant, and the costs of depression in terms of lost 
opportunities across a lifetime are likely to be highest in youth and young  adulthood4. Rates of antidepressant 
use have increased substantially in most Western countries during the same time  period5, and currently avail-
able pharmacologic agents have significant limitations in  efficacy6–8. Taken together, these patterns highlight the 
urgent need to identify and implement new treatments for depression.
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To develop novel treatments for depression it is important to identify mechanisms that contribute to the 
development and/or maintenance of depressive symptoms and that may be amenable to intervention. Although 
depression is both biologically and behaviorally  heterogeneous9,10, an important first step in treatment develop-
ment is often to identify physiologic signatures among individuals with MDD that are not present among those 
without MDD. Although no single biological or behavioral abnormality will characterize all individuals with 
MDD, the identification of an abnormality associated with MDD may open the door to identifying a relatively 
biologically homogeneous subgroup that demonstrates a larger treatment response to interventions that target 
the specific  abnormality11.

One physiologic characteristic that may hold potential as a therapeutic target is thermoregulatory 
 dysregulation12, which is among the most widely reported circadian biological abnormalities in affective disor-
ders, including MDD. This has been observed in the form of elevated body temperature, particularly at  night13–16, 
when thermoregulatory cooling responses are critical for sleep onset and  quality17,18. Such temperature eleva-
tions have also been reported during the  day19,20. Notably, some data suggest that these aberrant temperature 
elevations improve upon clinical recovery in  MDD21,22. Data have shown that circadian amplitude is blunted in 
 depression23 and that smaller differences between average body temperature during time awake (typically dur-
ing the daytime) and during time asleep (typically during the nighttime) are associated with greater depressive 
 symptoms21. Additionally, data have shown that individuals with depression have lower circadian body tem-
perature amplitudes that increase upon clinical  recovery13,21. These alterations are notable in light of the narrow 
range of human body  temperature24,25.

Although suggestive, these results derive from small-scale studies conducted with limited sample sizes (< 300) 
and in controlled  settings13–15,19,20. Thus, an important step toward understanding the association between ther-
moregulatory dysfunction and depressive symptoms is to establish this association outside of clinical laboratory 
settings and in larger samples. Establishing a more definitive association between measures of body temperature 
and depression would set the stage for further explorations of depression treatment modalities that target the 
thermoregulatory system. To accomplish this, the current analyses tested associations between monthly depres-
sion symptom scores and (1) self-collected body temperature submitted to the research team via online surveys 
and (2) wearable sensor device-collected distal body temperature automatically transmitted to the research 
team over the internet, in a large international sample (N > 20,000) of adults who participated in an online 
study focused on COVID-19 detection beginning in March of 2020. Initial analyses used self-reported body 
temperature, which participants collected using personal thermometers (e.g., oral temperature) and reported 
via daily surveys. Further analyses used minute-level distal body temperature data collected using an off-the-
shelf wearable sensor device. In total, using wearable sensor-assessed distal body temperature, we analyzed 
four body temperature metrics examined in prior  research13–16,19–21: (1) distal body temperature while awake; 
(2) distal body temperature while asleep; (3) the difference between the average distal body temperatures while 
asleep and awake; and (4) the diurnal distal body temperature amplitude. Based on prior studies with small 
samples and our prior theoretical  work12–16,19–21, we hypothesized that higher self-reported body temperature 
and wearable sensor-assessed distal body temperatures, lower diurnal distal body temperature amplitude, and 
smaller differences between awake and asleep distal body temperature, would be associated with higher levels 
of depressive symptoms.

Results
Study overview
The TemPredict Study, initiated in March of 2020, sought to assess whether off-the-shelf wearable sensor devices 
collect data that could be used to screen large numbers of individuals for the early stages of SARS-CoV-2 
 infection26,27. The primary findings included that physiological data allowed for prediction of a COVID-19 
infection 2.75 days prior to diagnosis. All participants wore a commercially available off-the-shelf wearable sen-
sor device, the Oura Ring (Oura Health, Oulu, Finland) that collected distal body temperature (one value per 
minute while worn on the finger) and paired with a smartphone app. Participants also completed daily surveys 
that asked for a self-collected body temperature measurement (assessed with a handheld thermometer; not 
assessed using the wearable device), a baseline survey that collected demographic data, and monthly surveys 
that included mental health assessments.

The self-reported body temperature analytic sample included 20,880 individuals (Supplementary Fig. S1). 
The mean age (standard deviation [SD]) was 46.9 (12.6) years; 53% male; 47% female. For adjusted analyses, 
we excluded participants who reported their biological sex as ‘other’ and participants whose biological sex was 
missing (n = 17). We first computed each participant’s average T-score across a maximum of seven monthly 
PROMIS depression assessments. We then computed the average of all participants’ mean T-scores (SD); this 
value was 51.49 (7.37), which is within normal limits (WNL). On average, participants completed 3.6 of 7 pos-
sible PROMIS depression assessments and self-reported a total of 559,664 body temperature assessments (mean 
of 27 daily temperature reports per participant).

The wearable sensor-assessed body temperature analytic sample included 21,064 individuals (Supplementary 
Fig. S2). The mean age (SD) was 46.5 (12.1) years; 56% male; 44% female. The average T-score across a maximum 
of seven monthly PROMIS depression assessments in this sample was 50.94 (7.26), which is also WNL. On 
average, participants completed 4.0 of 7 possible PROMIS depression assessments; we used 2 weeks of wearable 
sensor device distal body temperature data prior to each completed PROMIS assessment for analyses. Participants 
had an average of 35.5 days of distal body temperature data with at least (1) 4 h of distal body temperature data 
during the asleep period and (2) at least 4 h of distal body temperature data during the awake period for each 
24-h period available within our timeframe of analyses. Both analytic samples (which we drew from the same 
participant pool) included a geographically diverse set of individuals from 106 different countries.
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Self-reported body temperature
Depression symptom frequencies
Of the 20,880 participants with self-reported temperature data, 13,595 had an average depression symptom sever-
ity WNL (T-score < 55), 4527 had an average depression symptom severity within the mild range (T-score ≥ 55 
and < 60), 2666 had an average depression symptom severity within the moderate range (T-score ≥ 60 and < 70), 
and 92 had an average depression symptom severity within the severe range (T-score ≥ 70) of the PROMIS 
depression  assessment28. The average depression symptom severity score across participants’ average scores was 
51.5 (the average within-person SD = 2.5), and the average range between participants’ lowest to highest scores 
was 5.2 (SD = 5.5), and the median was 3.9 (interquartile range [IQR] = 0–8.3).

Graphical depictions of self‑report temperature data
Figure 1 illustrates the differences in average self-reported body temperature across participants with average 
PROMIS depression symptom T-scores WNL, and in the mild, moderate, and severe ranges. The self-reported, 
time-stamped body temperature survey data (adjusted for local time zone) revealed that participants’ self-
reported temperatures followed expected diurnal patterns (Fig. 2), with lower body temperatures in the early 
morning and rising body temperatures during daytime hours that fell in the evening hours. This is consistent 
with the interpretation that participants self-collected their body temperature around the same time that they 
reported their body temperature to the study. As shown, participants tended to self-report their body temperature 
more often in the morning than in the evening.

Linear regression models
We used linear regression models to assess whether the average daily self-reported body temperature recorded 
over seven months was correlated with the average PROMIS depression T-score across seven monthly assessments 

Figure 1.  Average self-reported body temperature (A) and average wearable sensor-assessed distal body 
temperature (B) plotted by PROMIS depression symptom T-score categories. Figure panels show that 
individuals with PROMIS depression symptom T-scores within normal limits (WNL; green) have the lowest 
average self-reported and wearable sensor-assessed distal body temperatures, with increasing average self-
reported and wearable sensor-assessed distal body temperatures among individuals in the mild (yellow), 
moderate (orange), and severe (red) PROMIS depression symptom T-score categories. Note. We took the 
self-reported body temperature data from each calendar day (Panel A; most frequently reported by participants 
in the morning) and the average of any available wearable sensor-assessed distal body temperature data from 
each calendar day (during awake time; Panel B) and plotted those average values for the different depression 
groups. We smoothed average self-reported and wearable sensor-assessed body temperatures (°C) using an 
exponentially weighted moving average with a 7-day window before and after each timepoint as a function of 
the average NIH PROMIS Adult Health Profile instrument for depression (Form 4a) score. See Supplementary 
Fig. S3 for unsmoothed figure panels.
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from the same period. We found that these were positively correlated (greater body temperature associated with 
greater depression T-score) in an unadjusted model (b = 1.6661; 95% CI [1.4128,1.9195]; p = 7.1 ×  10–38) and in a 
model adjusted for age, biological sex, and self-reported body temperature survey time stamp (b = 0.8595; 95% 
CI [0.6118,1.1071]; p = 1.1 ×  10–11], Table 1). We calculated E-values as sensitivity analyses. E-values for these 
linear models ranged from 1.38 to 1.60, and in all cases were larger than observed effects of body temperature, 
age, or biological sex on depression (Table 1), meaning that it is unlikely that unaddressed or unmeasured 
confounders had effects that better explained the reported (observed) effects. Standardized adjusted regression 
analyses showed that body temperature accounted for unique variance in PROMIS depression T-scores beyond 
the known variance accounted for by biological sex and age (Supplementary Table S1).

Figure 2.  Average self-reported body temperature by time-of-day. Figure depicts expected diurnal pattern 
of lowest self-reported body temperatures reported in the early morning hours and higher self-reported body 
temperatures during daytime hours. Note. Blue line depicts average self-reported body temperature (right 
Y axis) by time of day; blue shading indicates standard error of the mean. Red shading indicates number of 
responses (left Y axis) provided at each minute (X axis).

Table 1.  Unadjusted and adjusted linear models regressing average PROMIS depression symptom T-scores 
onto average self-reported body temperature. Note. Models predict depression symptom T-scores assessed 
using the Patient-Reported Outcomes Measurement Information System (PROMIS), Adult Health instrument 
for depression (Form 4a), modified to reflect a 1-month  timeframe63. We used survey timestamps to compute 
the cosine (Time of Day B1) and sine (Time of Day B2) of 2*pi*t for each self-reported body temperature 
measurement, where “t” was the decimal proportion of the day during which the daily survey was completed 
(see “Methods”). CI, confidence interval; LB, lower bound; UB, upper bound. Mean self-reported body 
temperatures were centered around the grand mean of 36.54, such that the intercept represents the mean 
PROMIS depression T-score for participants with average self-reported body temperatures at the analytic 
sample mean. Age was centered around the overall analytic sample mean of 46.94.

Model Model parameter b SE p
95% CI
(LB, UB)

E-value for point estimate 
(E-value for 95% CI)

Unadjusted
(n = 20,880)
r2 = 0.008
p = 7.1 ×  10–38

Intercept 51.488 0.051 [51.388, 51.588]
1.60 (1.53)

Self-report body temperature 1.666 0.129 7.1 ×  10–38 [1.413, 1.920]

Adjusted
(n = 20,863)
r2 = 0.078
p = 2.3 ×  10–128

Intercept 52.940 0.0764 [52.790, 53.089]

1.38 (1.30)

Self-report body temperature 0.859 0.126 1.1 ×  10–11 [0.612, 1.107]

Age − 0.103 0.004 9.3 ×  10–146 [− 0.111, − 0.096]

Biological sex − 2.741 0.099 1.8 ×  10–165 [− 2.935, − 2.547]

Time of day (B1) − 0.526 0.117 7.5 ×  10–6 [− 0.756, − 0.296]

Time of day (B2) − 0.774 0.095 4.6 ×  10–16 [− 0.961, − 0.588]
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Logistic regression models
We next tested whether greater self-reported body temperature was associated with increased odds of having 
depression using separate logistic regression models for each category of depression (mild, moderate, and severe). 
In unadjusted analyses (Table 2), the odds ratio for having average PROMIS depression T-scores within the mild 
range vs. WNL were significantly increased with each 0.1 °C increase in average body temperature (OR: 1.030; 
95% CI [1.021,1.039]; p = 1.4 ×  10–11). Similarly, there were increased (but progressively greater) odds of hav-
ing (with each 0.1 °C increase in body temperature) PROMIS depression T-scores within the moderate range 
(OR = 1.051 [95% CI, 1.040, 1.062], p = 2.3 ×  10–20) and of having PROMIS depression T-scores within the severe 
range (OR: 1.114; 95% CI [1.060, 1.171], p = 2.1 ×  10–5) relative to PROMIS depression T-scores WNL (Fig. 3). 
Similar regression analyses adjusting for covariates attenuated these differences somewhat (mild vs. WNL; OR: 
1.015; 95% CI [1.006, 1.024], p = 8.7 ×  10–4; moderate vs. WNL OR: 1.027 95% CI [1.016, 1.038], p = 1.8 ×  10–6; 
severe vs. WNL: OR = 1.081; 95% CI [1.028, 1.138], p = 0.0026; Table 3). E-values for these logistic models ranged 
from 1.09 to 1.30, and in all cases were larger than observed effects of self-reported body temperature, age, or 
biological sex, on depression (Tables 2 and 3).

Receiver operating characteristics (ROC) curve analyses
ROC curve analyses for each logistic regression model (Fig. 4) showed better discernment based on the adjusted 
rather than unadjusted models comparing PROMIS depression T-scores between the severe and WNL ranges 
(AUC = 0.762 vs. unadjusted AUC = 0.635), between the moderate and WNL ranges (AUC = 0.672 vs. unadjusted 
AUC = 0.557), and between the mild and WNL ranges (AUC = 0.612 vs. unadjusted AUC = 0.537). Using Youden’s 
Index, which locates the threshold value that maximizes the distance between the ROC curve and the line of 
chance, to identify optimally performing threshold values from each ROC curve resulted in 85.87% sensitivity 

Table 2.  Unadjusted logistic models regressing PROMIS depression symptom T-score categories (mild, 
moderate, severe, with T-scores within normal limits [WNL] as the reference category) onto average self-
reported body temperature (scaled per 0.1 °C). Note. CI, confidence interval; LB, lower bound; UB, upper 
bound.

Model Model Parameter OR SE p
95% CI
[LB, UB]

E-Value of point estimate 
(E-Value of 95% CI)

Severe Depressive Symptoms vs. 
WNL
13,687 observations
Pseudo r2 = 0.0157

Intercept 0.006 0.001 [0.005, 0.008]
1.30 (1.20)

Self-report body temperature 1.114 0.028 2.1 ×  10–5 [1.060, 1.171]

Moderate Depressive Symptoms 
vs. WNL
16,261 observations
Pseudo r2 = 0.0059

Intercept 0.194 0.004 [0.186, 0.203]
1.19 (1.16)

Self-report body temperature 1.051 0.006 2.3 ×  10–20 [1.040, 1.062]

Mild Depressive
Symptoms vs. WNL
18,122 observations
Pseudo r2 = 0.0022

Intercept 0.333 0.006 [0.322, 0.344]
1.14 (1.11)

Self-report body temperature 1.030 0.005 1.4 ×  10–11 [1.021, 1.039]

Figure 3.  Forest plot depicting odds ratios from logistic regression models. Adjusted and unadjusted models 
predict PROMIS depression T-score categories (mild, moderate, severe) vs. depressive symptoms within normal 
limits (WNL) from self-reported body temperature (scaled per 0.1 °C).
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to detect PROMIS depression T-scores within the severe range based on the adjusted model, but with specificity 
of 34.05%; the best performance was 96.91% sensitivity to detect PROMIS depression T-scores within the mod-
erate range (with 63.40% specificity) from the unadjusted model. Sensitivity was lowest (42.72%) for detection 
of PROMIS depression T-scores within the mild range based on an unadjusted analysis. Specificity was lowest 
(31.55%) for detection of PROMIS depression T-scores within the moderate range based on the adjusted model 
(Table 4).

Wearable sensor-assessed temperature
Depression symptom frequencies
Of the 21,064 participants with wearable sensor-assessed distal body temperature data, 14,345 had an average 
depression symptom severity WNL, 4318 had an average depression symptom severity within the mild range, 
2330 had an average depression symptom severity within the moderate range, and 71 had an average depression 
symptom severity within the severe range of the PROMIS depression  assessment28. The average depression symp-
tom severity score across participants’ mean scores was 50.9 (SD = 2.2), and the mean range between participants’ 
lowest to highest scores was 5.5 (SD = 5.6), and the median was 4.9 (IQR = 0–8.7).

Distributions of wearable sensor‑assessed body temperature metrics by depression symptom severity
Probability density plots illustrate differences in the distribution of 4 wearable sensor-assessed distal body 
temperature metrics by severity of depressive symptoms (Fig. 5A–D). The awake distal body temperature dis-
tributions shift slightly higher from WNL to mild, and from WNL to moderate, with the most pronounced 
shift from WNL to severe depressive symptoms (see Kolmogorov–Smirnov D-statistics, below). In contrast, 
the asleep–awake distal body temperature difference and the diurnal distal body temperature amplitude plots 
demonstrate similar distribution shifts in the other direction; the visible separation of curves largely shows that 
differences in the mean values for these two variables decrease as depression symptom severity (in comparison 
to depression symptom scores WNL) increases. The plot for asleep distal body temperature shows more overlap 
in distributions but some separation of the curves is evident. For diurnal distal body temperatures, the mean 
within-individual standard deviation was 0.96 for the WNL category, 0.95 for the mild category, 0.91 for the 
moderate category, and 0.88 for the severe category.

Magnitude of associations between wearable sensor‑assessed body temperature metrics and depression symptom 
severity
Kolmogorov–Smirnov D-statistics, which can be considered a measure of effect size, ranged from 0.094 to 0.225 
for comparisons of severe symptoms versus WNL for all 4 distal body temperature metrics, while they ranged 
from 0.014 to 0.056 for comparisons between moderate symptoms versus WNL, and mild symptoms versus WNL 
(Table 5). Within each of the 4 distal body temperature metrics, the D-statistic was largest for the comparisons 
of severe symptoms versus WNL and smallest for comparisons of mild symptoms versus WNL. Relative to 
individuals WNL, individuals with severe depressive symptoms had distal body temperature distributions that 
were higher during the awake and asleep periods and had lower diurnal amplitudes and smaller asleep–awake 

Table 3.  Adjusted logistic models regressing PROMIS depression symptom T-score categories (mild, 
moderate, severe, with T-scores within normal limits [WNL] as the reference category) onto average self-
reported body temperature (scaled per 0.1 °C). Note. See Table 2 note.

Model Model parameter OR SE p
95% CI
[LB, UB]

E-Value of point estimate 
(E-Value of 95% CI)

Severe Depressive Symptoms vs. 
WNL
13,676 observations
Pseudo r2 = 0.0742

Intercept 0.007 0.001 [0.005, 0.010]

1.24 (1.13)

Self-report body temperature 1.081 0.028 0.0026 [1.028, 1.138]

Age 0.941 0.009 8.1 ×  10–10 [0.922, 0.959]

Biological sex 0.580 0.124 0.011 [0.381, 0.883]

Time of day (B1) 0.894 0.208 0.63 [0.567, 1.410]

Time of day (B2) 0.557 0.113 0.0039 [0.375, 0.829]

Moderate Depressive Symptoms
vs. WNL
16,246 observations
Pseudo r2 = 0.0582

Intercept 0.261 0.008 [0.245, 0.278]

1.13 (1.10)

Self-report body temperature 1.027 0.006 1.8 ×  10–06 [1.016, 1.038]

Age 0.965 0.002 3.2 ×  10–81 [0.961, 0.968]

Biological sex 0.477 0.021 3.2 ×  10–62 [0.437, 0.520]

Time of day (B1) 0.786 0.040 2.7 ×  10–6 [0.710, 0.869]

Time of day (B2) 0.762 0.032 1.1 ×  10–10 [0.701, 0.827]

Mild Depressive Symptoms
vs. WNL
18,109 observations
Pseudo r2 = 0.0257

Intercept 0.431 0.011 [0.410, 0.454]

1.09 (1.06)

Self-report body temperature 1.015 0.005 8.7 ×  10–4 [1.006, 1.024]

Age 0.979 0.001 2.9 ×  10–47 [0.976, 0.982]

Biological sex 0.591 0.021 1.6 ×  10–50 [0.552, 0.633]

Time of day (B1) 0.869 0.036 7.0 ×  10–4 [0.801, 0.942]

Time of day (B2) 0.855 0.029 3.2 ×  10–6 [0.800, 0.913]
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temperature differences than individuals with moderate or mild depressive symptoms. The associated statisti-
cal tests revealed statistically significant differences between distribution of awake distal body temperature, the 
asleep–awake difference in distal body temperature, and the diurnal distal body temperature amplitude, but 
not for asleep distal body temperature, when comparing distributions of these metrics among participants with 
severe symptoms versus WNL. The distributions of all 4 metrics in participants with moderate symptoms were 
statistically significantly different from the distributions among participants with symptoms WNL. Only the 
distribution of asleep distal body temperature in participants with mild symptoms had statistically significant 
differences compared to participants WNL; comparisons of the distributions of the other 3 metrics between mild 
symptoms and WNL were not statistically significant.

Figure 4.  Receiver operating characteristic (ROC) analyses. Figure panel depicts ROC curves based on 
unadjusted and adjusted logistic regression models for PROMIS depression T-scores in the severe range (Panel 
A), the moderate range (Panel B), and the mild range (Panel C), versus PROMIS depression symptom T-scores 
within normal limits (WNL).

Table 4.  Receiver operating characteristic (ROC) curve analyses for each logistic regression model predicting 
PROMIS depression symptom T-score categories (mild, moderate, and severe) versus PROMIS depression 
symptom T-scores within normal limits (WNL) from self-reported body temperature. Note. AUC = Area under 
the curve; Adjusted = models adjusted for age, biological sex, and self-reported body temperature assessment 
time of day (see Table 1 note and “Methods”).

Model Outcome Temperature Cut point (°C) Sensitivity Specificity ROC AUC 

Unadjusted Severe vs WNL 36.613 60.87% 62.34% 0.635

Adjusted Severe vs WNL 36.375 85.87% 34.05% 0.762

Unadjusted Moderate vs WNL 36.624 96.91% 63.40% 0.557

Adjusted Moderate vs WNL 36.350 75.17% 31.55% 0.672

Unadjusted Mild vs WNL 36.624 42.72% 63.46% 0.537

Adjusted Mild vs WNL 36.500 58.54% 47.47% 0.612
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The Kolomogorov-Smirnov D-statistics shown in Table 5 are a measure of the maximum vertical distance 
between WNL and all other depression symptom categories on the empirical Cumulative Distribution Func-
tion (eCDF) plots (Supplementary Fig. S4). The eCDF plots, as with the density plots in Fig. 5A–D, are another 
illustration of the shifts in distal body temperature metric distributions with depressive symptom severity. These 
analyses show that the distal body temperature distributions differed the most between individuals with depres-
sive symptoms in the severe range and individuals with depression symptoms WNL.

Figure 5.  Figure panel depicting wearable sensor-assessed body temperature metrics. Probability Density 
Plots showing distributions of: Awake distal body temperature (Panel A); asleep distal body temperature (Panel 
B); asleep–awake distal body temperature difference (Panel C); diurnal distal body temperature amplitude 
separately for individuals with PROMIS depression T-scores within normal limits (WNL; green), and within the 
mild (yellow), moderate (orange), and severe (red) PROMIS depression symptom T-score categories (Panel D); 
distribution of the Euclidean Distance (within mild, moderate, and severe depression subgroups) of three distal 
body temperature metrics (awake temperature, asleep–awake temperature difference, and diurnal distal body 
temperature amplitude) from the centroid of those metrics among individuals with depression scores WNL 
(Panel E).
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The rank biserial correlation coefficients (RBC) comparing each distal body temperature metric for indi-
viduals with severe, moderate, or mild depressive symptoms (relative to individuals WNL) showed that the 
RBC increased as depressive symptoms increased for awake distal body temperature and asleep distal body 
temperature, consistent with the D-statistics and the increasing mean distal body temperatures with increasing 
depression symptom severity for these metrics (Table 6). The asleep–awake difference in distal body temperature 
and diurnal distal body temperature amplitude generally both decreased as symptom severity increased, and 
correspondingly, the RBC decreased as symptom severity increased.

Standardized (to WNL) comparisons of body temperature metrics between mild, moderate, and severe depression 
symptom severities
A probability density plot showing the distribution of the Euclidean Distance of awake distal body temperature, 
the asleep–awake difference in distal body temperature, and diurnal distal body temperature amplitude to the 
centroid (mean of these measures among participants WNL), appears in Fig. 5E. This plot shows that all levels 
of depression symptom severity (mild, moderate, severe) shifted away from the WNL centroid but with much 
overlap between curves for mild and moderate depressive symptoms, and less overlap with the curve for severe 
depressive symptoms. This indicates that people with severe depressive symptoms differed more from the WNL 
values than did people with mild or moderate depressive symptoms. That is, the severe depressive symptoms 
showed a more pronounced shift away from WNL values compared to the WNL centroid, though this was not 
statistically significant (Kruskal–Wallis test, p = 0.065).

Discussion
To our knowledge, this is the largest study to date to examine the association between body temperature, assessed 
using both self-report methods and wearable sensors, and depressive symptoms in a geographically broad sample. 
In these analyses, higher levels of depressive symptoms were associated with higher body temperatures during 
time awake. We observed this finding using body temperatures assessed (1) at most once per day via self-collec-
tion using handheld thermometers, and (2) at most once per minute via an unobtrusive wearable sensor device 
(worn on the finger). We found that distal body temperatures collected by the wearable sensor device during 
sleep were fairly similar across depression categories and were higher than awake distal body temperatures; 

Table 5.  Kolmogorov–Smirnov tests comparing wearable sensor-assessed distal body temperature metrics 
across PROMIS depression symptom T-score categories (severe, moderate, mild) versus PROMIS depression 
symptom T-scores within normal limits (WNL), with Rank Biserial Correlation (RBC) and its 95% confidence 
intervals (lower bound, upper bound) for each comparison. Note. See Table 2 note.

Symptom severity (vs. WNL) Variable
RBC
[95% CI: LB, UB] D-Statistic p

Severe

Awake distal body temperature 0.173 [0.026, 0.320] 0.225 0.0012

Asleep distal body temperature 0.088 [–0.044, 0.219] 0.094 0.52

Asleep–awake distal body temperature difference –0.129 [–0.270, 0.012] 0.161 0.045

Diurnal distal body temperature amplitude –0.158 [–0.303, –0.013] 0.201 0.0053

Moderate

Awake distal body temperature 0.055 [0.029, 0.081] 0.049 1.2 ×  10–4

Asleep distal body temperature 0.072 [0.046, 0.097] 0.056 7.8 ×  10–6

Asleep–awake distal body temperature difference –0.028 [–0.053, –0.002] 0.038 0.0067

Diurnal distal body temperature amplitude –0.051 [–0.077, –0.025] 0.054 1.6 ×  10–5

Mild

Awake distal body temperature 0.008 [–0.012, 0.028] 0.014 0.53

Asleep distal body temperature 0.050 [0.030, 0.070] 0.051 6.7 ×  10–8

Asleep–awake distal body temperature difference 0.005 [–0.015, 0.025] 0.017 0.29

Diurnal distal body temperature amplitude –0.008 [–0.028, 0.012] 0.020 0.15

Table 6.  Mean values and 95% confidence interval (lower bound, upper bound) of wearable sensor-assessed 
distal body temperature metrics for each PROMIS depression symptom T-score category. Note. See Table 2 
note.

Variable

PROMIS Depression Symptom T-Score Category Mean
95% CI: [LB, UB]

WNL Mild Moderate Severe

Awake distal body temperature 32.038 [32.015, 32.062] 32.051 [32.006, 32.096] 32.166 [32.105, 32.226] 32.366 [31.983, 32.750]

Asleep distal body temperature 35.201 [35.193, 35.209] 35.237 [35.222, 35.253] 35.260 [35.240, 35.279] 35.266 [35.156, 35.377]

Asleep–awake distal body temperature 
difference 3.163 [3.137, 3.189] 3.186 [3.138, 3.235] 3.094 [3.029, 3.160] 2.900 [2.502, 3.298]

Diurnal distal body temperature amplitude 8.149 [8.110, 8.187] 8.119 [8.046, 8.191] 7.942 [7.842, 8.043] 7.575 [6.958, 8.191]
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this resulted in smaller asleep–awake distal body temperature differences with increasing depressive symptom 
severity. We also found that the association between self-reported body temperature and depressive symptoms 
was robust to adjusting for time of day at which body temperature was assessed (as done in prior work with 
smaller samples)19. We also observed these associations between self-reported body temperature and depressive 
symptoms in models that statistically accounted for demographic factors that can affect body  temperature29.

These findings confirm associations between depressive symptoms and body temperature reported in smaller 
studies (< 300 participants)13–16,19–21. Specifically, these analyses replicated prior results showing that daytime 
self-reported body temperature was associated with greater depressive  symptoms19,20 and build on one prior 
study showing that the asleep–awake body temperature difference was more than twice as large among controls 
relative to individuals with  depression21. In contrast to prior  work13,21; however, we did not observe an association 
between increased body temperature during sleep time among individuals with greater depressive symptoms. 
This may be due in part to key differences in measurement; prior  studies13,21 monitored rectal (core) temperature 
during the night, whereas the wearable sensor in these analyses was collected from the skin of the finger (distal). 
As core temperature typically decreases whereas peripheral temperature increases during  sleep30, it is possible 
that body temperature increases we observed during sleep are specific to distal temperature. Additionally, these 
analyses went beyond single self-reported daily body temperature assessments by including minute-level wearable 
sensor-assessed distal body temperature data over the course of several months, which prior studies of depres-
sive symptoms and body temperature have not done. Importantly, we observed these associations outside of the 
controlled laboratory setting, which lends further external validity to these findings.

It is uncertain whether the elevated body temperature observed in depression reflects increased metabolic heat 
production, decreased ability to induce thermoregulatory cooling, or a combination of both. Body temperature 
reflects a balance between metabolic heat generation and thermoregulatory heat loss, with these processes under 
tight control by an integrated neural and immune-based feedback system that involves both bodily and central 
nervous system  processes12. Available data suggest that the inadequate ability to activate thermoregulatory cool-
ing mechanisms, as indexed by a reduced ability to sweat, may play an important role in the body temperature 
alterations observed in  depression15,31. Based on these and other findings, we have previously proposed that 
MDD may be associated with dysregulation of afferent warm signals from distal cutaneous sensors to the central 
nervous system, i.e., involving heat-defense mechanisms traveling along the spinoparabrachial  pathway32, lead-
ing secondarily to decreases in sweating as assessed by measurement of skin conductance  levels12,33–36. Indeed, 
a recent systematic review and narrative synthesis concluded that lower skin conductance level in individuals 
with depression versus healthy controls has been a consistent  finding37.

Evidence suggests that individuals with MDD may have altered electrodermal activity (EDA), which is now 
the preferred term that encompasses historical terms related to electrical characteristics of the skin, such as 
electrodermal level, electrodermal response, galvanic skin response, psychogalvanic reflex, skin conductance, 
skin conductance level, skin conductance response, and sympathetic skin response. EDA is typically assessed as 
changes in the amount of sweat secreted by eccrine sweat glands in the hypodermis of the palmar region of the 
hand and plantar region of the foot. EDA has a tonic and a phasic component, with the tonic component being 
related to skin conductance level), and with the phasic component being related to faster-changing elements 
of the signal that can be associated with an acute stimulus (skin conductance response) or “spontaneous” or 
“nonspecific” (nonspecific skin conductance response)38,39. Reduced EDA was first associated with depression in 
 189040, an observation repeatedly observed in depression since  then37,41. The most consistent findings in individu-
als with MDD (relative to healthy controls), have been lower skin conductance level, increased skin conductance 
response latency, and lower skin conductance response amplitude, suggesting alterations of multiple elements 
of EDA in persons with  depression37.

Correlations between body temperature metrics and depressive symptoms suggest potential common underly-
ing pathophysiological mechanisms. For example, chronic stressors that contribute to risk for  depression42 may 
also impact thermoregulation dysregulation of the hypothalamic pituitary adrenal  axis43–45. In addition, abnormal 
glutamate/gamma-aminobutyric acid signaling has been observed in MDD post-mortem  brains46, and this altered 
excitatory/inhibitory balance could also contribute to dysregulated body temperature, as shown in models of hot 
 flashes47. Finally, low-grade (micro- or para-)  inflammation48 could lead to both elevated body  temperature49 
and depressive  symptoms50,51. Interestingly, temperature sensitive channels have been implicated in MDD and 
bipolar disorder and have also been shown to regulate inflammatory  responses52 and body  temperature53,54. Thus, 
temperature-sensitive immune-regulatory channels are potential targets for development of MDD treatments.

Associations between body temperature and depression might be relegated to the realm of academic interest 
were it not for data showing that interventions directly targeting thermoregulatory systems have yielded antide-
pressant effects. Although it may seem counterintuitive that interventions that temporarily raise body tempera-
ture could benefit a condition characterized by increased body temperature, acute exposure to high heat induces 
counter-regulatory thermoregulatory cooling processes that produce longer-term and sustained reductions in 
body  temperature55. In the context of MDD, whole-body hyperthermia has been reported to elicit a rapid and 
sustained reduction in depressive symptoms following a single whole-body hyperthermia treatment designed 
to raise core body temperature to 38.5 °C56,57. Notably, in one of these trials, participants with depression and 
higher body temperatures prior to WBH tended to experience larger antidepressant  responses57. Antidepressant 
effects have also been observed for other heat-based interventions, including hot  yoga58, hyperthermic  baths59, 
and infrared sauna  lamps56,57. Though these initial studies suggest that alterations in abilities to regulate body 
temperature may be associated with at least some cases of depression, clarifying the biological pathways through 
which body temperature is altered in some individuals with depression may reveal more specific pathogenic 
mechanisms amenable to targeted treatment for individuals with depression and elevated body temperature.

Several limitations of this study warrant discussion and have implications for further investigation. Though 
most self-reported body temperatures were likely collected using oral assessment methods, participants used 
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personal thermometers to collect their body temperature, and did not report the body site from which they col-
lected their temperature. Unless the site from which participants measured their temperature varied systemati-
cally by levels of depressive symptoms, this measurement issue is likely to have made it more difficult to observe 
an association between body temperature and mood because of increased noise in temperature measurement 
(thus attenuating observed effects and plausibly rendering them conservative estimates of the true association). 
Thus, that the reported effects emerged despite this methodological noise is noteworthy. Additionally, we report 
here the most conservative statistical analysis of difference between groups by aggregating across time to deter-
mine average temperature parameters per person. As Fig. 1 makes clear, there are substantial changes for all 
groups across the year, and we do not attempt to use these changes to reduce the unexplained variance in our 
comparisons. Given the consistency of the differences visible across the months of data collection, we expect that 
future classification analyses could generate substantially larger effect sizes than we report here by statistically 
accounting for time of day, week, month, and year in order to reduce the contribution of these non-random 
sources of variance from the statistical comparisons.

Although adjusted analyses accounted for the time of day at which participants collected their body tem-
perature, standardizing the time of day at which participants collected their body temperature would have 
reduced measurement variability. Future research using self-reported body temperature should standardize 
the thermometer device used, the site from which participants collect their body temperature, and the time 
of day temperature measurements are collected. Wearable sensor-assessed body temperature may have some 
additional benefits, such as the provision of continuous assessments that can provide significantly more analytic 
power. Additionally, wearable sensors may reduce problems associated with human errors in self-collecting 
body temperature (e.g., improper thermometer placement) and self-reporting (e.g., forgetting to report a value, 
incorrectly typing in a value).

The wearable sensor-based temperature measurements we used in this study supported the main findings of 
associations between depressive symptoms and self-reported temperature. Further, they extended these find-
ings, for example, by allowing us to assess associations between depressive symptoms and the difference between 
awake and asleep body temperature. The wearable sensor devices we used have their own limitations, however. 
The wearable sensor devices measured dermal temperature on the finger, which can differ from core body tem-
perature. Self-reported body temperatures were likely oral body temperature, which is a metric of core body 
temperature. The wearable sensor may have artifacts due to measurement errors, for example, due to removing 
the ring from a finger. To limit measurement artifacts from the wearable sensor, we took steps such as removing 
the upper and lower 5% body temperature assessments.

We used average depressive symptom scores and body temperature values in these analyses. An important 
remaining question is whether changes in depressive symptoms are associated with changes in body temperature, 
and over what timescale. We were unable to assess this well, as depressive symptoms were relatively stable in most 
of our cohort, with the median range between the highest and lowest depression T-score being 3.9, which may 
constitute a clinically meaningful difference but relative to categorical depression levels represents a relatively 
small difference. Although limited prior data suggest that body temperature may decrease when depressive 
symptoms  decrease21,57, we were not able to address whether altering body temperature may improve depressive 
symptoms. As noted, small pilot studies suggest this might be the  case57, but this is a key area for more rigorous, 
larger studies in the future. The current analyses reinforce the rationale for such intervention research.

Although we were unable to assess many potential confounders, sensitivity analysis using E-values showed 
that unmeasured confounders would need to be larger than observed effects of several known relevant variables 
to explain away all observed effects in these models. Although there are several known risk factors for depression 
that were not included in this analysis, to function as a confounder, these factors would also need to be associ-
ated with elevated body temperature. Genetics play a role in depression, and plausibly may be related to body 
temperature; however, it seems possible that genetic links to depression and temperature may relate to genetic 
mediators of depression through a thermoregulatory pathway, rather than constituting unmeasured confounders 
in observed associations. Illness can play a role in depression and may also influence body temperature, and we 
were not able to control for this; however, the magnitude of unmeasured potential confounding effects of chronic 
illnesses causing both depression and elevated body temperature would need to be substantially larger than our 
observed effects, given the magnitude of the E-values we observed. In these data, ROC curve analysis illustrated 
the strength of the association between body temperature and depression, with moderate-to-high AUC values 
across all models, and the highest being for severe depression.

These data confirm an association between body temperature and depressive symptoms in a large sample 
using body temperature metrics (1) that participants self-collected and self-reported and (2) assessed by wearable 
sensor devices that automatically transmitted data to the research team, and replicate prior research showing 
that individuals with depression have smaller asleep–awake body temperature differences. Though depression 
is biologically, behaviorally, and psychologically heterogeneous, these findings suggest that body temperature 
may be a candidate biological marker of depression for some individuals with depressive symptoms. Treatments 
that target elevated body temperature in individuals with both elevated body temperature and depression may 
warrant further evaluation.

Methods
Study design and participants
The TemPredict  Study26,27 was a prospective, worldwide, cohort study that continuously collected physiological 
metrics (e.g., body temperature) using an off-the-shelf wearable device (Oura Ring) with the primary aim of 
developing an algorithm to identify the onset of COVID-19. In addition to data collected by the Oura Ring, par-
ticipants self-reported their body temperature daily and completed monthly surveys. Average study engagement 
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was 127.1 days for the self-reported body temperature analyses and 87.7 days for the sensor-assessed distal body 
temperature analyses. Eligible participants were at least 18 years of age, possessed a smartphone that could pair 
with the Oura Ring, and could communicate in English. Eligible participants either already possessed an Oura 
Ring that they used for participation or were provided with an Oura Ring for participation (the study provided 
Oura Rings to frontline healthcare workers at several participating healthcare institutions). We conducted par-
ticipant recruitment through invitations delivered within the Oura smartphone app; these invitations contained 
embedded weblinks for prospective participants to review study details and to begin the study enrollment 
 process60. All participants provided electronic informed consent. Participants provided consent to use data from 
their personally owned Oura Ring prior to their enrollment; we therefore analyzed data collected by the wear-
able devices beginning in April 2020. We did not pay participants for participation. The University of California, 
San Francisco, Institutional Review Board (IRB; IRB# 20-30408) and U.S. Department of Defense, Human 
Research Protection Office (HRPO; HRPO# E01877.1a) approved of all study procedures, and all research was 
performed in accordance with relevant guidelines and regulations and the Declaration of Helsinki. We followed 
the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting  guidelines61.

Measures
Depression severity
Participants received a monthly survey (Qualtrics Survey Software) via email that included the Patient Reported 
Outcomes Medical Information System (PROMIS) Adult Health Profile instrument for depression (v1.0 Form 4a) 
with the recall period modified (as described  elsewhere62) to reflect the past month rather than the past 7  days63.

Self‑reported body temperature
Participants self-reported their demographic information, including age and biological sex, in a baseline survey. 
Participants self-reported their self-assessed body temperature once per day by accessing a daily self-reported 
survey (Qualtrics Survey Software) that was linked within the Oura App. The daily survey asked participants 
to report the highest body temperature value they collected within the last day (in °F or °C, per participant 
preference). For these daily self-reported temperature assessments, participants used their own thermometers 
(which were not provided by the study, and which may have been of any brand), and we did not ask participants 
to report the type of thermometer used or the method of body temperature assessment. Qualtrics generated a 
time stamp for each completed survey.

Wearable sensor‑assessed body temperature
All participants wore the Oura Ring Gen2 (ouraring.com), a commercially available wearable sensor device 
(Oura Health, Oulu, Finland), on a finger of their choosing, as previously  described27. The Oura Ring connects 
to the Oura App (available in Google Play Store and Apple App Stores) via Bluetooth. Users can wear the ring 
continuously during daily activities and sleep in wet and dry environments. The Oura Ring assesses distal body 
temperature using a negative temperature coefficient (NTC) thermistor (resolution of 0.07 °C) on the internal 
surface of the ring, which is in relatively consistent contact with the skin. The wearable sensor registers distal 
(dermal, peripheral) body temperature readings from the palm side of the finger base every minute. As described 
 elsewhere27,64, the Oura Ring also assesses other physiological metrics, including sleep parameters, heart rate, 
heart rate variability, respiratory rate, and activity metrics.

Data analyses
We performed statistical analyses using Stata v16 and Python v3.8.10 with the statsmodels (v0.13.2), scipy (v1.8.0), 
and scikit_posthocs (v0.8.0) packages.

Variable preparation
Depression severity. Each item on the PROMIS depression Form 4a is scored from 1 (never) to 5 (always), 
and these item scores are summed to create a total raw summary score. We converted raw PROMIS depression 
summary scores to T-scores using the conversion tables in the PROMIS scoring manual (healthmeasures.net65). 
PROMIS T-scores are referenced to a general adult population with a mean score of 50 and standard deviation 
of 10, with higher T-scores indicating greater depression  symptomatology63,66.

Self-report body temperature. We excluded self-reported body temperature data points that were above 
38.0 °C, as these are not representative of baseline temperature and meet criteria for clinical fever. We excluded 
these periods of potential illness because the focus of this analysis was body temperature under usual conditions 
of daily life, and so we excluded known periods of aberrant physiology. We used the Qualtrics auto-generated 
timestamp to create self-reported body temperature “time of day variables” as done in prior work examining 
associations between oral temperature and self-reported depressive  symptoms19. Specifically, we calculated the 
cosine (B1) and sine (B2) of 2*pi*t for each self-reported body temperature value, where “t” was the decimal 
proportion of the day during which the daily survey was completed.

Wearable sensor-assessed distal body temperature. For each participant, we used the two weeks of distal body 
temperature data prior to each completed PROMIS assessment. For each 24-h period, we discarded wearable 
sensor-assessed distal body temperature values below the 5th percentile value and above the 95th percentile. This 
served to exclude periods of non-wear and periods of clinical fever and to minimize influence from non-repre-
sentative extreme values (e.g., outliers), as done in prior research with wearable sensor-assessed  metrics67–69. We 
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used hypnogram data to determine periods of asleep versus awake. As done in prior studies of body temperature 
and  depression19,21, we computed metrics for the daily average distal body temperature during minutes awake 
(“awake distal body temperature”), the daily average during sleeping minutes (“asleep distal body temperature”), 
and the difference between those averages (“asleep–awake distal body temperature difference”). To compute the 
diurnal distal body temperature amplitude, we calculated the daily maximum distal body temperature as the 
highest daily value and the daily minimum distal body temperature as the lowest daily value for each person and 
calculated the difference between these two values.

Statistical approach
Self-report body temperature. Analyses of self-reported body temperature data included participants who 
completed one or more PROMIS depression assessments and who provided at least one self-reported tempera-
ture assessment, resulting in a sample of 20,880 participants.

We computed an unadjusted linear regression model with participants’ average self-reported body tem-
perature as the predictor variable and average PROMIS depression T-score as the outcome variable. We also 
computed a multiple linear regression model that adjusted for age and biological sex, both of which can affect 
body  temperature29, as well as body temperature survey time stamp (as done in prior analyses of depression 
and body  temperature19). We included each participant’s body temperature time-of-day variables (average B1 
and B2) in adjusted models to hold constant the average effect of time of day for each participant’s average body 
temperature. We plotted body temperatures for each depression T-score category.

We then conducted unadjusted and adjusted logistic regression models with categorical depression level vari-
ables (mild, moderate, and severe, each with WNL as the reference category) as outcomes. We used established 
thresholds for PROMIS depression T-scores, with separate models for mild (T-score 55–59.99) vs. WNL (T-score 
below 55); moderate (T-score 60–69.99) vs. WNL; and severe (T-score 70 or greater) vs. WNL, as the outcome 
variable, and self-reported body temperature as the predictor, scaled per 0.1 °C63. We report odds ratios with 95% 
confidence intervals (CIs) for the odds for each depression level with a 0.1 °C increase in average self-reported 
body temperature and visualized this in a forest plot. For each linear and logistic regression model, we performed 
sensitivity analyses by calculating E-values70,71, which provide estimates of the magnitude of unmeasured con-
founding that could explain the observed effects and have been recommended as a type of sensitivity  analysis70,72. 
We conducted receiver operating characteristics (ROC) curve analyses for each logistic regression model and 
calculated the area under the curve (AUC) to evaluate how well self-reported body temperature could identify 
depressive symptoms in three depression comparisons (WNL vs. mild; WNL vs. moderate, and WNL vs. severe), 
and used Youden’s Index to identify body temperature thresholds to evaluate sensitivity and specificity based on 
those threshold  values73. Youden’s index can be calculated as (sensitivity + specificity –1) and ranges between 1 
and 0, with 1 indicating perfect sensitivity and specificity and 0 indicating results no better than  chance73. Maxi-
mizing Youden’s index in ROC analysis identifies the value of a continuous predictor that best distinguishes cases 
and non-cases, and is equivalent to locating the point on the curve that is furthest from the line of  chance74. To 
control for multiple comparisons, we set the significance level at p < 0.01 for all statistical tests (all two-sided).

Wearable sensor-assessed body temperature. Analyses involving wearable sensor-assessed distal body temper-
ature data included participants who completed one or more PROMIS depression assessments and wore an Oura 
Ring for at least seven 24-h periods with at least 4 h of asleep and awake distal body temperature data recorded 
during each 24-h period, resulting in a sample of 21,064 participants. We included distal body temperature data 
collected in the 2 weeks prior to each completed PROMIS depression assessment.

We grouped participants into WNL, mild, moderate, or severe depression PROMIS depression symptom 
 categories75,76. We plotted probability density plots to illustrate differences in the distributions of the four distal 
body temperature metrics by severity of depressive symptoms. We then calculated Kolmogorov–Smirnov Dis-
tance (D-statistic) and p-values, together with rank biserial correlations and their corresponding 95% confidence 
intervals, to quantify the magnitude of the association between distal body temperature metrics and depression 
symptom severity. We also created empirical Cumulative Distribution Function (eCDF) plots. Briefly, the Kol-
mogorov–Smirnov D-statistic is proportional to the maximum vertical distance between two eCDF plots, and 
ranges from 0 (distributions entirely overlapping) to 1 (distributions completely separated), functioning as a rela-
tive effect size metric for the comparison between two empirical  distributions77,78. Together, the above analyses 
allowed us to compare the distributions of distal body temperature metrics of the three depression symptom 
categories (mild, moderate, severe) relative to WNL. We also calculated Rank Biserial  Correlations79,80 with 
95% confidence  intervals81. To further explore distal body temperature differences between depression symp-
tom categories, we computed the standardized distal body temperature metrics within each level of depression 
symptom severity (mild, moderate, and severe) against those from the WNL centroid (the Euclidean Distance). 
We calculated the WNL centroid as mean of awake distal body temperature, asleep–awake temperature differ-
ence in distal body temperature, and diurnal distal body temperature amplitude; we did not include asleep distal 
body temperature within this centroid calculation as asleep distal body temperature did not diverge based on 
depression symptom category. We calculated the Euclidean Distance as the distance between the WNL centroid 
and each participants’ values on each of three distal body temperature metrics (awake distal body temperature, 
asleep–awake temperature difference in distal body temperature, and diurnal distal body temperature amplitude). 
We then created density plots for the distribution of the Euclidean Distance; we did this within each depression 
category (mild, moderate, severe) and computed a Kruskal–Wallis test.
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Data availability
Oura’s data use policy does not permit us to make wearable sensor-assessed (via the Oura Ring) data available to 
third parties. Self-report data (e.g., self-reported body temperature, self-reported depressive symptoms) can be 
made available; those seeking to reproduce our findings should contact Ashley Mason, PhD, and Benjamin Smarr, 
PhD for an online application to access the study data portal. This application process will require requesters to 
make a written commitment expressing agreements to not duplicate data, to not share data with third parties, 
and/or other confidentiality precautions.
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