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Modeling of Eicosanoid Fluxes Reveals Functional Coupling between
Cyclooxygenases and Terminal Synthases
Yasuyuki Kihara,†‡ Shakti Gupta,‡ Mano R. Maurya,‡ Aaron Armando,† Ishita Shah,† Oswald Quehenberger,†§

Christopher K. Glass,{ Edward A. Dennis,†* and Shankar Subramaniam†‡{*
†Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, ‡Department of Bioengineering, §Department of
Medicine, School of Medicine, and {Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California
ABSTRACT Eicosanoids, including prostaglandins (PG) and leukotrienes, are lipid mediators derived from arachidonic acid. A
quantitative and biochemical level understanding of eicosanoid metabolism would aid in understanding the mechanisms that
govern inflammatory processes. Here, we present a combined experimental and computational approach to understanding
the biochemical basis of eicosanoid metabolism in macrophages. Lipidomic and transcriptomic measurements and analyses
reveal temporal and dynamic changes of the eicosanoid metabolic network in mouse bone marrow-derived macrophages
(BMDM) upon stimulation of the Toll-like receptor 4 with Kdo2-Lipid A (KLA) and stimulation of the P2X7 purinergic receptor
with adenosine 50-triphosphate. Kinetic models were developed for the cyclooxygenase (COX) and lipoxygenase branches of
arachidonic acid metabolism, and then the rate constants were estimated with a data set from ATP-stimulated BMDM, using
a two-step matrix-based approach employing a constrained least-squares method followed by nonlinear optimization. The
robustness of the model was validated through parametric sensitivity, uncertainty analysis, and predicting an independent data-
set from KLA-primed ATP-stimulated BMDM by allowing the parameters to vary within the uncertainty range of the calculated
parameters. We analyzed the functional coupling between COX isozymes and terminal enzymes by developing a PGH2-divided
model. This provided evidence for the functional coupling between COX-2 and PGE2 synthase, between COX-1/COX-2 and
PGD2 synthase, and also between COX-1 and thromboxane A2 synthase. Further, these functional couplings were experimen-
tally validated using COX-1 and COX-2 selective inhibitors. The resulting fluxomics analysis demonstrates that the ‘‘multi-omics’’
systems biology approach can define the complex machinery of eicosanoid networks.
INTRODUCTION
Advances in ‘‘omics’’ technologies (genomics, transcrip-
tomics, proteomics, and metabolomics) during the past
decade are driving progress in the field of systems-level
modeling and understanding of biochemical mechanisms
leading to defined phenotypes (1). Owing to technological
challenges in measurements, lipidomics has lagged behind
genomics and proteomics. However, recent advances in
mass spectrometry have enabled us to identify and quantify
a large number of lipid species (2). The Lipid Metabolites
and Pathways Strategy (LIPID MAPS) Consortium has clas-
sified lipids into eight categories (3). One of the major lipid
classes in the fatty-acyl category is eicosanoids, including
the prostaglandins (PG) and leukotrienes (LT), which are
derived from arachidonic acid (AA), a 20-carbon unsatu-
rated fatty acid (4). Biological actions of eicosanoids and
other lipid mediators such as platelet-activating factor
(5,6) are elicited by their binding to specific G-protein
coupled receptors (7). Eicosanoids play a major role in
maintaining various biological functions (e.g., contraction
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of the uterus by PGE2, regulation of sleep by PGD2, induc-
tion of bronchoconstriction by LTC4 and LTD4) as well as
modulating pathophysiology including inflammation (8)
with its involvement in disorders such as multiple sclerosis
(9,10)).

Eicosanoid production is spatially and temporally regu-
lated by the sequential actions of eicosanoid-synthesizing
enzymes (4,11). In particular, the Group IVA cytosolic phos-
pholipase A2 (cPLA2) translocates from cytosol to the
nuclear envelope, endoplasmic reticulum, and Golgi
apparatus in response to inflammatory stimuli (12). This
enzyme hydrolyzes membrane phospholipids and produces
AA. The cyclooxygenases (COXs, such as COX-1 and
COX-2) metabolize AA to produce an unstable endoper-
oxide intermediate, PGH2, which is further metabolized to
PGD2, PGE2, PGF2a, PGI2, and thromboxane A2 (TXA2)
by terminal enzymes (13). Similarly, the lipoxygenases
(LOXs, such as 5-LOX and 12/15-LOX) metabolize AA
to produce hydroperoxyeicosatetraenoic acids, which are
converted into leukotrienes (such as LTA4 and LTB4) and
hydroxyeicosatetraenoic acids by enzymatic and nonenzy-
matic reactions. A spatial and temporal coupling between
COX isozymes and terminal enzymes for PG production
has been proposed previously based on reconstitution exper-
iments in HEK293 cells (14); however, the molecular basis
of the functional couplings in intact cells has not been
elucidated.
http://dx.doi.org/10.1016/j.bpj.2014.01.015
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Macrophages produce large amounts of eicosanoids
depending upon the inflammatory stimuli, such as adenosine
50-triphosphate (ATP) and lipopolysaccharide (LPS). ATP is
an important molecule for a wide variety of cellular func-
tions including bioenergetics and intracellular signaling,
whereas extracellular ATP plays important roles in both
innate and adaptive immunity through the cell-surface puri-
nergic P2 receptors ionotropic P2X and metabotropic P2Y
(15,16) (see Fig. S1 in the Supporting Material). These
receptors increase intracellular calcium concentration and
activate protein kinase C, resulting in the posttranslational
activation of the cPLA2, release of AA and subsequent pro-
duction of eicosanoids (17). Similarly, a bacterial compo-
nent, LPS, binds to toll-like receptor-4 expressed on
macrophages and then activates intracellular signaling
through mitogen-activated protein kinases and nuclear fac-
tor-k B (18). These signals also posttranslationally activate
cPLA2 and transcriptionally induce COX-2/prostaglandin-
endoperoxide synthase (Ptgs) such as Ptgs2 and microsomal
PGE synthase-1 (mPGES-1/Ptges) (13,19,20).

Nonsteroidal antiinflammatory drugs (NSAIDs; e.g.,
aspirin, indomethacin, and ibuprofen), which inhibit
COXs associated with eicosanoid metabolism, are used
for the treatment of pain, fever, and inflammation. It was
generally believed that specific inhibitors for COX-2
would be effective for the treatment of inflammatory
disorders because of their inducible nature after exposure
to proinflammatory stimuli such as LPS (13). However,
a selective COX-2 inhibitor, rofecoxib (Vioxx; Merck,
Whitehouse Station, NJ), was shown to display off-
target effects (21), suggesting the existence of a complex
machinery for AA metabolism.

The LIPID MAPS consortium has been collecting
large-scale lipidomics datasets using sophisticated mass
spectrometry systems in human plasma (22) and murine
macrophages stimulated with Kdo2-Lipid A (KLA, a spe-
cific toll-like receptor-4 agonist) (23). A systems biology
approach provides a powerful strategy for quantitative
understanding of the molecular basis of lipid metabolic
networks in mammalian cells by integrating existing mech-
anistic knowledge and novel high-throughput data (24).
Here, we have developed a quantitative computational
model of the AA metabolic network in bone marrow-
derived macrophages (BMDM). The model was developed
by using large-scale lipidomics and transcriptomics datasets
that were experimentally obtained from ATP-stimulated
BMDM. This computational model was tested by predicting
the eicosanoid profile in KLA-primed ATP-stimulated
BMDM. Furthermore, to understand the roles of COX-1
and COX-2 on eicosanoid production, the PGH2 was
divided into two different pools which were produced
from COX-1 and COX-2, respectively. A PGH2-divided
computational model was developed. A hypothesis of func-
tional coupling between COX isozymes and terminal
enzymes was generated and validated experimentally.
MATERIALS AND METHODS

BMDM cell culture

C57BL/6 mice from Charles Rivers Laboratories (Willimantic, CT) were

used for preparing BMDM cells (protocol available at: www.lipidmaps.

org/protocols/PP0000004702.pdf). Three biological replicates (five mice

in each) were performed on different days. Briefly, bone marrow was

flushed from the femurs and tibiae of 2–3-months-old mice and cultured

for six days. BMDM cells were detached and plated at the density of 1 �
106/mL onto 100-mm culture dishes. ATP (2 mM) stimulation was

performed with or without KLA (100 ng/mL) 4 h pretreatment. The data

obtained from treatment without KLA (nonprimed) and with KLA (KLA-

primed) are henceforth referred to as ‘‘dataset A’’ and ‘‘dataset B’’, respec-

tively. The media were collected at the time series comprising of eight

points: 0, 0.25, 0.5, 1, 2, 4, 8, and 20 h after ATP stimulation. For normal-

ization purposes, DNA was measured (protocol available at: www.

lipidmaps.org/protocols/PP0000002700.pdf).
Lipidomics

The eicosanoids were separated by reverse-phase liquid chromatography on

a C18 column and analyzed using a tandem quadrupole mass spectrometer

(MDS SCIEX 4000 Q Trap; Applied Biosystems, Foster City, CA) via

multiple-reaction monitoring in negative-ionization mode (22,25). We

have previously determined that the variations in technical replicates were

much smaller than the biological variation, and hence did not perform tech-

nical replicates in these experiments. Eicosanoid levels are reported herein,

and additional data is freely available online (http://www.lipidmaps.org/).

All metabolites were measured in pmol/mg DNA units. Outlier points

were detected by a simple z-test and were excluded at each time-point

(see the Supporting Material). The error bars were relatively large in eicos-

anoids with low absolute amounts (e.g., LTB4) due to biological variability.
Transcriptomics

Microarrays were used to measure changes in gene expression in response

to treatment in BMDM cells over time. At each time point, a custom array

of 38,489 unique probes representing 21,291 unique genes (Agilent

Technologies, Danbury, CT) was hybridized. A dye swap microarray exper-

iment was performed as another biological replicate. Data was normalized

using the LOWESS method. The significantly up- and downregulated genes

were identified using cyber-T (26).
Computational modeling and parameter
estimation

A detailed metabolic network was constructed based on literature and

KEGG pathways; the network was simplified and a degradation flux was

added to all the lipid metabolites (27,28). In the modeling of metabolism

of AA through the COX and the LOX pathways, the lipid metabolic path-

ways upstream of AA and the signaling pathways that regulate AA meta-

bolism were not modeled due to the unknown factors and complexity.

Hence, we did not fit the AA data in the above optimization problem. By

avoiding doing so, we were able to decouple the COX and LOX branches

for kinetic modeling and parameter-estimation purposes.

Ordinary differential equations (ODEs) were used to develop the models.

Linear kinetics was used for reaction rates based on the following reasons:

1. Out of 36 reactions, 18 were related to degradation, and six to nonenzy-

matic reactions;

2. Because PGH2 and LTA4 are unstable and not measurable in cellular

systems, they are likely to stay well below the saturating concentration

in vivo; and
Biophysical Journal 106(4) 966–975
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3. According to the BRENDA database (http://www.brenda-enzymes.info/

), we could assume that the substrate concentrations are much smaller as

compared to the corresponding Michaelis constant, Km, in most of the

remaining reactions.

We have captured the effect of temporal changes in protein levels by utiliz-

ing the microarray data with a 4 h time delay as an input to the model. This

assumes that the corresponding protein profile is similar to the mRNA time

course with the 4 h delay. The use of mRNA data was motivated by good

correlations between eicosanoid pathway genes and protein levels in

RAW264.7 cells (29). We recently reported that the COX-2 protein profile

was upregulated and sustained for 24 h (29,30). Thus, we considered the

temporal change of COX-2 levels as a sustained profile at its peak-level.

The upregulated and sustained profile of COX-2 also suggested that

COX-2 protein degradation rates seem to be slower than the protein synthe-

sis rates in the 24 h timeframe. Because of the use of gene expression data in

our model, calculated (estimated) rate constants are slightly different from

traditional rate constants. For example, we have defined the rate of COX-2-

dependent AA production as:

� vC2 ¼ Kcox-2[Ptgs2t¼0][Ptgs2FC][AA], where Kcox-2 is the intrinsic rate

constant (as traditionally defined),

� [Ptgs2t¼0] is the concentration of the protein COX-2 at t ¼ 0, and

� [Ptgs2FC] is the fold change of Ptgs2 gene with a time-delay of 4 h.

Because [Ptgs2t¼0] is unknown, we lumped [Ptgs2t¼0] with KCOX-2 and

defined an effective rate constant kC2 as

� vC2 ¼ kC2[Ptgs2FC][AA], where kC2 ¼ Kcox-2 � [Ptgs2t¼0].

Model formulation is explained with the following two reactions:

conversion of AA into LTA4 and LTA4 into LTB4. All the reactions are

listed in Table S1 and Table S2 in the Supporting Material for COX and

LOX pathways, respectively. One can write the following ODEs for LTA4

and LTB4:

d½LTA4�
dt

¼ þkL2½Alox5�½AA� � ðkL5 þ kL6½Lta4h� þ kL9

þkL10Þ½LTA4�;
d½LTB4�

dt
¼þkL6½Lta4h�½LTA4��ðkL7½Ltb4dh� þ kL8Þ½LTB4�;

(1)

where the rate constants kCi (i ¼ 1–22) for COX and kLj (j¼ 1–14) for LOX

were as defined in Table S1 and Table S2, respectively. These ODEs can be

rearranged in a matrix format as follows:
2
666664
d½LTA4�

dt

d½LTB4�
dt

3
777775¼
2
64 ½Alox5�½AA� �½LTA4� �½Lta4h�½LTA4�

0 0 ½Lta4h�½LTA4� �

Y ¼ X � b;
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where b is a matrix for rate constants, andX andYare known matrices from

data for metabolite concentrations and reaction rates, respectively (27,31).

A constrained least-squares approach (MATLAB software function

‘‘lsqlin’’; The MathWorks, Natick, MA) was used to solve b (constraint:

b R 0). The estimated values of the parameters were further refined by

using a generalized constrained nonlinear optimization (MATLAB software

function ‘‘fmincon’’), as

min
K;X0

0
BBBBBB@
w1

Pnsp
i¼ 1

 Pnt
j¼ 1

�
yi;j;exp�yi;j;predðK;X0Þ

�2!

þw2

Pnsp
i¼ 1

 Pnt
j¼ 1

��
dy=dt

�
i;j;exp

��dy=dt�i;j;predðK;X0Þ
�2!

1
CCCCCCA
;

K : parameters ðrate constantsÞ;
X0 : Initial conditionsðspecies concentrationsÞ;

(3)

where the objective (Eq. 3) was to minimize the weighted fit-error between

the experimental and the predicted metabolite concentrations and their

slopes (time derivative). The value nt is the number of time-points and nsp

is the number of species. Numerical integration was used (e.g., MATLAB

function ‘‘ode23’’) to simulate the system to circumvent the discretization

error. Additional description is provided in the Supporting Material.
RESULTS

Lipidomic and transcriptomic analysis of the
eicosanoid pathway in ATP-stimulated BMDM in
the presence or absence of KLA-priming

Lipidomics analysis of ATP-stimulated BMDM (Fig. 1 A,
nonprimed, dataset A) showed different patterns in the AA
cascade between COX and LOX pathways (Fig. 1 B).
COX metabolites were gradually accumulated in the late
phase of stimulation, whereas 5-LOX metabolites such as
LTB4 peaked within 2 h. Previous work from our laboratory
showed that RAW264.7 cells produce eicosanoids upon
ATP stimulation in a timescale of 1–2 h (32), whereas this
study reveals the prolonged production of eicosanoids in
0 0 �½LTA4� �½LTA4�
½Lta4h�½LTB4� �½LTB4� 0 0

3
75

2
666666666666666664
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kL5

kL6
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kL8

kL9

kL10

3
777777777777777775

(2)
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FIGURE 1 Lipidomics and transcriptomics

analysis. (A) BMDM were pretreated with or

without KLA for 4 h, and then stimulated with or

without ATP. Media and cells were collected for

lipidomic and transcriptomic analysis. The repre-

sentative lipidomic (B) and transcriptomic (C)

data for the AA metabolic network are shown as

heat maps based on primary data available online

(http://www.lipidmaps.org; H.A. Brown, unpub-

lished). The ratios of ATP-treated (nonprimed)/

control (Ctrl) and KLA-primed-ATP-treated

(KLA-primed)/Ctrl at the corresponding time

points were normalized using log transformations.

The ratios of AUC of eicosanoid profiles in KLA-

primed/nonprimed are shown on the right side of

the heat maps.
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ATP-stimulated BMDM lasting as much as 20 h. To deter-
mine the gene expression of the eicosanoid-synthesizing
enzymes, BMDM were collected and total mRNA was
extracted for transcriptomic analysis (Fig. 1 C). The expres-
sion of Ptgs2, Prostaglandin E synthase (Ptges), and LTB4

12-Hydroxydehydrogenase (Ltb4dh) were highly upregu-
lated in ATP-stimulated BMDM (Fig. 1 C). The expressions
of Prostaglandin D synthase 2 (Ptgds2), arachidonate
5-lipoxygenase (Alox5), Alox5ap, and LTC4 synthase
(Ltc4s) mRNAs were downregulated in the late phase of
ATP stimulation. These results suggest that eicosanoid
levels are regulated differently by ATP signaling in
BMDM cells than in RAW264.7 cells.

To analyze the priming effects of KLA on eicosanoid pro-
duction, BMDM cells were pretreated with KLA for 4 h and
then stimulated with ATP (Fig. 1A, KLA-primed, dataset B).
Lipidomic analysis showed similar patterns for the AA
cascade when comparing the combined treatment with
ATP-only stimulation, but the amounts of most eicosanoids
were increased by pretreatment with KLA. The priming
effects were calculated by the ratio of area under the curve
(AUC) of lipid profiles during the time course between
KLA-primed versus nonprimed BMDM (Fig. 1 B). Most of
the eicosanoid levels were upregulated in KLA-primed
BMDM as compared with nonprimed cells (Fig. 1 B). The
Ptgs2 and Ptges expression were amplified by KLA priming,
whereas the levels of Ptgs1, Alox5, Alox5ap, etc., were
decreased (Fig. 1 C). These results suggest that KLA-prim-
ing upregulates gene expression of Ptgs2 and Ptges and
thus facilitate the increased eicosanoid production.
Development of a kinetic model of the AA
metabolic network

To obtain the kinetic parameters, the AA metabolic network
was simplified and divided into COX and LOX subnetworks
(Fig. 2 A, detailed illustration of the intracellular signaling
with eicosanoid metabolic network is shown in Fig. S1).
As an example of simplification, thromboxane A2 (TXA2)
synthase (Tromboxane A synthase (TXAS)/thromboxane
A synthase 1 (Tbxas1)) produces a bioactive lipid mediator,
TXA2, but TXA2 is rapidly and nonenzymatically degraded
to TXB2, which is measurable under our experimental con-
dition. Therefore, the simplified network included TXB2 but
not TXA2. Next, the models for both pathways were
described by 16 ODEs in total (see the SupportingMaterial).
The rate constants were estimated using a constrained least-
squares method followed by a constrained nonlinear optimi-
zation (Materials and Methods). Then, the eicosanoid
profiles for dataset A (control and nonprimed) were simu-
lated (Fig. 2, B and C). For most time points, the difference
between the simulated and experimental data in both treat-
ment and control conditions was within the standard error
of the mean (mean 5 SE). The goodness of fit was further
examined by F-test, indicating that the fit-error was lesser or
comparable to experimental measurement error (see Table
S3). Therefore, we defined these parameters as calculated
parameters kCn and kLn for COX and LOX pathways, respec-
tively (see Table S1 and Table S2). We could not measure
the level of PGH2 because it is an unstable intermediate.
Therefore, in the parameter estimation process, we opti-
mized the profile for PGH2 formation with the constraint
that its maximum concentration remains <~10 pmol/mg
DNA based on the total amount of PGs produced. The un-
certainty analysis was performed to compute the mean 5
SE of calculated parameters (see Table S1 and Table S2).
The computed means 5 SEs for the parameters were of
the same order as the mean 5 SE for the lipid and gene
data (~30%). As a mathematical artifact, in the case of
some of the degradation reactions or small optimized-value
of the parameters, high relative-fluctuations were observed
in the mean 5 SE of parameters. We have validated our
Biophysical Journal 106(4) 966–975



FIGURE 2 Computational simulation of eicosanoid profile in ATP-stim-

ulated BMDM (for dataset A). (A) Simplified COX (left side) and LOX

(right side) pathway maps are shown. (Rectangles) Enzymes; (ellipses)

lipid metabolites. (Shaded) Unmeasured metabolites. (Arrows) Enzymatic

and nonenzymatic reactions. (B) Additional metabolic pathways including

degradation. The simulation results for COX (B) and LOX (C) metabolites

are shown. The experimental data (Exp) for ATP-treated (Trt) and control

(Ctrl) represent mean5 SE (n ¼ 3). The simulation results (Fit) are shown

(solid and shaded curves, respectively) for Trt and Ctrl.
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model by excluding the data on one of the intermediate
metabolites from the objective function. Because all
measured metabolites in the LOX pathway are leaf-nodes,
the rate parameters were estimated only in the COX
pathway when excluding PGJ2 (see Fig. S2). The values
of these parameters were similar to those of corresponding
calculated parameters kCn (see Fig. S2 A). In addition, the
simulated time-courses were in good agreement with the
experimental time-courses qualitatively and quantitatively
(see Fig. S2 B). These results suggest that this mathematical
model is reliable for simulating eicosanoid metabolism.

To investigate the robustness of the developed eicosanoid
model, parametric sensitivity analysis was performed by
Biophysical Journal 106(4) 966–975
varying each parameter (one at a time) by twofold up and
down from their optimized value (see Fig. S3). The slope
of the sensitivity curve was calculated to evaluate the sensi-
tivity for each parameter and each metabolite (see Fig. S3).
With most of the parameters, small to moderate sensitivities
were observed, and the sensitivities were consistent with the
structure of the biochemical reaction network. These results
suggest that our model of eicosanoid metabolism is robust
with respect to parametric perturbations.

To understand the biochemical reaction network, a time-
scale analysis was performed by computing eigenvalues and
eigenvectors of the Jacobian matrix of the ODEs at steady-
state conditions. The timescale was divided into three ranges
(i.e., fast, medium, and slow) depending upon the eigen-
values and metabolites significantly contributing to the
corresponding eigenvectors. All the 5-LOX metabolites
(LTA4, LTB4, 12-epi-LTB4, 6-trans-12-epi-LTB4) were
grouped in the fast timescale. On the other hand, most of
the COXmetabolites were distributed mainly in the medium
(PGD2, 15-keto-PGD2, PGJ2, 15-deoxy-PGJ2) and slow
(TBX2, PGF2a, 13,14-dihydro-15-keto-PGD2 (DHK-PGD2)
15-deoxy-PGD2) groups. Thus, these two metabolic path-
ways were successfully separated by timescale analysis.
Prediction of the eicosanoid profile in KLA-
primed ATP-stimulated BMDM

We hypothesized that our computational model can predict
the eicosanoid profile in KLA-primed BMDM (dataset B).
When the profiles were predicted with the optimized param-
eter values, the predicted (or simulated) time-courses did
not fit the experimental data well. Therefore, up to 30%
variability was allowed in the optimized parameter values.
The range of 30% variability was chosen based on
the uncertainty analysis of the calculated parameters
in the ATP-stimulated model. The simulation results with
the recalculated parameters were comparable with the
experimental data (Fig. 3, and see the results of F-test in
Table S3). This prediction of an independent experimental
dataset (dataset B), which was not used to fit the ATP-
stimulation data (dataset A), further validated the model.
Collectively, calculated parameters with an uncertainty
range (~30%) are reliable in predicting eicosanoid profiles,
and the mathematical model reflects realistic AA metabolic
networks in BMDM.
PGH2-divided model

PGH2 is produced by both COX-1 and COX-2. However, it
is difficult to experimentally distinguish between the COX-1
and COX-2-derived PGH2 in intact cells. Hence, we devel-
oped the computational model without distinguishing the
different sources of PGH2 (single PGH2 model). Next, we
developed a PGH2-divided model using the same modeling
strategy to delineate the role of COX-1 and COX-2.



FIGURE 3 Computational prediction of the eicosanoid profile in KLA-

primed ATP-stimulated BMDM (for dataset B). The predicted results for

COX (A) and LOX (B) metabolites are shown. The experimental data

(Exp) for KLA-primed ATP-treated (Trt) and control (Ctrl) represent

mean 5 SE (n ¼ 3). The simulation results (Fit) are shown (solid and

shaded curves, respectively) for Trt and Ctrl.
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PGH2 in the original simulation was separated into
COX-1 and COX-2-derived PGH2 (C1PGH2 and
C2PGH2, respectively) (Fig. 4 A). The effective rate con-
stants kCPn were estimated by using dataset A (see Table
S4). The simulation results fit the experimental data well
(see Fig. S4, and see the results of F-test in Table S3).
The uncertainty analysis revealed a small fluctuation in
calculated parameters similar to the results from the
single-PGH2 model (see Table S4). Because the metabolic
network downstream of PGD2 is conserved in both models,
the calculated parameters kCP17–27 were compared with
corresponding optimized parameters in the single-PGH2

model, kC12–22, to assess the validity of the PGH2-divided
model (Fig. 4 B). Most of the calculated parameters,
kCP17–27, in the PGH2-divided model were comparable
with the corresponding parameters kC12–22 of the single-
PGH2 model, although we observed differences in some
of the parameters for degradation reactions or the parame-
ters with small initial values. These results indicate that the
PGH2-divided model retained the properties of the single-
PGH2 model for the network downstream of PGD2. The
KLA-priming effects on the eicosanoid profile (dataset
B) were predicted by using calculated parameters with a
30% variation. The good fit to the experimental data
with a high predictive accuracy was obtained similarly to
that for the single-PGH2 model (see Fig. S5 and the results
of F-test in Table S3), indicating that the PGH2-
divided model has all the important features of the single
PGH2-model.
Functional coupling of COXs and terminal
enzymes

To understand how COX-1 and COX-2 differently divert
PGH2 to downstream products, we calculated the PGH2

fluxes and inhibitory effects of COXs on eicosanoid profiles.
The fluxes were computed from the calculated parameters
(Fig. 4 C). In the nonprimed BMDM, the COX-1-mediated
PGD2 flux was primarily observed at the early phase, and
then the total in-flux of PGD2 was divided into COX-1
and COX-2-mediated fluxes. The COX-2-mediated PGE2

flux was predominantly observed at the late phase, while a
small, but an essential, C2PGH2/PGE2 flux was also de-
tected at the early phase. TXB2 production was dependent
on COX-1, because the optimized value of the rate constant
of C2PGH2/TXB2, kCP7, was 0. With the aim of under-
standing the effect of KLA-priming, the kinetic parameters
of KLA-primed BMDM, kCP’, were independently esti-
mated by using the calculated parameters kCP within the
computed mean 5 SE (see Table S4). In the KLA-primed
BMDM, COX-2-mediated fluxes were increased in PGD2,
PGE2, and TXB2 as compared to nonprimed BMDM. The
PGE2 production was dependent on a COX-2-mediated
flux. Although the C2PGH2/TXB2 flux was detected, the
COX-1-mediated TXB2 flux was retained as the major flux.

Next, we simulated the inhibitory effects of NSAIDs on
the eicosanoid profile in nonprimed macrophages by
changing the calculated parameters (Fig. 4 D). In the non-
primed BMDM, PGE2, and TXB2 production were
assumed to be efficiently and dose-dependently blocked
by a COX-2-selective and COX-1-selective inhibitor,
respectively. On the other hand, the effects of nonselective
NSAIDs are well known to show no COX selectivity in
inhibiting PGD2 production. In the KLA-primed BMDM,
the model shows that COX-2-selective inhibitors were
more efficient in preventing PGE2 and PGD2 production
than COX-1-selective inhibitors. To confirm these simula-
tion results, PGD2 and PGE2 levels were measured in
culture media of ATP-stimulated BMDMs in the presence
and absence of COX-1 and COX-2 selective inhibitors,
SC-560 and NS-398, respectively (Fig. 4 E) (33). PGD2

production was inhibited at ~40–60% by both SC-560
and NS-398, whereas NS-398 effectively inhibited PGE2

production as compared to SC-560 (Fig. 4 E). Although
these selective inhibitors for COX isozymes selectively
inhibit target COX isozyme in vitro, they lose their selec-
tivity at higher dose in vivo (33). Indeed, at the higher con-
centration, we found that PGD2 and PGE2 production was
inhibited >50% by both inhibitors. These results suggest
that PGH2-divided model appears to reflect eicosanoid
metabolism in macrophages.

More significantly, we found important functional
couplings between COX and terminal synthases. The
mPGES-1 selectively coupled with COX-2 but not with
COX-1. The TXAS prefer to couple with COX-1 in
Biophysical Journal 106(4) 966–975



FIGURE 4 PGH2-divided model. (A) A modi-

fied COX pathway is shown. (Rectangles)

Enzymes; (ellipses) lipid metabolites. C1PGH2,

C2PGH2, and 15-keto-PGD2 are unmeasured

metabolites. (Arrows) Enzymatic and nonenzy-

matic reactions. (B) Other metabolic pathways

including degradation. (B) Kinetic parameter

values in the PGH2-divided model (pink or light-

gray, kCPn) and the corresponding values in the

single-PGH2 model (dark-gray, kCn) are compared

to validate the PGH2-divided model. (C) Fluxes are

computed by using calculated parameters. COX-1

and COX-2-mediated fluxes in ATP-stimulated

(nonprimed) and KLA-primed ATP-stimulated

(KLA-primed) BMDM are shown (as blue/dark-

gray and green/light-gray lines, respectively).

(Dotted lines) Simulated fluxes in control cells.

(D) The inhibitory effects of NSAIDs are simu-

lated by changing the calculated parameters kCP1,

kCP2, kCP’1, and kCP’2. The efficiencies of NSAIDs

are calculated as a ratio of AUC between non-

treated and NSAID-treated cells. (E) PGD2 and

PGE2 were quantified in the presence or absence

of COX inhibitors at 20 h after ATP stimulation.

The eicosanoid levels were normalized using

control levels. (Bars) Mean 5 SE (n ¼ 6 from

two independent experiments). *p < 0.05 versus

Ctrl, by Kruskal-Wallis test followed by Dunn’s

multiple comparison test. To see this figure in co-

lor, go online.
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nonprimed macrophages and it partially couples with COX-
2 in LPS-primed macrophages. The coupling between PGD
synthase (hematopoietic PGD synthase (H-PGDS)/Ptgds2)
and COXs is possibly switched from COX-1 to COX-2 in
nonprimed macrophages in a time-dependent manner, and
is mostly dependent on COX-2 in LPS-primed macrophages
(see the later part of Discussion).
DISCUSSION

Systems biology is an emerging field that aims to facilitate
the understanding of complex biological processes. The
statistical analysis of high throughput data and the develop-
ment of mathematical models help us in understanding
complex biological systems. Due to the challenges in the
measurements of lipids and the complexity of lipid meta-
bolic networks, lipid systems biology is not yet well
established. Previously, computational models of AA meta-
bolism in human polymorphonuclear leukocytes (34) and
in a multicellular ensemble of human inflammatory cells
(35) have been reported. However, in these studies, most
of the parameters are generated from a limited experi-
mental dataset and the best-fit parameter sets are chosen
in an arbitrary manner. In contrast, in this study we have
used a two-step, matrix-based approach to estimate rate
constants of the AA metabolic network in BMDM using
a large amount of experimental data on the lipid metabo-
lites. Because we found good correlations between specific
gene transcript levels and their metabolites (23), the
Biophysical Journal 106(4) 966–975
expression levels of enzymes were integrated into the
model. All the kinetic parameters in our models were
estimated through nonlinear optimization based on experi-
mental data. Therefore, this study using a multi-omics
data-driven systems biology approach is useful for under-
standing in vivo eicosanoid metabolism.

Our model is simple and is described by linear kinetics
based on the law of mass action. Nevertheless, the model
showed a good fit to the experimental data, suggesting
that it captured the key characteristics of the lipid metabolic
network in BMDM as discussed below.

The calculated rate constants, which are the effective
rate constants in our model, of COX-1 were ~20 times
higher than those of COX-2 in BMDM in both the
single-PGH2 and PGH2-divided models (see Table S1
and Table S4). Because the purified COX-1 and COX-2
have nearly identical rate constants in vitro (13), the differ-
ences of these two calculated rate constants are due to the
differences in the basal protein-expression levels of COX-1
and COX-2 (see Materials and Methods). It is difficult to
compare the expression levels among the different proteins
experimentally based solely on transcript levels, but the
computational model indicated that the basal protein-
expression level of COX-2 seems to be <5% as compared
to COX-1 expression. Indeed, PGE2 production with exog-
enous AA as the substrate was reduced >99% in nonstimu-
lated COX-1�/� macrophages (36). Furthermore, it is
difficult to detect the COX-2 expression in nonstimulated
macrophages by Western blotting (37). Hence, the
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calculated parameters for COX-1 and COX-2 are plausible
values in vivo, and our model supports the previous results
that the constitutive PG production is dependent on COX-1
to a great extent.

To confirm the reliability of calculated rate constants, the
fluxes for PGD2 and PGE2 were compared with the litera-
ture values. Because the unit used in the LIPID MAPS
experiments for lipid concentration was pmol/mg of DNA,
we converted the rate constants into mol/min/mg units
using the experimentally obtained values of 0.25 mg of
total protein, 3 mg of DNA, and 1 ng of mPGES-1
protein that are present in 106 cells (27,38). Urade et al.
(39) reported that the PGD2 flux in macrophages
is <1 nmol/min/mg of total protein. The activity of purified
mouse mPGES-1 has been reported to be ~100 nmol/
min/mg of purified enzyme (40), which is equivalent to
0.0004 nmol/min/mg of total protein. In contrast, in our
model, the calculated PGD2 and PGE2 fluxes at steady state
were 0.1 and 0.0002 pmol/min/mg of total protein, respec-
tively. Despite the differences in magnitude of fluxes, the
finding that the flux distribution between PGD2 and PGE2

pathways is approximately the same and comparable to pre-
vious reports has an important implication for the validity
of the computational model.

Eicosanoid production is spatially and temporally regu-
lated by the sequential actions of eicosanoid-synthesizing
enzymes (4). The PGH2-divided model provides evidence
of functional coupling. A previous study showed that
PGE2 production in mPGES-1/COX-2 cotransfected cells
was much higher than that in mPGES-1/COX-1 cotrans-
fected cells, and that even COX-1 did not produce PGE2

at low levels of AA, but only at high levels of AA, small
but measurable PGE2 production was observed (41). Our
model completely reproduced these results, because the
calculated rate constants for PGE2 production through
COX-2 were 10 times higher than that of COX-1 in non-
primed BMDM (see Table S1). In addition, a small but
essential COX-1-mediated PGE2 flux was observed at the
early phase during which AA is present at high concentra-
tions (data available online, http://www.lipidmaps.org/).
The model also predicted that a COX-2-selective inhibitor
would be more effective in inhibiting PGE2 production
than a COX-1-selective inhibitor (Fig. 4 D). This predic-
tion was experimentally validated by using both COX-1
and COX-2-selective inhibitors (Fig. 4 E). Similar results
have been reported by Kita et al. (33), in which PGE2 pro-
duction is effectively blocked by the COX-2 selective
inhibitor, NS-398, in LPS-primed thioglycolate-elicited
macrophages.

With regard to TXAS and H-PGDS, relevant studies are
consistent in demonstrating the preference of these enzymes
for COX isozymes. COX-2/TXAS cotransfected cells pro-
duced less TXA2 compared to COX-1/TXAS cotransfected
cells (14). The AA-induced aggregation of platelets, which
is a major downstream effect of TXA2, is mostly prevented
in COX-1�/� mice but not in wild-type mice (36). In accor-
dance with these results, our flux analysis and inhibitor
simulations revealed that TXB2 was produced only through
COX-1 in nonprimed cells, whereas in KLA-primed
BMDM, a fraction of the COX-2-mediated flux was also
observed (Fig. 4, C and D). These results suggest that
TXAS prefers to couple with COX-1. The immediate and
delayed production of PGD2 in mast cells has been shown
to exhibit coupling of H-PGDS with COX-1 and COX-2,
respectively (42). Consistently, the PGH2/PGD2 flux
was sequentially switched from COX-1 to COX-2 in our
model (Fig. 4 C, top-left panel). Our results support the
previous experimental results that pretreatment of rat
macrophages with aspirin to inactivate constitutive COX
abolished the generation of PGD2 and TXB2 formation
(43). The PGH2-divided computational model provides
convincing evidence of differential functional coupling
between different COX isozymes and various terminal
enzymes.

There are several antiinflammatory and proresolving lipid
mediators, such as lipoxins and resolvins (44). Lipoxins are
derived from AA, which are produced from macrophages
through 12/15-LOX pathway (45). However, we could not
detect these lipid mediators under our experimental condi-
tion, possibly because of using proinflammatory stimulants.
It would be worth modeling the eicosanoid fluxes with
different stimulants in future.

In conclusion, we have developed a quantitative model of
the eicosanoid metabolic pathway by integrating lipidomics
and transcriptomics data in primary macrophages. Addi-
tionally, we have been successful in predicting the eicosa-
noid profiles under a set of conditions different from that
used for calculating the rate constants. By taking advantage
of computational simulation, we have enhanced our under-
standing of the biological characteristics of eicosanoid
metabolic networks. We predicted the functional coupling
of COX isozymes and terminal enzymes and validated
experimentally using COX-1 and COX-2-selective inhibi-
tors. Therefore, our computational model helps in under-
standing the complex and highly integrative machinery of
eicosanoid metabolism and assists in examining complex
phenomena for which we have at this time no experimental
approaches to determine these parameters under in vivo or
ex vivo conditions.
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38. Boulet, L., M. Ouellet, ., N. Méthot. 2004. Deletion of microsomal
prostaglandin E2 (PGE2) synthase-1 reduces inducible and basal
PGE2 production and alters the gastric prostanoid profile. J. Biol.
Chem. 279:23229–23237.

39. Urade, Y., M. Ujihara, ., O. Hayaishi. 1990. Mast cells contain
spleen-type prostaglandin D synthetase. J. Biol. Chem. 265:371–375.

40. Lazarus, M., B. K. Kubata, ., O. Hayaishi. 2002. Biochemical char-
acterization of mouse microsomal prostaglandin E synthase-1 and its
colocalization with cyclooxygenase-2 in peritoneal macrophages.
Arch. Biochem. Biophys. 397:336–341.

41. Murakami, M., H. Naraba, ., I. Kudo. 2000. Regulation of
prostaglandin E2 biosynthesis by inducible membrane-associated



Eicosanoid Fluxes in Macrophages 975
prostaglandin E2 synthase that acts in concert with cyclooxygenase-2.
J. Biol. Chem. 275:32783–32792.

42. Ueno, N., Y. Takegoshi, ., M. Murakami. 2005. Coupling between
cyclooxygenases and terminal prostanoid synthases. Biochem. Biophys.
Res. Commun. 338:70–76.

43. Matsumoto, H., H. Naraba,., S. Oh-ishi. 1997. Concordant induction
of prostaglandin E2 synthase with cyclooxygenase-2 leads to preferred
production of prostaglandin E2 over thromboxane and prostaglandin
D2 in lipopolysaccharide-stimulated rat peritoneal macrophages.
Biochem. Biophys. Res. Commun. 230:110–114.

44. Serhan, C. N., S. Yacoubian, and R. Yang. 2008. Anti-inflammatory
and proresolving lipid mediators. Annu. Rev. Pathol. 3:279–312.

45. Serhan, C. N. 2005. Lipoxins and aspirin-triggered 15-epi-lipoxins are
the first lipid mediators of endogenous anti-inflammation and resolu-
tion. Prostaglandins Leukot. Essent. Fatty Acids. 73:141–162.
Biophysical Journal 106(4) 966–975


	Modeling of Eicosanoid Fluxes Reveals Functional Coupling between Cyclooxygenases and Terminal Synthases
	Introduction
	Materials and Methods
	BMDM cell culture
	Lipidomics
	Transcriptomics
	Computational modeling and parameter estimation

	Results
	Lipidomic and transcriptomic analysis of the eicosanoid pathway in ATP-stimulated BMDM in the presence or absence of KLA-pr ...
	Development of a kinetic model of the AA metabolic network
	Prediction of the eicosanoid profile in KLA-primed ATP-stimulated BMDM
	PGH2-divided model
	Functional coupling of COXs and terminal enzymes

	Discussion
	Supporting Material
	References




