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ABSTRACT OF THE DISSERTATION

Higher spin Chern-Simons theory and KdV hierarchies

by

Yi Li

Doctor of Philosophy in Physics and Astronomy

University of California, Los Angeles, 2018

Professor Michael Gutperle, Chair

This dissertation summarizes my research in the Lifshitz higher spin Chern-Simons theory

and its relation to the integrable system KdV hierarchy as a Ph.D. candidate at UCLA. In

Chapter 1, I briefly review the higher spin gravity theory and introduce the Chern-Simons

theory as a realization of the Vasiliev theory in three dimensional spacetime. In Chapter 2, I

review the KdV hierarchies. In Chapter 3, I discuss how to construct a solution to the Chern-

Simons theory which yields a spacetime that exhibits Lifshitz scaling, I also calculate the

boundary charge algebra and show the asymptotic Lifshitz symmetry is realized in terms of

it. In Chapter 4, I reveal the relation between the Lifshitz Chern-Simons theory and the KdV

hierarchies (in the non-supersymmetric case), a proof of the general correspondence is also

given using the Drinfeld-Sokolov formalism. In Chapter 5, I work out the supersymmetric

extension of this correspondence in a particular case, with the boundary charge algebra of

the supersymmetric Chern-Simons theory and the second Hamiltonian structure of the super

KdV identified. In Chapter 6, I discuss on the results of my study and possible directions of

future research.
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CHAPTER 1

Introduction to the higher spin Chern-Simons theory

1.1 Poincare symmetry and spin

As the core of modern physics, the relativistic field theory is the field theory with Poincare

symmetry, which is generated by translations Pα and rotations Mµν that satisfy the commu-

tation relation

[Pα, Pβ] = 0 (1.1)

[Mµν ,Mρσ] = i(ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ) (1.2)

[Mµν , Pα] = i(ηναPµ − ηµαPν) (1.3)

The Poincare symmetry classifies the fields as (single or double valued) representations of

the Poincare group, in particular, representations of the double cover of the Lorentz group,

the spin group, labeled by the spin. After quantization of fields, the one particle states form

an unitary irreducible representation of the Poincare group, with the quadratic Casimir

P = PαP
α and W = 1

2
MµνM

µνPαP
α−MµνM

ρνP µPρ corresponding to the mass and spin of

the particle

P = m2 (1.4)

W = m2s(s+ 1) (1.5)

Moreover, particles with integer spin are Bosons while the particles with half integer spin are

Fermions by the spin-statistics theorem[1]. In the most microscopic level of physics verified

by experiment with high precision, we have the well-established standard model of particle

physics, which includes the Higgs Boson with spin zero, the leptons and quarks with spin
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one half, and vector gauge Bosons with spin one. In the physics of the largest scale like

cosmology, the gravity theory is an essential part. As a manifestation of curved spacetime, it

is formulated by (pseudo) Riemannian geometry which is described by the spin two metric.

The classical gravity theory is successfully described by the Einstein-Hilbert action and its

variants, while a complete and consistent quantum theory is still elusive, with string theory

being the most promising candidate.

1.2 Review of the gravity theory and Palatini formalism

In (pseudo) Riemannian geometry we start with a metric and an affine connection which

defines the covariant derivative of tensors, it takes the form in the coordinate basis

∇µ∂ν = Γρµν∂ρ (1.6)

where Γρµνs are also called ”Christoffel symbols”. The torsion tensor T is defined as

T [X, Y ] = ∇XY −∇YX − [X, Y ] (1.7)

where X, Y are vector fields. It takes the form in the coordinate basis

T ρµν = Γρµν − Γρνµ (1.8)

In the gravity theory we usually consider the Levi-Civita connection, that is, torsion free

T = 0 and metric compatible ∇g = 0. The Levi-Civita connection takes the explicit form

that only depends on the metric

Γρµν =
1

2
gρλ(∂µgλν + ∂νgλµ − ∂λgµν) (1.9)

The curvature tensor R is defined as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (1.10)

and takes the form

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (1.11)
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in the coordinate basis. The Ricci tensor is defined as the contraction of the curvature tensor

Rµν = Rρ
µρν and the scalar curvature is defined as the contraction of the Ricci tensor R = Rρ

ρ.

The action of Einstein’s gravity theory, the Einstein-Hilbert action is

S =
1

16πG

∫
dV (R− 2Λ) + SM (1.12)

where Λ is the cosmological constant, dV is the volume form, SM is the action of matter

fields and G is the gravitational constant. When the action is viewed as a functional of

the metric assuming the connection is Levi-Civita, the action principle yields the Einstein’s

equation

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (1.13)

where the energy momentum tensor Tµν is defined as −2 δSM
δgµν

. In the Palatini formalism

however, we view the action as a functional of the metric gµν and the connection Γµνρ which

is independent on the metric. Then the equation of motion by the variation of the action with

respect to the connection sets the connection to be Levi-Civita, and the second equation of

motion by the variation of the action with respect to the metric yields the Einstein’s equation.

We can also formulate the gravity in non-coordinate basis, in which the gravity manifests

itself as a gauge theory. We are particularly interested in orthonormal frame (Lorentz frame)

in which spinors could be defined. We introduce the vielbein as the basis of the local Lorentz

frame ea and its dual one-form ea

gµνe
µ
ae
ν
b = ηab ηabe

a
µe
b
ν = gµν (1.14)

The covariant derivative of the vielbein takes the form

∇µea = ωbµae
b (1.15)

where ωaµb is the spin connection, which is essentially the affine connection in a special basis.

It transforms as

ωa
′

µb′
= Λa

′

a Λb
b′
ωaµb + Λa

′

c ∂µΛc
b′

(1.16)
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under local Lorentz rotation. The spin connection can also be viewed as a one-form ωba =

ωbµadx
µ. The torsion and curvature form are defined as

T a = dea + ωab ∧ eb (1.17)

Ra
b = dωab + ωac ∧ ωcb (1.18)

and are related to the torsion and curvature in the coordinate basis in the simple way

T aµν = eaρT
ρ
µν Ra

bµν = eaρe
λ
bR

ρ
λµν . We can also define the generalized exterior differential D

for tensor-valued forms Ω as

DΩ(X1, . . . , Xn+1) =
∑
i

∇XiΩ(X1, . . . , X̂i, . . . , Xn+1)−
∑
i<j

Ω([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xn+1)

(1.19)

Then the torsion takes the simple form T = De. In addition, DT = 0 and DR = 0 represents

the first and the second Bianchi identity for the curvature tensor, respectively. The Einstein-

Hilbert action in D-dimensional spacetime can also be rewritten in terms of the vielbein and

the spin connection

SG =
1

16πG

∫
εa1...aDR

a1a2 ∧ ea3 ∧ . . . ∧ eaD − 2Λe1 ∧ . . . ∧ eD (1.20)

and the Palatini formalism remains working, that is, we get Levi-Civita connection if we

set the variation of the action with respect to the spin connection to zero, then we can get

Einstein’s equation by setting the variation of the action with respect to the vielbein to zero.

1.3 Higher spin gravity and AdS/CFT

Fields of spin higher than two are called higher spin fields. The study of free higher spin

fields was initiated by Fierz and Pauli[2]. A little bit later Wigner classified the irreducible

unitary representations of the Poincare group in four dimensional spacetime [3](which was

generalized to spacetime with arbitrary dimension in [4]) and proposed with Bargmann the

dynamic equation of free massive higher spin fields. The spin j fields are realized by 2j-fold

symmetric tensor product of Dirac spinors ψα1...α2j
and the dynamic equation, known as the
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Bargmann-Wigner equation, reads

(iγµ∂µ −m)αrαr ′ψα1...αr ′...α2j
= 0 (1.21)

that is, a Dirac equation for each Dirac spinor component in the tensor product. The equation

can be recasted in terms of symmetric tensors in the case of integer spin, and symmetric

tensor spinors in the case of half integer spin, with transeverse and trace condition to ensure

the irreducibility of the representation

(∂2 −m2)Φµ1...µs = 0 (1.22)

∂µ1Φµ1...µs = 0

ηµ1µ2Φµ1µ2...µs = 0

(iγµ∂µ −m)Ψµ1...µs = 0 (1.23)

∂µ1Φµ1...µs = 0

γµ1Φµ1µ2...µs = 0

In the case of spin 0, 1
2
, 1, 3

2
, one can verify that the Klein-Gordon, Dirac, Proca and Rarita-

Schwinger (in the massless limit) equations are recovered. A Lagrangian formalism of the

massive free higher spin fields was, however, absent for decades until the work by Singh and

Hagen [6, 7], in which auxiliary fields were introduced to impose the constraints. A few

years later Fronsdal and Fang studied the massless limits[8, 9], where auxiliary fields can

be absorbed by field redefinition and higher spin gauge symmetries emerge. The Fronsdal

equation for massless fields with integer spin s is

Fµ1...µs ≡ ∂2Φµ1...µs −
∑
σ

∂σ(µ1)∂
ρΦρσ(µ2)...σ(µs) +

∑
σ

∂σ(µ1)∂σ(µ2)Φ
ρ
ρσ(µ3)...σ(µs)

= 0 (1.24)

where σ is permutation of the indices µ1 . . . µs. A higher spin gauge transformation is defined

as

δΦµ1...µs =
∑
σ

∂σ(µ1)Λσ(µ2)...σ(µs) (1.25)
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and the corresponding variation of the Fronsdal tensor is

δFµ1...µs = 3
∑
σ

∂σ(µ1)∂σ(µ2)∂σ(µ3)Λ
ρ
ρσ(µ4)...σ(µs)

(1.26)

So the gauge symmetry can only be realized with traceless gauge parameters. The Fronsdal-

Fang equation for massless fields with half integer spin s+ 1
2

is

Sµ1...µs ≡
∑
σ

i(γρ∂ρΨσ(µ1)...σ(µs) − γρ∂σ(µ1)Ψρσ(µ2)...σ(µs)) = 0 (1.27)

Under a higher spin gauge transformation

δΨµ1...µs =
∑
σ

∂σ(µ1)εσ(µ2)...σ(µs) (1.28)

the variation of the Fronsdal tensor spinor is

δSµ1...µs = −
∑
σ

2iγρ∂σ(µ1)∂σ(µ2)ερσ(µ3)...σ(µs) (1.29)

So the gauge symmetry is realized with γ-traceless gauge parameters. A Lagrangian formal-

ism for Fronsdal’s theory free from constraint was found at the beginning of the new century

at the price of introducing non-local terms [10, 11].

A interacting theory always has much more physical significance than a free theory. It

is more important to find a consistent interacting theory of higher spin massless fields. It

turned out to be impossible in flat spacetime due to the no-go theorems [12, 13, 14], which

exclude the existence of higher spin conserved currents by analyzing the symmetries of the S

matrix. The no-go theorems can be circumvented in curved spacetime where S matrix is not

well-defined. It is Vasiliev who proposed such a higher spin gravity theory, known as Vasiliev

theory, in any dimension [15, 16, 17, 18]. The theory contains an infinite tower of fields of

all spins, and all of them must be included for consistent interaction for generic spacetime

dimensions. It’s perturbed around (Anti) de-Sitter vacuum and the flat limit doesn’t exist.

In general it’s very complicated and only known at the level of equation of motion.

One of the main purpose of studying higher spin gravity theories is, conjectured to be

the tensionless limits of string theories (e.g.[19]), they provide useful playgrounds for the
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AdS/CFT correspondence, which is probably the most important discovery in the past two

decades in theoretical physics [20]. It states that quantum gravity with Anti-de Sitter (AdS)

spacetime background in n + 1 dimensional spacetime is equivalent to a conformal field

theory (CFT) in n dimensional spacetime, in particular, the classical AdS gravity should

be dual to a strongly coupled CFT. For higher spin gravity, we have the duality between

AdS4 higher spin gravity and the O(N) vector model CFT in three dimensional spacetime

[21, 22] and the duality between AdS3 higher spin gravity and the Wn minimal model CFT

in two dimensional spacetime [23, 24]. For completeness we briefly review the Anti-de Sitter

spacetime and the conformal field theory here.

The AdSn+1, namely the n + 1-dimensional Anti-de Sitter spacetime is the maximally

symmetry spacetime with negative constant curvature. It’s a hyperboloid in the n + 2

dimensional Minkowski spacetime

−t12 − t22 +
n∑
i=1

xi
2

= −l2 (1.30)

It’s a maximally symmetric spacetime with isometry group SO(2, n). The most frequently

used coordinate patch for the half spacetime is

ds2 =
l2

y2
(dy2 − dt2 +

n∑
i=1

xi
2
) (1.31)

or

ds2 = l2dρ2 + e2ρ(−dt2 +
n−1∑
i=1

dxi
2
) (1.32)

ρ is called holographic radial coordinate. In the context of holography the boundary is at

ρ→∞.

Conformal field theories are field theories with conformal symmetry. The conformal trans-

formations of a manifold are diffeomorphisms that rescale the metric. For the n dimensional

Minkowski spacetime, the conformal transformation group contains the Poincare group as

the isometry subgroup, and the scaling transformation and special conformal transformations

x
′µ

= αxµ (1.33)

x
′µ

=
xµ − bµx2

1− 2x · b+ b2x2
(1.34)
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The conformal algebra is

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i(ηµνD − Lµν)

[Kρ, Lµν ] = i(ηρµKν − ηρνKµ)

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i(ηνρLµσ) + ηµσLνρ)− ηνσLµρ)− ηµρLνσ) (1.35)

It’s isomorphic to so(2, n), the Lie algebra of the isometry group of AdSn+1. The conformal

symmetry is so powerful such that the form of the two points and three points correlators

are determined by the symmetry. In addition, the energy momentum tensor of a conformal

field theory is traceless due to the scale invariance, and scale invariance often implies full

conformal invariance[25]. In two dimensional spacetime the conformal group becomes infinite

dimensional and the theory is much more restrictive[26]. The conformal generators form the

Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n+ 1)δm+n,0

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n+ 1)δm+n,0

[Ln, L̄m] = 0 (1.36)

where c is the central charge of the conformal field theory, which can also be defined by the

operator product expansion of two energy momentum tensors. For some CFTs, there is the

W symmetry as an extension of the conformal symmetry [27], which corresponds to higher

spin current in the theory.
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1.4 Higher spin Chern-Simons theory in three dimensional space-

time

In general Vasiliev theory is very complicated. However, in three dimensional spacetime

the higher spin gravity theory can be realized by the relatively simple Chern-Simons theory

with the higher spin gauge algebra hs(λ). Moreover, the Chern-Simons theory with gauge

algebra sl(N,R) provides a consistent truncation of the Vasiliev theory at a finite spin N ,

which is specific to the spactime dimension three. The Chern-Simons action at level k in

three dimensional space-time is given by the following

SCS[A] =
k

4π

∫
M

tr
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
(1.37)

where A = AaTa is the connection valued in the Lie gauge algebra, tr is a symmetric

nondegenerate bilinear form on the Lie algebra, and M = R× Σ is the spacetime manifold

with R being the time direction. A gauge transformation is defined to be

A′ = g−1Ag + g−1dg (1.38)

or in the infinitesimal form

δA = dΛ + [A,Λ] (1.39)

Defined by the commutator of covariant derivatives, the curvature is

F = dA+ A ∧ A (1.40)

The variation of the Chern-Simons action by a variation of the connection δA is

δSCS =
k

2π

∫
M

trF ∧ δA− k

4π

∫
∂M

trA ∧ δA (1.41)

and for an infinitesimal gauge transformation

δSCS =
k

2π

∫
∂M

trdAΛ (1.42)

9



If the boundary term is negligible, then the action is differentiable (that is, the variation of

the action is linear in the variation of the connection field) and yields the equation of motion

which is also known as the flatness condition

F = dA+ A ∧ A = 0 (1.43)

and the action is invariant under a gauge transformation.

The Chern-Simons theory consists of two copies of the Chern-Simons action

S = SCS[A]− SCS[Ā] (1.44)

with the gauge algebra usually chosen to be sl(N,R) or hs(λ) to correspond to higher spin

gravity. As a special case, the Chern-Simons theory with gauge algebra sl(2,R) recovers

Einstein’s gravity with negative cosmological constant in three dimensional spacetime [28]

and the Chern-Simons theories with gauge Lie superalgebras realize super gravity theories

[29]. The gravity in three dimensional spacetime has some interesting features [30]. The

curvature tensor has the same number of independent components as the Ricci tensor, so it

comes with no surprise that the curvature tensor can be expressed by the metric and the

Ricci tensor

Rρσµν = gρµRσν − gρνRσµ + gσνRρµ − gσµRρν −
1

2
(gρµgσν − gρνgσµ) (1.45)

With this relation, it’s easy to see that the local vacuum solution to the Einstein’s equation

must be spacetime with constant curvature. In other words, the spacetime is non-trivially

curved only at points with presence of matter, there is no propagating degrees of freedom.

Dynamical degrees of freedom are on the boundary. In addition, it has the AdS3, the three

dimensional Anti-de Sitter space as the vacuum solution when the cosmological constant is

negative Λ = − 1
l2

. The action of the three dimensional Einstein’s gravity in terms of the

vielbein and spin connection is

S =
1

8πG

∫
Ra ∧ ea − Λe1 ∧ e2 ∧ e3 (1.46)

10



where

Ra = dωa +
1

2
εabcω

b ∧ ωc

ωa =
1

2
εabcω

bc (1.47)

Viewed as a functional of the vielbein and spin connection, the action yields the torsion free

condition and Einstein’s equation as expected. In addition, the action is invariant under two

types of gauge transformations, the local Lorentz frame rotation

δea = εabcebτc (1.48)

δωa = dτa + εabcωbτc (1.49)

and the local translation

δea = dρa + εabcωbρc (1.50)

δωa = −Λεabcebρc (1.51)

where τ and ρ are arbitrary functions as gauge transformation parameters. Diffeomorphism,

as the basic symmetry of a gravity theory, is included as a combination of the two gauge

transformations given above [28]. Now we define the Lie algebra valued vielbein and spin

connection for Chern-Simons theory

e =
l

2
(A− Ā), ω =

1

2
(A+ Ā) (1.52)

with the group index in the connection corresponding to the veilbein frame index. The

generators of sl(2,R) T0 = L0, T1 = 1√
2
(L1 + L−1), T2 = 1√

2
(L1 − L−1) satisfy (see

Appendix A)

[Ta, Tb] = εabcT
c (1.53)

tr(TaTb) =
1

2
ηab (1.54)

It’s straightforward to verify that the Chern-Simons theory with gauge algebra sl(2,R) is

identical to the Einstein-Hilbert action with negative cosmological constant Λ = − 1
l2

in the
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Palatini formalism, with the identification k = l
4G

. Moreover, the gauge transformation of

Chern-Simons theory

δA = dΛ + [A,Λ]

δĀ = dΛ + Ā,Λ] (1.55)

translates to the local Lorentz rotation of the Palatini formalism of gravity. When we

choose gauge algebra sl(N,R) or hs(λ) with the ”gravity section” sl(2,R) embedded in, the

generalized vielbein and spin connection are

A = (ω +
e

l
)aTa + (ω +

e

l
)a1...asTa1...as (1.56)

Ā = (ω − e

l
)aTa + (ω − e

l
)a1...asTa1...as (1.57)

where Ta’s are sl(2,R) subalgebra generators and Ta1...as ’s are higher spin generators. The

metric and the higher spin fields can be expressed in terms of traces of symmetrized products

of the generalized vielbein e

gµν = ηabe
a
µe
b
ν =

1

2
tr(eµeν) (1.58)

The higher spin fields , for example spin 3 fields can be written as

φµ1...µs =
1

6
tr(e(µ1 . . . eµs)) (1.59)

The Chern-Simons theory with gauge algebra hs(λ) realizes Vasiliev theory and Chern-

Simons theory with gauge algebra sl(N,R) is a consistent truncation of the higher spin

gravity theory of fields with integer spin up to N [31, 32, 33].

1.5 Boundary charge algebra

Now we briefly review the boundary charge algebra following [33, 34]. We start at the

Hamiltonian formalism of the Chern-Simons theory in three dimensional spacetime. We

label the time coordinate as t and two space coordinate as xi, i = 1, 2. The Chern-Simons

12



action then reads

SCS =
k

4π

∫
M
dt ∧ dxi ∧ dxjtr(A0Fij − AiȦj) +

k

4π

∫
R×∂Σ

dt ∧ dxitr(A0Ai) (1.60)

A0 is Lagrange multiplier and Ai’s are dynamical fields, and the Poisson bracket is

{F,H} =
2π

k

∫
Σ

dxi ∧ dxjtr( δF

δAi(x)

δF

δAj(x)
) (1.61)

for two phase space functionals F [Ai] and H[Ai]. If the boundary terms can be neglected,

an infinitesimal gauge transformation with parameter Λ can be generated by the charge

G0(Λ) = k
4π

∫
Σ
dxi∧dxjtr(ΛFij). To include the boundary terms, we need to add a boundary

term to the charge to make it differentiable in the fields

G(Λ) = G0(Λ) +Q(Λ) (1.62)

with the boundary term, known as the boundary charge, satisfying the relation

δQ(Λ) = − k

2π

∫
∂Σ

tr(ΛδA) (1.63)

and it takes the simple form

Q(Λ) = − k

2π

∫
∂Σ

tr(ΛA) (1.64)

if the gauge transformation parameter Λ is independent on the fields. After gauge fixing,

the Q(Λ)’s define the global charges of the Chern-Simons theory, and the boundary charge

algebra is given by

δΛF = {Q(Λ), F} (1.65)

here the brackets are Dirac brackets on the reduced phase space, and can be calculated by

choosing field-dependent gauge parameters.
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CHAPTER 2

Introduction to the KdV hierarchies

2.1 KdV hierarchies

Symmetry is probably the most important concept in modern physics. It is not surprising

that integrable systems, in some sense the dynamical systems with ”maximal symmetry”,

have long played an important role in physics. In particular, we have found that the Chern-

Simons theory with gauge symmetry, or in a different perspective, as a higher spin gravity

theory with higher spin symmetry is closely related to the KdV hierarchies, a series of

integrable system hierarchies. In this chapter we review the KdV hierarchies to lay the

foundation of discussion of the relation.

The KdV equation is a partial differential equation firstly proposed to describe the prop-

agation of shallow water waves in channels to explain the soliton wave observed

4
∂u

∂t
=
∂3u

∂x3
+ 6u

∂u

∂x
(2.1)

The KdV equation is an integrable system, with a Lax pair description, infinitely many con-

served and commuting charges, soliton solutions with dispersion-free scattering, and compat-

ible with Painleve test. Later it is found to be a particular member of a series of integrable

system hierarchies, the so called KdV hierarchies, where an intergrable system hierarchy is

defined as a system with infinitely many commuting Hamiltonian flows that each defines an

integrable system.

We review the KdV hierarchies now using the formulation by Lax pairs of pseudo-

differential operators, which has been discussed extensively in the review [35]. Pseudo

differential operators are extension of differential operators to include negative powers of
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differentiations ∂ retaining the rules of differentiation, that is, the linearity and the Leibniz

rule. It has the form

F =
n∑

k=−∞

fk∂
k (2.2)

and the Leibniz rule translates to

∂if =
∞∑
0

Ck
i f

(k)∂i−k (2.3)

where the combinatorial factor satisfies the recursive relation Ck
i + Ck+1

i = Ck+1
i+1 for k ∈

N, i ∈ Z which is essentially the Leibniz rule and the boundary condition Ck
0 = 0, C0

i = 1. It

has the explicit formula

Ck
i =

i(i− 1) . . . (i− k + 1)

k!
(2.4)

We don’t have to define how the negative powers of differentiations act on a function, it’s

only the algebraic structure of the pseudo-differential operators that is of interest and gen-

erates the integrable system. We denote the subspace of pseudo-differential operators of

non-negative powers of differentiation by R+ and the subspace of pseudo-differential oper-

ators of negative powers of differentiation by R−, and the subspace of R+ with powers of

differentiation lower than n by Rn, n ∈ N. Furthermore, we define the residue of a pseudo-

differential operator, denoted by res, as the coefficient of ∂−1. It can be shown that the

residue of a commutator of two pseudo-differential operators is a total derivative, therefore

we have ∫
res(XY )dx =

∫
res(Y X)dx (2.5)

The n-th KdV hierarchy is formulated by the pseudo-differential operator L of n fields

L = ∂n + u1∂
n−1 + u2∂

n−2 + · · ·+ un−1∂ + un (2.6)

where ∂ = ∂
∂x

and uk = uk(x, t). A partial differentiation with respect to time is denoted

by a dot above. The formalism of pseudo-differential operators allows us to define L1/n, by

putting the ansatz L
1
n = ∂ +

∑∞
k=1 vk∂

1−k in the defining equation (L
1
n )n = L, which are
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essentially differential-algebraic equations of the coefficients that can be solved iteratively.

We define L−1 analogously and L
m
n is defined as (L

1
n )m. For the m-th dynamical equation

one defines

Pm = (Lm/n)+ (2.7)

where the subscript + denotes the projection to R+, and subscript − will also be used later

to denote the projection to R−. An integrable system is constructed by the Lax pair Pm, L,

i.e. the evolution equation

L̇ = [Pm, L] (2.8)

gives a system of partial differential equations for ui(x, t). As a consequence, a similar

equation holds for L
k
n , k ∈ N

˙
L
k
n = [Pm, L

k
n ] (2.9)

The equation yields u̇1 = 0, hence we usually set u1 = 0 from the very beginning. For the

KdV hierarchy an infinite set of conserved quantities can be obtained by

qk =

∫
res(L

k
n )dx (2.10)

It’s easy to check they are conserved by the equation of motion

q̇k =

∫
res(

˙
L
k
n )dx =

∫
res([Pm, L

k
n ])dx = 0 (2.11)

Like many other integrable systems, the n-th KdV hierarchy is bi-Hamiltonian, that is,

each equation of motion comes from two Hamiltonian structures, and the second Hamiltonian

structure is the Wn algebra, which, as an extension of Virasoro algebra, is closely related

to the conformal field theory [27]. To look at the bi-Hamiltonian structure of the KdV

hierarchies, we briefly review the Hamiltonian formalism first, and the simpler case is to

consider a dynamical system on a finite dimensional manifold M. The Poisson bracket is

the essential part of a Hamiltonian formalism. To define a Poisson bracket, we start with

a symplectic form ω, which is defined as a non-degenerate closed two form. We define a
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map from the tangent space to the cotangent space ξ → −iξω, it’s an isomorphism since

ω is non-degenerate. The Hamiltonian map H is defined as the inverse of this map, which

satisfies

α(η) = ω(η,Hα), η ∈ TM, α ∈ T ∗M (2.12)

The image of the differential of functions by the Hamiltonian map generates symplectomor-

phisms, that is, diffeomorphisms that preserves the symplectic form

LHdfω = (iHdfd+ diHdf )ω = −d2f = 0 (2.13)

The Poisson bracket is defined as

{f, g} = (Hdf)g = dg(Hdf) = ω(df, dg) (2.14)

It’s obviously antisymmetric, and the Jacobi identity comes from the closedness of ω. A

Hamiltonian flow generated by a Hamiltonian h is a flow of symplectomorphism generated

by Hdh

ḟ = (Hdh)f = {h, f} (2.15)

which is the familiar Hamilton equation (with a different sign convention).The Hamiltonian

formalism of infinite dimensional dynamical systems is a bit more complicated since we

don’t have a manifold to define the symplectic form and Hamiltonian map in a regular

way. Nonetheless we can still make analogous definitions retaining most of the algebraic

properties.

The n-th KdV hierarchy is formulated by the pseudo-differential operator L = ∂n +∑n
k=1 uk∂

n−k. A function is considered to be a function of uk’s and their derivatives of all

orders and possibly x. The tangent space is identified with Rn, and a tangent vector ∂a,

where a =
∑n

k=1 ak∂
n−k ∈ Rn, acts on a function by taking the functional derivative in the

direction of a, explicitly

∂af =
n∑
k=1

∞∑
i=0

a
(i)
k

∂f

∂u
(i)
k

=
n∑
k=1

∫
ak
δf

δuk
dx (2.16)
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The dual cotangent space is identified withR−/∂−nR−. A cotangent vectorX =
∑n

k=1Xk∂
−k

acts on a tangent vector a =
∑n

k=1 ak∂
n−k as

X(a) =

∫
res(Xa)dx =

∫ n∑
i=1

aiXn+1−idx (2.17)

We define a cotangent vector δf
δL

=
∑n

k=1 ∂
k−n−1 δf

δuk
for a function f .

δf

δL
(∂a) =

∫
res(a

δf

δL
)dx =

∫ n∑
k=1

ak
δf

δuk
dx =

n∑
k=1

∞∑
i=0

a
(i)
k

∂f

∂u
(i)
k

= ∂af (2.18)

Therefore δf
δL

is just df , the differential of the function f . Now it comes to the crucial part

of defining a Hamiltonian map. We define the Adler map from R−/∂−nR− to Rn depending

on a parameter z as

Az(X) = (LzX)+Lz − Lz(XLz)+ (2.19)

where Lz = L− zn. The dependence on z can be singled out as

Az(X) = A0(X) + znA∞(X) (2.20)

where A0(X) = (LX)+L − L(XL)+ and A∞(X) = [X,L]+. It can be shown that the map

Hz : X → ∂Az(x) is a Hamiltonian map for any z, that is, it’s antisymmetric and induces a

closed two form on its image, which is a subalgebra of the tangent space. The Hamiltonian

map induces a Poisson bracket

{f, g} = (Hz
δf

δL
)h =

∫
res(Az(

δf

δL
)
δg

δL
)dx (2.21)

In particular, it’s called the first Hamiltonian structure when z =∞ and the second Hamil-

tonian structure when z = 0. From the previously constructed conserved quantities of the

n-th KdV hierarchy, we define

hk = −n
k

∫
resL

k
ndx (2.22)

It can be verified that the m-th Hamiltonian flow is generated by the Hamiltonian hm+n

in the first Hamiltonian structure and by the Hamiltonian hm in the second Hamiltonian

structure. Therefore KdV hierarchies are bi-Hamiltonian.
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2.2 Examples

In the following we will present some members of the KdV hierarchies, for which we will

show that they are related to the Lifshitz Chern-Simons theories.

The n = 2 KdV hierarchy is the one which contains the original KdV equation as the

m = 3 member. It’s formulated by the pseudo-differential operator

L = ∂2 + u2 (2.23)

After putting the ansatz L
1
2 = ∂ +

∑∞
i=1 fi∂

−i into the defining equation (L
1
2 )2 = L, a set of

differential-algebraic equation is obtained

2f1 = u2

f
′

1 + 2f2 = 0

f 2
1 + f

′

2 + f3 = 0

. . . (2.24)

and we get

L
1
2 = ∂ +

u2

2
∂−1 − u

′
2

4
∂−2 +

u
′′
2 − u2

2

4
∂−3 +O(∂−4) (2.25)

For the KdV equation m = 3,

P3 = (L
3
2 )+ = ∂3 +

3

2
u2∂ +

3

4
u′2 (2.26)

The Lax pair commutator is

[P3, L] =
1

4
u
′′′

2 +
3

2
u2u2

′ (2.27)

and the Lax equation L̇ = [P3, L] takes the following form

4u̇2 = u
′′′

2 + 6u2u
′

2 (2.28)

which reproduces the KdV equation. The Poisson brackets can be computed by (2.21). For

the first Hamiltonian structure

{f, g}z=∞ = −2

∫
(
δf

δu2

)
′ δg

δu2

dx (2.29)
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so

{u2(x), u2(y)}z=∞ = 2δ
′
(x− y) (2.30)

Similarly, the second Hamiltonian structure is computed to be

{f, g} =

∫
(
δf

δu
)
′′′ δg

δu
+ 2u(

δf

δu
)
′ δg

δu
+ u

′ δf

δg

δg

δu
dx (2.31)

{u2(x), u2(y)}z=0 = −δ′′′(x− y)− u′(x)δ(x− y)− 2u(x)δ
′
(x− y) (2.32)

If the space is a circle |x| = 1 in the complex plane, we have the Hamiltonian structure

expressed in the Fourier components u2,k = 1
2πi

∫
xk+1u(x)dx

{u2,k, u2,l}z=0 =
1

2πi
(k(k − 1)δk+l,0 + (k − l)u2,k+l) (2.33)

It is the W2 algebra (up to rescaling of the Poisson bracket and the field), also known as

Virasoro algebra. According to (2.10) the conserved quantities are

q1 =
1

2

∫
u2dx

q2 = 0

q3 =
1

4

∫
u2

2dx

. . . (2.34)

The next example is the n = 3 KdV hierarchy, also know as the Boussinesq hierarchy

because it contains the Boussinesq equation as the m = 2 member. The pseudo-differential

operator L is now of third order and contains two independent fields u2 and u3

L = ∂3 + u2∂ + u3 (2.35)

and

L1/3 = ∂ +
1

3
u2∂

−1 +
1

3
(u3 − u′2)∂−2 + o(∂−3)

P2 = (L2/3)+ = ∂2 +
2

3
u2 (2.36)
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The Lax equation L̇ = [P2, L] takes the form

u̇2 = 2u
′

3 − u
′′

2

u̇3 = u
′′

3 −
2

3
u
′′′

2 −
2

3
u2u

′

2 (2.37)

Eliminating u3, an equation for u2 alone was obtained

ü2 = −1

3
u
′′′

2 −
4

3
(u2u

′

2)
′

(2.38)

This is the Boussinesq equation, which has been studied in the context of propagation of

waves. The second Hamiltonian structure is the W3 algebra. The conserved quantities are

q1 =

∫
res(L

1
3 ) =

1

3

∫
u2dx

q2 =

∫
res(L

2
3 ) =

∫
(
2

3
u3 −

1

3
u
′

2) =
2

3

∫
u3dx

. . . (2.39)

Now let’s consider the n = 4 KdV hierarchy and its m = 3 member. The pseudo-

differential operator L is now of fourth order and contains three fields u2,u3 and u4

L = ∂4 + u2∂
2 + u3∂ + u4 (2.40)

and

L1/4 = ∂ +
u2

4
∂−1 +

1

4
(u3 −

3

2
u
′

2)∂−2 + (
1

4
u4 −

3

8
u
′

3 +
5

16
u
′′

2 −
3

32
u2

2)∂−3 + o(∂−4)

P3 = L
3/4
+ = ∂3 +

3

4
u2∂ +

3

4
u3 −

3

8
u
′

2 (2.41)

The Lax equation L̇ = [P3, L] takes the form

u̇2 =
1

4
u
′′′

2 −
3

2
u
′′

3 + 3u
′

4 −
3

4
u2u

′

2

u̇3 = −2u
′′′

3 + 3u
′′

4 +
3

4
u
′′′′

2 −
3

4
u2u

′

3 −
3

4
u3u

′

2

u̇4 = u
′′′

4 +
3

8
u
′′′′′

2 −
3

4
u
′′′′

3 +
3

4
u2u

′

4

− 3

4
u2u

′′

3 +
3

8
u2u

′′′

2 −
3

4
u3u

′

3 +
3

8
u3u

′′

2 . (2.42)
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and the conserved quantities are

q(1) =

∫
res
(
L

1
4

)
=

1

4

∫
u2dx

q(2) =

∫
res
(
L

2
4

)
=

∫
(
1

2
u3 −

1

2
u′2) =

1

2

∫
u3dx

q(3) =

∫
res
(
L

3
4

)
=

∫
(
3

4
u4 −

3

8
u′3 +

1

16
u′′2 −

3

32
u2

2) =

∫
(
3

4
u4 −

3

32
u2

2)dx

. . . (2.43)

2.3 Drinfeld-Sokolov reduction

It’s well known that we can reduce the order of differential equations by introducing more

variables. It turns out the n-th KdV hierarchy, which we formulated by the differential

operator L = ∂n +
∑n

k=1 uk∂
n−k of order n, can be formulated by matrix-valued first order

differential operator instead, this is often called the Drinfeld-Sokolov reduction named after

its inventors[36]. We consider the n×n matrix-valued first order differential operator of the

form

lq = ∂ − J + q (2.44)

Here ∂ is short for the matrix with the diagonal elements being ∂ and everything else zero.

J =
∑n−1

i=1 ei,i+1 where ei,j is the matrix with the i, j entry being 1 and everything else zero.

J is the V 2
1 element in the usual matrix representation of sl(N,R). q is a n × n matrix in

general, with its entries being functions of x, t. Let F be a column vector with entries being

the functions of x, t

F =


f

f2

. . .

fn

 (2.45)

If we set q to be the matrix with the bottom row being un, un−1, . . . , u1 and everything else

zero, then the equation lqF = 0 is equivalent to n differential equations, with n− 1 of them

22



defining fi as f (i−1) and the last one reduced to Lf = 0. In fact for any lower triangular

matrix q, lqF = 0 corresponds to a differential equation of f of order n. That is, the

n×n matrix-valued first order differential operator lq corresponds to a n-th order differential

operator, and it can be shown that the correspondence is one-to-one for equivalent classes of

lq under similarity transformations by matrices of the form S = I + ν, where ν is a strictly

lower triangular matrix, and we call that kind of transformation a gauge transformation for

lq. The Hamiltonian structure of lq can be defined in a similar way to what we did for L,

and it can be shown that it’s equivalent to the Hamiltonian structure of L generated by the

Adler map[35].

In fact, we can formulate KdV hierarchies by Lax pairs of matrix valued pseudo-differential

operators. We will defer its discussion to Chapter 4 since it directly helps us to establish the

relation between KdV hierarchies and the Lifshitz Chern-Simons theory.
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CHAPTER 3

Lifshitz Chern-Simons theory and the asymptotic

symmetry

3.1 Lifshitz spacetime and Lifshitz field theories

The asymptotic AdS solution in the Chern-Simons theory, which is dual to a CFT on the

boundary, has been extensively studied (e.g.[33]). However, Chern-Simons theory also al-

lows for the construction of non-AdS solutions [37, 38, 39, 40], such as asymptotically

Lobachevsky, Schrödinger, warped AdS and Lifshitz spacetimes. The three dimensional

Lifshitz spacetime takes the form

ds2 = dρ2 − e2zρdt2 + e2ρdx2 (3.1)

It recovers the AdS spacetime when z = 1. Lifshitz spacetimes are not solutions to Einstein’s

gravity and nontrivial matter interactions must be added. The first Lifshitz spacetime solu-

tion was found in four-dimensional gravity coupled to antisymmetric tensor fields [41]. The

shift ρ → ρ + lnλ in the holographic radial coordinate induces Lifshitz scaling on t, x, that

is, an anisotropic scaling transformation on the spacetime coordinate

t→ λzt, x→ λx (3.2)

where z is called Lifshitz scaling exponent. An asymptotic Lifshitz solution in the Chern-

Simons theory is a solution to the flatness condition which yields an asymptotic Lifshitz

spacetime. It is dual to a field theory of Lifshitz scaling symmetry on the boundary. Unlike

the isotropic scaling symmetry, Lifshitz symmetry is not compatible with the Poincare sym-

metry hence it cannot be found in relativistic field theories, which laid the foundation for the
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particle physics. However, it’s ubiquitous and important in condensed matter systems near

quantum critical points (see e.g. [41]). The Lifshitz symmetry in two dimensional spacetime

is given by the time translation H, the space translation P and the Lifshitz scaling D, they

satisfy the Lifshitz algebra

[P,H] = 0

[D,H] = zH

[D,P ] = P (3.3)

The energy momentum tensor contains four components, the energy density E , the energy

flux Ex, the momentum density Px and the stress density Πx
x. These components satisfy the

conservation law

∂tE + ∂xEx = 0

∂tPx + ∂xΠ
x
x = 0 (3.4)

In addition, the scaling invariance imposes a modified traceless condition for the energy

momentum tensor

zE + Πx
x = 0 (3.5)

as compared the traceless condition of the energy momentum tensor of conformal field the-

ories.

3.2 Asymptotic Lifshitz solution of Chern-Simons theory

In the following we will focus on the construction of asymptotically Lifshitz solutions that

is, the solutions that yield asymptotic Lifshitz spacetimes, in the Chern-Simons theory with

gauge algebra hs(λ). We following the approach developed in [42], with detailed results

in my paper [43] [44]. First of all, we choose the ”radial gauge” as in [33] to specify the
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ρ-dependence of the connection

Aµ(x, t, ρ) = b−1aµ(x, t)b+ b−1∂µb

Āµ(x, t, ρ) = bāµ(x, t)b−1 + b∂µ(b−1) (3.6)

where b = exp(ρL0). Here L0 is a Cartan generator of a sl(2,R) sub-algebra of sl(N,R), or

its correspondent V 2
0 in hs(λ). In this ”radial gauge” the flatness condition (1.43) reduces

to equations of the ρ-independent fields at and ax

∂tax − ∂xat + [at, ax] = 0, ∂tāx − ∂xāt + [āt, āx] = 0 (3.7)

To preserve the radial gauge under a gauge transformation, the gauge transformation pa-

rameter must take the form

Λ(ρ, x, t) = b−1λ(x, t)b (3.8)

and the gauge transformation on Aµ translates to the gauge transformation on aµ

δaµ = ∂µλ+ [aµ, λ] (3.9)

Therefore the time evolution of ax and at can be viewed as a gauge transformation generated

by gauge transformation parameter at.

The solutions which produce an exact Lifshitz metric with Lifshitz scaling exponent z

can be easily found, the unbarred connection is given by

a = V z+1
z dt+ V 2

1 dx, A = V z+1
z ezρdt+ V 2

1 e
ρdx+ V 2

0 dρ (3.10)

and the barred connection is given by

ā = V z+1
−z dt+ V 2

−1dx, Ā = V z+1
−z ezρdt+ V 2

−1e
ρdx− V 2

0 dρ (3.11)

One can verify by (1.58) that these connections yield a Lifshitz spacetime with an arbitrary

integer z. For an integeral value λ = N , the algebra hs(λ) is truncated to sl(N,R). For

example in the z = 2 case, one reproduces the sl(3,R) Lifshitz connections studied in [42]

with the identification V 3
±2 = W±2, V

2
±1 = L±1 and V 2

0 = L0.
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In the following we will consider connections where the barred sector is determined in

terms of the unbarred sector. This is possible due to an automorphism of hs(λ) algebra,

which is obtained from a conjugation (V s
m)c = (−1)s+m+1V s

−m (see Appendix A). In particular

the generator V 2
0 used in constructing the radial gauge transformations is self conjugate up

to a sign, i.e. (V 2
0 )c = −V 2

0 . Consequently, if A solves the flatness condition F = 0 in

the radial gauge, the barred connection is chosen to be the conjugate Ā = Ac, which is

automatically in the radial gauge and satisfies the flatness condition F̄ = 0. From now on

we will leave out the barred sector as it is determined from the un-barred sector. Though we

have explicit expression for Lifshitz connections (3.10), they are static solutions without any

dynamics. Here we want to construct asymptotic Lifshitz, in which leading terms are Lifshitz

connections given by (3.10) where additional terms are present with sub-leading powers eρ.

Consequently such connections will lead to asymptotic Lifshitz spacetimes where the metric

and tensor fields have additional terms which become negligible as ρ→∞ compared to the

Lifshitz vacuum.

To further simplify the theory, we choose the ”lowest weight gauge”, that is, ax only

contains lowest weight terms except for V 2
1

ax = V 2
1 +

∞∑
i=2

αiV
i
−i+1 (3.12)

In general we can transform away all non lowest weight terms in ax step by step. Under an

infinitesimal gauge transformation, the variation of ax is δax = [ax, λ] + ∂xλ. We have V 2
1 in

ax, so we can put V s
s−2 in the gauge parameter λ to gain a highest weight term V s

s−1 in δax

from the commutator. We can exponentiate this infinitesimal transformation to cancel the

highest weight term in the original ax. After eliminating all highest weight terms, we use

V s
s−3 in λ to cancel V s

s−2 terms. Do this recursively we get to the lowest weight gauge.

With the lowest weight gauge chosen for ax, at should start with V z+1
z to yield asymptotic

Lifshitz spacetime with scaling exponent z, and its non-highest weight terms should be

completely determined by highest weight terms because it must preserve the lowest weight

gauge of ax in time evolution. Hence the asymptotic Lifshitz connection is determined up

to the free choice of the highest weight terms in at, which we call a gauge freedom of at, if
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any abuse of terminology, because the time evolution of ax is a gauge transformation with

gauge parameter at anyway. We will choose the highest weight terms in at to be differential

polynomials of the fields in ax, hence all fields in at will be differential polynomials of the

fields in ax. We will see some gauge choice is of particular interests because it’s related to

the KdV hierarchy, which we call ”KdV gauge”.

Needless to say the Lifshitz scaling symmetry plays a fundamental role in the construction

of asymptotic Lifshitz connection and in fact it allows us to assign a scaling dimension to

each field. The pedestrian way to see it is that the weight of hs(λ) elements is additive under

multiplication of elements hence the fields as the coefficients of the elements in ax gain a

scaling dimension. By the flatness condition (3.7) we have

[∂x] = 1 [∂t] = z

[αi] = i (3.13)

In fact, the scaling dimensions correspond to the scaling of the fields demanding the invari-

ance of the connections Atdt and Axdx under the Lifshitz scaling

ρ
′
= ρ+ log λ

x
′
= λ−1x

t
′
= λ−3t (3.14)

Now we begin our explicit construction of asymptotic Lifshitz connection. The infinite

dimensional gauge algebra hs(λ) is hard to work with in a explicit computation, so we usually

work with sl(N,R) as the truncation of hs(λ) when λ = N to obtain concrete results. Here

we present a few examples we have worked out. The first is the z = 2 asymptotic Lifshitz

solution to the Chern-Simons theory with gauge algebra sl(3,R). The asymptotic Lifshitz
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connection is1

ax = V 2
1 + α2V

2
−1 + α3V

3
−2

at = V 3
2 + 2α2V

3
0 −

2

3
α′2V

3
−1 − 2α3V

2
−1 +

(
α2

2 +
1

6
α′′2

)
V 3
−2 (3.15)

The flatness condition yields the equations of motion

α̇2 = −2α′3

α̇3 =
4

3
(α2

2)′ +
1

6
α′′′2 (3.16)

Note that we actually can’t add a V 2
1 term to at because that would require a field of scaling

dimension one to be the coefficient, which cannot be a differential polynomial of fields in ax.

So in this case we pretty much don’t have the gauge freedom of at (if we insist it should be

a differential polynomial of ax). In addition, the Lifshitz scaling symmetry of the equation

of motion is obvious.

Our next example is z = 3 asymptotic Lifshitz solution to the Chern-Simons theory with

gauge algebra sl(4,R).

ax = V 2
1 + α2V

2
−1 + α3V

3
−2 + α4V

4
−3

at = V 4
3 + (c− 41

5
)α2V

2
1 + . . . (3.17)

Here the coefficient of V 2
1 in at has to be a constant multiple of α2 by dimensional analysis

and the gauge freedom of at is characterized by a single parameter c. The flatness condition

yields the equations of motion

α̇2 = −(
41

10
− 1

2
c)α

′′′

2 − (
123

5
− 3c)α

′

2α2 +
54

5
α
′

4

α̇3 = −1

2
α
′′′

3 − (15− c)α′3α2 − (30− 3c)α
′

2α3

α̇4 =
1

10
α
′′′

4 +
1

120
α
′′′′′

2 − (30− 4c)α
′

2α4 − (
27

5
− c)α2α

′

4 − 12α
′

3α3 +
13

30
α2α

′′′

2

+
59

60
α
′

2α
′′

2 +
24

5
α2

2α
′

2 (3.18)

1Here we have adapted the general notation, with −L in the paper [42] replaced by α2 and W replaced
by α3.

29



Again the Lifshitz scaling symmetry of the equation of motion is obvious. If we want a

conserved quantity with scaling dimension two, it must be the integral of α3, therefore α̇3

must be a total derivative and we have to choose c = 15
2

. In the next chapter we will see the

theory corresponds to m = 3 member of the n = 4 KdV hierarchy with the choice c = 15
2

.

3.3 Boundary charge algebra of Lifshitz Chern-Simons theory

The Lifshitz symmetry is not only realized on the level of equation of motion, it’s also

realized as Lifshitz subalgebra in the boundary charge algebra. In the radial gauge the

defining equation of the boundary charge simplifies to

δQλ = − k

2π

∫
dxtrΛδAx = − k

2π

∫
dxtrλδax (3.19)

The gauge transformation of the Chern-Simons theory induces a Poisson structure on the

Lifshitz field theory on the boundary as follows

δλφ = {Qλ, φ} (3.20)

The Poisson brackets of all fields can be computed by choosing field-dependent gauge pa-

rameters, and the algebra of boundary charges is called the boundary charge algebra. The

three gauge parameters generating time translation, space translation and Lifshitz scaling

are

λH = −at

λP = −ax

λD = xax + ztat − V 2
0 (3.21)

We can verify directly by the flatness condition that these gauge parameters generate the

desired transformations and preserve lowest weight gauge for ax. Now we calculate the

corresponding boundary charges Q(ΛH), Q(ΛP ) and Q(ΛD), that is, the Hamiltonian, the

momentum, and the charge which corresponds to Lifshitz scaling, to verify they satisfy the

commutation relation of Lifshitz algebra (3.3). In addition, we also want to check the energy
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momentum conservation and modified traceless condition of the energy momentum tensor

for the Lifshitz Chern-Simons theory.

For sl(3,R), z = 2 Lifshitz Chern-Simons theory, the generic gauge transformation pa-

rameter is

λ =
1∑

i=−1

εiV
2
i +

2∑
j=−2

χjV
3
j . (3.22)

To keep ax in the lowest weight gauge, only the coefficient of highest weight terms ε1, χ2

are free and all the other variables in the gauge parameter are expressed in terms of them.

We can assign specific values to ε1, χ2 to get gauge parameters generating time translation,

space translation and Lifshitz scaling

ε1 = 0, χ2 = −1, λ = λH

ε1 = −1, χ2 = 0, λ = λP

ε1 = x, χ2 = 2t, λ = λD (3.23)

Using (3.19) we get the corresponding boundary charges

Q(ΛH) =
2k

π

∫
dxα3

Q(ΛP ) = −2k

π

∫
dxα2

Q(ΛD) =
2k

π

∫
dx(xα2 − 2tα3) (3.24)

Using (1.65) we can verify they form a Lifshitz subalgebra

{Q(ΛH), Q(ΛP )} = 0

{Q(ΛD), Q(ΛH)} = 2Q(ΛH)

{Q(ΛD), Q(ΛP )} = Q(ΛP ) (3.25)

In addition, we identify the density of Q(ΛH) as the energy density, the density of Q(ΛP ) as

the momentum density

E =
2k

π
α3

Px = −2k

π
α2. (3.26)
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Use the traceless condition of the energy-momentum tensor of Lifshitz field theory 2E+Πx
x =

0 to get Πx
x = −4k

π
α3, we can verify that the conservation of momentum

∂tPx + ∂xΠ
x
x = 0 (3.27)

is guaranteed by the equations of motion. Plugging the expression for E into the equation

of conservation of energy ∂tP + ∂xEx = 0 one obtains the expression for energy flow

Ex = −2k

π
(
2

3
α2

2 +
1

6
α
′′

2) (3.28)

For sl(4,R), z = 3 Lifshitz Chern-Simons theory with c = 15
2

, the generic gauge transfor-

mation parameter is

λ =
1∑

i=−1

εiV
2
i +

2∑
j=−2

χjV
3
j +

3∑
k=−3

µkV
4
k . (3.29)

Again to keep ax in the lowest weight gauge, only the highest weight terms ε1, χ2, µ3 are

free. By appropriately choosing values for these three variables, we get the desired gauge

parameters

ε1 =
7

10
α2, χ2 = 0, µ3 = −1, λ = λH

ε1 = −1, χ2 = 0, µ3 = 0, λ = λP

ε1 = x− 21

10
α2t, χ2 = 0, µ3 = 3t, λ = λD (3.30)

For these three gauge parameters, we use (3.19) to calculate the boundary charges

Q(ΛH) =
k

2π

∫
dx(−36α4 +

7

2
α2

2)

Q(ΛP ) =
k

2π

∫
dx(−10α2)

Q(ΛD) =
k

2π

∫
dx(10xα2 + 108tα4 + 21tα2

2) (3.31)

Using (1.65) we can verify the Lifshitz symmetry algebra. The density of Q(ΛH) is identified

with the energy density up to a total derivative and the density of Q(ΛP ) is identified with

the momentum density

E =
k

2π
(−36α4 +

7

2
α2

2 +
7

6
α
′′

2)

Px = − k

2π
10α2 (3.32)
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Using the traceless condition of the energy-momentum tensor 3E+ Πx
x = 0 to get Πx

x = −3E ,

we can show that

∂tPx + ∂xΠ
x
x = 0. (3.33)
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CHAPTER 4

Lifshitz Chern-Simons theory and KdV hierarchies

4.1 Lifshitz Chern-Simons theory and KdV hierarchies identified

In this chapter I demonstrate that there is a one to one correspondence between the Lifshitz

Chern-Simons theories and members of the KdV hierarchies. It’s mainly inspired by two

facts, first, both theories possess Lifshitz scaling symmetries, and the second, the flatness

condition very much resembles a Lax type equation. We begin by discussing two examples

z = 2, sl(3,R) and z = 3, sl(4,R) Lifshitz Chern-Simons theory. Then we propose a conjec-

ture that Lifshitz Chern-Simons theory with Lifshitz scaling exponent z and gauge algebra

sl(N,R) corresponds to the m-th member of the n-th KdV hierarchy, with m = z and N = n.

Then we prove the correspondence by Drinfeld-Sokolov formalism of KdV hierarchies.

We recall that for z = 2, sl(3,R) Lifshitz Chern-Simons theory the equations of motion

is

α̇2 = −2α′3 (4.1)

α̇3 =
4

3
(α2

2)′ +
1

6
α′′′2 (4.2)

Compared to the Boussinesq equations (n = 3,m = 2 member in the KdV hierarchies)

u̇2 = 2u
′

3 − u
′′

2

u̇3 = u
′′

3 −
2

3
u
′′′

2 −
2

3
u2u

′

2 (4.3)

we find the following map identifies two sets of equations

u2 = 4α2

u3 = −4α3 + 2α
′

2 (4.4)
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or conversely

α2 =
1

4
u2

α3 = −1

4
u3 +

1

8
u
′

2. (4.5)

In addition, the conserved boundary charges energy and momentum of the Chern-Simons

theory are proportional to the conserved quantities in the KdV hierarchy

Q(ΛH) =
2k

π

∫
dxα3 ∼ q2 =

2

3

∫
u3dx

Q(ΛP ) = −2k

π

∫
dxα2 ∼ q1 =

1

3

∫
u2dx

(4.6)

For sl(4,R), z = 3 case, it has the novelty of gauge dependence described by the parameter

c. We want to find a map from Chern-Simons connection variables to KdV variables such

that the equations of motion of Chern-Simons theory are equivalent to the m = 3 member of

n = 4 KdV hierarchy. The Chern-Simons variables have scaling dimensions from the Lifshitz

isometry as discussed in Chapter 3. The KdV variables also have scaling dimensions by the

formulation of pseudo-differential operators. The fact that the scaling dimensions on both

sides have to agree puts strong restrictions on the map of the variables. Hence we must use

the ansatz u2 = kα2, u3 = aα
′
2 + bα3. For the second KdV equation

u̇3 = −2u
′′′

3 + 3u
′′

4 +
3

4
u
′′′′

2 −
3

4
u2u

′

3 −
3

4
u3u

′

2 (4.7)

on the right hand side α2α
′
3 and α

′
2α3 have the same coefficients, on the left hand side the

same kind of terms come from α̇3 = −1

2
α
′′′
3 − (15− c)α′3α2− (30− 3c)α

′
2α3, so we must have

(15− c) = (30− 3c), obtaining c =
15

2
. Comparing terms and check integrability condition

recursively one can obtain k = 10, a = 10, b = 24 and the full map

u2 = 10α2

u3 = 10α
′

2 + 24α3

u4 = 3α
′′

2 + 9α2
2 + 12α

′

3 + 36α4 (4.8)
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establish the correspondence. With c = 15
2

, the equation of motion of sl(4,R), z = 3 Lifshitz

Chern-Simons theory reads

α̇2 = − 7

20
α
′′′

2 −
21

10
α
′

2α2 +
54

5
α
′

4

α̇3 = −1

2
α
′′′

3 −
15

2
α
′

3α2 −
15

2
α
′

2α3

α̇4 =
1

10
α
′′′

4 +
1

120
α
′′′′′

2 +
21

10
α2α

′

4 − 12α
′

3α3 +
13

30
α2α

′′′

2 +
59

60
α
′

2α
′′

2 +
24

5
α2

2α
′

2 (4.9)

In addition, the momentum and energy in the Chern-Simons theory are proportional to the

conserved quantities in the KdV hierarchy

Q(ΛH) =
k

2π

∫
dx(−36α4 +

7

2
α2

2) ∼ q3 =

∫
(
3

4
u4 −

3

32
u2

2)dx

Q(ΛP ) =
k

2π

∫
dx(−10α2) ∼ q1 =

1

4

∫
u2dx

(4.10)

In the two previous examples we have mapped the equations of motion for asymptotic

Lifshitz connections to member of the KdV hierarchy in two particular cases, namely the

z = 2, sl(3,R) to the n = 3,m = 2 element of the KdV hierarchies and z = 3, sl(4,R) to

the n = 4,m = 3 element of the KdV hierarchies. These results inspire us to propose the

general conjecture: the Lifshitz Chern-Simons theory with gauge algebra sl(N,R) and an

integer Lifshitz scaling exponent z corresponds to the member of the KdV hierarchy with

n = N,m = z. Many more examples have been worked out to verify this conjecture in [44],

which we include in (Appendix C).

4.2 A proof by Drinfeld-Sokolov formalism

In fact, we can prove it by the Drinfeld-Sokolov formalism of KdV hierarchies[36], where the

it is formulated in Lax type equation of matrix-valued PDOs, which is very similar to the

construction of asymptotic Lifshitz connection in Chern-Simons theory. To begin with, we

rewrite the flatness condition in a Lax form

d

dt
Dx + [at, Dx] = 0, (4.11)
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where the covariant derivative Dx = ∂x + ax is regarded as a Lie algebra valued differential

operator (and hence it can be regarded as a PDO without any negative powers of ∂). For

the gauge algebra sl(N,R), we can use the matrix representation and the flatness condition

becomes a Lax equation the of matrix valued PDO. Our main result is that both the Lifshitz

Chern-Simons theory and the KdV hierarchy can be deduced from the Drinfeld-Sokolov

formalism and are related by making two different gauge choices for the PDO.

The Drinfeld-Sokolov formalism starts by defining the PDO valued in sl(N,R)

Lq = ∂x + q(x, t) + Λ, (4.12)

where q is a lower triangular matrix (or non-positive weight element, if we use the terminology

in hs(λ) and view sl(N,R) as a truncation of it) and

Λ = V 2
1 + λe. (4.13)

The parameter λ should not be confused with the deformation parameter in the gauge

algebra hs(λ). In fact the construction in the present section is limited to sl(N,R) and it is

an interesting open question how to generalize the present construction to hs(λ).

Here ei,j denotes the matrix with a single one in the i’th row and j’th column, and zeros

elsewhere. In the matrix representation we use, V 2
1 = J =

∑N−1
i=1 ei,i+1, and e = eN,1 is

proportional to V N
−N+1. The Lax equation is defined as

d

dt
L = [P,L], (4.14)

where P is some differential polynomial in q that has to be carefully chosen. The left

hand side of the Lax equation is independent on λ and lower triangular, so we want the

commutator on the right hand side to be also independent on λ and lower triangular. Suppose

M =
∑n

i=−∞miλ
i is a matrix that commutes with L where mi’s are matrix valued coefficients

(i.e. matrices multiplied by powers in λ), then we can set P = M+, the part of M with

non-negative powers in λ. From [M,L] = 0 it follows [M+, L] = −[M−, L]. Since the left

hand side only contains non-negative powers in λ but the right hand side only contains

non-positive powers in λ, they should be both independent on λ and −[M−, L] = [m−1, e] is
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necessarily lower triangular. Now we have [P,L] = [M+, L] = [m0, ∂x + V 2
1 + q]. We identify

V 2
1 + q as ax, so we have L = Dx + λe. We furthermore identify −m0 = −Zero(P ) as at,

where symbolically Zero means to take the λ0 part. Then the Lax equation is reduced to our

flatness condition in Chern-Simons Lifshitz theory. It should be noted that the parameter

λ is used in setting up the PDOs, the actual equations of motion and the conserved charges

are all independent on λ.

As we discussed in Chapter 2, the gauge equivalence classes of the matrix valued PDO lq

are in one-to-one correspondence to the ordinary PDO L. Therefore we want to impose the

restriction on the Lax equation that it must preserve gauge equivalence. Furthermore it will

be shown that the Lifshitz Chern-Simons theory and the KdV hierarchy are just reduction of

Drinfeld-Sokolov formalism by special gauge choices. The gauge transformation, is defined

for a PDO as

L′q = S−1LqS, (4.15)

where S is a λ-independent lower triangular matrix with ones in the diagonal, or in the

higher spin algebra language, S is V 1
0 plus negative weight terms. Define L′q = ∂x+a′x+λe =

∂x + V 2
1 + q′ + λe, then this PDO gauge transformation induces a gauge transformation of

ax (or q)

a′x = S−1axS + S−1∂xS,

q′ = S−1V 2
1 S − V 2

1 + S−1∂xS, (4.16)

where we used the fact that e commutes with S in the calculation. By the explicit construc-

tion specified later P is a differential polynomial in q and so is the commutator [P,L]. Hence

the Lax equation is essentially a evolution equation for q

∂tq = p(q), (4.17)

where p(q) means a differential polynomial in q. We require the evolution equation to

preserve gauge equivalence, that is, when starting with two initial conditions for q which

are connected by a gauge transformation, the two solutions should be also connected by a
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(time-dependent) gauge transformation at any time. The Lax equation preserving gauge

equivalence is actually an evolution equation of gauge equivalent classes. Needless to say, we

can choose representatives of some special form to specify the time evolution of the gauge

equivalent classes. This motivates the definition of the canonical form of L, or q. We denote

the part of q with weight −i by qi. In principle qi lies in the N − |i| dimensional linear

space spanned by V
|i|+1
i , . . . , V N

i . By restricting qi to be in a one dimensional subspace, that

is, a specific linear combination, we define a canonical form for q. For technical reasons,

we also require the one dimensional subspace has a nonzero lowest weight projection. The

name canonical form is justified by the following theorem, for any q there is a unique gauge

transformation to transform it into the canonical form, and the expression in the canonical

form is unique. See Appendix D.1 for a proof. The choice of the one dimensional subspaces

that q′i lie in defines the specific canonical form. Two choices are of particular importance in

our discussion. The first one, we restrict q′i to be lowest weight, if not an abuse of language,

we call this the lowest weight canonical form. The second one, we restrict q′i to be multiple

of e1,i+1, which we call the KdV canonical form. In the lowest weight canonical form,

q =
N∑
i=1

αiV
i
−i+1, (4.18)

the Lax equation d
dt
L = [P,L] gives us the flatness condition of Chern-Simons theory in the

lowest weight gauge (by appropriately choosing at). In the KdV canonical form

q = −
N∑
i=1

uie1,i, (4.19)

the Lax equation d
dt
L = [P,L] gives us KdV, as proved in the paper by Drinfeld and Sokolov.

The evolution equation in the lowest weight canonical form and that in the KdV canonical

form are just two special explicit forms of the same equation. There is a unique gauge

transformation that transforms between these two canonical forms, which establish the one-

to-one correspondence between Lifshitz Chern-Simons theory with sl(N,R), z and KdV with

n = N,m = z, and explicitly the map from αi’s to ui’s. From the relation

Tr[P,L] = −Tr[m−1, e] = 0, (4.20)
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it follows that the trace part of L must be constant by the equation of motion. In the

following we set to be zero for simplicity. For example, we can set α1 = 0 for the q in the

lowest weight canonical form.

Now let’s construct the conserved quantities from the Lax equation. In general, a general

matrix A whose elements are power series in λ (both positive and negative) can be uniquely

expanded in the form

A =
∑
i

aiΛ
i, (4.21)

where ai’s denote diagonal matrices which are independent of λ.

Here q is lower triangular, so it has the expansion
∑N−1

i=0 diΛ
−i, or equivalently

L = ∂x + Λ +
N−1∑
i=0

diΛ
−i. (4.22)

There is a similarity transformation to transform L into a scalar coefficient form, that is,

there is a formal series

T = E +
∞∑
i=1

hiΛ
−i, (4.23)

where hi’s are diagonal matrices, such that

L0 = TLT−1 = ∂x + Λ +
∞∑
i=0

fiΛ
−i, (4.24)

where fi’s are scalar functions, as opposed to matrices multiplied to the left. T is determined

up to multiplication by series of the form E +
∑∞

i=1 tiΛ
i where ti’s are scalar functions, and

fi’s are determined up to a total derivative. Most importantly

qi =

∫
fi , (4.25)

are conserved by the Lax equation. See Appendix D.2 for the proof.

The scalar coefficient form L0 = ∂x + Λ +
∑∞

i=0 fiΛ
−i not only gives us the conserved

quantities, but also can help us to determine the form of the matrices that commute with

L, and ultimately the form of P . Matrices that commute with L0 must take the form
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∑n
i=−∞ ciΛ

i with ci’s as constant coefficients, see Appendix D.3 for a proof. Therefore

matrices that commute with L must have the form

M = T−1

( n∑
i=−∞

ciΛ
i

)
T. (4.26)

because [M,L] = 0 is equivalent to [TMT−1, L0] = 0. Setting P = M+, we get the con-

sistent Lax equation d
dt
L = [P,L]. Despite the simple appearance, several remarks about

this equation are necessary. First, T is the series that transforms L into a form with scalar

coefficients L0 and it’s in general a differential polynomial in q, hence P is a differential

polynomial in q and so is the commutator [P,L]. Second, though T has the indeterminacy of

a multiplicative series E +
∑∞

i=1 tiΛ
−i where ti’s are scalar functions, P is uniquely defined

because
∑n

i=−∞ ciΛ
i commute with this series. Last but the most important, this Lax equa-

tion preserves gauge equivalence, a proof of this statement will be given in the Appendix

D.4.

As a evolution equation of gauge equivalent classes, the explicit form of the Lax equation

d
dt
L = [P,L] is certainly not unique and different explicit forms correspond to choice of

different representatives in gauge equivalent classes. We have the following theorem, if the

difference between P1 and P2 is a negative weight matrix with no time or λ dependence, then

d
dt
L = [P1, L] and d

dt
L = [P2, L] give the same evolution equations of gauge equivalent classes.

See Appendix D.5 for a proof. Applying this theorem, we can add a negative weight matrix

both independent on time and λ to P without actually changing the evolution equation of

gauge equivalent classes. We do need to do so when we want to obtain the Lax equation in

certain canonical form, because the commutator [P,L] is guaranteed to be negative weight,

but not necessarily in the specific canonical form. The correction added to P can be uniquely

determined. The proof of this statement will be omitted because it’s structurally the same

as the proof of existence and uniqueness of the gauge transformation that transforms L into

a canonical form.

At last we have enough ingredients to explain how the integrable Lifshitz Chern-Simons

theory for sl(N,R) and z emerges from the Drinfeld-Sokolov formalism. First the Lax

equation d
dt
L = [P,L] is equivalent to the flatness condition d

dt
Dx + [at, Dx] = 0 with the
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identification ax = V 2
1 +q and at = −Zero(P ). Second, the Lax equation, viewed as evolution

equation of gauge equivalent classes, can be put in the lowest weight canonical form, which

corresponds to lowest weight gauge choice in the Chern-Simons theory. Then, considering

the Lifshitz exponent is z, we set P = (T−1ΛzT )+ up to a multiplicative constant. At

last we add a correction to P to make [P,L] lowest weight. From P obtained in this way,

at = −Zero(P ) coincides with at in ”KdV gauge” in the previous section. If we choose the

KdV canonical form for L, we get KdV hierarchy as proved in the paper by Drinfeld and

Sokolov. The gauge transformation between the two canonical forms gives us the explicit

map between the Lifshitz Chern-Simons theory and the KdV hierarchy. This map is z

independent simply because z doesn’t involve in the construction of gauge transformation

between the two canonical forms.
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CHAPTER 5

The supersymmetric Lifshitz Chern-Simons theory and

super KdV hierarchies

The main goal of this chapter is to construct asymptotic Lifshitz solution to the supersym-

metric Chern-Simons theory, that is, Chern-Simons theory with a Lie superalgebra as the

gauge algebra. What’s more important, we want to extend the correspondence between the

Lifshitz Chern-Simons theory and the KdV hierarchy to the supersymmetric case. We choose

to work on a specific example, the Lifshitz Chern-Simons theory with gauge algebra sl(3|2)

and relate it to one of the supersymmetric extensions of the Boussinesq hierarchy.

5.1 Super KdV hierarchies

Now we briefly review the supersymmetric extension of the KdV hierarchies. Based on

superspace formalism of supersymmetry, The basic way of supersymmetric extension is to

introduce fermionic fields and to combine it with the original bosonic fields to form super-

fields, and then rewrite the equation of motion in terms of superfields and their covariant

derivatives. For example, in the N = 1 supersymmetric extension of the KdV equation[45],

by adding a fermionic field ξ(x) we introduce the fermionic superfield

Φ(x, θ) = ξ(x) + θu(x) (5.1)

in the (x, θ) superspace. The supersymmetry transformation is generated by the operator

Q = ∂θ − θ∂x (5.2)
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The covariant derivative is defined as

D = ∂θ + θ∂x (5.3)

It satisfies D2 = ∂x and {D,Q} = 0, so equations of motion of the superfields involving co-

variant derivatives are automatically supersymmetric. By inspection, the equation of motion

must take the form

Φ̇ = −∂3Φ + a∂(ΦDΦ) + (6− 2a)DΦ∂Φ (5.4)

to give the correct bosonic limit when ξ is set to zero. It was also shown that the parameter a

must take the value 3 to allow a supersymmetric extension of the first Hamiltonian structure.

Alternatively, we can require existence of higher order conserved quantities for the system

to be integrable to fix the free parameter.

Because sl(3|2) has two sets of fermionic generators, we should look for N = 2 supersym-

metric extension of n = 3 KdV hierarchy, that is, N = 2 super Boussinesq hierarchy. How-

ever brute force supersymmetric extension following the method above is not quite workable

because large amount of undetermined coefficients. Instead, since the second Hamiltonian

structure of the Boussinesq hierarchy is the W3 algebra, one should expect N = 2 super

Boussinesq hierarchy to possess N = 2 super W3 algebra as the second Hamiltonian struc-

ture. Guided by this principle, N = 2 super Boussinesq hierarchy was constructed in [46, 47]

in terms of two bosonic superfields J and T in the superspace coordinates (x, θ, θ̄)

J(x, θ, θ̄) = θ̄θu(x) + θξ(x) + θ̄ξ̄(x) + y(x)

T (x, θ, θ̄) = θ̄θz(x) + θη(x) + θ̄η̄(x) + v(x) (5.5)

with two free parameters c and α, where c is a free constant in the N = 2 super W3 algebra

realized by J, T that corresponds to rescaling freedom of J, T , and α is a free constant in the

Hamiltonian H =
∫
dxdθdθ̄ (T + αJ2) that generates the time evolution

J̇ = {J,H}, Ṫ = {T,H} (5.6)

The super Boussinesq equation should reduce to the Boussinesq equation when sl(3|2) re-

duces to sl(3, R), and that’s possible only when the parameter α takes the following value
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α = −4
c

[47]. After setting c = − 4
α

, the N = 2 super Boussinesq equation reads in terms of

superfields

J̇ = 2T
′ − δJ ′ + 4αJJ

′

Ṫ = −2J
′′′

+ δT
′ − 20α∂(D̄JDJ) + 8αJ

′
δJ + 4αJδJ

′

+ 16α2J2J
′ − 12αD̄JDT − 12αDJD̄T − 12αJ

′
T − 4αJT

′
(5.7)

where

D = ∂θ −
1

2
θ̄∂, D̄ = ∂θ̄ −

1

2
θ∂ (5.8)

δ = [D̄,D] (5.9)

It was shown in [46] that if we choose c = 8 the parameter α must take one of these three

values −2,−1
2
, 5

2
for the equation to be integrable in the sense that higher order conserved

charges exist. We see α = −4
c

= −1
2

is indeed one of them, and later an elegant Lax pair

formulation of this case was given in [48]. In the form in components the time evolution

equations (5.7) read

ẏ = 2(u+ v)
′
+ 4αyy

′

ξ̇ = ξ
′′

+ 2η
′
+ 4α(yξ)

′

˙̄ξ = −ξ̄′′ + 2η̄
′
+ 4α(yξ̄)

′

u̇ = 2z
′
+

1

2
y
′′′

+ 4α(yu)
′
+ 4α(ξξ̄)

′

v̇ = −2z
′ − 16αuy

′ − 8αu
′
y − 4αyv

′ − 12αy
′
v + 12α(ηξ̄ + η̄ξ) + 20α(ξξ̄)

′ − 2y
′′′

+ 16α2y2y
′

η̇ = −η′′ − 2ξ
′′′ − 28αu

′
ξ − 36αuξ

′ − 10αv
′
ξ − 12αvξ

′ − 12αuη + 12αzξ

+ 10αy
′′
ξ + 32α2yy

′
ξ + 2αy

′
ξ
′
+ 16α2y2ξ

′ − 4αyξ
′′ − 6αy

′
η − 4αyη

′

˙̄η = η̄
′′ − 2ξ̄

′′′ − 28αu
′
ξ̄ − 36αuξ̄

′ − 10αv
′
ξ̄ − 12αvξ̄

′
+ 12αuη̄ − 12αzξ̄

− 10αy
′′
ξ̄ + 32α2yy

′
ξ̄ − 2αy

′
ξ̄
′
+ 16α2y2ξ̄

′
+ 4αyξ̄

′′ − 6αy
′
η̄ − 4αyη̄

′

ż = −2u
′′′ − 1

2
v
′′′ − 64αuu

′ − 16αuv
′ − 12αu

′
v + 32α2yy

′
u+ 16α2y2u

′ − 4αyz
′ − 2αyy

′′′

+ 6αy
′
y
′′

+ 10αξ̄η
′
+ 6αξ̄

′
η − 10αξη̄

′ − 6αξ
′
η̄ + 14αξξ̄

′′ − 14αξ
′′
ξ̄ + 32α2(yξξ̄)

′
(5.10)
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5.2 sl(3|2), z = 2 Lifshitz Chern-Simons theory and its integrability

Now we look at the Chern-Simons theory. When we take the gauge algebra to be Lie

superalgebra, most notably sl(p|q), the Chern-Simons action takes the form

SCS[A] =
k

4π

∫
str
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
(5.11)

where str denotes the supertrace. In complete analogy to the non-supersymmetric case,

higher spin supergravity can be formulated by two copies of Chern-Simons actions, with the

vielbein and spin connection expressed in terms of the gauge connection

eµ =
1

2
(Aµ − Āµ), ωµ =

1

2
(Aµ + Āµ) (5.12)

and the metric is given by

gµν =
1

str(L0)2
str(eµeν) =

1

4str(L0)2
str((Aµ − Āµ)(Aν − Āν)) (5.13)

Now we focus on sl(3|2) Lifshitz Chern-Simons theory, that is, Chern-Simons theory with

sl(3|2) gauge algebra that gives asymptotic Lifshitz spacetime. It should be noted that

sl(3|2) Chern-Simons theory has been studied in the past, see for example [49, 50]. We

follow the notation of generators of sl(3|2) in [50] and the super matrix representation which

we include for completeness can also be found in the Appendix B. We adopt the radial gauge

as we did in the non-supersymmetric case

Aµ(ρ, x, t) = b(ρ)−1aµ(x, t)b(ρ) + b(ρ)−1∂µb(ρ), Āµ(ρ, x, t) = b(ρ)āµ(x, t)b(ρ)−1 + b(ρ)∂µb(ρ)−1

(5.14)

where b(ρ) = eρL0 and aρ = āρ = 0. Clearly the weight of terms in aµ will translate to growth

rate with ρ in Aµ because the weight is the eigenvalue of the commutator with L0. An exact

Lifshitz spacetime can be obtained by setting

ax = L1, at =

√
3

4
W2 (5.15)

āx = L−1, āt =

√
3

4
W−2 (5.16)
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that is

A = L0dρ+ L1e
ρdx+

√
3

4
W2e

2ρdt (5.17)

Ā = −L0dρ+ L−1e
ρdx+

√
3

4
W−2e

2ρdt (5.18)

One can verify that the connection yields Lifshitz spacetime ds2 = dρ2 +e2ρdx2−e4ρdt2 with

Lifshitz scaling exponent z = 2. Now we add dynamical terms to the connection but keeping

the leading term fixed to get asymptotic Lifshitz spacetime. We will focus on the unbarred

sector here, the barred sector can be worked out by the same algorithm thanks to the weight

flipping automorphism of sl(3|2). The ansatz of ax in the lowest weight gauge is

ax = L1 + jJ + aA−1 + lL−1 + wW−2 + gG− 1
2

+ hH− 1
2

+ sS− 3
2

+ tT− 3
2

(5.19)

with all the dynamical terms being the lowest weight elements in sl(3|2). The component

at should start with
√

3
4
W2, and its non-highest weight terms are completely determined by

highest weight terms because it must preserve the lowest weight gauge of ax in time evolution.

We take the highest weight terms to be differential polynomials of fields in ax of the correct

dimension, so at must take the form

at =

√
3

2
(
1

2
W2 + (d1a+ d2l + d3j

2 + d4j
′
)J + c1jA1 + c2jL1 + c3gG 1

2
+ c4hH 1

2
+ . . .)

(5.20)

with eight free constants c1, c2, c3, c4, d1, d2, d3, d4, and with non-highest weight terms omit-

ted. We factor out
√

3
2

for calculational simplicity. Now we deal with the problem of fixing at

to map the time evolution equation of ax to the N = 2 super Boussinesq equation. In order

to have the lowest dimensional conserved bosonic charge and fermionic quantities, j̇ and ġ

must be total derivatives.
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This condition fixes at up to only one free constant c3

c1 = −1

c2 = −2c3 +
5

3

c4 = −c3

d1 =
1

9
(8− 15c3)

d2 = −c3

d3 = −3c3

d4 = 0 (5.21)

It turns out if we set c3 = 1
3
, the time evolution equation of ax can be identified with the

N = 2 super Boussinesq equation after we rescale the time evolution by a factor −2
√

3, that

is equivalent to replacing at by −2
√

3at. The time evolution equation of ax we get after

replacing at by −2
√

3at is

j̇ = (l − a+ 3j2)
′

ġ = g
′′ − 6s

′
+ 4(jg)

′

ḣ = −h′′ − 6t
′
+ 4(jh)

′

ȧ =
3

2
j
′′′

+ 6w
′
+ 3jl

′
+ 6lj

′ − 6aj
′ − 3ja

′
+

15

2
(gh)

′
+

27

2
(gt+ hs)

l̇ = −3

2
j
′′′

+ 6w
′ − 3jl

′ − 6lj
′
+ 6aj

′
+ 3ja

′ − 33

2
(gh)

′ − 45

2
(gt+ hs)

ṡ = −s′′ + 2

3
g
′′′ − (10a+ 6l + 6j2 + 6j

′
)s− 4js

′
+ (

10

3
a
′
+

14

3
l
′ − 10

3
j
′′ − 16w +

32

3
aj − 4

3
jj
′
)g

+ (
14

3
a+

2

3
j2 + 6l − 2

3
j
′
)g
′
+

4

3
jg
′′

ṫ = t
′′

+
2

3
h
′′′

+ (10a+ 6l + 6j2 − 6j
′
)t− 4jt

′
+ (

10

3
a
′
+

14

3
l
′
+

10

3
j
′′

+ 16w − 32

3
aj − 4

3
jj
′
)h

+ (
14

3
a+

2

3
j2 + 6l +

2

3
j
′
)h
′ − 4

3
jh
′′

ẇ = −1

4
(a+ l)

′′′ − 2[(a+ l)2]
′ − 4j

′
gh+ j(gh)

′
+ 9j(gt+ hs)− 7

4
(gh

′′
+ hg

′′
)

− 9

4
g
′
t− 15

4
gt
′
+

9

4
h
′
s+

15

4
hs
′

(5.22)
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which can be identified with the N = 2 super Boussinesq equation via the explicit map

j = αy

g = kξ, h = −kξ̄

a = −3

4
αv, l = −α2y2 +

5

4
αv + 2αu

s = −1

3
kη, t =

1

3
kη̄

w =
α

4
z − α2

2
yv (5.23)

with k2 = 2α2, no matter which root k takes.

We have worked out a specific example of the relation between supersymmetric Chern-

Simons Lifshitz theory and super Boussinesq hierarchy, that is, we established the map

between sl(3|2) Lifshitz Chern-Simons theory and N = 2 super Boussinesq hierarchy such

that the time evolution equations of the two theories coincide. Now we show that there is a

structurally deeper connection of the two theories, the Poisson structure of sl(3|2) Lifshitz

Chern-Simons theory induced by gauge transformation is identical to the second Hamiltonian

structure of N = 2 super Boussinesq hierarchy.

The time evolution of Chern-Simons is essentially a gauge transformation with gauge

transformation parameter at, that is ȧx = δatax = ∂xat + [ax, at]. Fixed in the lowest weight

gauge, the gauge transformation induces a Poisson structure of the fields in the reduced

phase space [33]. That is, the gauge transformation of a field φ with gauge parameter λ

is regarded as a Poisson bracket between the field and and the charge associated with the

gauge transformation parameter

δλφ = {Qλ, φ} (5.24)

where the charge is given by

δQλ = C

∫
dx str λδax (5.25)

with C = − k
2π

. The Poisson brackets of all fields can be computed by choosing different

gauge parameters, and it’s used to calculate the boundary charge algebra in the context of
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holography, see for example [49]. Now the time evolution equation of Chern-Simons theory

can be recast in a form resembling the Hamiltonian dynamics

ȧx = {Qat , ax} (5.26)

On the other hand, the time evolution of the N = 2 super Boussinesq hierarchy is generated

by its Hamiltonian structure

Ṫ = {T,H}, J̇ = {J,H} (5.27)

Since we have a map between the two theories that identifies the time evolution equation, it’s

natural to conjecture the Poisson structure of the sl(3|2) Chern-Simons theory is identical to

the second Hamiltonian structure of N = 2 super Boussinesq hierarchy via the established

map. Note we have replaced at by −2
√

3at to make the map, it’s actually

ȧx = {−2
√

3Qat , ax} (5.28)

that is identified with the N = 2 super Boussinesq equation, therefore we must have

2
√

3Qat = H. Straightforward computation yields

2
√

3Qat = 2C

∫
dxj(l − a) + 4w + j3 − gh = 6αC

∫
dxz + 2α(yu+ ξξ̄) (5.29)

where we have used the map between two theories. On the other hand, the Hamiltonian of

the second Hamiltonian structure of N = 2 super Boussinesq hierarchy is given as

H =

∫
dxdθdθ̄(T + αJ2) =

∫
dxz + 2α(uy + ξξ̄) (5.30)

We see that 2
√

3Qat is equal to the Hamiltonian in the second Hamiltonian structure of the

N = 2 super Boussinesq hierarchy with the choice C = 1
6α

. We have computed the Poisson

structure of the sl(3|2) Chern-Simons theory with C = 1
6α

in the below. One can verify

it’s indeed identical to the second Hamiltonian structure of the N = 2 super Boussinesq

hierarchy given in [46].

As an example, we show how to calculate the Poisson bracket {h(x′), g(x)}. Clearly we

need to find a gauge transformation parameter λ which is associated with the charge Qλ
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that takes the form of an integral of the product of h and an arbitrary fermionic function.

str(G 1
2
H− 1

2
) is nonzero so we want λ to start with γG 1

2
, where γ is an arbitrary fermionic

function. The other non-highest weight terms in λ are determined by requiring the gauge

transformation preserves the lowest weight gauge of ax and we find

λ = γG 1
2
− (γ

′
+ γj)G− 1

2
− 9

4
γaS− 3

2
+ γhL−1 −

3

8
γtW−2 (5.31)

The associated charge is calculated as

δQλ =
1

6α

∫
dx str (λδax) = − 1

α

∫
dxγδ

Qλ = − 1

α

∫
dxγh (5.32)

The gauge transformation on g is calculated to be

δλg(x) = −γ(x)(
5

3
a(x) + j(x)2 + l(x) + j

′
(x))− 2γ

′
(x)j(x)− γ′′(x)

= {Qλ, g(x)} = − 1

α

∫
dx′γ(x′){h(x′), g(x)} (5.33)

Therefore

{h(x′), g(x)} = α(
5

3
a(x) + j(x)2 + l(x) + j

′
(x))δ(x′ − x)− 2αj(x)δ

′
(x′ − x) + αδ

′′
(x′ − x)

(5.34)
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We list the Poisson brackets of all the fields here

{j, j} = αδ
′

{j, g} = αgδ

{j, h} = −αhδ

{j, s} = αsδ

{j, t} = −αtδ

{h, g} = α(
5

3
a+ j2 + l + j

′
)δ − 2αjδ

′
+ αδ

′′

{h, s} =
4

9
α(−6w + a

′
+ 4aj)δ − 16

9
αaδ

′

{h, a} =
9

4
αtδ

{h, l} = −α(2jh+ h
′
+

15

4
t)δ + 3αhδ

′

{h,w} = α(
2

3
ah+

3

2
jt+

3

8
t
′
)δ +

15

8
αtδ

′

{g, t} = −4

9
α(6w + a

′ − 4aj)δ +
16

9
αaδ

′

{g, a} = −9

4
αsδ

{g, l} = −α(−2jg + g
′ − 15

4
t)δ + 3αgδ

′

{g, w} = −α(
2

3
ag +

3

2
js− 3

8
s
′
)δ − 15

8
αsδ

′

1

6α
{5a+ 3l + 3j2, g} = −g′δ +

3

2
gδ
′

1

6α
{5a+ 3l + 3j2, h} = −h′δ +

3

2
hδ
′

1

6α
{5a+ 3l + 3j2, a} = −a′δ + 2aδ

′

1

6α
{5a+ 3l + 3j2, l} = −l′δ + 2lδ

′
+

1

2
δ
′′′

1

6α
{5a+ 3l + 3j2, s} = −s′δ +

5

2
sδ
′

1

6α
{5a+ 3l + 3j2, t} = −t′δ +

5

2
tδ
′

1

6α
{5a+ 3l + 3j2, w} = −w′δ + 3wδ

′
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{a, a} = −3

8
α(5a

′ − 3l
′
)δ +

3

8
α(10a− 6l)δ

′ − 9

16
αδ
′′′

{a, s} = −α
4

(g(9l − 9a+ j2 + j
′
) + 6js+ 2jg

′
+ 6s

′
+ g

′′
)δ +

α

4
(4jg + 15s+ 4g

′
)δ
′ − 3α

2
gδ
′′

{a, t} = −α
4

(h(9a− 9l − j2 + j
′
)− 6jt+ 2jh

′
+ 6t

′ − h′′)δ +
α

4
(4jh+ 15t− 4h

′
)δ
′
+

3α

2
hδ
′′

{a, w} = −3α

16
(−15(gt+ hs) + 5(gh)

′
+ 4w

′
)δ +

3α

16
(15gh+ 12w)δ

′

{t, t} =
2α

3
(10ht+

4

3
hh
′
)δ

{s, s} = −2α

3
(10gs− 4

3
gg
′
)δ

{t, s} = −2α

3
(−5

2
a2 +

5

9
aj2 +

1

6
j4 + al +

5

3
j2l +

3

2
l2 +

8

3
jgh+ 4gt+ 3gh

′ − 4hs− 4

3
hg
′

− 8

3
jw +

5

9
(ja)

′
+

5

3
(jl)

′
+ j2j

′
+

1

2
(j
′
)2 − 4

3
w
′
+

1

6
a
′′

+
2

3
jj
′′

+
1

2
l
′′

+
1

6
j
′′′

)δ

+
2α

3
(
10

9
aj +

2

3
j3 +

10

3
jl +

13

3
gh)− 8

3
w +

5

9
a+ 2jj

′
+

5

3
l
′
+

2

3
j
′′
)δ
′

− 2α

3
(
5

9
a+ j2 +

5

3
l + j

′
)δ
′′

+
4α

9
δ
′′′ − α

9
δ(4)

{t, w} = −2α

3
(
13

12
ajh+

1

4
j3h+

9

4
jlh− 33

8
at− 3

8
j2t− 15

8
lt− 5wh+

13

16
a
′
h+

13

16
ah
′

+
3

16
j2h

′
+

19

16
lh
′
+

9

8
jj
′
h− 3

4
j
′
t+

7

16
j
′
h
′
+

27

16
l
′
h− 3

8
jt
′
+

1

8
jh
′′

+
9

16
j
′′
h− 3

16
t
′′

+
1

16
h
′′′

)δ

+
2α

3
(
91

48
ah+

15

16
j2h+

55

16
lh− 9

8
jt+

5

8
jh
′
+

25

16
j
′
h− 3

4
t
′
+

5

16
h
′′
)δ
′

− 2α

3
(
5

4
jh− 15

16
t+

5

8
h
′
)δ
′′

+
5

12
αhδ

′′′

{s, w} = −2α

3
(−13

12
ajg − 1

4
j3g − 9

4
jlg +

33

8
as+

3

8
j2s+

15

8
ls+ 5wg +

13

16
a
′
g +

13

16
ag
′

+
3

16
j2g

′
+

19

16
lg
′
+

9

8
jj
′
g − 3

4
j
′
s− 7

16
j
′
g
′
+

27

16
l
′
g − 3

8
js
′ − 1

8
jg
′′ − 9

16
j
′′
g +

3

16
s
′′

+
1

16
g
′′′

)δ

+
2α

3
(
91

48
ag +

15

16
j2g +

55

16
lg − 9

8
js− 5

8
jg
′ − 25

16
j
′
g +

3

4
s
′
+

5

16
g
′′
)δ
′

− 2α

3
(−5

4
jg +

15

16
s+

5

8
g
′
)δ
′′

+
5

12
αgδ

′′′

{w,w} =
α

32
(33(gt)

′ − 33(hs)
′ − 28(jgh)

′
+ 14(gh

′′ − g′′h) + 16((a+ l)2)
′
+ 2(a+ l)

′′′
)δ

− α

32
(32(a+ l)2 − 56jgh+ 66(gt− hs) + 28gh

′ − 28g
′
h+ 9(a+ l)

′′
)δ
′

+
15α

32
(a+ l)

′
δ
′′ − 5α

16
(a+ l)δ

′′′ − α

64
δ(5) (5.35)

where the first field in the bracket is at x′ and the second is at x, all the fields on the

right hand side are at x, and δ is short for δ(x′ − x). Brackets of fields not listed above
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are either zero or can be inferred from the brackets listed by simple principle, for example,

antisymmetry of Poisson brackets.
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CHAPTER 6

Discussion

In Chapter 4 we have shown that the asymptotic Lifshitz solution for sl(N,R) and an

arbitrary integer Lifshitz scaling exponent z can be mapped to the member of the KdV

hierarchies with n = N,m = z. Now a natural question rises for the Lifshitz connection in the

algebra hs(λ) where λ is not an integer: Can the equations of motion, which involve infinite

number of fields be mapped to some integrable hierarchy? Note that such an integrable

system should reduce to the KdV hierarchy when hs(λ) is truncated to sl(N,R) upon setting

λ = N . A candidate for such integrable systems is the KP hierarchy which we briefly review

here.

The starting point is the following pseudo differential operator which contains infinitely

many fields vi, i = 2, 3, · · · .

S = ∂ + v2∂
−1 + v3∂

−2 + v4∂
−3 + . . . (6.1)

The Lax equation for the m-th element of the hierarchy1 is defined by

∂

∂t
S = [Sm+ , S] (6.2)

The Lax equation gives equations of motion of the KP variables v’s.

The connection of the KP hierarchy to the KdV hierarchy is obtained as follows: Note

that the Lax equation above implies the following equation for the n-th power of the operator

S

Ṡn = [Sm+ , S
n] (6.3)

1Note that the name “KP hierarchy” is usually reserved for the system of equations for all m where a
different time variable tm is associated with each element. We are interested in the a specific element of the
hierarchy and denote the time simply by t.
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With the definitions L = Sn and Pm = S
m
n

+ we get the Lax equation of KdV defined in (2.8).

At this point the pseudo differential operator L contains all possible powers of ∂, down to

∂−∞. It is possible to consistently restrict L to only non-negative powers of differentiation,

which implies that the dynamics of the first n− 1 variables is decoupled from the other, and

they are just KdV hierarchy with the same values of m and n. Consequently, it is possible to

perform a field redefinition to truncate KP to KdV. The map from sl(N,R), z Chern-Simons

Lifshitz theory to KdV with m = z, n = N can be regarded as a part of the whole map from

hs(N), z Chern-Simons Lifshitz theory to KP with m = z, with N being the parameter of

the map.

In general it is possible to define powers of the pseudo differential operator S to for non

integer exponents [51, 52]. We conjecture that by choosing N as a real number λ we will

be able to construct a map between Chern-Simons Lifshitz theory with generic hs(λ) and

KP. We leave the explicit construction of this map for future work, but observe that there

are several arguments that indicate that this correspondence indeed exists. First, finding

the maps involves solving algebraic equations, as in the case of λ = N , but the recursive

solution in general does not require N to be an integer. Second, the hs(λ) Chern-Simons for

a conformal theory provides a realization of the W∞ nonlinear extension of the WN algebras

[24, 53, 54]. While the construction is slightly different many of the features of the relation

such as the relation of the gauge transformations which preserve the lowest weight gauge of

ax to the W -algebra transformation, carry over. When W algebras were first investigated

in the early ’90 a relation of the W∞ algebra to the KP hierarchy was proposed in several

papers [51, 55, 52, 56, 57, 58]

The supersymmetric extension of the correspondence between the Lifshitz Chern-Simons

theory and the KdV hiearchies is worth some discussion too. In Chapter 5 we worked

out that sl(3|2) Lifshitz Chern-Simons theory, as the supersymmetric extension of sl(3,R)

Lifshitz Chern-Simons theory, corresponds to N = 2 super Boussinesq hierarchy constructed

in [46] with the appropriate choice of parameters α = −4
c
. It was found in [46] that for

c = 8 there are three values of α (including the one we choose α = −1
2
) such that the
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equation obtained is an integrable system, in the sense that an infinite tower of higher order

conserved quantities exist. In addition for some of them a Lax pair formulation exists or a bi-

Hamiltonian structure exists [46, 48]. It is a natural question to ask if the super Boussinesq

hierarchy with other values of the parameter α also corresponds to Lifshitz Chern-Simons

theory with other gauge algebra different from sl(3|2). In fact, in almost all the cases of

supersymmetric extension of KdV hierarchies, it turns out we have to choose a discrete set

of values of the parameters to make the theory integrable [59, 60, 61]. If we can formulate

all these supersymmetric extensions of KdV by Lifshitz Chern-Simons theory with different

Lie superalgebras, we may be able to explain the choices of discrete values of parameters in

the perspective of the theory of Lie superalgebras.

Another possible direction for research lies in the the construction of blackhole solu-

tions in supersymmetric Lifshitz Chern-Simons theories following the work on the bosonic

case [42, 62]. In particular, the integrability may enable some analytic calculation of the

thermodynamic properties of the blackhole.

57



APPENDIX A

sl(3,R), sl(4,R) and hs(λ) conventions

In this appendix we present a realization of the sl(N,R) algebra which are used for calcula-

tions in the main body of the text.

A.1 sl(3,R)

The sl(2,R) generators of the principal embedding are given by the following matrices

L−1 =


0
√

2 0

0 0
√

2

0 0 0

 , L1 =


0 0 0

−
√

2 0 0

0 −
√

2 0

 , L0 =


1 0 0

0 0 0

0 0 −1

 (A.1)

and the spin 3 generators, on which we omit the superscript (3) for notational simplicity, are

as follows:

W−2 =


0 0 2

0 0 0

0 0 0

 , W−1 =


0 1√

2
0

0 0 − 1√
2

0 0 0

 , W0 =


1
3

0 0

0 −2
3

0

0 0 1
3

 (A.2)

W1 =


0 0 0

− 1√
2

0 0

0 1√
2

0

 , W2 =


0 0 0

0 0 0

2 0 0

 (A.3)
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If we define (T1, T2, . . . , T8) = (L1, L0, L−1,W2, . . .W−2), then traces of all pairs of generators

are given by

tr(TiTj) =



−4 0 · · · 0

2
...

. . .
...

−4 0 · · · 0

0 · · · 0 4

−1
...

. . .
... 2

3

−1

0 · · · 0 4



(A.4)

A.2 sl(4,R)

The sl(4,R) matrix representation we use is the following. The sl(2,R) sub algebra given

by

l0 =


−3

2
0 0 0

0 −1
2

0 0

0 0 1
2

0

0 0 0 3
2

 l1 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 l−1 =


0 0 0 0

−3 0 0 0

0 −4 0 0

0 0 −3 0


(A.5)
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wi, i = +2,+1, · · · ,−2 form a spin 2 representation, whereas the ui, i = +3,+3, · · · ,−3

form s spin 3 representation of the sl(2,R) sub algebra.

w2 =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 w1 =


0 −1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 w0 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1



w−1 =


0 0 0 0

3 0 0 0

0 0 0 0

0 0 −3 0

 w−2 =


0 0 0 0

0 0 0 0

12 0 0 0

0 12 0 0

 u3 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0



u2 =


0 0 −1

2
0

0 0 0 1
2

0 0 0 0

0 0 0 0

 u1 =


0 2

5
0 0

0 0 −3
5

0

0 0 0 2
5

0 0 0 0

u0 =


− 3

10
0 0 0

0 9
10

0 0

0 0 − 9
10

0

0 0 0 3
10



u−1 =


0 0 0 0

−6
5

0 0 0

0 12
5

0 0

0 0 −6
5

0

 u−2 =


0 0 0 0

0 0 0 0

−6 0 0 0

0 6 0 0

 u−3 =


0 0 0 0

0 0 0 0

0 0 0 0

−36 0 0 0


(A.6)

The wi, i = +2,+1, · · · ,−2 form a spin 2 representation, whereas the ui, i = +3,+3, · · · ,−3

form s spin 3 representation of the sl(2,R) sub algebra.

A.3 hs(λ) conventions

Higher spin algebra elements V s
m, s = 1, 2, 3, . . . and m = −s+ 1,−s+ 2, . . . , s− 1. We call

s the spin and m the weight.
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The lone star product is defined as

V s
m ∗ V t

n =
1

2

s+t−|s−t|−1∑
u=1

gstu (m,n, λ)V s+t−u
m+n (A.7)

The structure constants of the hs(λ) algebra were defined in [?] and can be represented as

follows

gstu (m,n;λ) =
qu−2

2(u− 1)!
φstu (λ)N st

u (m,n) (A.8)

q is a normalization constant which can be eliminated by a rescaling on the generators, we

choose q = 1/4 to agree with the literature. The other terms in (A.8) are given by

N st
u (m,n) =

u−1∑
k=0

(−1)k

 u− 1

k

 [s− 1 +m]u−1−k[s− 1−m]k[t− 1 + n]k[t− 1− n]u−1−k

φstu (λ) = F3

 1
2

+ λ 1
2
− λ 2−u

2
1−u

2

3
2
− s 3

2
− t 1

2
+ s+ t− u

∣∣∣∣∣1
 (A.9)

The descending Pochhammer symbol [a]n is defined as,

[a]n = a(a− 1)...(a− n+ 1) (A.10)

The commutator is defined as

[V s
m, V

t
n ] = V s

m ∗ V t
n − V t

n ∗ V s
m (A.11)

V 1
0 is the unit element. The trace of a hs(λ) element is defined as the coefficient of V 1

0 up

to a multiplicative constant tr(V 1
0 ). When λ = N where N is a positive integer, hs(λ) is

truncated to sl(N,R). That means, we can consistently set V s
m to be zero if s > N , and the

remaining elements form sl(N,R) with star product identified as matrix multiplication and

trace identified as matrix trace.
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APPENDIX B

A review of sl(3|2)

The bosonic part of sl(3|2) is U(1)⊕ sl(2,R)⊕ sl(3,R), it’s generated by spin 2 generators

Li, Ai, i = −1, 0, 1, spin 3 generators Wi, i = −2,−1, 0, 1, 2, and J the generator of u(1).

The fermionic part of sl(3|2) is generated by spin 3
2

generators Gr, Hr, r = −1
2
, 1

2
and spin

5
2

generators Sr, Tr, r = −3
2
,−1

2
, 1

2
, 3

2
. Li generate the sl(2,R) subalgebra and the L0 is the

Cartan generator. The non-zero commutation relations are

[Li, Lj] = (i− j)Li+j [Ai, Aj] = (i− j)Li+j [Li, Aj] = (i− j)Ai+j

[Li,Wj] = (2i− j)Wi+j [Ai,Wj] = (2i− j)Wi+j

[Wi,Wj] =
1

6
(j − i)(2i2 + 2j2 − ij − 8)(Li+j + Ai+j)

[Li, Gr] = (
i

2
− r)Gi+r [Li, Hr] = (

i

2
− r)Hi+r

[Li, Sr] = (
3i

2
− r)Si+r [Li, Tr] = (

3i

2
− r)Ti+r

[Ai, Gr] =
4

3
Si+r +

5

3
(
i

2
− r)Gi+r [Ai, Hr] = −4

3
Ti+r +

5

3
(
i

2
− r)Hi+r

[Ai, Sr] =
1

3
(
3i

2
− r)Si+r −

1

3
(3i2 − 2ir + r2 − 9

4
)Gi+r

[Ai, Tr] =
1

3
(
3i

2
− r)Ti+r +

1

3
(3i2 − 2ir + r2 − 9

4
)Hi+r
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[Wi, Gr] = −4

3
(
i

2
− 2r)Si+r [Wi, Hr] = −4

3
(
i

2
− 2r)Ti+r

[Wi, Sr] = −1

3
(2r2 − 2ir + i2 − 5

2
)Si+r −

1

6
(4r3 − 3ir2 + 2i2r − i3 − 9r − 19

4
i)Gi+r

[Wi, Tr] = −1

3
(2r2 − 2ir + i2 − 5

2
)Ti+r −

1

6
(4r3 − 3ir2 + 2i2r − i3 − 9r − 19

4
i)Hi+r

[J,Gr] = Gr [J,Hr] = −Hr [J, Sr] = Sr [J, Tr] = −Tr

{Gr, Hs} = 2Lr+s + (r − s)J

{Sr, Ts} = −3

4
(r − s)Wr+s +

1

8
(3s2 − 4rs+ 3r2 − 9

2
)(Lr+s − 3Ar+s)−

1

4
(r − s)(r2 + s2 − 5

2
)J

{Gr, Ts} = −3

2
Wr+s +

3

4
(3r − s)Ar+s −

5

4
(3r − s)Lr+s

{Hr, Ss} = −3

2
Wr+s −

3

4
(3r − s)Ar+s +

5

4
(3r − s)Lr+s (B.1)

The subindex is the weight of the element, it’s the eigenvalue of the commutator with L0,

and can be raised (lowered) by L1 (L−1). A weight-flipping automorphism exists

J → −J

L0 → −L0, L1 → L−1, L−1 → L1

A0 → −A0, A1 → A−1, A−1 → A1

W2 → −W−2, W1 → W−1, W0 → −W0, W−1 → W1, W−2 → −W2

G 1
2
→ H− 1

2
, G− 1

2
→ −H 1

2

H 1
2
→ −G− 1

2
, H− 1

2
→ G 1

2

S 3
2
→ −T− 3

2
, S 1

2
→ T− 1

2
, S− 1

2
→ −T 3

2
, S− 3

2
→ T 3

2

T 3
2
→ S− 3

2
, T 1

2
→ −S− 1

2
, T− 1

2
→ S 1

2
, T− 3

2
→ −S 3

2
(B.2)

The defining representation by super matrix is given by the following expressions
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J =



2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 3



L0 =



1 0 0 0 0

0 0 0 0 0

0 0 −1 0 0

0 0 0 1
2

0

0 0 0 0 −1
2


, L1 =



0 0 0 0 0
√

2 0 0 0 0

0
√

2 0 0 0

0 0 0 0 0

0 0 0 1 0


, L−1 =



0 −
√

2 0 0 0

0 0 −
√

2 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 0 0



A0 =



1 0 0 0 0

0 0 0 0 0

0 0 −1 0 0

0 0 0 −1
2

0

0 0 0 0 1
2


, A1 =



0 0 0 0 0
√

2 0 0 0 0

0
√

2 0 0 0

0 0 0 0 0

0 0 0 −1 0


, A−1 =



0 −
√

2 0 0 0

0 0 −
√

2 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0
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W2 =



0 0 0 0 0

0 0 0 0 0

4 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,W−2 =



0 0 4 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



W1 =



0 0 0 0 0
√

2 0 0 0 0

0 −
√

2 0 0 0

0 0 0 0 0

0 0 0 0 0


,W−1 =



0 −
√

2 0 0 0

0 0
√

2 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,W0 =



2
3

0 0 0 0

0 −4
3

0 0 0

0 0 2
3

0 0

0 0 0 0 0

0 0 0 0 0



G 1
2

=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 0 0 0 0

0
√

2 0 0 0


, G− 1

2
=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −
√

2 0 0 0

0 0 −2 0 0



H 1
2

=



0 0 0 0 0

0 0 0
√

2 0

0 0 0 0 2

0 0 0 0 0

0 0 0 0 0


, H− 1

2
=



0 0 0 2 0

0 0 0 0
√

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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S 3
2

=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−3 0 0 0 0


, S− 3

2
=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 −3 0 0

0 0 0 0 0



S 1
2

=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−1 0 0 0 0

0
√

2 0 0 0


, S− 1

2
=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
√

2 0 0 0

0 0 −1 0 0



T 3
2

=



0 0 0 0 0

0 0 0 0 0

0 0 0 −3 0

0 0 0 0 0

0 0 0 0 0


, T− 3

2
=



0 0 0 0 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



T 1
2

=



0 0 0 0 0

0 0 0 −
√

2 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


, T− 1

2
=



0 0 0 −1 0

0 0 0 0
√

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(B.3)

They are all super-traceless, and closed under multiplication with the identity super matrix

added. In addition, the weight is additive under super matrix multiplication if we count

the weight of the identity super matrix as zero. In this super matrix representation, the

weight-flipping automorphism is simply given by taking the negative of the transposition of

the bosonic elements and the transposition of the fermionic elements.
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APPENDIX C

Chern-Simons KdV map

In this appendix we exhibit explicit results for the map between sl(N,R) Lifshitz Chern-

Simons theory with scaling exponent z and the m = z, n = N member of KdV hierarchy, for

a few values of N and z.

N = 3

CS-KdV map:

u2 = 4α2,

u3 = 2α′2 − 4α3. (C.1)

KdV equations of motion at z = 2:

u̇2 = 2u′3 − u′′2,

u̇3 = −2

3
u2 u

′
2 + u′′3 −

2

3
u′′′2 . (C.2)

CS equations of motion at z = 2:

α̇2 = −2α′3,

α̇3 =
8

3
α2 α

′
2 +

1

6
α′′′2 . (C.3)

N = 4

CS-KdV map:

u2 = 10α2,

u3 = 10α′2 − 24α3, (C.4)

u4 = −12α′3 + 3α′′2 + 9α2
2 + 36α4.
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KdV equations of motion at z = 2:

u̇2 = 2u′3 − 2u′′2,

u̇3 = −u2 u
′
2 + 2u′4 + u′′3 − 2u′′′2 , (C.5)

u̇4 = −1

2
u3 u

′
2 −

1

2
u2 u

′′
2 + u′′4 −

1

2
u

(4)
2 .

CS equations of motion at z = 2:

α̇2 = −24

5
α′3,

α̇3 =
8

3
α2 α

′
2 − 3α′4 +

1

6
α′′′2 , (C.6)

α̇4 =
10

3
α3 α

′
2 +

12

5
α2 α

′
3 +

1

15
α′′′3 .

KdV equations of motion at z = 3:

u̇2 = −3

4
u2 u

′
2 + 3u′4 −

3

2
u′′3 +

1

4
u′′′2 ,

u̇3 = −3

4
u3 u

′
2 −

3

4
u2 u

′
3 + 3u′′4 − 2u′′′3 +

3

4
u

(4)
2 , (C.7)

u̇4 = −3

4
u3 u

′
3 +

3

4
u2 u

′
4 +

3

8
u3 u

′′
2 −

3

4
u2 u

′′
3 +

3

8
u2 u

′′′
2 + u′′′4 −

3

4
u

(4)
3 +

3

8
u

(5)
2 .

CS equations of motion at z = 3 :

α̇2 = −21

10
α2 α

′
2 +

54

5
α′4 −

7

20
α′′′2 ,

α̇3 = −15

2
α3 α

′
2 −

15

2
α2 α

′
3 −

1

2
α′′′3 , (C.8)

α̇4 =
59

60
α′2 α

′′
2 +

24

5
α2

2 α′2 +
21

10
α2 α

′
4 − 12α3 α

′
3 +

13

30
α2 α

′′′
2 +

1

10
α′′′4 +

1

120
α

(5)
2 .

N = 5

CS-KdV map:

u2 = 20α2,

u3 = 30α′2 − 84α3,

u4 = −84α′3 + 18α′′2 + 64α2
2 + 288α4, (C.9)

u5 = 64α2 α
′
2 + 144α′4 − 24α′′3 + 4α′′′2 − 192α2 α3 − 576α5.
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KdV equations of motion at z = 2:

u̇2 = 2u′3 − 3u′′2,

u̇3 = −6

5
u2 u

′
2 + 2u′4 + u′′3 − 4u′′′2 ,

u̇4 = −4

5
u3 u

′
2 + 2u′5 −

6

5
u2 u

′′
2 + u′′4 − 2u

(4)
2 , (C.10)

u̇5 = −2

5
u4 u

′
2 −

2

5
u3 u

′′
2 + u′′5 −

2

5
u2 u

′′′
2 −

2

5
u

(5)
2 .

CS equations of motion at z = 2:

α̇2 = −42

5
α′3,

α̇3 =
8

3
α2 α

′
2 −

48

7
α′4 +

1

6
α′′′2 ,

α̇4 =
10

3
α3 α

′
2 +

12

5
α2 α

′
3 − 4α′5 +

1

15
α′′′3 , (C.11)

α̇5 =
14

5
α3 α

′
3 + 4α4 α

′
2 +

16

7
α2 α

′
4 +

1

28
α′′′4 .

KdV equations of motion at z = 3:

u̇2 = −6

5
u2 u

′
2 + 3u′4 − 3u′′3 + u′′′2 ,

u̇3 = −6

5
u3 u

′
2 −

6

5
u2 u

′
3 + 3u′5 + 3u′′4 − 5u′′′3 + 3u

(4)
2 ,

u̇4 = −6

5
u3 u

′
3 −

3

5
u4 u

′
2 +

3

5
u2 u

′
4 +

3

5
u3 u

′′
2 −

9

5
u2 u

′′
3 + 3u′′5 +

6

5
u2 u

′′′
2 +

u′′′4 − 3u
(4)
3 +

12

5
u

(5)
2 , (C.12)

u̇5 = −3

5
u4 u

′
3 +

3

5
u2 u

′
5 −

3

5
u3 u

′′
3 +

3

5
u4 u

′′
2 +

3

5
u3 u

′′′
2 −

3

5
u2 u

′′′
3 + u′′′5 +

3

5
u2 u

(4)
2 −

3

5
u

(5)
3 +

3

5
u

(6)
2 .
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CS equations of motion at z = 3:

α̇2 = −24

5
α2 α

′
2 +

216

5
α′4 −

4

5
α′′′2 ,

α̇3 = −120

7
α3 α

′
2 −

120

7
α2 α

′
3 +

144

7
α′5 −

8

7
α′′′3 ,

α̇4 =
59

60
α′2 α

′′
2 +

24

5
α2

2 α′2 −
36

5
α2 α

′
4 −

147

5
α3 α

′
3 − 12α4 α

′
2 +

13

30
α2 α

′′′
2 −

1

5
α′′′4 +

1

120
α

(5)
2 , (C.13)

α̇5 =
97

140
α′3 α

′′
2 +

29

56
α′2 α

′′
3 +

144

35
α2

2 α′3 +
396

35
α3 α2 α

′
2 +

36

7
α2 α

′
5 −

126

5
α4 α

′
3 −

72

5
α3 α

′
4 +

5

28
α2 α

′′′
3 +

123

280
α3 α

′′′
2 +

1

7
α′′′5 +

1

560
α

(5)
3 .

KdV equations of motion at z = 4:

u̇2 =
6

5
u′2

2 − 4

5
u3 u

′
2 −

4

5
u2 u

′
3 + 4u′5 +

6

5
u2 u

′′
2 − 2u′′4 + u

(4)
2 ,

u̇3 =
24

5
u′2 u

′′
2 +

12

25
u2

2 u′2 −
4

5
u2 u

′
4 −

2

5
u′2 u

′
3 −

4

5
u3 u

′
3 −

4

5
u4 u

′
2 −

2

5
u2 u

′′
3 +

6u′′5 + 2u2 u
′′′
2 − 4u′′′4 + u

(4)
3 +

6

5
u

(5)
2 ,

u̇4 =
16

5
u′2 u

′′′
2 +

12

25
u2 u

′
2

2 +
8

25
u3 u2 u

′
2 +

8

5
u2 u

′
5 −

4

5
u4 u

′
3 −

2

5
u′2 u

′
4 −

4

5
u3 u

′
4 +

12

25
u2

2 u′′2 −
8

5
u2 u

′′
4 +

12

5
u′′2

2 +
2

5
u4 u

′′
2 +

2

5
u2 u

′′′
3 +

2

5
u3 u

′′′
2 +

4u′′′5 +
6

5
u2 u

(4)
2 − 3u

(4)
4 +

6

5
u

(5)
3 +

2

5
u

(6)
2 , (C.14)

u̇5 =
12

25
u2 u

′
2 u
′′
2 +

4

5
u′2 u

(4)
2 +

4

25
u4 u2 u

′
2 +

4

25
u3 u

′
2

2 − 4

5
u4 u

′
4 −

2

5
u′2 u

′
5 +

4

5
u3 u

′
5 +

8

5
u′′2 u

′′′
2 +

4

25
u3 u2 u

′′
2 +

4

5
u2 u

′′
5 +

2

5
u4 u

′′
3 −

4

5
u3 u

′′
4 +

4

25
u2

2 u′′′2 −
4

5
u2 u

′′′
4 +

2

5
u3 u

′′′
3 +

2

5
u2 u

(4)
3 + u

(4)
5 +

4

25
u2 u

(5)
2 −

4

5
u

(5)
4 +

2

5
u

(6)
3 .
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CS equations of motion at z = 4

α̇2 =
144

5
α3 α

′
2 +

144

5
α2 α

′
3 −

576

5
α′5 +

18

5
α′′′3 ,

α̇3 = −24

7
α′2 α

′′
2 −

64

7
α2

2 α′2 +
384

7
α2 α

′
4 +

336

5
α3 α

′
3 +

384

7
α4 α

′
2 −

12

7
α2 α

′′′
2 +

24

7
α′′′4 −

1

14
α

(5)
2 ,

α̇4 = −68

15
α′3 α

′′
2 −

61

15
α′2 α

′′
3 −

96

5
α2

2 α′3 −
208

5
α3 α2 α

′
2 −

64

5
α2 α

′
5 +

336

5
α4 α

′
3 +

336

5
α3 α

′
4 −

26

15
α2 α

′′′
3 −

13

5
α3 α

′′′
2 −

4

5
α′′′5 −

1

30
α

(5)
3 , (C.15)

α̇5 =
1108

315
α2 α

′
2 α
′′
2 −

7

2
α′3 α

′′
3 +

12

35
α′4 α

′′
2 +

8

7
α′2 α

′′
4 +

13

168
α′2 α

(4)
2 +

256

35
α2

3 α′2 +

256

35
α2

2 α′4 −
272

5
α3 α2 α

′
3 +

32

35
α4 α2 α

′
2 +

62

63
α′2

3 − 32α3
2 α′2 +

576

5
α4 α

′
4 −

144

5
α3 α

′
5 +

47

360
α′′2 α

′′′
2 +

244

315
α2

2 α′′′2 +
4

7
α2 α

′′′
4 −

19

10
α3 α

′′′
3 −

38

35
α4 α

′′′
2 +

29α2 α
(5)
2

1260
+

1

140
α

(5)
4 +

α
(7)
2

5040
.

N = 6

CS-KdV map:

u2 = 35α2,

u3 = 70α′2 − 224α3,

u4 = −336α′3 + 63α′′2 + 259α2
2 + 1296α4, (C.16)

u5 = 518α2 α
′
2 + 1296α′4 − 192α′′3 + 28α′′′2 − 1760α2 α3 − 5760α5,

u6 = −880α2 α
′
3 + 130α′2

2 − 880α3 α
′
2 − 2880α′5 + 155α2 α

′′
2 + 360α′′4 − 40α′′′3 + 5α

(4)
2

+225α2
3 + 3600α4 α2 + 1600α3

2 + 14400α6.
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KdV equations of motion at z = 2:

u̇2 = 2u′3 − 4u′′2

u̇3 = −4

3
u2 u

′
2 + 2u′4 + u′′3 −

20

3
u′′′2 ,

u̇4 = −u3 u
′
2 + 2u′5 − 2u2 u

′′
2 + u′′4 − 5u

(4)
2 , (C.17)

u̇5 = −2

3
u4 u

′
2 + 2u6′ − u3 u

′′
2 + u′′5 −

4

3
u2 u

′′′
2 − 2u

(5)
2 ,

u̇6 = −1

3
u5 u

′
2 −

1

3
u4 u

′′
2 + u6′′ − 1

3
u3 u

′′′
2 −

1

3
u2 u

(4)
2 −

1

3
u

(6)
2 .

CS equations of motion at z = 2:

α̇2 = −64

5
α′3,

α̇3 =
8

3
α2 α

′
2 −

81

7
α′4 +

1

6
α′′′2 ,

α̇4 =
10

3
α3 α

′
2 +

12

5
α2 α

′
3 −

80

9
α′5 +

1

15
α′′′3 , (C.18)

α̇5 =
14

5
α3 α

′
3 + 4α4 α

′
2 +

16

7
α2 α

′
4 − 5α′6 +

1

28
α′′′4 ,

α̇6 =
16

5
α4 α

′
3 +

18

7
α3 α

′
4 +

14

3
α5 α

′
2 +

20

9
α2 α

′
5 +

1

45
α′′′5 .

KdV equations of motion at z = 3:

u̇2 = −3

2
u2 u

′
2 + 3u′4 −

9

2
u′′3 +

9

4
u′′′2 ,

u̇3 = −3

2
u3 u

′
2 −

3

2
u2 u

′
3 + 3u′5 + 3u′′4 − 9u′′′3 +

15

2
u

(4)
2 ,

u̇4 = −3

2
u3 u

′
3 − u4 u

′
2 +

1

2
u2 u

′
4 + 3u6′ +

3

4
u3 u

′′
2 − 3u2 u

′′
3 + 3u′′5 +

5

2
u2 u

′′′
2 + u′′′4 −

15

2
u

(4)
3 +

33

4
u

(5)
2 , (C.19)

u̇5 = −u4 u
′
3 −

1

2
u5 u

′
2 +

1

2
u2 u

′
5 −

3

2
u3 u

′′
3 + u4 u

′′
2 + 3u6′′ +

7

4
u3 u

′′′
2 − 2u2 u

′′′
3 + u′′′5 +

5

2
u2 u

(4)
2 − 3u

(5)
3 + 4u

(6)
2 ,

u̇6 =
1

2
u2u6′ − 1

2
u5 u

′
3 −

1

2
u4 u

′′
3 +

3

4
u5 u

′′
2 −

1

2
u3 u

′′′
3 +

3

4
u4 u

′′′
2 + u6′′′ +

3

4
u3 u

(4)
2 −

1

2
u2 u

(4)
3 +

3

4
u2 u

(5)
2 −

1

2
u

(6)
3 +

3

4
u

(7)
2 .
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CS equations of motion at z = 3:

α̇2 = −81

10
α2 α

′
2 +

3888

35
α′4 −

27

20
α′′′2 ,

α̇3 = −405

14
α3 α

′
2 −

405

14
α2 α

′
3 +

540

7
α′5 −

27

14
α′′′3 ,

α̇4 =
59

60
α′2 α

′′
2 +

24

5
α2

2 α′2 −
557

30
α2 α

′
4 −

152

3
α3 α

′
3 −

80

3
α4 α

′
2 +

100

3
α′6 +

13

30
α2 α

′′′
2 −

17

30
α′′′4 +

1

120
α

(5)
2 , (C.20)

α̇5 =
97

140
α′3 α

′′
2 +

29

56
α′2 α

′′
3 +

144

35
α2

2 α′3 +
396

35
α3 α2 α

′
2 −

85

14
α2 α

′
5 −

252

5
α4 α

′
3 −

1188

35
α3 α

′
4 −

35

2
α5 α

′
2 +

5

28
α2 α

′′′
3 +

123

280
α3 α

′′′
2 −

1

14
α′′′5 +

1

560
α

(5)
3 ,

α̇6 =
9

25
α′3 α

′′
3 +

79

140
α′4 α

′′
2 +

19

56
α′2 α

′′
4 +

80

21
α2

2 α′4 +
976

105
α3 α2 α

′
3 +

196

15
α4 α2 α

′
2 +

55

6
α2 α

′
6 +

45

7
α3

2 α′2 −
972

35
α4 α

′
4 −

224

5
α5 α

′
3 −

120

7
α3 α

′
5 +

41

420
α2 α

′′′
4 +

92

525
α3 α

′′′
3 +

7

15
α4 α

′′′
2 +

1

6
α′′′6 +

α
(5)
4

1680
.
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KdV equations of motion at z = 4:

u̇2 =
8

3
u′2

2 − 4

3
u3 u

′
2 −

4

3
u2 u

′
3 + 4u′5 +

8

3
u2 u

′′
2 − 4u′′4 +

2

3
u′′′3 +

8

3
u

(4)
2 ,

u̇3 =
40

3
u′2 u

′′
2 +

8

9
u2

2 u′2 −
4

3
u2 u

′
4 −

2

3
u′2 u

′
3 −

4

3
u3 u

′
3 −

4

3
u4 u

′
2 + 4u′6 −

2

3
u2 u

′′
3 + 6u′′5 +

16

3
u2 u

′′′
2 −

28

3
u′′′4 +

13

3
u

(4)
3 +

34

9
u

(5)
2 ,

u̇4 =
40

3
u′2 u

′′′
2 +

4

3
u2 u

′
2

2 +
2

3
u3 u2 u

′
2 +

4

3
u2 u

′
5 −

4

3
u4 u

′
3 −

2

3
u′2 u

′
4 −

4

3
u3 u

′
4 −

2

3
u5 u

′
2 +

4

3
u2

2 u′′2 −
10

3
u2 u

′′
4 + 10u′′2

2 +
2

3
u4 u

′′
2 + 6u′′6 +

4

3
u2 u

′′′
3 + u3 u

′′′
2 +

4u′′′5 +
14

3
u2 u

(4)
2 − 9u

(4)
4 + 6u

(5)
3 +

5

3
u

(6)
2 , (C.21)

u̇5 =
8

3
u2 u

′
2 u
′′
2 +

20

3
u′2 u

(4)
2 +

4

9
u4 u2 u

′
2 +

4

3
u2 u

′
6 +

2

3
u3 u

′
2

2 − 4

3
u4 u

′
4 −

2

3
u5 u

′
3 −

2

3
u′2 u

′
5 +

2

3
u3 u

′
5 +

40

3
u′′2 u

′′′
2 +

2

3
u3 u2 u

′′
2 +

2

3
u2 u

′′
5 +

2

3
u4 u

′′
3 − 2u3 u

′′
4 +

2

3
u5 u

′′
2 +

8

9
u2

2 u′′′2 −
8

3
u2 u

′′′
4 +

4

3
u3 u

′′′
3 +

4

9
u4 u

′′′
2 + 4u′′′6 + 2u2 u

(4)
3 +

1

3
u3 u

(4)
2 + u

(4)
5 +

14

9
u2 u

(5)
2 − 4u

(5)
4 +

10

3
u

(6)
3 ,

u̇6 =
2

3
u3 u

′
2 u
′′
2 +

8

9
u2 u

′
2 u
′′′
2 +

4

3
u′2 u

(5)
2 +

2

9
u5 u2 u

′
2 +

2

9
u4 u

′
2

2 − 2

3
u5 u

′
4 −

2

3
u′2 u

′
6 +

2

3
u3 u

′
6 +

10

3
u′′2 u

(4)
2 +

2

3
u2 u

′′
2

2 +
2

9
u4 u2 u

′′
2 +

2

3
u2 u

′′
6 −

2

3
u4 u

′′
4 +

2

3
u5 u

′′
3 +

2

9
u3 u2 u

′′′
2 +

20

9
u′′′2

2 +
2

3
u4 u

′′′
3 −

2

3
u3 u

′′′
4 −

1

9
u5 u

′′′
2 +

2

9
u2

2 u
(4)
2 −

2

3
u2 u

(4)
4 +

2

3
u3 u

(4)
3 −

1

9
u4 u

(4)
2 + u

(4)
6 +

2

3
u2 u

(5)
3 −

1

9
u3 u

(5)
2 +

1

9
u2 u

(6)
2 −

2

3
u

(6)
4 +

2

3
u

(7)
3 −

1

9
u

(8)
2 .

CS equations of motion at z = 4:
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α̇2 =
2048

21
α3 α

′
2 +

2048

21
α2 α

′
3 −

4608

7
α′5 +

256

21
α′′′3 ,

α̇3 = −160

21
α′2 α

′′
2 −

1280

63
α2

2 α′2 +
1440

7
α2 α

′
4 +

5072

21
α3 α

′
3 +

1440

7
α4 α

′
2 −

1800

7
α′6 −

80

21
α2 α

′′′
2 +

90

7
α′′′4 −

10

63
α

(5)
2 ,

α̇4 = −272

27
α′3 α

′′
2 −

244

27
α′2 α

′′
3 −

128

3
α2

2 α′3 −
832

9
α3 α2 α

′
2 +

1504

27
α2 α

′
5 +

896

3
α4 α

′
3 +

896

3
α3 α

′
4 +

2800

27
α5 α

′
2 −

104

27
α2 α

′′′
3 −

52

9
α3 α

′′′
2 +

8

9
α′′′5 −

2

27
α

(5)
3 , (C.22)

α̇5 =
1108

315
α2 α

′
2 α
′′
2 −

884

105
α′3 α

′′
3 −

549

140
α′4 α

′′
2 −

51

28
α′2 α

′′
4 +

13

168
α′2 α

(4)
2 +

256

35
α2

3 α′2 −
1504

105
α2

2 α′4 −
2720

21
α3 α2 α

′
3 −

6208

105
α4 α2 α

′
2 −

800

21
α2 α

′
6 +

62

63
α′2

3 −
528

7
α3

2 α′2 +
1944

5
α4 α

′
4 +

448

3
α5 α

′
3 +

1088

21
α3 α

′
5 +

47

360
α′′2 α

′′′
2 +

244

315
α2

2 α′′′2 −

19

42
α2 α

′′′
4 −

156

35
α3 α

′′′
3 −

156

35
α4 α

′′′
2 −

10

7
α′′′6 +

29α2 α
(5)
2

1260
− 1

280
α

(5)
4 +

α
(7)
2

5040
,

α̇6 =
11828α2 α

′
3 α
′′
2

4725
+

8902α2 α
′
2 α
′′
3

4725
+

3673α3 α
′
2 α
′′
2

1050
− 104

25
α′4 α

′′
3 −

56

25
α′3 α

′′
4 +

32

63
α′5 α

′′
2 +

116

63
α′2 α

′′
5 +

451α′3 α
(4)
2

9450
+

41α′2 α
(4)
3

1890
+

128

21
α2

3 α′3 +
2624

105
α3 α2

2 α′2 +

3200

189
α2

2 α′5 −
2080

21
α4 α2 α

′
3 −

1824

35
α3 α2 α

′
4 +

448

135
α5 α2 α

′
2 +

6577α′2
2 α′3

3150
−

608

7
α3

2 α′3 −
752

7
α3 α4 α

′
2 +

1728

5
α5 α

′
4 +

1152

7
α4 α

′
5 −

1936

21
α3 α

′
6 +

559α′′3 α
′′′
2

9450
+

8

175
α′′2 α

′′′
3 +

1538α2
2 α′′′3

4725
+

2459α3 α2 α
′′′
2

1575
+

152

189
α2 α

′′′
5 −

664

175
α4 α

′′′
3 −

108

175
α3 α

′′′
4 −

392

135
α5 α

′′′
2 +

1

189
α2 α

(5)
3 +

131α3 α
(5)
2

6300
+

2

315
α

(5)
5 +

α
(7)
3

37800
.

N = 7
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CS-KdV map:

u2 = 56α2,

u3 = 140α′2 − 504α3,

u4 = −1008α′3 + 168α′′2 + 784α2
2 + 4320α4,

u5 = 2352α2 α
′
2 + 6480α′4 − 864α′′3 + 112α′′′2 − 8928α2 α3 − 31680α5, (C.23)

u6 = −8928α2 α
′
3 + 1180α′2

2 − 8928α3 α
′
2 − 31680α′5 + 1408α2 α

′′
2 + 3600α′′4 −

360α′′′3 + 40α
(4)
2 + 2304α2

3 + 40320α4 α2 + 18000α3
2 + 172800α6,

u7 = 708α′2 α
′′
2 + 3456α2

2 α′2 + 20160α2 α
′
4 − 4488α′2 α

′
3 + 18000α3 α

′
3 +

20160α4 α
′
2 + 86400α′6 − 2544α2 α

′′
3 − 2664α3 α

′′
2 − 8640α′′5 + 312α2 α

′′′
2 +

720α′′′4 − 60α
(4)
3 + 6α

(5)
2 − 13824α3 α2

2 − 103680α5 α2 − 86400α3 α4 −

518400α7.

KdV equations of motion at z = 2:

u̇2 = 2u′3 − 5u′′2,

u̇3 = −10

7
u2 u

′
2 + 2u′4 + u′′3 − 10u′′′2 ,

u̇4 = −8

7
u3 u

′
2 + 2u′5 −

20

7
u2 u

′′
2 + u′′4 − 10u

(4)
2 ,

u̇5 = −6

7
u4 u

′
2 + 2u′6 −

12

7
u3 u

′′
2 + u′′5 −

20

7
u2 u

′′′
2 − 6u

(5)
2 , (C.24)

u̇6 = −4

7
u5 u

′
2 + 2u′7 −

6

7
u4 u

′′
2 + u′′6 −

8

7
u3 u

′′′
2 −

10

7
u2 u

(4)
2 − 2u

(6)
2 ,

u̇7 = −2

7
u6 u

′
2 −

2

7
u5 u

′′
2 + u′′7 −

2

7
u4 u

′′′
2 −

2

7
u3 u

(4)
2 −

2

7
u2 u

(5)
2 −

2

7
u

(7)
2 .
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CS equations of motion at z = 2:

α̇2 = −18α′3,

α̇3 =
8

3
α2 α

′
2 −

120

7
α′4 +

1

6
α′′′2 ,

α̇4 =
10

3
α3 α

′
2 +

12

5
α2 α

′
3 −

44

3
α′5 +

1

15
α′′′3 ,

α̇5 =
14

5
α3 α

′
3 + 4α4 α

′
2 +

16

7
α2 α

′
4 −

120

11
α′6 +

1

28
α′′′4 , (C.25)

α̇6 =
16

5
α4 α

′
3 +

18

7
α3 α

′
4 +

14

3
α5 α

′
2 +

20

9
α2 α

′
5 − 6α′7 +

1

45
α′′′5 ,

α̇7 =
20

7
α4 α

′
4 +

18

5
α5 α

′
3 +

22

9
α3 α

′
5 +

16

3
α6 α

′
2 +

24

11
α2 α

′
6 +

1

66
α′′′6 .

KdV equations of motion at z = 3:

u̇2 = −12

7
u2 u

′
2 + 3u′4 − 6u′′3 + 4u′′′2 ,

u̇3 = −12

7
u3 u

′
2 −

12

7
u2 u

′
3 + 3u′5 + 3u′′4 − 14u′′′3 + 15u

(4)
2 ,

u̇4 = −12

7
u3 u

′
3 −

9

7
u4 u

′
2 +

3

7
u2 u

′
4 + 3u′6 +

6

7
u3 u

′′
2 −

30

7
u2 u

′′
3 + 3u′′5 +

30

7
u2 u

′′′
2 + u′′′4 − 15u

(4)
3 + 21u

(5)
2 ,

u̇5 = −9

7
u4 u

′
3 −

6

7
u5 u

′
2 +

3

7
u2 u

′
5 + 3u′7 −

18

7
u3 u

′′
3 +

9

7
u4 u

′′
2 + 3u′′6 +

24

7
u3 u

′′′
2 −

30

7
u2 u

′′′
3 + u′′′5 +

45

7
u2 u

(4)
2 − 9u

(5)
3 + 15u

(6)
2 , (C.26)

u̇6 = −6

7
u5 u

′
3 −

3

7
u6 u

′
2 +

3

7
u2 u

′
6 −

9

7
u4 u

′′
3 +

9

7
u5 u

′′
2 + 3u′′7 −

12

7
u3 u

′′′
3 +

15

7
u4 u

′′′
2 +

u′′′6 + 3u3 u
(4)
2 −

15

7
u2 u

(4)
3 +

27

7
u2 u

(5)
2 − 3u

(6)
3 +

39

7
u

(7)
2 ,

u̇7 = −3

7
u6 u

′
3 +

3

7
u2 u

′
7 −

3

7
u5 u

′′
3 +

6

7
u6 u

′′
2 −

3

7
u4 u

′′′
3 +

6

7
u5 u

′′′
2 + u′′′7 −

3

7
u3 u

(4)
3 +

6

7
u4 u

(4)
2 +

6

7
u3 u

(5)
2 −

3

7
u2 u

(5)
3 +

6

7
u2 u

(6)
2 −

3

7
u

(7)
3 +

6

7
u

(8)
2 .
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CS equations of motion at z = 3:

α̇2 = −12α2 α
′
2 +

1620

7
α′4 − 2α′′′2 ,

α̇3 = −300

7
α3 α

′
2 −

300

7
α2 α

′
3 +

1320

7
α′5 −

20

7
α′′′3 ,

α̇4 =
24

5
α′2 α2

2 − 32α′4 α2 +
13

30
α′′′2 α2 − 44α4 α

′
2 −

379

5
α3 α

′
3 + 120α′6 +

59

60
α′2 α

′′
2 −

α′′′4 +
1

120
α2

(5),

α̇5 =
144

35
α′3 α2

2 +
396

35
α3 α

′
2 α2 −

1488

77
α′5 α2 +

5

28
α′′′3 α2 −

420

11
α5 α

′
2 −

882

11
α4 α

′
3 −

4392

77
α3 α

′
4 +

540

11
α′7 +

97

140
α′3 α

′′
2 +

29

56
α′2 α

′′
3 +

123

280
α3 α

′′′
2 −

25

77
α′′′5 +

1

560
α3

(5), (C.27)

α̇6 =
80

21
α′4 α2

2 +
196

15
α4 α

′
2 α2 +

976

105
α3 α

′
3 α2 − 4α′6 α2 +

41

420
α′′′4 α2 +

45

7
α3

2 α′2 −

24α6 α
′
2 −

396

5
α5 α

′
3 − 54α4 α

′
4 −

275

7
α3 α

′
5 +

79

140
α′4 α

′′
2 +

9

25
α′3 α

′′
3 +

19

56
α′2 α

′′
4 +

7

15
α4 α

′′′
2 +

92

525
α3 α

′′′
3 +

α4
(5)

1680
,

α̇7 =
40

11
α′5 α2

2 +
816

55
α5 α

′
2 α2 +

3996

385
α4 α

′
3 α2 +

1940

231
α3 α

′
4 α2 +

156

11
α′7 α2 +

61

990
α′′′5 α2 +

304

21
α3 α4 α

′
2 +

77

15
α3

2 α′3 − 72α6 α
′
3 −

324

7
α5 α

′
4 −

220

7
α4 α

′
5 − 20α3 α

′
6 +

65

132
α′5 α

′′
2 +

443α′4 α
′′
3

1540
+

103

440
α′3 α

′′
4 +

491α′2 α
′′
5

1980
+

83

165
α5 α

′′′
2 +

69

385
α4 α

′′′
3 +

25

264
α3 α

′′′
4 +

2

11
α′′′7 +

α5
(5)

3960
.
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APPENDIX D

Proofs of statements used in the Drinfeld-Sokolov

formalism

In this part of appendix we give the proofs to the theorems used in Drinfeld-Sokolov formal-

ism. Most of them are essentially contained in the original paper by Drinfeld and Sokolov.

However, the original paper is a little bit condensed, so we add details to the proofs to make

them easier to follow.

D.1 Gauge transformation of PDOs

Here we give the proof of the following statement: For any q and any canonical form, there

exist a unique gauge transformation S to transform q into q′ = S−1V 2
1 S − V 2

1 + S−1∂xS in

the canonical form chosen.

The proof proceeds as follows: We rewrite the gauge transformation as

Sq′ = qS + [V 2
1 , S] + ∂xS (D.1)

and then by comparing the weight −i part we get

i∑
j=0

Si−jq
′
j =

i∑
j=0

qjSi−j + [V 2
1 , Si+1] + ∂xSi (D.2)

which holds for all i’s. Using the fact S0 is the identity matrix E, we put it in a recursive

form

q′i − [V 2
1 , Si+1] = qi + ∂xSi −

i−1∑
j=0

Si−jq
′
j +

i−1∑
j=0

qjSi−j. (D.3)
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Given q, and suppose q′j and Sj+1 are known for all j < i, from the lowest weight projection

of the right hand side we can find q′i if we restrict it to be in a one dimensional subspace of

weight −i elements which has nonzero lowest weight projection. Then Si+1 is also determined

by equating non lowest weight terms on both sides. The initial conditions, needless to say,

are q′0 = q0 and S0 = E.

D.2 Scalar coefficient form and conserved quantities

Here we proof the following statement: For generic L, there is a formal series

T = E +
∞∑
i=1

hiΛ
−i, (D.4)

where hi’s are diagonal matrices, such that

L0 = TLT−1 = ∂x + Λ +
∞∑
i=0

fiΛ
−i, (D.5)

where fi’s are scalar functions. T is determined up to multiplication by series of the form

E+
∑∞

i=1 tiΛ
i where ti’s are scalar functions, and fi’s are determined up to a total derivative.

Furthermore qi =
∫
fi are conserved by the Lax equation.

The proof proceeds as follows: By equating the coefficients of the same powers of Λ in

the equality TL = L0T we get

di + hi+1 +
i−1∑
j=0

hi−jd
σ−(i−j)

j = fiE + ∂xhi + hσi+1 +
i∑

j=1

fi−jh
σ−(i−j)

j . (D.6)

Here the notation Aσ
i

means ΛiAΛ−i, which is i times cyclic permutation of the diagonal

elements for a diagonal matrix A. For example if A = Diag{a1, a2, a3, a4} then Aσ =

Diag{a2, a3, a4, a1}. We rewrite the equation above as

hi+1 − hσi+1 − fiE = −di + ∂xhi −
i−1∑
j=0

hi−jd
σ−(i−j)

j +
i∑

j=1

fi−jh
σ−(i−j)

j . (D.7)

fi is obtained by taking the trace on both sides, then hi+1 is determined up to an additive

multiple of identity. Now suppose T ′ transforms L to

L′0 = T ′LT ′−1 = ∂x + Λ +
∞∑
i=0

f ′iΛ
−i. (D.8)
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Define TT ′−1 = A = E+
∑∞

i=1 aiΛ
i where ai’s are diagonal matrices. We have A−1L0A = L′0

or L0A = AL′0. By equating the coefficients of the same power in Λ we get

ai+1 − aσi+1 + f ′iE − fiE = ∂xai +
i−1∑
j=0

fia
σ−i

i−j −
i−1∑
j=0

f ′iai−j (D.9)

with the initial conditions

a1 − aσ1 + f ′0E − f0E = 0,

a2 − aσ2 + f ′1E − f1E = ∂xa1. (D.10)

From this recursive formula it’s easy to see ai − aσi = 0 for all i, that is ai’s are all multiples

of identity, say, ai = tiE. Plug this back into the recursive formula we have

f ′i − fi = ∂xti −
i−1∑
j=0

ti−j(f
′
j − fj) (D.11)

with the initial condition

f ′0 − f0 = 0,

f ′1 − f1 = ∂xt1. (D.12)

One can prove by induction that f ′i − fi is a total derivative.

The evolution equation of L0 is

d

dt
L0 = [P0, L0], (D.13)

where P0 = dT
dt
T−1 + TPT−1. Expand P0 as

∑n
i=−∞ piΛ

i, then the Lax equation above gives

us

0 = pn − pσn,

0 = −∂xpi + pi−1 − pσi−1 +
n∑
j=i

fj−i(pj − pσ
j−i

j ), 0 < i ≤ n,

ḟ−i = −∂xpi + pi−1 − pσi−1 +
n∑
j=i

fj−i(pj − pσ
j−i

j ), i ≤ 0. (D.14)

This recursive formula demands all pi’s to be multiples of identity. From this, in turn,

the commutator simplifies to −∂xP0, hence ḟi’s are equal to total derivatives and
∫
fi’s are

conserved.
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D.3 Matrices that commute with L0

Here we would like to show that All matrices that commute with L0 = ∂x + Λ +
∑∞

i=0 fiΛ
−i

have the form
∑n

i=−∞ ciΛ
i with ci’s as constant coefficients.

This follows from letting M =
∑n

i=−∞miΛ
i be a matrix commuting with L0. By equating

coefficients of the same power in Λ in the equation ML0 = L0M we get

mn −mσ
n = 0,

− ∂xmi +mi−1 −mσ
i−1 +

n∑
j=i

fj−i(mj −mσj−i

j ) = 0, i ≤ n. (D.15)

Therefore all mi’s are constants times identity matrix.

D.4 The Lax equation preserves gauge equivalence

In this subsection we prove the statement that by choosing P = (T−1(
∑n

i=−∞ ciΛ
i)T )+ the

Lax equation preserves gauge equivalence.

This can be shown as follows: It suffices to prove if L satisfies the Lax equation, then so

does L′ = S−1LS where S is a gauge transformation matrix that only depends on x. In other

words ∂tq = p(q) implies ∂tq
′ = p(q′). Using the original Lax equation, it’s straightforward

to get

d

dt
L′ = [S−1PS,L′]. (D.16)

So we want S−1PS = P ′, which means, S−1PS is the same differential polynomial in q′ as

P in q. Explicitly we have

S−1PS = S−1(T−1(
n∑

i=−∞

ciΛ
i)T )+S = ((TS)−1(

n∑
i=−∞

ciΛ
i)(TS))+. (D.17)

Suppose T ′ transforms L′ into the form of scalar coefficients, that is T ′L′T ′−1 = L′0, so

T ′ is the same differential polynomial in q′ as T in q. Plug in L′ = S−1LS we get

(T ′S−1)L(T ′S−1)−1 = L′0 = L0 = TLT−1. Hence T ′S−1 = T or TS = T ′, and at last
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we get

S−1PS = (T ′−1(
n∑

i=−∞

ciΛ
i)T ′)+ = P ′. (D.18)

D.5 Equivalent evolution equations of gauge equivalent classes

We want to prove the following statement: Given that the difference between P1 and P2 is a

negative weight matrix with no time or λ dependence, then d
dt
L = [P1, L] and d

dt
L = [P2, L]

give the same evolution equations of gauge equivalent classes.

The proof proceeds as follows: Let’s R denote the ring of scalar differential polynomials

in q which are invariant under gauge transformation. For any f ∈ R the time derivative of f

by the Lax equation also belongs to R, and the form of time derivatives of all f ∈ R uniquely

specify the evolution equation of gauge equivalent classes. Now for any f ∈ R, let g be the

difference of the time derivative of f by the above two Lax equations, then g is actually the

time derivative of f by the Lax equation d
dt
L = [P1 − P2, L]. Formally

g(L) =
d

dt
f(L(t))|t=0, (D.19)

where L(t) satisfies

L(0) = L,

d

dt
L(t)|t=0 = [P1 − P2, L]. (D.20)

Apparently L(t) = SLS−1 where S = E + t(P1 − P2) satisfies these conditions, and its time

evolution is just a gauge transformation. Therefore we have g = 0 because g ∈ R.
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