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ABSTRACT OF THE DISSERTATION

Higher spin Chern-Simons theory and KdV hierarchies

by

Yi Li
Doctor of Philosophy in Physics and Astronomy
University of California, Los Angeles, 2018
Professor Michael Gutperle, Chair

This dissertation summarizes my research in the Lifshitz higher spin Chern-Simons theory
and its relation to the integrable system KdV hierarchy as a Ph.D. candidate at UCLA. In
Chapter 1, I briefly review the higher spin gravity theory and introduce the Chern-Simons
theory as a realization of the Vasiliev theory in three dimensional spacetime. In Chapter 2, I
review the KdV hierarchies. In Chapter 3, I discuss how to construct a solution to the Chern-
Simons theory which yields a spacetime that exhibits Lifshitz scaling, I also calculate the
boundary charge algebra and show the asymptotic Lifshitz symmetry is realized in terms of
it. In Chapter 4, I reveal the relation between the Lifshitz Chern-Simons theory and the KdV
hierarchies (in the non-supersymmetric case), a proof of the general correspondence is also
given using the Drinfeld-Sokolov formalism. In Chapter 5, I work out the supersymmetric
extension of this correspondence in a particular case, with the boundary charge algebra of
the supersymmetric Chern-Simons theory and the second Hamiltonian structure of the super
KdV identified. In Chapter 6, I discuss on the results of my study and possible directions of

future research.
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CHAPTER 1

Introduction to the higher spin Chern-Simons theory

1.1 Poincare symmetry and spin

As the core of modern physics, the relativistic field theory is the field theory with Poincare
symmetry, which is generated by translations P, and rotations M, that satisfy the commu-

tation relation

[Poupﬁ] =0 (11)
(M, Myo] = t(uo Mup + MupMyue — pupMoe — o M) (1.2)
[M,uz/u Pa] = i(nuap,u - nuapu) (13)

The Poincare symmetry classifies the fields as (single or double valued) representations of
the Poincare group, in particular, representations of the double cover of the Lorentz group,
the spin group, labeled by the spin. After quantization of fields, the one particle states form
an unitary irreducible representation of the Poincare group, with the quadratic Casimir
P=P,P*and W = %MWM’“’PQPO‘ — M, M?" P* P, corresponding to the mass and spin of

the particle

P =m? (1.4)

W =m?s(s+1) (1.5)

Moreover, particles with integer spin are Bosons while the particles with half integer spin are
Fermions by the spin-statistics theorem[1]. In the most microscopic level of physics verified
by experiment with high precision, we have the well-established standard model of particle

physics, which includes the Higgs Boson with spin zero, the leptons and quarks with spin
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one half, and vector gauge Bosons with spin one. In the physics of the largest scale like
cosmology, the gravity theory is an essential part. As a manifestation of curved spacetime, it
is formulated by (pseudo) Riemannian geometry which is described by the spin two metric.
The classical gravity theory is successfully described by the Einstein-Hilbert action and its
variants, while a complete and consistent quantum theory is still elusive, with string theory

being the most promising candidate.

1.2 Review of the gravity theory and Palatini formalism

In (pseudo) Riemannian geometry we start with a metric and an affine connection which

defines the covariant derivative of tensors, it takes the form in the coordinate basis

V.0, =1",0, (1.6)

=17,
where I' s are also called ” Christoffel symbols”. The torsion tensor 7" is defined as
TX,Y]=VxY —-VyX —[X,Y] (1.7)
where X,Y are vector fields. It takes the form in the coordinate basis
=1, -1, (1.8)

In the gravity theory we usually consider the Levi-Civita connection, that is, torsion free
T = 0 and metric compatible Vg = 0. The Levi-Civita connection takes the explicit form

that only depends on the metric

1
Ffw = igp)\<aug)\u + 61/9)\;/, - 8>\g;w) (19)

The curvature tensor R is defined as

R(X,Y)Z =VxVyZ = VyVxZ =V xy1Z (1.10)
and takes the form
RY,, =00, — 9,10, + 0T, -0, (1.11)



in the coordinate basis. The Ricci tensor is defined as the contraction of the curvature tensor
R, = RZPV and the scalar curvature is defined as the contraction of the Ricei tensor R = R;’.

The action of Einstein’s gravity theory, the Einstein-Hilbert action is

1
5= 167G

/dV(R—QA)+SM (1.12)

where A is the cosmological constant, dV is the volume form, S); is the action of matter
fields and G is the gravitational constant. When the action is viewed as a functional of
the metric assuming the connection is Levi-Civita, the action principle yields the Einstein’s
equation

1

R, — 5

Ry + Agy = 81GT),, (1.13)

where the energy momentum tensor 7}, is defined as —2295—%. In the Palatini formalism
however, we view the action as a functional of the metric g,, and the connection I'}, which
is independent on the metric. Then the equation of motion by the variation of the action with
respect to the connection sets the connection to be Levi-Civita, and the second equation of
motion by the variation of the action with respect to the metric yields the Einstein’s equation.
We can also formulate the gravity in non-coordinate basis, in which the gravity manifests
itself as a gauge theory. We are particularly interested in orthonormal frame (Lorentz frame)

in which spinors could be defined. We introduce the vielbein as the basis of the local Lorentz

frame e, and its dual one-form e®

Guvhely = Tab  Nab€puey = Guv (1.14)
The covariant derivative of the vielbein takes the form

Ve = wzaeb (1.15)

where wi, is the spin connection, which is essentially the affine connection in a special basis.

It transforms as

Wiy = Ag Apwy, + AL 9 Ay (1.16)



under local Lorentz rotation. The spin connection can also be viewed as a one-form w? =

wzadx“. The torsion and curvature form are defined as

T = de* +wi N e (1.17)

Ry = dwy + wi A wy (1.18)

and are related to the torsion and curvature in the coordinate basis in the simple way

T, = esTh a :ee)‘Rp

oLh, Ry, \uv- We can also define the generalized exterior differential D

for tensor-valued forms €2 as

DXy, X1 va (X1, X X)) = QX X)X, X X
i<j
(1.19)

Then the torsion takes the simple form 7" = De. In addition, DT = 0 and DR = 0 represents
the first and the second Bianchi identity for the curvature tensor, respectively. The Einstein-
Hilbert action in D-dimensional spacetime can also be rewritten in terms of the vielbein and

the spin connection

1

Sa = 167G

/ealmaDR‘“a2 ANe® A .. Ne® —20Ne' AL N EP (1.20)

and the Palatini formalism remains working, that is, we get Levi-Civita connection if we
set the variation of the action with respect to the spin connection to zero, then we can get

Einstein’s equation by setting the variation of the action with respect to the vielbein to zero.

1.3 Higher spin gravity and AdS/CFT

Fields of spin higher than two are called higher spin fields. The study of free higher spin
fields was initiated by Fierz and Pauli[2]. A little bit later Wigner classified the irreducible
unitary representations of the Poincare group in four dimensional spacetime [3](which was
generalized to spacetime with arbitrary dimension in [4]) and proposed with Bargmann the
dynamic equation of free massive higher spin fields. The spin j fields are realized by 2j-fold

symmetric tensor product of Dirac spinors Yay...an; and the dynamic equation, known as the

4
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Bargmann-Wigner equation, reads

(17" 0 = M)y o Var.ar’an; = 0 (1.21)

that is, a Dirac equation for each Dirac spinor component in the tensor product. The equation
can be recasted in terms of symmetric tensors in the case of integer spin, and symmetric
tensor spinors in the case of half integer spin, with transeverse and trace condition to ensure

the irreducibility of the representation

(07 - m2)q)m~..us =0 (1.22)
oo, .. =0
77#1#2@“1“2.“#5 =0
(17" 0y — M)Wy e =0 (1.23)
0M®, =0

P q)muzmus =0

1 3
7571757

In the case of spin 0 one can verify that the Klein-Gordon, Dirac, Proca and Rarita-
Schwinger (in the massless limit) equations are recovered. A Lagrangian formalism of the
massive free higher spin fields was, however, absent for decades until the work by Singh and
Hagen [6, 7], in which auxiliary fields were introduced to impose the constraints. A few
years later Fronsdal and Fang studied the massless limits[8, 9], where auxiliary fields can
be absorbed by field redefinition and higher spin gauge symmetries emerge. The Fronsdal

equation for massless fields with integer spin s is

Fee = s = D o) P poua)coue) + Y 0o Do) ¥y oy = 0 (1:24)

where ¢ is permutation of the indices p; . .. us. A higher spin gauge transformation is defined

as

5q),u1--‘,us = Z aa(m)Acr(,uz)...a(,us) (125)



and the corresponding variation of the Fronsdal tensor is

0Fpy e =3 Z acr(m)80(#2)60(#3)Azg(#4),“0(u8) (1.26)

So the gauge symmetry can only be realized with traceless gauge parameters. The Fronsdal-

Fang equation for massless fields with half integer spin s + % is

St = Y A0 Wo).con) =V D) Ypo(a)-r(un)) = 0 (1.27)

Under a higher spin gauge transformation

5qju1~~us = Z aa(,ttl)Eo(;Lg)...cr(yS) (128)

the variation of the Fronsdal tensor spinor is

0Spne = = Y 207 Do) Do) Epo(uss) o) (1.29)

So the gauge symmetry is realized with ~-traceless gauge parameters. A Lagrangian formal-
ism for Fronsdal’s theory free from constraint was found at the beginning of the new century

at the price of introducing non-local terms [10, 11].

A interacting theory always has much more physical significance than a free theory. It
is more important to find a consistent interacting theory of higher spin massless fields. It
turned out to be impossible in flat spacetime due to the no-go theorems [12, 13, 14], which
exclude the existence of higher spin conserved currents by analyzing the symmetries of the S
matrix. The no-go theorems can be circumvented in curved spacetime where S matrix is not
well-defined. It is Vasiliev who proposed such a higher spin gravity theory, known as Vasiliev
theory, in any dimension [15, 16, 17, 18]. The theory contains an infinite tower of fields of
all spins, and all of them must be included for consistent interaction for generic spacetime
dimensions. It’s perturbed around (Anti) de-Sitter vacuum and the flat limit doesn’t exist.

In general it’s very complicated and only known at the level of equation of motion.

One of the main purpose of studying higher spin gravity theories is, conjectured to be

the tensionless limits of string theories (e.g.[19]), they provide useful playgrounds for the



AdS/CFT correspondence, which is probably the most important discovery in the past two
decades in theoretical physics [20]. It states that quantum gravity with Anti-de Sitter (AdS)
spacetime background in n + 1 dimensional spacetime is equivalent to a conformal field
theory (CFT) in n dimensional spacetime, in particular, the classical AdS gravity should
be dual to a strongly coupled CFT. For higher spin gravity, we have the duality between
AdS, higher spin gravity and the O(NN) vector model CFT in three dimensional spacetime
21, 22] and the duality between AdSs higher spin gravity and the W,, minimal model CFT
in two dimensional spacetime [23, 24]. For completeness we briefly review the Anti-de Sitter

spacetime and the conformal field theory here.

The AdS, 1, namely the n + 1-dimensional Anti-de Sitter spacetime is the maximally
symmetry spacetime with negative constant curvature. It’s a hyperboloid in the n + 2

dimensional Minkowski spacetime
—12 —t* + Z # = (1.30)
i=1

It’s a maximally symmetric spacetime with isometry group SO(2,n). The most frequently

used coordinate patch for the half spacetime is

12 Ny
ds? = ?(dyz —dt?+) a") (1.31)
=1
or
n—1
ds? = Pdp? + e*(~dt* + Y da™) (1.32)

=1

p is called holographic radial coordinate. In the context of holography the boundary is at

p — 00.

Conformal field theories are field theories with conformal symmetry. The conformal trans-
formations of a manifold are diffeomorphisms that rescale the metric. For the n dimensional
Minkowski spacetime, the conformal transformation group contains the Poincare group as
the isometry subgroup, and the scaling transformation and special conformal transformations

" = azt (1.33)

" ot — bHa?

1 — 2z - b+ b%x? (1.34)

T



The conformal algebra is

[DaPM] = iPM
D, K,] = —iK

m

(K, P)) = 2i(nuwD — L)
[Kps L] = i(npu Ky — 1p Ky)
[Pos L) = i — Mo By1)

[Lyws Lol = 1(MpLio) + MuoLup) = MwoLyp) — MppLve) (1.35)

It’s isomorphic to so(2,n), the Lie algebra of the isometry group of AdS,,;. The conformal
symmetry is so powerful such that the form of the two points and three points correlators
are determined by the symmetry. In addition, the energy momentum tensor of a conformal
field theory is traceless due to the scale invariance, and scale invariance often implies full
conformal invariance[25]. In two dimensional spacetime the conformal group becomes infinite
dimensional and the theory is much more restrictive[26]. The conformal generators form the

Virasoro algebra

(Lo, Ln] = (0 — m) Ly + %n(n + )6 pino

- — C
[Ln, Lm] = (n — m)Ln+m + En(n + 1)(5m+n70

(L, L) =0 (1.36)

where c¢ is the central charge of the conformal field theory, which can also be defined by the
operator product expansion of two energy momentum tensors. For some CFTs, there is the
W symmetry as an extension of the conformal symmetry [27], which corresponds to higher

spin current in the theory.



1.4 Higher spin Chern-Simons theory in three dimensional space-

time

In general Vasiliev theory is very complicated. However, in three dimensional spacetime
the higher spin gravity theory can be realized by the relatively simple Chern-Simons theory
with the higher spin gauge algebra hs(\). Moreover, the Chern-Simons theory with gauge
algebra sl(NN,R) provides a consistent truncation of the Vasiliev theory at a finite spin N,
which is specific to the spactime dimension three. The Chern-Simons action at level k in

three dimensional space-time is given by the following

k 2
Scs[A] = —/ tr(A/\dA+—AAAAA> (1.37)
A7 M 3
where A = AT, is the connection valued in the Lie gauge algebra, tr is a symmetric

nondegenerate bilinear form on the Lie algebra, and M = R x ¥ is the spacetime manifold

with R being the time direction. A gauge transformation is defined to be
A'=gtAg+ g ldg (1.38)
or in the infinitesimal form
JA =dA+ [AA] (1.39)
Defined by the commutator of covariant derivatives, the curvature is
F=dA+ANA (1.40)
The variation of the Chern-Simons action by a variation of the connection dA is

k k
0Scs = —/ trF ANOA — — trAA A (1.41)
2 M 47 OM

and for an infinitesimal gauge transformation

55@5 = ﬁ trd AA (142)
21 Jom



If the boundary term is negligible, then the action is differentiable (that is, the variation of
the action is linear in the variation of the connection field) and yields the equation of motion

which is also known as the flatness condition
F=dA+ANA=0 (1.43)

and the action is invariant under a gauge transformation.

The Chern-Simons theory consists of two copies of the Chern-Simons action

S = Scs|A] — Ses|A] (1.44)

with the gauge algebra usually chosen to be sl(N,R) or hs(\) to correspond to higher spin
gravity. As a special case, the Chern-Simons theory with gauge algebra sl(2,R) recovers
Einstein’s gravity with negative cosmological constant in three dimensional spacetime [28§]
and the Chern-Simons theories with gauge Lie superalgebras realize super gravity theories
[29]. The gravity in three dimensional spacetime has some interesting features [30]. The
curvature tensor has the same number of independent components as the Ricci tensor, so it
comes with no surprise that the curvature tensor can be expressed by the metric and the

Ricci tensor

1
RpO'/u/ = gp,uRO'V - gpuRow + gouRpu - gUuszz - §<gpugz71/ - gpl/gau) (145)

With this relation, it’s easy to see that the local vacuum solution to the Einstein’s equation

must be spacetime with constant curvature. In other words, the spacetime is non-trivially

curved only at points with presence of matter, there is no propagating degrees of freedom.

Dynamical degrees of freedom are on the boundary. In addition, it has the AdSs, the three

dimensional Anti-de Sitter space as the vacuum solution when the cosmological constant is
1

negative A = —5. The action of the three dimensional Einstein’s gravity in terms of the

vielbein and spin connection is

1
S:%/Ra/\ea—Ael/\eQ/\e3 (1.46)

10



where

1
R, = dw, + §eabcwb A w€

1
Wy = §eabcwbc (1.47)

Viewed as a functional of the vielbein and spin connection, the action yields the torsion free
condition and Einstein’s equation as expected. In addition, the action is invariant under two

types of gauge transformations, the local Lorentz frame rotation

Se® = e"eyr, (1.48)

dw® = dr® + Wy, (1.49)
and the local translation

5e? = dp® + €®wyp, (1.50)

Sw® = —Ae™eyp, (1.51)

where 7 and p are arbitrary functions as gauge transformation parameters. Diffeomorphism,
as the basic symmetry of a gravity theory, is included as a combination of the two gauge
transformations given above [28]. Now we define the Lie algebra valued vielbein and spin

connection for Chern-Simons theory
ezi(A—A), w=-(A+A4) (1.52)

with the group index in the connection corresponding to the veilbein frame index. The
generators of sl(2,R) Ty = Lo, T1 = \%(Ll + L), Ty = \%(Ll — L_4) satisfy (see
Appendix A)

[Tm Tb] = eabcTc (153)
1
tr<TaTb) = inab (154)

It’s straightforward to verify that the Chern-Simons theory with gauge algebra sl(2,R) is

identical to the Einstein-Hilbert action with negative cosmological constant A = —l% in the

11



L

Palatini formalism, with the identification k = Moreover, the gauge transformation of

aG-
Chern-Simons theory
JA =dA+ [A A
A =dA+ A, A] (1.55)

translates to the local Lorentz rotation of the Palatini formalism of gravity. When we
choose gauge algebra sl(N,R) or hs(\) with the ”gravity section” sl(2,R) embedded in, the

generalized vielbein and spin connection are

A — (w + ;)aTa _|_ (w + ;)almaSTal...as (156)
A = (UJ - ;)aTa + (w - ?)almasTm...as (157)

where T,’s are sl(2,R) subalgebra generators and T, ,.’s are higher spin generators. The
metric and the higher spin fields can be expressed in terms of traces of symmetrized products

of the generalized vielbein e

1
Guv = nabezelb/ = itr(eueu) (158)

The higher spin fields , for example spin 3 fields can be written as

1
Purops = étr(e(m cee eus)> (1.59)

The Chern-Simons theory with gauge algebra hs(\) realizes Vasiliev theory and Chern-
Simons theory with gauge algebra sl(N,R) is a consistent truncation of the higher spin

gravity theory of fields with integer spin up to N[31, 32, 33].

1.5 Boundary charge algebra

Now we briefly review the boundary charge algebra following [33, 34]. We start at the
Hamiltonian formalism of the Chern-Simons theory in three dimensional spacetime. We

label the time coordinate as t and two space coordinate as !, i = 1,2. The Chern-Simons

12



action then reads

Scg = — / dt Ndx' A da’tr(AgFyj — AiAj) + — / dt A dz'tr(ApA;) (1.60)
47 g AT Jrxox

Ag is Lagrange multiplier and A;’s are dynamical fields, and the Poisson bracket is

{F,H}:%/dmi/\dxjtr( oF_oF ) (1.61)

S 0A;(x) 0A;(x)
for two phase space functionals F'[A;] and H[A;]. If the boundary terms can be neglected,
an infinitesimal gauge transformation with parameter A can be generated by the charge
G°(A) = £ [, dz' Ada?tr(AFy;). To include the boundary terms, we need to add a boundary

term to the charge to make it differentiable in the fields
G(A) =GN +Q(A) (1.62)

with the boundary term, known as the boundary charge, satisfying the relation

k
IQA) = —— tr(AJA) (1.63)
2T on
and it takes the simple form
k
QA) = —— tr(AA) (1.64)
21 oy

if the gauge transformation parameter A is independent on the fields. After gauge fixing,
the Q(A)’s define the global charges of the Chern-Simons theory, and the boundary charge

algebra is given by
5AF = {Q(A), F} (1.65)

here the brackets are Dirac brackets on the reduced phase space, and can be calculated by

choosing field-dependent gauge parameters.
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CHAPTER 2

Introduction to the KAV hierarchies

2.1 KdV hierarchies

Symmetry is probably the most important concept in modern physics. It is not surprising
that integrable systems, in some sense the dynamical systems with "maximal symmetry”,
have long played an important role in physics. In particular, we have found that the Chern-
Simons theory with gauge symmetry, or in a different perspective, as a higher spin gravity
theory with higher spin symmetry is closely related to the KdV hierarchies, a series of
integrable system hierarchies. In this chapter we review the KdV hierarchies to lay the

foundation of discussion of the relation.

The KdV equation is a partial differential equation firstly proposed to describe the prop-

agation of shallow water waves in channels to explain the soliton wave observed
4— = — + 6u— (2.1)

The KAV equation is an integrable system, with a Lax pair description, infinitely many con-
served and commuting charges, soliton solutions with dispersion-free scattering, and compat-
ible with Painleve test. Later it is found to be a particular member of a series of integrable
system hierarchies, the so called KdV hierarchies, where an intergrable system hierarchy is
defined as a system with infinitely many commuting Hamiltonian flows that each defines an

integrable system.

We review the KdV hierarchies now using the formulation by Lax pairs of pseudo-
differential operators, which has been discussed extensively in the review [35]. Pseudo

differential operators are extension of differential operators to include negative powers of

14



differentiations 0 retaining the rules of differentiation, that is, the linearity and the Leibniz
rule. It has the form
F=>" fd (2.2)
k=—o00

and the Leibniz rule translates to
o'f =) CrfPok (2.3)
0

where the combinatorial factor satisfies the recursive relation CF + CF*! = CFl! for k €
N, i € Z which is essentially the Leibniz rule and the boundary condition C§¥ = 0,C? = 1. Tt

has the explicit formula

Cf:i(i—l)..é(!i—k:—l—l) 2.4)

We don’t have to define how the negative powers of differentiations act on a function, it’s
only the algebraic structure of the pseudo-differential operators that is of interest and gen-
erates the integrable system. We denote the subspace of pseudo-differential operators of
non-negative powers of differentiation by R, and the subspace of pseudo-differential oper-
ators of negative powers of differentiation by R_, and the subspace of R, with powers of
differentiation lower than n by R,, n € N. Furthermore, we define the residue of a pseudo-
differential operator, denoted by res, as the coefficient of 7!. It can be shown that the
residue of a commutator of two pseudo-differential operators is a total derivative, therefore

we have
/res(XY)d:E = /res(YX)dx (2.5)
The n-th KdV hierarchy is formulated by the pseudo-differential operator L of n fields

L=0"4u0" ' +ud0" 2+ 4+ u,_ 10+ u, (2.6)

where 0 = a% and u, = ug(z,t). A partial differentiation with respect to time is denoted

by a dot above. The formalism of pseudo-differential operators allows us to define L'/™, by

putting the ansatz Ln = 9 + S or, vpd' % in the defining equation (Lw)" = L, which are
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essentially differential-algebraic equations of the coefficients that can be solved iteratively.
We define L' analogously and L= is defined as (L%)m. For the m-th dynamical equation

one defines
Py, = (L™™), (2.7)

where the subscript 4+ denotes the projection to R, and subscript — will also be used later
to denote the projection to R_. An integrable system is constructed by the Lax pair P,,, L,

i.e. the evolution equation

L =[Pn, 1] (2.8)

gives a system of partial differential equations for u;(x,t). As a consequence, a similar

equation holds for L%, keN
LY = [Py, LA (2.9

The equation yields u; = 0, hence we usually set u; = 0 from the very beginning. For the

KdV hierarchy an infinite set of conserved quantities can be obtained by

¢ = /res(L:)d:U (2.10)

It’s easy to check they are conserved by the equation of motion
¢k = /reS(Ls)dx = /res([Pm,Lﬁ])dx =0 (2.11)

Like many other integrable systems, the n-th KdV hierarchy is bi-Hamiltonian, that is,
each equation of motion comes from two Hamiltonian structures, and the second Hamiltonian
structure is the W, algebra, which, as an extension of Virasoro algebra, is closely related
to the conformal field theory [27]. To look at the bi-Hamiltonian structure of the KdV
hierarchies, we briefly review the Hamiltonian formalism first, and the simpler case is to
consider a dynamical system on a finite dimensional manifold M. The Poisson bracket is
the essential part of a Hamiltonian formalism. To define a Poisson bracket, we start with

a symplectic form w, which is defined as a non-degenerate closed two form. We define a
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map from the tangent space to the cotangent space { — —icw, it’s an isomorphism since
w is non-degenerate. The Hamiltonian map H is defined as the inverse of this map, which

satisfies
a(n) =wn, Ha),ne TM,a € T"M (2.12)

The image of the differential of functions by the Hamiltonian map generates symplectomor-

phisms, that is, diffeomorphisms that preserves the symplectic form
Ldew = (infd + dinf)w = —dgf =0 (2.13)
The Poisson bracket is defined as

{f.9} = (Hdf)g = dg(Hdf) = w(df, dg) (2.14)

It’s obviously antisymmetric, and the Jacobi identity comes from the closedness of w. A
Hamiltonian flow generated by a Hamiltonian A is a flow of symplectomorphism generated

by Hdh

f=(Hdh)f = {h, [} (2.15)

which is the familiar Hamilton equation (with a different sign convention).The Hamiltonian
formalism of infinite dimensional dynamical systems is a bit more complicated since we
don’t have a manifold to define the symplectic form and Hamiltonian map in a regular
way. Nonetheless we can still make analogous definitions retaining most of the algebraic

properties.

The n-th KdV hierarchy is formulated by the pseudo-differential operator L = 0" +
>y urO"*. A function is considered to be a function of ux’s and their derivatives of all
orders and possibly x. The tangent space is identified with R,, and a tangent vector 0,,
where a = >,_, az0" % € R,,, acts on a function by taking the functional derivative in the

direction of a, explicitly

Ouf = ZZ“’% - = Z/akﬁdx (2.16)
Uy k=1 k

k=1 i=0

17



The dual cotangent space is identified with R_/0~"R_. A cotangent vector X = Y7 X;0°F

acts on a tangent vector a = ZZ=1 a, 0" F as
X(a) = /res(Xa)dx = /ZaanH_ida: (2.17)
i=1
We define a cotangent vector g—jj.j =3 8’“*”*16% for a function f.
of 0y _ 0f [~ O e O
§—L(8a) = /res(a(s—L)dm = /;akmdx = z:: zak 8u,(j) = 0o f (2.18)

Therefore g—]{ is just df, the differential of the function f. Now it comes to the crucial part

of defining a Hamiltonian map. We define the Adler map from R_/0 "R _ to R,, depending

on a parameter z as
AZ(X) = (LZX)+Lz - LZ(XLZ)+ (2-19)
where L, = L — z". The dependence on z can be singled out as
A(X) = Ap(X) + 2" A (X) (2.20)

where Ag(X) = (LX), L — L(XL), and A(X) = [X, L],. Tt can be shown that the map
H.: X — 04,(x) is a Hamiltonian map for any z, that is, it’s antisymmetric and induces a
closed two form on its image, which is a subalgebra of the tangent space. The Hamiltonian

map induces a Poisson bracket

(1.9} = (50 = [ res(a(5) S 2.21)

In particular, it’s called the first Hamiltonian structure when z = oo and the second Hamil-

tonian structure when z = 0. From the previously constructed conserved quantities of the

n-th KdV hierarchy, we define
hy = —%/resLﬁdx (2.22)

It can be verified that the m-th Hamiltonian flow is generated by the Hamiltonian h,,,
in the first Hamiltonian structure and by the Hamiltonian A, in the second Hamiltonian

structure. Therefore KAV hierarchies are bi-Hamiltonian.
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2.2 Examples

In the following we will present some members of the KdV hierarchies, for which we will

show that they are related to the Lifshitz Chern-Simons theories.

The n = 2 KdV hierarchy is the one which contains the original KdV equation as the

m = 3 member. It’s formulated by the pseudo-differential operator

L202+U2

(2.23)

After putting the ansatz L2 = d + Sooo, fi0~" into the defining equation (L%)2 = L, a set of

differential-algebraic equation is obtained

2f1:U2
f{—|—2f2=0

fitfotfz=0

and we get

The Lax pair commutator is

]. nr 3
[Pg, L] = A_Luz + §U2U2/

and the Lax equation L = [P, L] takes the following form

. " ’
4U,Q = Uy + 6'LL2U,2

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

which reproduces the KdV equation. The Poisson brackets can be computed by (2.21). For

the first Hamiltonian structure

{f>g}2=oo == _2/(ﬁ)/6—gdﬂj

5UQ 5U2
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SO

{ua(@), us(y) Yoo = 20 (z — ) (2.30)

Similarly, the second Hamiltonian structure is computed to be

(Sf m 59 5f (Sg /5f (Sg
oy = [y 5+ 2uGy E + a3 S (231)
{ua(@), ua(y) om0 = =0 (& —y) — ' (2)6(x — y) — 2u(x)d (x — y) (2.32)
If the space is a circle || = 1 in the complex plane, we have the Hamiltonian structure

expressed in the Fourier components ug ), = ﬁ [ 2" u(z)dx

1

{UQ’]@, ’LLQJ}Z:O = 2—m(k(k — 1)(5k+l,0 + (k’ — l)u27k+l) (233)

It is the W5 algebra (up to rescaling of the Poisson bracket and the field), also known as

Virasoro algebra. According to (2.10) the conserved quantities are

1
1 §/u2da:

S
I

(2.34)

The next example is the n = 3 KdV hierarchy, also know as the Boussinesq hierarchy
because it contains the Boussinesq equation as the m = 2 member. The pseudo-differential

operator L is now of third order and contains two independent fields us and ug
L= 0%+ 120 + u3 (2.35)

and

1 1
LY3 =9+ guﬁ*l + g(u;e, —ub)0? + 0(07?)
2
Py = (L*?), = 0* + U2 (2.36)
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The Lax equation L = [Py, L] takes the form

. / ”
Uy = 2Us — Uy

. " 2 7 2 ’
Uz = U3 — Uy — Ul (2.37)

Eliminating us, an equation for uy alone was obtained

. 1 4 AN
ly = =y — 7 (uguy)

. . (2.38)

This is the Boussinesq equation, which has been studied in the context of propagation of

waves. The second Hamiltonian structure is the W3 algebra. The conserved quantities are

1
qlz/res(L ):§/u2da7
2 1 2
qzz/res(L ):/(gug_g%) :g/u?’dx

W=

wln

(2.39)

Now let’s consider the n = 4 KdV hierarchy and its m = 3 member. The pseudo-

differential operator L is now of fourth order and contains three fields us,us3 and wuy

L= 84 + U282 + u38 + Uy (240)
and
UQ _ 1 3 ’ _ 1 3 / 5 " 3 _ _
LYV* =0+ Z(() b Z(ug - §u2)8 e (ZLM —gus + el ~ 3—2u§)8 4007
3 3 3
P3 = Li_/4 = 83 + ZUQ@ + ZUg - g’U,Q (241)

The Lax equation L = [Ps, L] takes the form

. 1 " 3 " ’ 3
Uz = Uy — Sl + 3u, — Pl
. " 1" 3 " 3 / 3 ’
us = —2ug + 3u, + Tl T ety — Jusly
. " 3 i 3 " 3 ’
Uy = Uy + qu — Zu?’ + Zu2u4
3 " 3 " 3 / 3 "
= U2t + glizis — ;Usls + gUatiz. (2.42)
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and the conserved quantities are

1 1 1
q(2) = /TeS(Li) = /(5“3 - §Ul2) = §/u3dm
3 3 3 1 3 3 3
¢ = /res(L4) = /(Zu“ - gué + 1—6?/2/ - 3—27«63) = /(1“4 @“3)‘1‘”

(2.43)

2.3 Drinfeld-Sokolov reduction

It’s well known that we can reduce the order of differential equations by introducing more
variables. It turns out the n-th KdV hierarchy, which we formulated by the differential
operator L = 0" + ' ux 0" * of order n, can be formulated by matrix-valued first order
differential operator instead, this is often called the Drinfeld-Sokolov reduction named after
its inventors[36]. We consider the n x n matrix-valued first order differential operator of the

form
ly3=0—-J+q (2.44)

Here 0 is short for the matrix with the diagonal elements being 0 and everything else zero.
J = Z?;ll eii+1 wWhere e, ; is the matrix with the 4, j entry being 1 and everything else zero.
J is the V? element in the usual matrix representation of sl(N,R). ¢ is a n x n matrix in
general, with its entries being functions of x,t. Let F' be a column vector with entries being

the functions of z, ¢

Fo | (2.45)
In
If we set ¢ to be the matrix with the bottom row being wu,, t,_1,...,u; and everything else

zero, then the equation [,F" = 0 is equivalent to n differential equations, with n — 1 of them
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defining f; as f¢~Y and the last one reduced to Lf = 0. In fact for any lower triangular
matrix ¢, [,F' = 0 corresponds to a differential equation of f of order n. That is, the
n x n matrix-valued first order differential operator [, corresponds to a n-th order differential
operator, and it can be shown that the correspondence is one-to-one for equivalent classes of
l; under similarity transformations by matrices of the form S = I + v, where v is a strictly
lower triangular matrix, and we call that kind of transformation a gauge transformation for
ly. The Hamiltonian structure of [, can be defined in a similar way to what we did for L,
and it can be shown that it’s equivalent to the Hamiltonian structure of L generated by the

Adler map[35].

In fact, we can formulate KdV hierarchies by Lax pairs of matrix valued pseudo-differential
operators. We will defer its discussion to Chapter 4 since it directly helps us to establish the

relation between KdV hierarchies and the Lifshitz Chern-Simons theory.
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CHAPTER 3

Lifshitz Chern-Simons theory and the asymptotic

symmetry

3.1 Lifshitz spacetime and Lifshitz field theories

The asymptotic AdS solution in the Chern-Simons theory, which is dual to a CFT on the
boundary, has been extensively studied (e.g.[33]). However, Chern-Simons theory also al-
lows for the construction of non-AdS solutions [37, 38, 39, 40], such as asymptotically
Lobachevsky, Schrodinger, warped AdS and Lifshitz spacetimes. The three dimensional

Lifshitz spacetime takes the form
ds® = dp* — e***dt* + e* dx* (3.1)

It recovers the AdS spacetime when z = 1. Lifshitz spacetimes are not solutions to Einstein’s
gravity and nontrivial matter interactions must be added. The first Lifshitz spacetime solu-
tion was found in four-dimensional gravity coupled to antisymmetric tensor fields [41]. The
shift p — p 4+ In A in the holographic radial coordinate induces Lifshitz scaling on ¢, x, that

is, an anisotropic scaling transformation on the spacetime coordinate
t— Nt r— A\ (3.2)

where z is called Lifshitz scaling exponent. An asymptotic Lifshitz solution in the Chern-
Simons theory is a solution to the flatness condition which yields an asymptotic Lifshitz
spacetime. It is dual to a field theory of Lifshitz scaling symmetry on the boundary. Unlike
the isotropic scaling symmetry, Lifshitz symmetry is not compatible with the Poincare sym-

metry hence it cannot be found in relativistic field theories, which laid the foundation for the

24



particle physics. However, it’s ubiquitous and important in condensed matter systems near
quantum critical points (see e.g. [41]). The Lifshitz symmetry in two dimensional spacetime
is given by the time translation H, the space translation P and the Lifshitz scaling D, they

satisfy the Lifshitz algebra

[P,H] =0
(D, H] = zH
[D’P]:P (33)

The energy momentum tensor contains four components, the energy density £, the energy
flux £%, the momentum density P, and the stress density IIZ. These components satisfy the

conservation law

€+ 0,E" =0

0Py + 0,117 = 0 (3.4)

In addition, the scaling invariance imposes a modified traceless condition for the energy

momentum tensor
zE + Hi =0 (3.5)

as compared the traceless condition of the energy momentum tensor of conformal field the-

ories.

3.2 Asymptotic Lifshitz solution of Chern-Simons theory

In the following we will focus on the construction of asymptotically Lifshitz solutions that
is, the solutions that yield asymptotic Lifshitz spacetimes, in the Chern-Simons theory with
gauge algebra hs(\). We following the approach developed in [42], with detailed results
in my paper [43] [44]. First of all, we choose the "radial gauge” as in [33] to specify the
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p-dependence of the connection
Au(x,t,p) =b"la,(z, t)b+b710,b

A (x,t, p) = ba, (v, )b+ b9,(b7 ) (3.6)

where b = exp(pLg). Here Ly is a Cartan generator of a sl(2,R) sub-algebra of si(N,R), or
its correspondent VZ in hs(\). In this "radial gauge” the flatness condition (1.43) reduces

to equations of the p-independent fields a; and a,
@am — &Cat + [(lt, CLm] = O, (9tdx — amC_lt —+ [C_lt, (_lr] =0 (37)

To preserve the radial gauge under a gauge transformation, the gauge transformation pa-

rameter must take the form
Ap,z,t) = b "Nz, t)b (3.8)
and the gauge transformation on A, translates to the gauge transformation on a,
da, = O\ + [au, Al (3.9)

Therefore the time evolution of a, and a; can be viewed as a gauge transformation generated
by gauge transformation parameter a,.
The solutions which produce an exact Lifshitz metric with Lifshitz scaling exponent z
can be easily found, the unbarred connection is given by
a =V dt + Vide, A= Ve dt + Vieldr + Vidp (3.10)
and the barred connection is given by

a=V>dt+Vide,  A=Vierdt + Vieldr — Vidp (3.11)

One can verify by (1.58) that these connections yield a Lifshitz spacetime with an arbitrary
integer z. For an integeral value A = N, the algebra hs()) is truncated to si(N,R). For
example in the z = 2 case, one reproduces the si(3,R) Lifshitz connections studied in [42]

with the identification V3, = Wiy, V2 = Ly and V& = L.
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In the following we will consider connections where the barred sector is determined in
terms of the unbarred sector. This is possible due to an automorphism of hs(\) algebra,
which is obtained from a conjugation (V%) = (—=1)**""1V* (see Appendix A). In particular
the generator V2 used in constructing the radial gauge transformations is self conjugate up
to a sign, ie. (V@) = —VZ. Consequently, if A solves the flatness condition F' = 0 in
the radial gauge, the barred connection is chosen to be the conjugate A = A°, which is
automatically in the radial gauge and satisfies the flatness condition F = 0. From now on
we will leave out the barred sector as it is determined from the un-barred sector. Though we
have explicit expression for Lifshitz connections (3.10), they are static solutions without any
dynamics. Here we want to construct asymptotic Lifshitz, in which leading terms are Lifshitz
connections given by (3.10) where additional terms are present with sub-leading powers e”.
Consequently such connections will lead to asymptotic Lifshitz spacetimes where the metric
and tensor fields have additional terms which become negligible as p — oo compared to the

Lifshitz vacuum.
To further simplify the theory, we choose the ”lowest weight gauge”, that is, a, only
contains lowest weight terms except for V

a, =VP+ ) oV, (3.12)

1=2

In general we can transform away all non lowest weight terms in a, step by step. Under an
infinitesimal gauge transformation, the variation of a, is da, = [a,, \] + 9, . We have V{ in
a,, so we can put V., in the gauge parameter A to gain a highest weight term V? ; in da,
from the commutator. We can exponentiate this infinitesimal transformation to cancel the
highest weight term in the original a,. After eliminating all highest weight terms, we use

V? 5 in A to cancel V7 , terms. Do this recursively we get to the lowest weight gauge.

With the lowest weight gauge chosen for a,, a; should start with V" to yield asymptotic
Lifshitz spacetime with scaling exponent z, and its non-highest weight terms should be
completely determined by highest weight terms because it must preserve the lowest weight
gauge of a, in time evolution. Hence the asymptotic Lifshitz connection is determined up

to the free choice of the highest weight terms in a;, which we call a gauge freedom of ay, if
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any abuse of terminology, because the time evolution of a, is a gauge transformation with
gauge parameter a; anyway. We will choose the highest weight terms in a; to be differential
polynomials of the fields in a,, hence all fields in a; will be differential polynomials of the
fields in a,. We will see some gauge choice is of particular interests because it’s related to

the KdV hierarchy, which we call "KdV gauge”.

Needless to say the Lifshitz scaling symmetry plays a fundamental role in the construction
of asymptotic Lifshitz connection and in fact it allows us to assign a scaling dimension to
each field. The pedestrian way to see it is that the weight of hs(\) elements is additive under
multiplication of elements hence the fields as the coefficients of the elements in a, gain a

scaling dimension. By the flatness condition (3.7) we have

[0:] =1 (0] ==

(] =i (3.13)

In fact, the scaling dimensions correspond to the scaling of the fields demanding the invari-

ance of the connections A;dt and A,dxr under the Lifshitz scaling

p =p+log\
R
t = \"% (3.14)

Now we begin our explicit construction of asymptotic Lifshitz connection. The infinite
dimensional gauge algebra hs(\) is hard to work with in a explicit computation, so we usually
work with si(/V,R) as the truncation of hs(\) when A = N to obtain concrete results. Here
we present a few examples we have worked out. The first is the z = 2 asymptotic Lifshitz

solution to the Chern-Simons theory with gauge algebra si(3,R). The asymptotic Lifshitz
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connection is?!

Ay = ‘/12 + 052‘/_21 + O-/3V_32

2 1
a; = Vi + 20,V — ga’QV_?’l —203V?, + (a% + 60/2/> V3, (3.15)

The flatness condition yields the equations of motion

dg = —2063
. 4 1
az = g( 3) + 60/2” (3.16)

Note that we actually can’t add a V;? term to a; because that would require a field of scaling
dimension one to be the coefficient, which cannot be a differential polynomial of fields in a,.
So in this case we pretty much don’t have the gauge freedom of @, (if we insist it should be
a differential polynomial of a,). In addition, the Lifshitz scaling symmetry of the equation

of motion is obvious.

Our next example is z = 3 asymptotic Lifshitz solution to the Chern-Simons theory with

gauge algebra sl(4,R).

a, = Vf + 0@\/_21 + ozgv_?’2 + a4Vf3

41
a; = Vi + (c— E)agi +... (3.17)

Here the coefficient of V2 in a; has to be a constant multiple of a, by dimensional analysis
and the gauge freedom of a; is characterized by a single parameter ¢. The flatness condition

yields the equations of motion

i 41 1w 123 / 54
Qg = —(1—0 - §c)oz2 - (? — 3c)ayas + 5
]. " ! /
as = —503 ~ (15 — c)agas — (30 — 3c)aya
. 1 " 1 " I 27 ! I 13 "
dy = 50 + g% ~ (30 — 4c)ayy — (g — c)agay, — 12a03 + 30%2%
59 !/ 1 24 ’

'Here we have adapted the general notation, with —£ in the paper [42] replaced by as and W replaced
by as.
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Again the Lifshitz scaling symmetry of the equation of motion is obvious. If we want a
conserved quantity with scaling dimension two, it must be the integral of as, therefore o
must be a total derivative and we have to choose ¢ = % In the next chapter we will see the

theory corresponds to m = 3 member of the n = 4 KdV hierarchy with the choice ¢ =

G

3.3 Boundary charge algebra of Lifshitz Chern-Simons theory

The Lifshitz symmetry is not only realized on the level of equation of motion, it’s also
realized as Lifshitz subalgebra in the boundary charge algebra. In the radial gauge the

defining equation of the boundary charge simplifies to

0Qy = —ﬁ/dxtrAéAx = —ﬁ /d:vtr)\éax (3.19)
2m 2w

The gauge transformation of the Chern-Simons theory induces a Poisson structure on the

Lifshitz field theory on the boundary as follows

or¢ = {Qx, ¢} (3.20)

The Poisson brackets of all fields can be computed by choosing field-dependent gauge pa-
rameters, and the algebra of boundary charges is called the boundary charge algebra. The
three gauge parameters generating time translation, space translation and Lifshitz scaling

are

)\H = —Qa¢
)\p = —Uy
Ap = za, + zta; — V7 (3.21)

We can verify directly by the flatness condition that these gauge parameters generate the
desired transformations and preserve lowest weight gauge for a,. Now we calculate the
corresponding boundary charges Q(Ag), Q(Ap) and Q(Ap), that is, the Hamiltonian, the
momentum, and the charge which corresponds to Lifshitz scaling, to verify they satisfy the

commutation relation of Lifshitz algebra (3.3). In addition, we also want to check the energy
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momentum conservation and modified traceless condition of the energy momentum tensor

for the Lifshitz Chern-Simons theory.

For sl(3,R),z = 2 Lifshitz Chern-Simons theory, the generic gauge transformation pa-

rameter is
1 2

i=—1 j=—2
To keep a, in the lowest weight gauge, only the coefficient of highest weight terms eq, o
are free and all the other variables in the gauge parameter are expressed in terms of them.
We can assign specific values to €, xo to get gauge parameters generating time translation,
space translation and Lifshitz scaling

€1 = O,XQ == —1,>\: >\H

ee=—1Lx2=0,A=Ap

€1 =T, X2 = Qt, A= )\D (323)
Using (3.19) we get the corresponding boundary charges

Q(Ag) = %/dl'a;g

Q(Ap) = —%/dIO{Q
Q(Ap) = % /dx(xozz — 2ta) (3.24)

Using (1.65) we can verify they form a Lifshitz subalgebra

{Q(Agm), Q(Ap)} =0
{Q(Ap), Q(An)} = 2Q(Ag)
{Q(Ap), Q(Ap)} = Q(Ap) (3.25)

In addition, we identify the density of Q(Ay) as the energy density, the density of Q(Ap) as

the momentum density

2
g = —kOég
/s
2k
P, = ——a,. (3.26)
v
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Use the traceless condition of the energy-momentum tensor of Lifshitz field theory 2€ 411% =

0 to get II® = —%£ a3, we can verify that the conservation of momentum

- T

8Py + 0,117 = 0 (3.27)

is guaranteed by the equations of motion. Plugging the expression for £ into the equation

of conservation of energy 0,P + 0,£" = 0 one obtains the expression for energy flow

For sl(4,R), z = 3 Lifshitz Chern-Simons theory with ¢ = 12—5, the generic gauge transfor-

mation parameter is
1

2 3
A=) eV2+ D) GV ) W (3.29)

i=—1 j=—2 k=—3

Again to keep a, in the lowest weight gauge, only the highest weight terms e, xo, u3 are

free. By appropriately choosing values for these three variables, we get the desired gauge

parameters
= 1 =0 =—1,A=)
61—100427962— y M3 = y A= Af
€1 :_17X2:07M3:07>\:>\P
21
€1 =T — 1—0062t,X2 = O,/Lg = 3t, A= )\D (330)

For these three gauge parameters, we use (3.19) to calculate the boundary charges

Q(Ag) = 2£ /dx(—36a4 + ;ag)

T
Q(Ap) = %/dw(—lOag)
Q(Ap) = %/dm(mwag + 108ty + 21tas3) (3.31)

Using (1.65) we can verify the Lifshitz symmetry algebra. The density of Q(Ay) is identified
with the energy density up to a total derivative and the density of Q(Ap) is identified with

the momentum density

k 7 7 1"
E= %(—36064 + 50(% + 6042)

k
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Using the traceless condition of the energy-momentum tensor 3€ 4+11% = 0 to get 112 = —3&,

we can show that

O, P, + 0,11 = 0. (3.33)
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CHAPTER 4

Lifshitz Chern-Simons theory and KdV hierarchies

4.1 Lifshitz Chern-Simons theory and KdV hierarchies identified

In this chapter I demonstrate that there is a one to one correspondence between the Lifshitz
Chern-Simons theories and members of the KdV hierarchies. It’s mainly inspired by two
facts, first, both theories possess Lifshitz scaling symmetries, and the second, the flatness
condition very much resembles a Lax type equation. We begin by discussing two examples
z=2,sl(3,R) and z = 3, sl(4,R) Lifshitz Chern-Simons theory. Then we propose a conjec-
ture that Lifshitz Chern-Simons theory with Lifshitz scaling exponent 2 and gauge algebra
sl(N,R) corresponds to the m-th member of the n-th KdV hierarchy, with m = z and N = n.

Then we prove the correspondence by Drinfeld-Sokolov formalism of KdV hierarchies.

We recall that for z = 2, sl(3,R) Lifshitz Chern-Simons theory the equations of motion

is

tiy = —200) (4.1)
. 4 1
Qg = g(&%)/ + 60/2” (42)

Compared to the Boussinesq equations (n = 3,m = 2 member in the KdV hierarchies)
Uy = Zu;, — u;

" 2 " 2 /
Ug = Ug — —Uy — = Ul (4.3)

3 3

we find the following map identifies two sets of equations

Uy = 4042

ug = —4as + 20/2 (4.4)
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or conversely

1
Qg = ZLUQ
1 1,
a3 = U + gliz- (4.5)

In addition, the conserved boundary charges energy and momentum of the Chern-Simons

theory are proportional to the conserved quantities in the KdV hierarchy

2k 2
Q(Ag) = ?/dZEOég ~q = g/u3dx
2k 1
Q(Ap) = —= [ dzas ~ ¢' = —/ugd:c
T 3

(4.6)

For sl(4,R), z = 3 case, it has the novelty of gauge dependence described by the parameter
c. We want to find a map from Chern-Simons connection variables to KdV variables such
that the equations of motion of Chern-Simons theory are equivalent to the m = 3 member of
n = 4 KdV hierarchy. The Chern-Simons variables have scaling dimensions from the Lifshitz
isometry as discussed in Chapter 3. The KdV variables also have scaling dimensions by the
formulation of pseudo-differential operators. The fact that the scaling dimensions on both
sides have to agree puts strong restrictions on the map of the variables. Hence we must use

the ansatz us = koo, us = ao/2 + bag. For the second KdV equation

. " 1 3 " 3 ’ 3 /
Ug = —2us + 3uy, + Jlz — gUstz — JUsty (4.7)

on the right hand side asay and ayas have the same coefficients, on the left hand side the

1 " ’ ’
same kind of terms come from dz = —50%% ~ (15 — ¢)agan — (30 — 3¢)ayag, so we must have

15
(15 — ¢) = (30 — 3c¢), obtaining ¢ = 5 Comparing terms and check integrability condition

recursively one can obtain k£ = 10,a = 10,b = 24 and the full map

U = 10(1’2
Uz = 100/2 + 2403

Uy = 3ay + 902 + 1200 + 3604 (4.8)
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establish the correspondence. With ¢ = 12—5, the equation of motion of si(4,R), z = 3 Lifshitz

Chern-Simons theory reads

. 7 " 21 ’ 54 ’
M= T Tt T
) 1w 15 15
g = —5043 - ?OZ?)OQ - 5062063
. 1 nr 1 mn 21 ! / 13 nr 59 / " 24 2 /
gy = Ea4 -+ EOOZZ + 1—OO{QCY4 — 120&3&3 + %agaz -+ @@2052 + EOZQOZQ (49)

In addition, the momentum and energy in the Chern-Simons theory are proportional to the

conserved quantities in the KdV hierarchy

™

Q(Ap) = % /dm(—lOag) ~q' = i/z@dm

k 7 3 3
Q(Ay) = By /d:)j(—36a4 + Eag) ~g = /(—u4 — —ud)dx

(4.10)

In the two previous examples we have mapped the equations of motion for asymptotic
Lifshitz connections to member of the KdV hierarchy in two particular cases, namely the
z = 2,sl(3,R) to the n = 3,m = 2 element of the KdV hierarchies and z = 3,sl(4,R) to
the n = 4,m = 3 element of the KAV hierarchies. These results inspire us to propose the
general conjecture: the Lifshitz Chern-Simons theory with gauge algebra sl/(N,R) and an
integer Lifshitz scaling exponent z corresponds to the member of the KdV hierarchy with
n = N, m = z. Many more examples have been worked out to verify this conjecture in [44],

which we include in (Appendix C).

4.2 A proof by Drinfeld-Sokolov formalism

In fact, we can prove it by the Drinfeld-Sokolov formalism of KdV hierarchies[36], where the
it is formulated in Lax type equation of matrix-valued PDOs, which is very similar to the
construction of asymptotic Lifshitz connection in Chern-Simons theory. To begin with, we

rewrite the flatness condition in a Lax form

d
EDm + [at, Dac] = O, (411)
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where the covariant derivative D, = 0, + a, is regarded as a Lie algebra valued differential
operator (and hence it can be regarded as a PDO without any negative powers of ). For
the gauge algebra sl/(N,R), we can use the matrix representation and the flatness condition
becomes a Lax equation the of matrix valued PDO. Our main result is that both the Lifshitz
Chern-Simons theory and the KdV hierarchy can be deduced from the Drinfeld-Sokolov

formalism and are related by making two different gauge choices for the PDO.

The Drinfeld-Sokolov formalism starts by defining the PDO valued in sl(N,R)
L, =0, +q(x,t) + A, (4.12)

where ¢ is a lower triangular matrix (or non-positive weight element, if we use the terminology

in hs(A\) and view si(NN,R) as a truncation of it) and
A=V + de. (4.13)

The parameter A should not be confused with the deformation parameter in the gauge
algebra hs(\). In fact the construction in the present section is limited to si(N,R) and it is

an interesting open question how to generalize the present construction to hs(A).

Here e; ; denotes the matrix with a single one in the i’th row and j'th column, and zeros
. . N—-1 .
elsewhere. In the matrix representation we use, V? = J = Yoiei €iit1, and e = ey is

proportional to V2 +1- The Lax equation is defined as

d
ZL=[PL], (4.14)

where P is some differential polynomial in ¢ that has to be carefully chosen. The left
hand side of the Lax equation is independent on A\ and lower triangular, so we want the
commutator on the right hand side to be also independent on A and lower triangular. Suppose
M = Z?:ﬂo m; A\ is a matrix that commutes with L where m;’s are matrix valued coefficients
(i.e. matrices multiplied by powers in \), then we can set P = M, the part of M with
non-negative powers in A\. From [M, L] = 0 it follows [M,, L] = —[M_, L]. Since the left
hand side only contains non-negative powers in A but the right hand side only contains

non-positive powers in A, they should be both independent on A and —[M_, L] = [m_1, €] is
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necessarily lower triangular. Now we have [P, L] = [My, L] = [myg, 0, + V3 + q]. We identify
V2 + q as a,, so we have L = D, + Ae. We furthermore identify —my = —Zero(P) as ay,
where symbolically Zero means to take the A\° part. Then the Lax equation is reduced to our
flatness condition in Chern-Simons Lifshitz theory. It should be noted that the parameter
A is used in setting up the PDOs, the actual equations of motion and the conserved charges

are all independent on A.

As we discussed in Chapter 2, the gauge equivalence classes of the matrix valued PDO [,
are in one-to-one correspondence to the ordinary PDO L. Therefore we want to impose the
restriction on the Lax equation that it must preserve gauge equivalence. Furthermore it will
be shown that the Lifshitz Chern-Simons theory and the KdV hierarchy are just reduction of
Drinfeld-Sokolov formalism by special gauge choices. The gauge transformation, is defined

for a PDO as
L =5"L,S, (4.15)

where S is a A-independent lower triangular matrix with ones in the diagonal, or in the
higher spin algebra language, S is V' plus negative weight terms. Define L, = 0, +a,+Xe =

Or + V24 ¢ + MAe, then this PDO gauge transformation induces a gauge transformation of

ag (or q)

a, = S"ta,S + 570,85,

¢ =S'VES -V + 579,58, (4.16)
where we used the fact that e commutes with S in the calculation. By the explicit construc-

tion specified later P is a differential polynomial in ¢ and so is the commutator [P, L]. Hence

the Lax equation is essentially a evolution equation for ¢

orq = p(q), (4.17)

where p(q) means a differential polynomial in q. We require the evolution equation to
preserve gauge equivalence, that is, when starting with two initial conditions for ¢ which

are connected by a gauge transformation, the two solutions should be also connected by a
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(time-dependent) gauge transformation at any time. The Lax equation preserving gauge
equivalence is actually an evolution equation of gauge equivalent classes. Needless to say, we
can choose representatives of some special form to specify the time evolution of the gauge
equivalent classes. This motivates the definition of the canonical form of L, or g. We denote
the part of ¢ with weight —i by ¢;. In principle ¢; lies in the N — |i| dimensional linear
space spanned by V;MH, ..., VN, By restricting ¢; to be in a one dimensional subspace, that
is, a specific linear combination, we define a canonical form for ¢q. For technical reasons,
we also require the one dimensional subspace has a nonzero lowest weight projection. The
name canonical form is justified by the following theorem, for any ¢ there is a unique gauge
transformation to transform it into the canonical form, and the expression in the canonical
form is unique. See Appendix D.1 for a proof. The choice of the one dimensional subspaces
that ¢} lie in defines the specific canonical form. Two choices are of particular importance in
our discussion. The first one, we restrict ¢} to be lowest weight, if not an abuse of language,
we call this the lowest weight canonical form. The second one, we restrict ¢; to be multiple

of ej,i4+1, which we call the KdV canonical form. In the lowest weight canonical form,

N
g=Y V', (4.18)
=1

the Lax equation %L = [P, L] gives us the flatness condition of Chern-Simons theory in the

lowest weight gauge (by appropriately choosing a;). In the KdV canonical form

N
q=— Z Ui€1 4, (4.19)
i=1

the Lax equation %L = [P, L] gives us KdV, as proved in the paper by Drinfeld and Sokolov.
The evolution equation in the lowest weight canonical form and that in the KdV canonical
form are just two special explicit forms of the same equation. There is a unique gauge
transformation that transforms between these two canonical forms, which establish the one-
to-one correspondence between Lifshitz Chern-Simons theory with sl(N,R), z and KdV with

n = N, m = z, and explicitly the map from «;’s to u;’s. From the relation

Tr[P, L] = —Tr[m_;,e] =0, (4.20)
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it follows that the trace part of L must be constant by the equation of motion. In the
following we set to be zero for simplicity. For example, we can set oy = 0 for the ¢ in the

lowest weight canonical form.

Now let’s construct the conserved quantities from the Lax equation. In general, a general
matrix A whose elements are power series in A (both positive and negative) can be uniquely

expanded in the form
A= "a;N, (4.21)

where a;’s denote diagonal matrices which are independent of \.

Here ¢ is lower triangular, so it has the expansion Zf:ol d;A~%, or equivalently

N-1
L=0,+A+ ) dA™. (4.22)

i=0
There is a similarity transformation to transform L into a scalar coefficient form, that is,

there is a formal series

T=E+Y hA™ (4.23)

i=1

where h;’s are diagonal matrices, such that
Lo=TLT ' =0, + A+ _ fih ™", (4.24)
=0

where f;’s are scalar functions, as opposed to matrices multiplied to the left. T" is determined
up to multiplication by series of the form E + Y 2, t;A" where t;’s are scalar functions, and

fi’s are determined up to a total derivative. Most importantly

¢ = /fz’ : (4.25)
are conserved by the Lax equation. See Appendix D.2 for the proof.

The scalar coefficient form Ly = 0, + A + Y oo fiA™" not only gives us the conserved
quantities, but also can help us to determine the form of the matrices that commute with

L, and ultimately the form of P. Matrices that commute with Ly must take the form
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> c; A" with ¢;’s as constant coefficients, see Appendix D.3 for a proof. Therefore

1=—00

matrices that commute with L must have the form

M = T1< i ciAi) T. (4.26)

i=—00
because [M, L] = 0 is equivalent to [TMT~! Ly] = 0. Setting P = M,, we get the con-
sistent Lax equation %L = [P, L]. Despite the simple appearance, several remarks about
this equation are necessary. First, T" is the series that transforms L into a form with scalar
coefficients Ly and it’s in general a differential polynomial in ¢, hence P is a differential
polynomial in g and so is the commutator [P, L]. Second, though 7" has the indeterminacy of
a multiplicative series £ + Y oo t;A~" where ¢;’s are scalar functions, P is uniquely defined
because > ¢;A" commute with this series. Last but the most important, this Lax equa-
tion preserves gauge equivalence, a proof of this statement will be given in the Appendix

D.4.

As a evolution equation of gauge equivalent classes, the explicit form of the Lax equation
%L = [P, L] is certainly not unique and different explicit forms correspond to choice of
different representatives in gauge equivalent classes. We have the following theorem, if the
difference between P; and P, is a negative weight matrix with no time or A\ dependence, then
4L =[P, L] and £L = [P,, L] give the same evolution equations of gauge equivalent classes.
See Appendix D.5 for a proof. Applying this theorem, we can add a negative weight matrix
both independent on time and A to P without actually changing the evolution equation of
gauge equivalent classes. We do need to do so when we want to obtain the Lax equation in
certain canonical form, because the commutator [P, L] is guaranteed to be negative weight,
but not necessarily in the specific canonical form. The correction added to P can be uniquely
determined. The proof of this statement will be omitted because it’s structurally the same
as the proof of existence and uniqueness of the gauge transformation that transforms L into

a canonical form.

At last we have enough ingredients to explain how the integrable Lifshitz Chern-Simons
theory for si(N,R) and z emerges from the Drinfeld-Sokolov formalism. First the Lax

equation %L = [P, L] is equivalent to the flatness condition %DI + [ay, D;] = 0 with the
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identification a, = V*+q and a; = —Zero(P). Second, the Lax equation, viewed as evolution
equation of gauge equivalent classes, can be put in the lowest weight canonical form, which
corresponds to lowest weight gauge choice in the Chern-Simons theory. Then, considering
the Lifshitz exponent is z, we set P = (T7'A*T), up to a multiplicative constant. At
last we add a correction to P to make [P, L] lowest weight. From P obtained in this way,
a; = —Zero(P) coincides with a; in "KdV gauge” in the previous section. If we choose the
KdV canonical form for L, we get KdV hierarchy as proved in the paper by Drinfeld and
Sokolov. The gauge transformation between the two canonical forms gives us the explicit
map between the Lifshitz Chern-Simons theory and the KdV hierarchy. This map is z
independent simply because z doesn’t involve in the construction of gauge transformation

between the two canonical forms.
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CHAPTER 5

The supersymmetric Lifshitz Chern-Simons theory and

super KdV hierarchies

The main goal of this chapter is to construct asymptotic Lifshitz solution to the supersym-
metric Chern-Simons theory, that is, Chern-Simons theory with a Lie superalgebra as the
gauge algebra. What’s more important, we want to extend the correspondence between the
Lifshitz Chern-Simons theory and the KdV hierarchy to the supersymmetric case. We choose
to work on a specific example, the Lifshitz Chern-Simons theory with gauge algebra si(3]2)

and relate it to one of the supersymmetric extensions of the Boussinesq hierarchy.

5.1 Super KdV hierarchies

Now we briefly review the supersymmetric extension of the KdV hierarchies. Based on
superspace formalism of supersymmetry, The basic way of supersymmetric extension is to
introduce fermionic fields and to combine it with the original bosonic fields to form super-
fields, and then rewrite the equation of motion in terms of superfields and their covariant
derivatives. For example, in the N = 1 supersymmetric extension of the KdV equation[45],

by adding a fermionic field {(z) we introduce the fermionic superfield
O (x,0) = £(x) + Ou(x) (5.1)
in the (z,0) superspace. The supersymmetry transformation is generated by the operator

Q = 0y — 00, (5.2)
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The covariant derivative is defined as
D =0y + 00, (5.3)

It satisfies D? = 8, and {D,Q} = 0, so equations of motion of the superfields involving co-
variant derivatives are automatically supersymmetric. By inspection, the equation of motion

must take the form
d = -0 + ad(PDD) + (6 — 2a) DD (5.4)

to give the correct bosonic limit when £ is set to zero. It was also shown that the parameter a
must take the value 3 to allow a supersymmetric extension of the first Hamiltonian structure.
Alternatively, we can require existence of higher order conserved quantities for the system

to be integrable to fix the free parameter.

Because sl(3]2) has two sets of fermionic generators, we should look for N = 2 supersym-
metric extension of n = 3 KdV hierarchy, that is, N = 2 super Boussinesq hierarchy. How-
ever brute force supersymmetric extension following the method above is not quite workable
because large amount of undetermined coefficients. Instead, since the second Hamiltonian
structure of the Boussinesq hierarchy is the W3 algebra, one should expect N = 2 super
Boussinesq hierarchy to possess N = 2 super Wj algebra as the second Hamiltonian struc-
ture. Guided by this principle, N = 2 super Boussinesq hierarchy was constructed in [46, 47]

in terms of two bosonic superfields J and 7T in the superspace coordinates (x, 0, §)

J(x,0,0) = 00u(x) + 0(x) + 0 () + y(x)
T(z,0,0) = 00z(x) + On(z) + 0n(x) + v(x) (5.5)
with two free parameters ¢ and «, where ¢ is a free constant in the N = 2 super W3 algebra

realized by J, T that corresponds to rescaling freedom of J,T', and « is a free constant in the

Hamiltonian H = [ dzdfdf (T + aJ?) that generates the time evolution
J={J HY, T={T H} (5.6)

The super Boussinesq equation should reduce to the Boussinesq equation when si(3]2) re-

duces to sl(3, R), and that’s possible only when the parameter o takes the following value
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o= —‘—é [47]. After setting ¢ = —%, the N = 2 super Boussinesq equation reads in terms of

superfields
J=2T" —6J +4aJJ
T =—-2J" 40T —200d(DJDJ) + 8a.J 6J + 4aJs]
+1602J%J —12aDJDT — 12aDJDT — 12aJ T — 40 JT" (5.7)
where
1. - 1
§ =D, D] (5.9)

It was shown in [46] that if we choose ¢ = 8 the parameter o must take one of these three

values —2, —%, % for the equation to be integrable in the sense that higher order conserved
charges exist. We see a = —% = —% is indeed one of them, and later an elegant Lax pair

formulation of this case was given in [48]. In the form in components the time evolution

equations (5.7) read

§=2(u+v) +4ayy
£=¢" +20 +da(ye)
£ ==& + 27 + da(ye)

=27 + %ym + da(yu) + 4a(EE)
b= —2z — 160uy — 8o’y — dayv — 120y v + 120(né + 7€) + 20a(§§)/ —2y" 4+ 1602y
N = —n” — 25"/ — 28au/§ — 360zu£/ — 10041/5 — 1204215/ — 120un + 122§
+ 100y € 4 320%yy € + 20y € + 1602y%¢ — dayl — 6ay,n — 4ozyn,
=1 —2" —28au' € — 36auf — 10aw' € — 12a0€ + 120uij — 1202€
- 10ay//§+ 32a2yy/§ — 2ay/§/ + 16a2y2§/ + 4ay€/ - 6ozy/77 - 4ozy77/
p=—2u — %vm — 6dauu’ — 16auv’ — 120u'v + 32a2yy/u + 16a2y2ul — 4ayzl — 2ayym
+6ay'y +10aén + 6aln — 100 — 6as 7+ 140l — 14af € + 320%(ye€)  (5.10)
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5.2  sl(3|2),z = 2 Lifshitz Chern-Simons theory and its integrability

Now we look at the Chern-Simons theory. When we take the gauge algebra to be Lie

superalgebra, most notably sl(p|q), the Chern-Simons action takes the form
k 2
Ses[Al = str(A/\dAJrgA/\A/\A) (5.11)
T

where str denotes the supertrace. In complete analogy to the non-supersymmetric case,
higher spin supergravity can be formulated by two copies of Chern-Simons actions, with the

vielbein and spin connection expressed in terms of the gauge connection
(A, +A) (5.12)

and the metric is given by

- str(lLO)QStr(e“e”) - mstr((flu — A (A, —A)) (5.13)

Guv

Now we focus on s/(3]2) Lifshitz Chern-Simons theory, that is, Chern-Simons theory with
sl(3]|2) gauge algebra that gives asymptotic Lifshitz spacetime. It should be noted that
sl(3|2) Chern-Simons theory has been studied in the past, see for example [49, 50]. We
follow the notation of generators of s/(3|2) in [50] and the super matrix representation which
we include for completeness can also be found in the Appendix B. We adopt the radial gauge

as we did in the non-supersymmetric case

Aup.,) = b(p) (. 0B(0) + b(p) " 0,b(p).  Aulpya,t) = blp)aue, 0b(p) ™" + b(0),blp)
(5.14)

where b(p) = e’ and a, = @, = 0. Clearly the weight of terms in a,, will translate to growth
rate with p in A, because the weight is the eigenvalue of the commutator with Ly. An exact

Lifshitz spacetime can be obtained by setting

Ay = Ll, ay = —W2 (515)

C_lx - Lfl, C_Lt - —W,Q (516)



that is

A= Lodp + LyePdx + ?Wge%dt (5.17)
A= —Lodp + L_e’dx + ?W_QGQPdt (5.18)

One can verify that the connection yields Lifshitz spacetime ds? = dp? 4 e*dx? — e*’dt? with
Lifshitz scaling exponent z = 2. Now we add dynamical terms to the connection but keeping
the leading term fixed to get asymptotic Lifshitz spacetime. We will focus on the unbarred
sector here, the barred sector can be worked out by the same algorithm thanks to the weight

flipping automorphism of si(3|2). The ansatz of a, in the lowest weight gauge is

ay = L1+ jJ +aA_1 +1L—1+ wW_, +gG,% + th% + sS,% +tT s (5.19)

with all the dynamical terms being the lowest weight elements in sl(3|2). The component
a; should start with \/T§W2, and its non-highest weight terms are completely determined by
highest weight terms because it must preserve the lowest weight gauge of a, in time evolution.
We take the highest weight terms to be differential polynomials of fields in a, of the correct

dimension, so a; must take the form

V31

ay = 7(§W2 + (dla + dal + d3j2 + d4j/)J + Clel + ol + ngG% + C4hH% + .. )

(5.20)
with eight free constants ¢, co, 3, ¢4, dy, ds, d3, dy4, and with non-highest weight terms omit-
ted. We factor out %g for calculational simplicity. Now we deal with the problem of fixing a,
to map the time evolution equation of a, to the N = 2 super Boussinesq equation. In order
to have the lowest dimensional conserved bosonic charge and fermionic quantities, j and ¢

must be total derivatives.
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This condition fixes a; up to only one free constant c3

Ccl = -1

)
Cy = —2C3 + g
Cy — —C3

d2 = —C3
d3 = —303
dy=0 (5.21)

It turns out if we set c3 = %, the time evolution equation of a, can be identified with the
N = 2 super Boussinesq equation after we rescale the time evolution by a factor —2+/3, that
is equivalent to replacing a; by —2v/3a;. The time evolution equation of a, we get after

replacing a; by —2v/3a; is
= (I —a+35%

g _ gl/ . 68/ + 4(]9)/

h=—h"—6t +4(jh)

. 3,/// ’ Lot 7 7 L 15 ’ 27
@=3J + 6w + 35l +6lj —6aj — 3ja —i-?(gh) —i—;(gt%—hs)
. 3 33 45
l:—§] + 6w — 35l —6lj +6aj +3jd ——(gh) —?(gt—l—hs)
0w 2w 10, 14, 10 ., 32 4
$=—s —i—gg — (10a + 61 + 65% + 65 )s — 4js —I—(ga ?l —gj —16w+§a]—§j])g
14 2, 2, . 4. .
U 20 4 2. 4.
+(3a+3j +6l—27)9 + 379
10, 14, 10 Y 32 4
i=t" +3h "+ (10a + 61 + 652 — 65 )t — 45t +(§a +§l 3 +16w—§a]—§jj)h

14 22 2/ / 4 1
e i el S — Sin
+(3a+3j +6+3j) 57

1 " / ! / 7 1" 1
W = —Z(a+ ) —2[(a+ l)z] — 45 gh+ j(gh) +9j(gt + hs) — Z(gh +hg)
9, 15 9 ) 15
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which can be identified with the N = 2 super Boussinesq equation via the explicit map

J=ay
g=k& h=—k¢
3 5
a= —Zav, | = —a%y* + Zow + 2au
1 1
=—=k t=-k
S 3™, 3~
2
w = %z - %yv (5.23)

with k2 = 202, no matter which root k takes.

We have worked out a specific example of the relation between supersymmetric Chern-
Simons Lifshitz theory and super Boussinesq hierarchy, that is, we established the map
between sl(3|2) Lifshitz Chern-Simons theory and N = 2 super Boussinesq hierarchy such
that the time evolution equations of the two theories coincide. Now we show that there is a
structurally deeper connection of the two theories, the Poisson structure of sl(3|2) Lifshitz
Chern-Simons theory induced by gauge transformation is identical to the second Hamiltonian

structure of N = 2 super Boussinesq hierarchy.

The time evolution of Chern-Simons is essentially a gauge transformation with gauge
transformation parameter a;, that is a, = 4,0, = Oya; + [a,, a;]. Fixed in the lowest weight
gauge, the gauge transformation induces a Poisson structure of the fields in the reduced
phase space [33]. That is, the gauge transformation of a field ¢ with gauge parameter A
is regarded as a Poisson bracket between the field and and the charge associated with the

gauge transformation parameter

ord = {Qx, ¢} (5.24)

where the charge is given by
0Q\ = C’/da: str Ada, (5.25)

with C' = —%. The Poisson brackets of all fields can be computed by choosing different

gauge parameters, and it’s used to calculate the boundary charge algebra in the context of
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holography, see for example [49]. Now the time evolution equation of Chern-Simons theory

can be recast in a form resembling the Hamiltonian dynamics

ay = {Qu,, 0z} (5.26)

On the other hand, the time evolution of the N = 2 super Boussinesq hierarchy is generated

by its Hamiltonian structure
T={T,H}, J={JH} (5.27)

Since we have a map between the two theories that identifies the time evolution equation, it’s
natural to conjecture the Poisson structure of the si(3]2) Chern-Simons theory is identical to
the second Hamiltonian structure of N = 2 super Boussinesq hierarchy via the established

map. Note we have replaced a; by —2v/3a; to make the map, it’s actually
dp = {—2V3Qq,, a,} (5.28)

that is identified with the N = 2 super Boussinesq equation, therefore we must have

21/3Q,, = H. Straightforward computation yields

2V3Qq, = QC/dxj(l —a) + 4w+ j* — gh = 6aC/dxz + 2a(yu + &) (5.29)

where we have used the map between two theories. On the other hand, the Hamiltonian of

the second Hamiltonian structure of N = 2 super Boussinesq hierarchy is given as

H= /dwd@dQ(T+aJ2) = /dmz+2a(uy+§§) (5.30)

We see that 2\/§Qat is equal to the Hamiltonian in the second Hamiltonian structure of the
N = 2 super Boussinesq hierarchy with the choice C' = 6%. We have computed the Poisson
structure of the sl(3|2) Chern-Simons theory with C' = & in the below. One can verify
it’s indeed identical to the second Hamiltonian structure of the N = 2 super Boussinesq

hierarchy given in [46].

As an example, we show how to calculate the Poisson bracket {h(z'), g(z)}. Clearly we

need to find a gauge transformation parameter A which is associated with the charge @,
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that takes the form of an integral of the product of A and an arbitrary fermionic function.

str(G%Hfé) is nonzero so we want A to start with ’yG%, where 7 is an arbitrary fermionic

function. The other non-highest weight terms in A are determined by requiring the gauge

transformation preserves the lowest weight gauge of a, and we find

A 9 3
A=9Gy = (v +5)Gy = yaS_g +yhLoy — oytWo,

The associated charge is calculated as

Q= /dm str (Aday) = —l/dxyé
«
1
&= [ dooh
a

The gauge transformation on g is calculated to be

1

rgla) = —1(2) Gale) + (@) + 1) + 1 () = 29 (@)j@) =" (@
— {Qugla)} =~ [ A1) () )

Therefore

(5.31)

(5.32)

(5.33)

{h(2'),9(x)} = a(ga(x) +(2)* + 1) + 5 (2))8(2" — 2) = 20(x)8 (' — 2) + ad” (2" — 2)
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We list the Poisson brackets of all the fields here

{j.j} = ad

{J.g} = agd

{j,h} = —ahd

{j,s} = aso

{j,t} = —atd

{h,g} = a(ga + 72 41+75)0 — 206 +ad

4 ! 1 /
{h,s} = §a(—6w +a +4aj)é — 5604@6

{h,a}:g&td
4
;1 ,
(h1} = —a(2jh + h + %&)5 + 3ahs
2 3 3, 15
how' = al=ah 4+ Sjt + )5 + —ats
{h,w} 04(3a + ot + g )8+ Lo
4 , , 16
{9,t} = —§Oz(6w +a —4aj)d + gaaé
{g,a}-—%asé
_ , 15 ,
{9:1} = —a(=2jg + g — )3 + 3ags
2 , 1 ,
{g,w} = —a(gag + gjs - gs )o — gozsé
1 .3,
54 4+31+32.gY = —¢ 0+ 296
6a{a+ +35%,9} =—yg + 59
1 ’ 3 /
— l 2 hY=—hé+ —ho
oo (5a + 31+ 357, h} +5

1 !/ /
6—@{5@ +3l+3j% a} = —a 6 + 2aé

117

1 ) / /
{Ba 34357 1) = 6+ 25 + 5

1 \ 5

6—a{5a+31+3j,s}——s5+§s<5

o
2
1 ! /

6—{5a + 314353, w} = —w § + 3wé
o

1 / !
@{5a+3l+3j2,t}: —t 0+ ~td
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{a,a} = —ga(5a — 305 + :a(loa —61)8 — 3och

16
! ! 1" / ! 3 1
{a,s}:—%(g(91—9a+j2+j)+6js+2jg + 6s +g)5+%(4jg+15s+4g)5——ag6
3
a,t} = —S(h(9a — 91 — 2+ §) — 6t + 2k + 6t — h")6 + S (4jh + 15t — 4l 5+—0‘h5
4
.3
{a, w}—— ( 15(gt—|—hs)—|—5(gh) +4w)5+1—2‘(15gh+12w)5
TR - = (100t + hh)(S
20z 4
{s, 8}——3(1098—§99)5
2. 5, 5 1 5 3.3 4
tst=—"(—= l S h + 4gt + 3gh’ — 4hs — —h
{t,s} 3(2a+9aj+6]+a+3j+ +Sjg+g+g s 3g
8 5 5 1 4, 1., 2 1
3Jw+9(3a)+3(3)+u +2(J) 3w +6a +3]J + +6J)
210 . 2. 10 13 8 5 5, 2. .
G il 2gny = 2 2ii + 21 5
+3(9a+33+33+39) 3w+9a+jj+3 +3j)
2 5 1 1 4 1"
—?a(gaﬂ +—l+g)6 _a5 5<4)
20 13 1 9 33 3 15 13, 13
fwd = — 2 2 it — PR+ 2ilh — 22at— 2% — 21— Bwh+ —d b+ —oah
{t,w} 5 (it gith+ 7 g TITTg TR T
3 2 9 9 ! 3 7 L7 27/ 3 9 1" 3 12 "
25y 4 2 he S Loy Sy Ly L 3 L
gl T gl Tgiih T it gl 16 8’ +8‘7 Tl Pt gt
20 91 15 5 9 5 2%, 3, 5
S 22 20— i 2 22— 2 2
+ 5 (g + 167 +16 gt/ h =3t T g )
20 5 15 5
3(4h—1—6t+8h)6 +—ah(5
2%, 13 1 9 33 3, 15 13, 13
(5,0} ( g + 1 + 2ls + 5wy + 1
Sw = ———|—— —_ = —_ = —Aas S —1LS w —a —Q
5 (—1g@ig = 37%9 = Jilg + 3 g/ 8 IT736°97 16 g
i _i_El +9 _§ _1/ /—"_zl/ _§ 8 _1 //_3 1 +i/ i ///>5
1609 T 16l 8”9 PEAE T A AT A 8” 167 97 16° T 167
_—a —_— —_— _— — _— — —_— — — —_—
5 (549 + 15779 169 g1 TI9 g9t s 169
2a 5. 15 5 5 s
——(—= — —a
37379 % 89 1249

"

{w,w} = %(SB(gt) —33(hs) — 28(jgh) + 14(gh” — g"h) + 16((a + )?) + 2(a+1)")s

- E(32(a +1)% = 56jgh + 66(gt — hs) +28gh’ — 28¢'h +9(a +1)")8

15« a7 Sa " (0%
(a4 —=(a+1)§" — =0 .
+32( a+1) 16(a+) ol (5.35)

where the first field in the bracket is at ' and the second is at z, all the fields on the

right hand side are at z, and § is short for (2’ — x). Brackets of fields not listed above
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are either zero or can be inferred from the brackets listed by simple principle, for example,

antisymmetry of Poisson brackets.
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CHAPTER 6

Discussion

In Chapter 4 we have shown that the asymptotic Lifshitz solution for sl/(N,R) and an
arbitrary integer Lifshitz scaling exponent z can be mapped to the member of the KdV
hierarchies with n = N, m = z. Now a natural question rises for the Lifshitz connection in the
algebra hs(\) where X is not an integer: Can the equations of motion, which involve infinite
number of fields be mapped to some integrable hierarchy? Note that such an integrable
system should reduce to the KdV hierarchy when hs()) is truncated to s{(N,R) upon setting
A = N. A candidate for such integrable systems is the KP hierarchy which we briefly review

here.

The starting point is the following pseudo differential operator which contains infinitely

many fields v;,2 =2,3,---.
S =04+1v0  + 0302+ v, 0+ ... (6.1)

The Lax equation for the m-th element of the hierarchy! is defined by

a m
=S =57, 5] (6.2)

The Lax equation gives equations of motion of the KP variables v’s.

The connection of the KP hierarchy to the KdV hierarchy is obtained as follows: Note
that the Lax equation above implies the following equation for the n-th power of the operator
S

Sn = [S™, S (6.3)

I'Note that the name “KP hierarchy” is usually reserved for the system of equations for all m where a
different time variable t,, is associated with each element. We are interested in the a specific element of the
hierarchy and denote the time simply by t.
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With the definitions L = S™ and P, = Sf we get the Lax equation of KAV defined in (2.8).
At this point the pseudo differential operator L contains all possible powers of 9, down to
0~>°. It is possible to consistently restrict L to only non-negative powers of differentiation,
which implies that the dynamics of the first n — 1 variables is decoupled from the other, and
they are just KdV hierarchy with the same values of m and n. Consequently, it is possible to
perform a field redefinition to truncate KP to KdV. The map from sl/(V,R), z Chern-Simons
Lifshitz theory to KAV with m = z,n = N can be regarded as a part of the whole map from
hs(N), z Chern-Simons Lifshitz theory to KP with m = z, with N being the parameter of

the map.

In general it is possible to define powers of the pseudo differential operator S to for non
integer exponents [51, 52]. We conjecture that by choosing N as a real number A we will
be able to construct a map between Chern-Simons Lifshitz theory with generic hs(\) and
KP. We leave the explicit construction of this map for future work, but observe that there
are several arguments that indicate that this correspondence indeed exists. First, finding
the maps involves solving algebraic equations, as in the case of A = N, but the recursive
solution in general does not require N to be an integer. Second, the hs(A) Chern-Simons for
a conformal theory provides a realization of the W, nonlinear extension of the Wy algebras
[24, 53, 54]. While the construction is slightly different many of the features of the relation
such as the relation of the gauge transformations which preserve the lowest weight gauge of
a; to the W-algebra transformation, carry over. When W algebras were first investigated
in the early '90 a relation of the W, algebra to the KP hierarchy was proposed in several
papers [51, 55, 52, 56, 57, 58]

The supersymmetric extension of the correspondence between the Lifshitz Chern-Simons
theory and the KdV hiearchies is worth some discussion too. In Chapter 5 we worked
out that si(3|2) Lifshitz Chern-Simons theory, as the supersymmetric extension of si(3,R)
Lifshitz Chern-Simons theory, corresponds to N = 2 super Boussinesq hierarchy constructed

4

in [46] with the appropriate choice of parameters a = —2. It was found in [46] that for

) such that the

¢ = 8 there are three values of a (including the one we choose a = —%
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equation obtained is an integrable system, in the sense that an infinite tower of higher order
conserved quantities exist. In addition for some of them a Lax pair formulation exists or a bi-
Hamiltonian structure exists [46, 48]. It is a natural question to ask if the super Boussinesq
hierarchy with other values of the parameter « also corresponds to Lifshitz Chern-Simons
theory with other gauge algebra different from s/(3|2). In fact, in almost all the cases of
supersymmetric extension of KdV hierarchies, it turns out we have to choose a discrete set
of values of the parameters to make the theory integrable [59, 60, 61]. If we can formulate
all these supersymmetric extensions of KAV by Lifshitz Chern-Simons theory with different
Lie superalgebras, we may be able to explain the choices of discrete values of parameters in

the perspective of the theory of Lie superalgebras.

Another possible direction for research lies in the the construction of blackhole solu-
tions in supersymmetric Lifshitz Chern-Simons theories following the work on the bosonic
case [42, 62]. In particular, the integrability may enable some analytic calculation of the

thermodynamic properties of the blackhole.
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APPENDIX A
sl(3,R), sl(4,R) and hs(\) conventions

In this appendix we present a realization of the sl(N,R) algebra which are used for calcula-

tions in the main body of the text.

A.1 sl(3,R)

The sl(2,R) generators of the principal embedding are given by the following matrices

0 v2 0 0 0 0 10 0
Li=10 0 2|, Li=1-v2 0 0], Lo=10 0 0 (A1)
0 0 0 0 —V2 0 00 —1

and the spin 3 generators, on which we omit the superscript ) for notational simplicity, are

as follows:
00 2 0 5 0 5 0.0
Wo=1000], Wa=]0 0 -5, Wo=[0 -0 (A.2)
000 00 0 0 0 3
0 0 0 000
Wi=|-2 0 0], Wa=10 0 0 (A.3)
0 \/%O 2 00
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If we define (T3, Ts, . ..

are given by

w(TT;) =

A.2 sl(4,R)

,T8) = (L1, Lo, L_1, W5, ... W_5), then traces of all pairs of generators

4]0 0
2
—4 0 0
0 0 4
(A.4)
—1
2
3
—1

0 0 |4

The si(4,R) matrix representation we use is

by
-3 0 00
0 -+ 00
lo =
0 0 1o
o 0 03

o o O O

the following. The sl(2,R) sub algebra given

@)
()
—_

29

0 0 0 0

-3 0 0 0
=

0 -4 0 O

0 0 =30

(A.5)



w;, 1 = +2,41,---,—2 form a spin 2 representation, whereas the u;,i = +3,+3,---,—3

form s spin 3 representation of the si(2,R) sub algebra.

0010 0 -1 00 1 0 0 0
0001 0 0 00 0 -1 0 0
Wo = wp = Wy =
0000 0 0 01 0 0 -10
0000 0 0 00 00 0 1
00 0 0 0 0 00 0001
30 0 0 0 0 00 0000
w—l— w_2— U3:
00 0 0 12 0 00 0000
00 —30 0 12 0 0 0000
00 —3 0 02 0 0 - 0 0 0
00 0 3 00 —-20 % 0 0
U9 = Uy = Ug =
00 0 0 00 0 2 0 0 —5 0
00 0 0 00 0 0 0o 0 0 2
00 0 0 0 000 0 000
-2 0 0 0 0 000 0 000
U_1 = U_g = U_3z =
0o 2 0 0 —6 0 0 0 0 000
0 0 -2 0 0 600 —-36 0 0 0
(A.6)
The w;, 7 = +2,+1,--- ,—2 form a spin 2 representation, whereas the u;,i = +3,+3,--- ,—3

form s spin 3 representation of the si(2,R) sub algebra.

A.3 hs(\) conventions

Higher spin algebra elements V7, s =1,2,3,...and m = —s+1,—-s+2,...,5s — 1. We call
s the spin and m the weight.
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The lone star product is defined as
s+t—|s—t|—1

VikVi=5 D allmn MV (A7)

m-+n
u=1

The structure constants of the hs()\) algebra were defined in [?] and can be represented as
follows
uU—2

G (N (m, ) (A8)

st . —

q is a normalization constant which can be eliminated by a rescaling on the generators, we

choose ¢ = 1/4 to agree with the literature. The other terms in (A.8) are given by

u—1
th(m, n) = (—1)k [s—=14+mly1k[s—1—ml[t = 1+ nlp[t — 1 —n]u_1&
k=0 k
1 1 2—u 1—u
S+ == A p— =t
o\ =F5 | ° 2 ? >l (A.9)
%—s g—t %+s+t—u

The descending Pochhammer symbol [a],, is defined as,

[a]l, =a(a—1)..(a—n+1) (A.10)
The commutator is defined as
(VEVH=VExVE—VExV? (A.11)

Vi is the unit element. The trace of a hs(\) element is defined as the coefficient of V3 up
to a multiplicative constant tr(Vj'). When A = N where N is a positive integer, hs()) is
truncated to s/(N,R). That means, we can consistently set V2 to be zero if s > N, and the
remaining elements form sl(N,R) with star product identified as matrix multiplication and

trace identified as matrix trace.
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APPENDIX B
A review of si(3]2)

The bosonic part of si(3]2) is U(1) @ sl(2,R) @ sl(3,R), it’s generated by spin 2 generators
L;,A;;, i=—1,0,1, spin 3 generators W;, i=—2,—1,0,1,2, and J the generator of u(1).
. . . . 3 _ 1 1 .
The fermionic part of sl(3|2) is generated by spin 5 generators G,, H,, r = —3,5 and spin
g generators S,,T,, r = —%, —%, %7 % L; generate the sl(2,R) subalgebra and the Ly is the

Cartan generator. The non-zero commutation relations are
[Li, L] = (i = j) Ly [Ai Ajl = (i = J)Livy  [Li, Aj] = (i — J)Aigy
[Li, Wil = (2i = j)Wigy  [Ai, W] = (20 = j)Wiy

Lo .. 9 .
(Wi, Wy = = (5 — )(26* + 25% — ij — 8)(Liyy + Airy)

6
LGl = (& = 1)Cisr (L H] = (5 — 1) Hiss
L0851 = (5 = 1)Sir [LoT] = (5 = 1) Tier
(45, G) = 581+ (5~ )Gt [A Bl = ~3Tipr + 202 — )i,
[A;, Sy] = %(% —1)Sir — %(3@'2 — 2r +1? — Z)GHT
[A;, T, = %(% — )Ty + %(31'2 — 2ir 4+ 1% — Z)Hm
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4 19 4 19

Wi, Gi] = —3(5 = 2r)Sisr (Wi, Hy] = —5(5 = 2r)Tisr
1 5 1 19

(W;, S, = —§(2r2 — 2r +1i% — §)SZ~+T — 6(47‘3 —3ir? 4 2i%r — i — 9r — Zi)G”T
1 5 1 19

Wi, T,] = —=(2r* — 2ir + 4% — )Ty, — = (40 — 3ir? +2i%r — i — 9r — —4i)H,,,
3 2 6 4

[‘]7 GT] = GT‘ [‘]7 HT] = _Hr‘ [*]7 Sr] = ST‘ [Ja Tr] = _Tr
{G,,Hs} =2L,. s+ (r—s)J

3 1 9 1 )
{S,, T} = —Z(r — 8)Wyps + =(38% —4rs +3r? — 2)(Lyps — 3A,44) — = (r — 8)(r? +s* — 2)J

8 2 4 2
3 3 5
{G,, T} = —§Wr+s + 1(37" —8)Arys — 1(37" — )Ly
3 3 5
{H,,Ss} = —§WT+S — 1(37“ — ) A+ Z(Sr — 8)Lyys (B.1)

The subindex is the weight of the element, it’s the eigenvalue of the commutator with Ly,

and can be raised (lowered) by L; (L_;1). A weight-flipping automorphism exists

J—=—=J
Lo — —Lo, L — L_l, L, — 1,
AO — —A(), Al — A*l? A*l — Al

Wy — —W_Q, W, — W_l, WO — —W(), W_, — Wl, W_9g — —Ws

Gl—>H_l, G_1— —H:

2 2 2 2

H1—>—G_1, H_é-)G%

Ss — =T 3, S%%T_%, S_%%—T%, S_%—>T%

Ts — S 3, T%—>—S 1, T7%—>S%, T7%—>—S% (B.Q)

The defining representation by super matrix is given by the following expressions
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20000
02000
00200
00030
0000 3

J:

0

0

0 —V2
V2 0 0

0

7L—1:

0 0

0 0
V2 0 00

2

0
0
0

0 00O

0 010

7L1:

0

-1

0 0

L(]:

0

0 —Vv2
—v/2 0 0

7A—1 -

V2 0 0 0

7A1:

0

-1

0 0

Ao
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0 0000 00 0 00
0 0000 00 0 00
Ss= 0 0000 ]|, 5S:=[00 0 00
0 0000 00 —300
-3 00 0 0 00 0 00
0 0 000 00 0 00
0 0 000 00 0 00
Si=[ 0 0 000 [.S1=]0 0 0 00
-1 0 000 0v2 0 00
0 vV2 000 0 0 —1 00
000 0 O 00003
000 0 O 00000
Ts={000-30]|,T.a=|[00000
000 0 O 00000
000 0 O 00000
000 0 0 000 -1 0
000 —vV2 0 000 0 V2
=000 0 1 [.Tx=]000 0 0 (B.3)
000 0 0 000 0 0
000 0 0 000 0 0

They are all super-traceless, and closed under multiplication with the identity super matrix
added. In addition, the weight is additive under super matrix multiplication if we count
the weight of the identity super matrix as zero. In this super matrix representation, the
weight-flipping automorphism is simply given by taking the negative of the transposition of

the bosonic elements and the transposition of the fermionic elements.
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APPENDIX C

Chern-Simons KdV map

In this appendix we exhibit explicit results for the map between si(/N,R) Lifshitz Chern-

Simons theory with scaling exponent z and the m = z,n = N member of KdV hierarchy, for

a few values of N and z.

N =3
CS-KdV map:
uy = 4ay,
us = 20ah—4as.
KdV equations of motion at z = 2:
Uy = 2uy — uy,
Uy = —§u2u’2 + uy — gug’
CS equations of motion at z = 2:
Gy = —2ai,
a3 = §a2a5+6a’2”
N =14
CS-KdV map:
us = 10 ao,
us = 1005 —24as,
uy = —120a5+3ah + 9% + 36y
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KdV equations of motion at z = 2:

Gy = 2uf— 24,

U3 = —uguh+ 2wy + uz — 2uy (C.5)
. 1 1 1

Uy = —§u3u'z—§uQu’2’+ UZ—ﬁug).

CS equations of motion at z = 2:

24,
. 8 / / 1 n
Gz = §a2a2—3a4+6az, (C.6)
. 10 / 12 / 1 "
Qq = §a3a2+€a2a3+ﬁa3
KdV equations of motion at z = 3:
Uy = ——ugup+3uy— —uy 1u’2”
4 2 4 %’
3 3 3
u3 = _ZU3UI2_ZUng+3UZ_2ug/+ZU(24)7 (C?)
: 3 3 3 3 3 3w 3 5
Uy = —ZU3U€3+ZU2U2+§U3U,I2/—Z’U/ng‘f—g'ligug/‘i‘ UZ/—ZU:()))+§U§)
CS equations of motion at z = 3 :
. 21 54 7
Gy = —1—00420/2%—3041—%@’2”,
. 15 15 1
a3 = —?@305/2—70[20(:/3—504/, (CS)
) 59 24 13 1 1 5
Gy = @O/QO/Q/—I—EO&QQQIQ—Fl—OaQaZ—12&3&5—}—%(12(1%/—1—%&1/—{—@&&).
N=5
CS-KdV map:
Ug = 200[2,
us = 300, —84as,
uy = —84al+18ah + 64as” + 288 auy, C.9
3 2
us = O6dagan+ 144l — 240 + 4l — 192 a9 a3 — 576 as.
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KdV equations of motion at z = 2:

Uy = 2uy — 3uy,
6
U3 = —quué—l—Quﬁﬁ- uy — 4uy,
6
Uy = —gu3u§+2ug—gu2u'2’+ ul —2ul?,
_ 2 2 2 2 5
Uy = —gu4ul2—gu3u’2’+ ug—gmug'—gug).
CS equations of motion at z = 2:
) 42
Oy = —3&3,
8 48 1
(3 = gago/g—7ozﬁl—|—60/2",
10 12 1
Qy = gagaé—l—gagag—élag—i-ﬁag’,
Gy = Eagag+4a4ag+—a2aﬁl+iaﬁ{'.
5 7 28
KdV equations of motion at z = 3:
Uy = —5u2ul2—|—3uﬁ1—3u§+ uly,
. 6 / 6 / / " " (4)
Uz = —guguz—guzu3~l—3u5+3u4—5u3+3u2,
6 6
7:L4 = —gu;gug—SUJ4U,2+SUJ2U:1+5U3U,2,—gUgug+3Ug+5U2U
12
’LLZ’—3 £(34)+€ué5)7
3 3 / " " n 3 n
Uus = —gu4u3—|—gu2u5—5u3u3—|—5u4u2+3u3u2—gu2u3
3. @ _3 6,3 ©
—Ug Uy — U3 + U
502 5 ° 157
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CS equations of motion at z = 3:

i 24 , 216 , 4 ,,
Qg = —3062&24‘?@4—5042,
, 120 , 120 , 144 , 8§ ,
Ga = —=ros0h— —-oapoh+——of — 7o,
59 24 36 147 13
d4 = @O/QO/QI—F30Q2O/2—EO&QOZQ—?043043—12064&12+%()62&/2”—
1
" (5)
5) 120
_ 7 o 29 1,396 36, 16 T2
G5 = —— b0l + =y + —— Qo” Oy + —— Q3 Qo Oy + — Qg A — —— Qg Qg — — QU3 QY
° 140 272 T 56 278 T gp 2 TS T ogp P TET2 g REs g TATS g T
5 123 1 1 .
75 0204 + 55 090 + 7o + g g’
KdV equations of motion at z = 4:
6 4 4 §
Uy = gu’f—gu3u'2—BU2ug+4ug+quug—2uZ+ ul?,
. 24 12 4 2 4 4 2
U3 = gu’gug%—%ugzué—guguﬁl—gugug—gugug—gmué—gwug{—l—
6
6us + 2uguy —4uy + ugl) + 5u55),
16 12 8 8 4 2
7:64 = Eugu’z"—l—2—5u2u’22+%u3u2u’2+5u2ug—gu4ug—guguil—
4 12 8 12 2 2 2
gu3ug+2—5u22ug—5u2ug+Eug2+gu4ug+gUgu'g”Jrgu?,u'Q”Jr
6 6 2
4u’5”+5uw§4)—3ug4)+ 5“:('»5)*3“56)7 (C.14)
. 12 4 4 4 4 4
Us = 2—5uzu’2u'2’+gu’2ug)+2—5u4u2u’2+2—5U3u'22—gu4ug—gugug~l—gu3ug—l—
8 4 4 4 4
gugu;”—l—%ugmug—kgugug’—kgmug—5u3uﬁ{+2—5uQ2u’2"—5u2uZ/+
2 2 1 g, 4 5 4 5,2 6
gugug'—l—gugué)—l—ué)+%u2u§)—5ui)+gug).
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CS equations of motion at z = 4

) 144 , 144 , o716 , 18
Qo = TO&gO@"‘?O&QO@)—TO%‘FEO@),
) 4, , 64 , , 384 , 336 , 384 ,
Qg = —7a2a2—7a2 a2+7a2a4—|—?a3a3+7a4a2—
12 24 1 5
7a2a’2/'+7aﬁ{'—ﬁa§),
. 68, ., 61, , 9% , , 208 , 64 336
Qg = 15 % Q—EQQ 3—3042 a3—?a3a2a2 €a2a5+?a4a3+
336 26 13 4 1
?O@Oéﬁl T 2 g'—gagag'—gag/—%af), (C.15)
) 1108 7 12 8 13 256
G5 = g o2ab0f — sabaf + o= afa +Zahal + oz apal) + S an’alh +
256 272 32 62 576
= ) — 5 043042043—1—%@40420/2—#@@'23—3204320/2—1—?044041—
144 47 244 4 19 38
Ta3ag+360 ,2/ 12” EQQZOC;—’_?OCQCVZ/ 1—OOégOégl £a4a’2"+
29042ag5)+ 1 5 ag)
o} —.
1260 140 % 5040
N =6
CS-KdV map:
Uy = 350&2,
us = 700l — 2243,
ug = —336ah + 63al 4 259 as? + 1296 v, C.16
3 2
us = 518agay + 1296 o) — 192y + 28 ay’ — 1760 ap i3 — 5760 s,
ug = —880 sl + 130ah? — 880 azaly — 2880 alf + 155 ap o) + 360 o) — 40 &' + 5 ol

+225 as® + 3600 auy vy + 1600 as? + 14400 a.
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KdV equations of motion at z = 2:

iy = 2ul — 4l
20
U3 = —§u2u’2+2uﬁ1+ uy — — uy
iy = —ugul+2ul — 2usul + u! —5ul?, (C.17)
2 4
Us = —§u4u2+2u6—u3u2+u5 3u2u’2”—2u§5),
1 1
ug = —§U5U/2 3u4u2+u6"—§u;z,u'2"—§u2ué)—gugﬁ)_
CS equations of motion at z = 2:
_ 64
: 8 81 1
Gy = gaga’g—?aﬁl—l—éa’é’,
: 10 12 80 1
Qg = 3 043062+ 5 OéQOé3 9 +1—5 g,, (C18)
. o 14 / / 1 "
as = Ea3a3+4a4a2+7a2a4—50¢6+28a4,
_ 6, 18 o0 L,
G = Qs+ —azal + —asay + —agar + — ak.
LT T T I T
KdV equations of motion at z = 3:
. / / " 9 n
Uy = _QUQU2+3U4_§US Zuz,
3 3 15
iy = ——ugul — >upul+ 3l + 3t — 9ul + — ul?,
2 2 2
} 3 , 1 3 3 " m
Uy = —§u3u3—U4u2+2u2u4+3u6 —|—4u3u2—3u2u —|—3u5—|—2u2u2 + uy —
15 w33
?ué) v u( ), (C.19)
1 7
Us = —uguy— 2U5U2+2U2u5 2u3ug+ u4u/2’+3u6"+4u?,u’2" 2upuy + ug +
5
§u2ug)—3u(5)+4ug6),
1 1 3 3
Ug = §u2u6’—§u5ué—§u4ug+1u5u’2' 2u3u§"+4u4u’2"—|—u6"'+4u3ug4)—
1 3 5 I 3 @
§u2ué)+4u u()—§ é)—i-zug).
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CS equations of motion at z = 3:

o o 8L 38, o1,
7 10 72T 35 T4 g0 %
, 405 , 405 , 540 , 27
a3 = —EOQOQ—EO{QO% 7045—ﬂ043,
Gy = Qo/ ”—l—% 20/—@04 o, @a O/—@a a’—i—@ £+
T 22T g T2 T2 g TR T g TR g TR T e e
13 mn 17 " 1 (5)
" — — C.20
30 2% T30% T % (C-20)
, 97 2 ,,+144 , , 396 .8 ., 252
s = — — X — Q9 X — (X3 Qo (X — Q9 (X — Yy Aq —
b 140 372 T 5278 T gy T2 TR T gy MaTRT o MR s e TS
1188 , 35 , 5 s 123 1 1
Ny — = Q50 + Sy + o~ 30y — — Qg + ———~
35 T4 9 2798 37980 21475 560 %
O.é _ 9 ! //+ 79 la//+19 Oé/ O[/,+800620/+976Oé a Oé/+1960[ Q O{l+
6 7 95T T e T2 T g 2t T g T2 T T gy TTRTS T g R T2 T
ﬁ@ Oé,—i-ﬁOéQO/—%Oé a'—%a O/—EO& o/—irﬂa ol +
[ e T S e R S e LD B
(5)
92 " 7 " 1 " Oé4
ho5 30 Ty Mt 5 T gey:
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KdV equations of motion at z = 4:

. 8 4

Ug = §U/22—§U3U,2—3

g 40 / 8 2 /

Uz = 3u2u2—|—9u2 uhy — 3u2u4—
16 "

3" 3
40
’[L4 = Ul /2”+3U2U2 + =

4 2.1 10
3

3

1, (4) 4
9

// 12
u2 u5 + = 3

2 M 8 n
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—Up” Uy — 5
10
Y+ —ud,

3
4

oo W

9
14
— Uy u§5) 4uy, 3
"

9
Ug = = UgUpUy + — U Uy + =

3 9
2, , 2 , 10
§u2u6—|—§u3u6+§

2uu+2 w20
3 789

2 @ Lo

3
U3 U Uy +§u2

3 9

CS equations of motion at z = 4:

U3 Uz U

3 U Uy +

2

U uy” uy — —uguy + 10w
14

4u +§uzu§) 9u()—|—6u5

8 / " /

3u2u2u2+—u2u2 + = Ug U Uy +
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—u2u§,+4ug+§u2u’2’—

!/ /
_u2u3__

13

3"
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4
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Qo

Qg

Oy

a5

Qg

2048 2048 4608 , 256
o1 2T TR g Te g TR
160 , , 1280 , , 1440 ., 5072 ., 1440
—— Oy X (@] (6% — o (X — (g (X — —
91 272 gz TR 2T o TR o BT T g T
1800 , 80 ., 90 10
T b B ST
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528 1944 448 1088 47 244
70632Oél2+—5 0440424‘?0(50(&4——21 04304/5 360 ” ”/ %06220/2”—
() )
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g2 2 T gy WA T gy T e 1260 280 T 5040
11828 s vy vy~ 8902 ap 0y oy 3673 sy 104 , , 56 ,
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32, , 116 , , 45la4al?  4lahal) 128, , 2624 )
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CS-KdV map:

Uz

Uus

Uy

Us

Ug

U7

56 A9,
140 oy — 504 s,
—1008 oy + 168 ay + 784 arp® + 4320 auy,
2352 g iy + 6480 oy — 864 vy + 112 ay’ — 8928 avy vy — 31680 s, (C.23)
—8928 vy o 4 1180 ah? — 8928 v oy — 31680 ok + 1408 ary a4 3600 o] —
360 o + 40 a5 + 2304 an® + 40320 vy vz + 18000 iz + 172800 avg,
708 oy oy + 3456 cip” oy + 20160 v o) — 4488 oy oy + 18000 vz oy +
20160 cvg oy + 86400 cvg — 2544 crg vy — 2664 a3 vy — 8640 vy + 312 g vy’ +
720 — 60 ol + 6 al”) — 13824 a3 cs? — 103680 v vy — 86400 v vy —

518400 as.

KdV equations of motion at z = 2:

Uy
u3
Uy
Us
Ug

Uy

= 2uy —5u,
]'0 / / I "
= —7u2u2+2u4+ us — 10wy,
4)

20
= —?ugu’2+2u’5—7u2u'z’+ ul —10ud?,

6 12 20
— —?u4u'2+2ug—7u;»,u’2'+ ug—7u2u’2"—6ug5), (C.24)
6 8 10 4 6
- —?u5u’2+2u'7—?u4u’2'+ ug’—?ugug’—7u2ué)—2ug),
9 2 2 2w 2 s 2
= _?UG'U/IQ—?'UﬁUg‘I’ u'7'—?u4u'2"—?u3ug)—?u2ug)—?ué).
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CS equations of motion at z = 2:

ay = —18a4,
. 8 120 1
3 = gago/z—Tozﬁl—i-éag',
) 10 +12 44 ,+1 "
Qy = as ol Qp 0y — — it + — «
R A T TR T e
i 14 16 120 1
a5 = €a3a3+4a4a2+70z20¢2— 11 —f—% Z/, (025)
) 16 , 18 , 14 , 20 r .,
g = €a4a3+7a3a4+§a5a2+3a2a5 6a7—|—45a5,
) 20 18 22 16 24 , r .,
Qa7 = 7a4a4+ 5a5a3+9a3a5—|—§a6a2+ﬁa2a6+%a6.
KdV equations of motion at z = 3:
. ]‘2 / n
Uy = —7U2U2+3U4 6U3+4U2,
12 12
Uy = 7u3u2 7uQu3+3u5+3uZ—14u§”+15u(4)
) 12 9 3 6 p
Uy = 7u3u3 7U4u2+7u2u4+3u6+?u?,u2 7u2u3+3
30
—upuf 4w — 15 u$ + 2148,
. 9 / 6 / / / " n
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30 45
7u2ug"+ "'+7u qus? —9ul? 4154, (C.26)
6 3 3 9 9 12 15
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15 27 39
u? + 3ugul?) — 7u2u§4)+7u2u§5) 3u —|—7 ul”,
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CS equations of motion at z = 3:
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APPENDIX D

Proofs of statements used in the Drinfeld-Sokolov

formalism

In this part of appendix we give the proofs to the theorems used in Drinfeld-Sokolov formal-
ism. Most of them are essentially contained in the original paper by Drinfeld and Sokolov.
However, the original paper is a little bit condensed, so we add details to the proofs to make

them easier to follow.

D.1 Gauge transformation of PDOs

Here we give the proof of the following statement: For any ¢ and any canonical form, there
exist a unique gauge transformation S to transform ¢ into ¢’ = S™1V2S — V2 + 5719, in

the canonical form chosen.

The proof proceeds as follows: We rewrite the gauge transformation as
Sq' = qS + [V, 8] + 0,8 (D.1)

and then by comparing the weight —: part we get

ZSZ SUES Z%Sz _i A+ V2, Sipa] + 0.5 (D.2)

which holds for all i’s. Using the fact Sy is the identity matrix E, we put it in a recursive

form
i—1 i—1
q; — V2, Sixa] = @i + 9uSi — Z Si—jQ;' + Z 4jSi-j- (D.3)
j=0 j=0
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Given ¢, and suppose ¢; and S;1; are known for all j < i, from the lowest weight projection
of the right hand side we can find ¢; if we restrict it to be in a one dimensional subspace of
weight —z elements which has nonzero lowest weight projection. Then S, is also determined
by equating non lowest weight terms on both sides. The initial conditions, needless to say,

are g, = qo and Sy = E.

D.2  Scalar coefficient form and conserved quantities

Here we proof the following statement: For generic L, there is a formal series

T=E+> hA™ (D.4)
=1

where h;’s are diagonal matrices, such that
Ly=TLT ' =0, + A+ ) fiA™, (D.5)
i=0

where f;’s are scalar functions. T is determined up to multiplication by series of the form
E+>"7 t;A" where ;s are scalar functions, and f;’s are determined up to a total derivative.

Furthermore ¢* = [ f; are conserved by the Lax equation.

The proof proceeds as follows: By equating the coefficients of the same powers of A in

the equality T'L = LoT we get

i—1 i
di+higr+ > higd " = fiB 4 Ochy + Wy + Y fighd (D.6)
j=0 J=1

Here the notation A means A’AA~%, which is i times cyclic permutation of the diagonal
elements for a diagonal matrix A. For example if A = Diag{ai,as,as,as} then A7 =

Diag{as, as, ays,a1}. We rewrite the equation above as
i—1 7
hivi — hyy — FE = —di+0:hi =Y hiydf Y figh (D.7)
=0 j=1

fi is obtained by taking the trace on both sides, then h;,; is determined up to an additive

multiple of identity. Now suppose 17" transforms L to

Ly=TLT " =0, +A+)>_ fiA™" (D.8)

=0
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Define 77! = A= E+) 7, a;A" where a;’s are diagonal matrices. We have A™'LyA = Lj,
or LyA = ALj. By equating the coeflicients of the same power in A we get
i—1 v i—1
Qi1 — gy + fiE — fiE = Oya; + Z fial_; — Z fiai- (D.9)
=0 =0
with the initial conditions

a; —af + foF — foE =
Qa9 — CLg + f{E — flE = amal. (DlO)

From this recursive formula it’s easy to see a; — ay = 0 for all ¢, that is a;’s are all multiples

of identity, say, a; = t; /. Plug this back into the recursive formula we have

fl—f; = 0ut; — Zt”f ) (D.11)
with the initial condition
f(l) - fO - 07
fi = fi =0t (D.12)

One can prove by induction that f/ — f; is a total derivative.

The evolution equation of Lg is

d
—L Py, L D.13
dt 0 — [ 0 0]7 ( )

where Py = dTT +TPT~'. Expand Py as Y ;" p;A", then the Lax equation above gives

us
0 =pn— Dy,
n . .
Oz—3zpi+pz'—1—pf_l—f—ij_i(pj—p}’] ), 0<i<n,
=i

foi=—0upi+pia =PI+ Y fisipi—p] ), i<0. (D.14)
j=i
This recursive formula demands all p;’s to be multiples of identity. From this, in turn,

the commutator simplifies to —d, Py, hence fi’s are equal to total derivatives and f fi’s are

conserved.
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D.3 Matrices that commute with L

Here we would like to show that All matrices that commute with Ly = 0, + A+ . fiN?

have the form 3 c;\' with ¢;’s as constant coefficients.

This follows from letting M = >_" m; A’ be a matrix commuting with Ly. By equating

1=—00

coefficients of the same power in A in the equation M Lo = LoM we get

— Oymy; +mi_1 — m?,1 + Z fj_i<mj — m?j_i) =0, +:<n. (Dl5)
j=i

Therefore all m;’s are constants times identity matrix.

D.4 The Lax equation preserves gauge equivalence

In this subsection we prove the statement that by choosing P = (T-*(>."___¢;A")T)4 the

Lax equation preserves gauge equivalence.

This can be shown as follows: It suffices to prove if L satisfies the Lax equation, then so
does L' = S7LLS where S is a gauge transformation matrix that only depends on . In other
words 0,q = p(q) implies 9;¢' = p(¢’). Using the original Lax equation, it’s straightforward

to get

%L/ =[S7'PS, L) (D.16)

So we want S™1PS = P’, which means, ST!PS is the same differential polynomial in ¢’ as
P in q. Explicitly we have

STIPS =S 1T i aA)T) (S = ((TS)™( i ciN)(TS)) ;. (D.17)

Suppose T” transforms L’ into the form of scalar coefficients, that is T'L'T""! = L{, so
T" is the same differential polynomial in ¢’ as T in ¢. Plug in L' = S7'LS we get
(T'S™HL(T'S ™)™ = Ly = Ly = TLT™'. Hence T'S™' = T or TS = T’, and at last
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we get

ST1PS = (T i GA)T'), = P (D.18)

D.5 Equivalent evolution equations of gauge equivalent classes

We want to prove the following statement: Given that the difference between P, and P, is a
negative weight matrix with no time or A dependence, then 4L = [P}, L] and 4L = [P, L]

give the same evolution equations of gauge equivalent classes.

The proof proceeds as follows: Let’s R denote the ring of scalar differential polynomials
in ¢ which are invariant under gauge transformation. For any f € R the time derivative of f
by the Lax equation also belongs to R, and the form of time derivatives of all f € R uniquely
specify the evolution equation of gauge equivalent classes. Now for any f € R, let g be the
difference of the time derivative of f by the above two Lax equations, then ¢ is actually the

time derivative of f by the Lax equation %L = [P, — P», L|. Formally

o(L) = LFEO)im0 (D.19)
where £(t) satisfies
L) =1,
Lo =[P~ o L] (D20

Apparently L£(t) = SLS™! where S = E + t(P, — P,) satisfies these conditions, and its time

evolution is just a gauge transformation. Therefore we have g = 0 because g € R.
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