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Abstract 
 
 
This report describes research to characterize the status of, and trends in, big-data analytics for the 

electricity grid. The research focused on 1) identifying power-grid big-data sources, types, and 

characteristics; and 2) characterizing big-data architecture, analytic methods, technology applications, 

and challenges. The first part of this report describes the main sources and characteristics of big data 

for the smart grid and comprehensively reviews big-data architecture, technologies, and applications in 

the power sector. The second part of this report presents case studies of big data applications in the 

power industry: (1) a smart-meter data and predictive analytics method for demand response (DR), (2) 

synchrophasor data analytics for the distribution grid, and (3) utility data for peak-demand 

management. For the predictive analytics case study, smart-meter-data-driven and physical models 

were developed to predict the potential kilowatt (kW) capacity reduction from DR. The DR estimation 

framework that was developed works for both small and large-scale customers. The synchrophasor case 

study demonstrates use of an algorithm applied to time-series data to detect events that appear as 

significant changes, known as “edges,” in voltage magnitude measurements. The synchrophasor case 

study also introduces an approach for clustering sets of events to reveal unique features that 

distinguish them (e.g., distinguishing capacitor bank switching from transformer tap changes). The 

peak-demand management case study describes the use of the data analytics to enable DR programs to 

limit forecasted peak demand, resulting in cost savings to the utility. The findings from the research 

described in this report support identification of opportunities and technologies for big-data and 

analytics applications for demand-side management in the power sector as well as other approaches to 

modernizing the electricity grid. 
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Acronyms and Abbreviations 
 
AMI  automated metering infrastructure 
AMR  automatic meter reading 
DA  distribution automation 
DR  demand response 
DSM  demand-side management 
EPB     Electric Power Board of Chattanooga 
Gbps  gigabits per second 
HAN  home area network 
HVAC  heating, ventilation, and air conditioning 
ID  identifier 
IEEE  Institute of Electrical and Electronics Engineers 
IOU  investor-owned utility 
Kbps   kilobits per second 
kW  kilowatt 
LBNL  Lawrence Berkeley National Laboratory 
M&V  measurement and verification 
Mbps   megabits per second  
MDM  meter data management 
MHz  megahertz 
µPMU  micro phasor measurement unit 
NAICS  North American Industry Classification System 
OAT  outside air temperature 
PMU    phasor measurement unit 
SA  service agreement 
SCADA   supervisory control and data acquisition 
STL  season trend decomposition using Loess 
TVA  Tennessee Valley Authority 
W  Watt 
WBP  whole-building power 
WLAN  wireless local-area network 
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1 Introduction 
Electricity grid modernization initiatives and deployment of demand-side management (DSM) programs 
increasingly depend deriving actionable insights from the large volumes of data collected on the smart 
grid. The data available to the utility industry are increasing exponentially in both number and type [1]. 
However, the lack of standardized and secure access to data and for analytical methods to extract 
actionable information from those data is limiting innovation in DSM program design and deployment 
as well as grid modernization. Operations and performance data from power plants and renewable 
generation resources, electric power grid transmission and distribution system data, and smart-meter 
data on electricity usage are all rich sources of information. These data can help the industry realize the 
economic and other benefits of DSM programs, including energy efficiency, energy conservation, load 
management, and demand response (DR) programs.  
 
The goal of the case studies presented in this report is to advance the adoption of cost-effective DR and 
enable innovative DR technologies and emerging DR markets. An overall goal of the report is to 
highlight both the potential benefits and challenges of “big data” and “big-data analytics” in the 
electricity industry.  The scientific community has no single, agreed-upon definition of big data. 
Definitions range among those based on size (large, complex data), data type (structured, semi-
structured, unstructured, heterogeneous), and computational standards (e.g., the capacity and 
capability of conventional data collection and analysis methods and systems) [2]. 
 

For purposes of this study, the term “big data” is defined as large volumes of unstructured and 
heterogeneous data sets that are complex in relation to conventional techniques.  
 

Just as there is no single definition of “big data,” there is also no single definition for data analytics. 
Definitions focus on the “what” and the “why” aspects of data analytics, such as “discovery of 
meaningful patterns in raw data with the goal of understanding, describing, predicting, and improving 
business performance [1]” data processing that “expose[s] new knowledge, and facilitate[s] in 
responding to emerging opportunities and challenges in a timely manner [3],” or that has “the potential 
to generate new knowledge thus proposing innovative and actionable insights for businesses” [4]. 

 
For purposes of this study, the term “big-data analytics” is defined as encompassing methods, tools, 
and analyses that use advanced computing systems to extract actionable information from big data.  

 
The key objectives of the study are to: 

• Examine the characteristics of big-data types and sources related to the smart grid (e.g., smart-
meter data, customer demographics, weather data) 

• Review the role of big-data analytical methods and industry best practices for the smart grid, 
with a focus on demand-side customer meter data for DR analytics 

• Explore the challenges of big data for power industry data architecture, technologies, and 
applications 
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• Demonstrate applications of big-data analytics with case studies from industry partners  
•  Facilitate technology transfer of big-data analytics to benefit industry activities 

 
Recent research to evaluate the flexibility and advanced capabilities of existing and future customer 
electrical loads resulted in the 2025 California Demand Response Potential Study [5]. The research 
utilized 15-minute electricity usage data from more than 200,000 smart meters installed by California’s 
three investor-owned utilities (IOUs) – Pacific Gas & Electric, Southern California Edison, and San Diego 
Gas & Electric – as well as demographic data for 11,000,000 customers, historical weather data, and 
data from other sources.  Using these data, the study defined characteristic customer load profiles for 
data clusters and assessed future DR technology capabilities and costs.  
 
Our research builds on the California Demand Response Potential Study by focusing on the use of big-
data analytics to forecast DR’s potential to meet the needs of California’s changing electricity grid as 
penetration of renewable and distributed generation resources increases. Our research team 
developed a comprehensive big-data analytic framework along with DR electricity supply-side curves to 
estimate the amount of DR available for various grid services for each hour of the year. This report also 
describes a study for a municipal utility, the Electric Power Board of Chattanooga (EPB), in which 
distribution system and smart-meter data were used to identify cost-saving opportunities for electricity 
customers from DR programs [6] and other applications such as outage reduction. 
 
These studies demonstrate the value of big data for DR programs and the use of data analytics for 
utility grid planning and policy development. Similar research methodologies, analytical frameworks, 
and data from other areas of the U.S. could be used to estimate regional DR potential. In this vein, our 
research team is also working with the New York Independent System Operator and Consolidated 
Edison to expand this study’s applications [7], [8].  
 
Data analytics uses different methods for different functions. Figure 1 shows numerous types of data 
analytical methods that have been defined in previous studies [1,9].  
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Figure 1: Types of Data Analytics [1] 
 
Descriptive analytics  
Descriptive analytics mine and aggregate data to provide insight into the past (“what happened”). 
 
Predictive analytics  
Predictive analytics utilize a variety of statistical, modeling, data-mining, and machine-learning 
techniques to study recent and historical data as a basis for forecasting the future. 
 
Prescriptive analytics 
Prescriptive analytics use optimization and simulation algorithms to suggest possible outcomes and 
recommend the best course of action for any pre-specified outcome. 
 
In this study, we focus on descriptive and predictive analytics for consumer-based DR programs. The 
case studies we present provide insights into advanced situational and prescriptive analytics as well as 
technologies for pre-emptive resolution of field challenges. Situational analytics combine descriptive, 
predictive, and prescriptive analytics to understand real-time intelligence about the condition of the 
grid. Electricity grid stakeholders and product vendors can leverage the findings from this study to 
identify and prioritize development of technologies for big-data and analytics-related applications to 
maximize DSM program benefits and accelerate grid modernization. 
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1.1 Study Methodology 
This study encompassed two key research activities: (1) identifying power grid big-data sources, types, 
and characteristics; and (2) exploring and summarizing big-data architecture, analytic methods, 
technology applications, and challenges for the power industry. The case studies of big-data 
applications in this report aim to transfer our research results to industry.  Figure 2 illustrates our 
research framework.  

 
Figure 2: Overall Research Framework of the Study 

 
1.2 Organization of this Report     
The remainder of this report is organized as follows:  

• Section 2 describes data sources and the types and characteristics of data on the smart grid 
with a focus on big-data analytics for DR programs and the role of data standardization in that 
context. 

• Section 3 focuses on utility data architecture, technologies, and applications. 
• Section 4 describes a method developed for assessing potential DR capacity for small, medium, 

and large customers and presents two case studies of big-data analytics for DR. 
• Section 5 presents our preliminary conclusions and describes future activities in this research 

area. 
• Section 6 contains the references cited in the report. 
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2 Data Characteristics and Use of Smart-Meter Data for Predictive 
Analytics 

This section identifies the sources and types of big data for the smart grid, describes the characteristics 
of big data for each source, and discusses predictive analytics for DR using smart-meter data. The final 
topic of this section of the report is the use of standards-based models for data access and grid 
interoperability, to unlock innovation, new technology development, and market opportunities.  

2.1 Big-Data Characteristics on the Smart Grid 
As noted in Section 1, we use the term “big data” in this report to refer to data sets that are so large or 
complex that traditional data-processing software is inadequate to deal with them. Big data can be 
characterized by “the six Vs”: volume (number of data points), velocity (speed at which the data are 
generated and processed), variety (number of types of data), variability (degree of consistency or 
inconsistency of the data), veracity (quality of the data), and value (the outcomes achieved as a result of 
collecting and analyzing the data) [10,11].  
 
As described in Table 1, smart-grid data (data from smart meters and PMUs/ µPMUs on the grid) exhibit 
the six V characteristics of big data.  
 
Table 1: Smart Grid Data and the “6V” Characteristics of Big Data 
6Vs Definition Relevant Smart-Grid Data Characteristics 
Volume Number of data points High volumes of data from smart meters and 

advanced sensor technology, i.e., 96 million 
reads per day at 15-minute intervals from every 1 
million meters 

Velocity Frequency of data generation, 
transfer, or collection 
 

Smart meter: every 5-15 minutes 
µPMUs: 512 samples per nominal 50/60-Hertz 
cycle 
Weather: every 1-15 minutes 

 Variety Diversity of sources, formats; 
multidimensional fields 

Smart meter, weather, synchrophasor, customer 
geographic/demographic data 

Variability Inconsistency of data Missing data from smart meters and/or sensors 

Veracity Reliability and quality of data 
 

Smart meter: error < 2.5% 
µPMUs: ±0.01% 
Weather *: outdoor temperature (±0.5°C), 
pressure (±1.5%), outdoor humidity (±5%), and 
solar radiation (10%) 

Value Extraction of insights and 
benefits 

Load forecasting 
Utility tariff design 
Customer bill service 
Abnormality detection 
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Situational awareness 
Outage management 
Distributed energy resources (DER) management 
Volt/VAR Optimization (VVO) 
Conservation voltage reduction (CVR) 
 

In this report, we look at customer-centric data, including smart-meter electricity-use data, customer 
demographics, weather, utility tariffs, and utility and system operator DR program data. These data can 
help advance DR marketplace and technology acceptance by assisting electricity grid stakeholders 
(utilities, technology vendors, regulators, consumers) in understanding DR-enabled products and 
services.  Important uses of big data are predictive analytics and modeling, real-time performance 
assessment, and descriptive analytics for DR settlement. Next-generation grid innovations and 
technologies will be facilitated by real-time and predictive analytics of DR performance, which can 
provide the basis for actions to enhance grid reliability and customer engagement. Figure 4 gives an 
overview of the use of big data for DR predictive analytics and post analysis (at different time scales). 
This topic is addressed in more detail in Section 2.2.2 below. 
 

 
Figure 3: Use of Big Data for Demand Response Analytics 
 

2.2 Big Data and Analytics in Demand Response 
This study focuses on interfaces with data sources (e.g., weather, meters, sub-meters), the data sources 
themselves (e.g., end uses, smart meters, gateways), and data analytics (e.g., forecasting, measurement 
and verification [M&V] for settlement) for DR programs, with the goal of improving utility operations 
and grid reliability. We reviewed distribution-grid smart-meter and PMU data to identify the 
characteristics of the data and the value of big-data analytics for the distribution grid. 

2.2.1 Data Sources, Types, and Characteristics 
Table 2 shows the major data sources on the distribution grid. Data from different sources are collected 
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using different technologies [11]. This study focuses on smart-meter, PMU, electricity-price, and third-
party (e.g., weather) data. Metered data can include energy and demand from various sources such as 
smart meters and automated metering infrastructure (AMI). Examples of smart meter and µPMU 
datasets are described in detail below. µPMU is used to measure the real-time synchrophasor data 
from the consumer voltage level.  Case studies in Section 4 of this report demonstrate the use of big 
data from distribution-system smart meters and µPMUs. 
Table 2: Major Distribution System Data Sources for the Smart Grid 
Data sources Technology involved Remarks 
Advanced metering 
infrastructure 

Smart meters Data generated from smart meters 
has been increasing significantly. 

Distribution automation Grid and sensing equipment 
(PMUs) 

Sensors are deployed for real-time 
grid monitoring and control. 

Regional Transmission 
Organizations 
(RTO)/Independent System 
Operators (ISO) 

Electricity price data 
(wholesale market) 

These include day-ahead, real-time 
pre-dispatch and real-time dispatch 
locational marginal price data. 

Off-grid data Third-party datasets (i.e., 
weather) 

Utilities integrate data from third 
parties to study consumer behavior 
and the effect of utility 
programs/policies (EE and DR). 

 
Smart Meters 
Smart meters measure and record energy usage, just as analog meters do, but are also capable of two-
way network communication. Smart meters provide a digital link between electric companies and their 
customers, opening the door to services such as time-based pricing, load management, budget billing, 
high-usage alerts, push notifications, and web services for customer energy management. In 2016, U.S. 
electric utilities completed about 70.8 million smart meter installations. Approximately 88% of smart 
meters were installed at residential customers’ premises.   
 
In 2001, the California Public Utilities Commission began a significant effort to upgrade California’s 
energy infrastructure with automated metering.  Figure 4 shows an example of the meter data 
communication employed by Pacific Gas & Electric Company in California. Each smart meter is equipped 
with a network radio. The radio transmits sub-hourly meter readings to an electrical network access 
point. This data are then transmitted to the utility through a dedicated, secure radio-frequency 
(cellular) network.  
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Figure 4: SmartMeter™ Electric System Communication Diagram [12] 
 
Table 3 presents an example of utility smart-meter data, which are usually time-series data of power 
readings. Utilities integrate customer data, such as the service agreement (SA) identifier (ID) and rate 
schedule, with the time-interval usage data. The utility stories each customer’s other identifying 
information, such as location, in a different, protected database. 
 
Table 3: Example of Utility Smart-Meter Data  
Data type Fields Notes 

Static data 

SP Service point identifier (lowest level associated 
with a premise identifier [PREM_ID]) 

SA 
Service agreement identifier (lowest level 
associated with an account identifier [ACCT_ID]) 
for a customer 

UOM Unit of measure (electric – 
kW/kWh/kVAR/kVARh, gas – THM/CCF)* 

RS Rate schedule of associated SA 

NAICS 
North American Industry Classification System 
code associated with activity at premise for 
associated SA 

Dynamic (received from 
meter) 

DIR 
Direction of electricity flow (D=delivered from 
grid to customer, R=received from customer to 
grid) 

DATE Date of interval usage 
APCT The actual percent of intervals 

VALUE Value of time measurement in 15- or 60-minute 
interval periods 

*kW – kilowatt; kWh – kilowatt-hour; kVAR – kilovolt-ampere reactive; kVARh -- kilovolt-ampere reactive hours; 
THM/CCF – therm/hundred cubic feet 
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Micro-Phasor Measurement Units  
Synchrophasors measure the angle between voltage and current at different physical locations on a 
power grid. Traditionally, synchrophasors have been used to investigate transmission grid stability. 
Distribution grids have much tinier angle differences – too small, and changing too rapidly – to resolve 
with traditional transmission-type PMUs, so µPMUs are required. Specifically, power flows in 
distribution systems are smaller and distances shorter compared to conditions on transmission systems. 
Voltage phase-angle differences are typically two orders of magnitude smaller on the distribution grid 
than on the transmission grid [13]. The increased deployment of distributed energy resources such as 
solar photovoltaics and electric vehicles has introduced short-term, frequent, unpredictable power-flow 
disturbances. An µPMU provides ultra-precise, synchronized measurements of voltage and current 
magnitudes and phase angles, or synchrophasors. When an µPMU is in synchrophasor mode, it 
communicates voltage and current magnitude and phase-angle data with very high temporal resolution 
in the order of 30-60 samples per second. The µPMU deployed in [14] was capable of reporting the 
measurement at a rate of 120 samples per second. A follow-up recent big-data analytics study [15] 
demonstrates the value of these high-fidelity, high-resolution sensors on distribution systems. That 
study presents an algorithm for detecting events by identifying edges in voltage-magnitude time-series 
data, and an approach for clustering events to reveal unique features that distinguish different events 
from one another (e.g., capacitor bank switching vs. transformer tap changes). Section 4.2. of this 
report describes the details of this approach. 
 
Table 4: µPMU Data Format  

Data type Fields Notes 

Static  ID µPMU identifier 

Dynamic (received from 
sensor) 

Voltage magnitude Three-Phase voltage value (V) 
Current magnitude Three-Phase current value (A) 

Angle between voltages 
Three-phase voltage angles (phase-angle 
difference between voltage curves) 

Angle between currents 
Three-phase current angles (phase-angle 
difference between current curves) 

 

2.2.2 Data Analytics for Demand-Response Applications  
DR programs are widely recognized as essential tools for utility companies [16]. Key benefits include 
peak-load shifting and potential elimination of costly spot-market energy purchases or capital 
investment in additional generation capacity [5,17]. Historically, consumption was calculated at an 
aggregated level and could not be easily apportioned across the customer base. Now, smart meters 
provide granular consumption data for the whole customer base. These data can be used to predict 
load-shedding from DR events. 
 
DR-related predictive analytics (at varying time scales)  
Increasing adoption of smart connected devices (e.g., thermostats; heating, ventilation, and air-
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conditioning [HVAC] systems; advanced lighting) is influencing the design of DR programs, especially for 
thermostat-based DR. In the residential sector, thermostat-based DR is a new business model for 
utilities, involving millions of clients each using far less power individually than the large commercial 
and industrial facilities that are the traditional targets of DR programs. Even though utilities want big 
(megawatt) DR resources, smart thermostats are already penetrating small and medium-sized 
commercial facilities to manage HVAC systems for efficiency and comfort [18] and therefore offer DR 
potential.  
 
We developed two predictive-analytics models for HVAC/thermostat-based DR. The two HVAC control 
strategies considered are: (1) shut down HVAC system, and (2) adjust HVAC system thermostat set 
points ( ). The model predicts the possible load reduction (kW capacity) based on predicted building 
load, which is, in turn, based on historical meter data and current third-party weather forecasts (hour-
ahead or day-ahead). A previous Lawrence Berkeley National Laboratory (LBNL) project [19] presented 
a method for fast, accurate prediction of kW capacity reduction using a physical (EnergyPlus) model.  
This model was improved recently to integrate a data-driven approach (using meter interval and 
weather data) as shown in Figure 5. 
 

 
Figure 5: Hybrid Model Framework for Demand Response-Related Predictive Analytics 
 
Using smart-meter data, we developed two models to predict the kW capacity reduction from DR: 

• A data-driven model that tells when to turn off the HVAC system: 

 

• A hybrid model to describe the impact of thermostat set-point adjustments: 
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Where OAT refers to the outside air temperature, T refers to the change-point temperature, and GTA 
refers to the global temperature adjustment in the building HVAC systems to reduce cooling and 
ventilation loads during DR events. and are intercepts and slopes of the piece-wise linear 
models in the above equations. 
 
Figure 6 shows an example of analytics to predict DR capacity at a certain time of day, taking into 
account the weather forecast. The x-axis in Figure 6  (a) shows the estimated DR capacity of all 
commercial customers in a specific area. The y-axis refers to the ratio of the estimated DR capacity to 
whole-building power. The y-axis in Figure 6  (b) shows the distribution of each customer’s kW load-
shed quantity in a specific area. Results indicate that a majority of commercial customers have less than 
10 kW of DR capacity. Using a data analytical framework such as this, utilities can dispatch DR capacity 
at each location using the most cost-effective resources. In this study, “DR capacity” refers to the 
potential kW shed from a building’s HVAC system during a peak four-hour event (e.g., 2PM-6PM). 
 

 
Figure 6: Example of DR Predictive Analytics using Smart Meter and Weather Data 
 
DR post analysis (different time scales) 
DR M&V quantifies DR performance in terms of the following metrics: total DR (kW shed during DR 
event hours), DR per building square foot or meter, and DR percentage of whole-building power 
(%WBP) [20,21]. DR-related post analysis includes the settlement of the load reductions achieved by 
each customer and at the program level. Different M&V methods are used for DR settlement based on 
DR resource characteristics such as load variability, weather sensitivity, etc. These baselines can also be 
used to estimate the large-scale potential of DR, assess the impact of the DR program, and plan and 
operate DR programs [22].  
 
In the data set we used, each customer’s smart meter measured energy use at 15-minute intervals. 
Generally, baseline loads are calculated using two models: (1) simple average over the previous 10 
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recent baseline days1 (5/10 baseline) or the highest 3 or 5 out of 10 (3/5 out of 10 baseline), with and 
without morning adjustment [23]; and (2) weather regression model baseline. These models are 
described below[24]. 
 
10 out of 10 baseline model (10/10) 
The average load during the event period calculated from the previous 10 days (excluding weekends, 
holidays, a DR event day, and any operation off day).  
 
10 out of 10 baseline model with morning adjustment (5/10 MA) 
Morning adjustments is a ratio of (a) the average load of the first three of four hours before the DR 
event to (b) the average load of the same hours from the selected five baseline days. The adjustment 
factor is limited to ±20% of the customer baseline. 
 
Weather regression baseline model 
For the weather regression baseline model, a whole-building power baseline is estimated first, using a 
regression model that assumes that whole-building power is linearly correlated with OAT. The model is 
computed as: 

 
where   is the predicted 15-minute interval electricity demand from time  from the previous non-DR 
event workdays. In this study,  is the 15-minute interval OAT for time . The parameters  and  are 
generated from a linear regression of the input data for time . 
 
Although these data analytics models can help improve operation and performance of DR programs, 
the ease of data access and the cost associated with large volumes of data make it challenging to 
extract the value from the data. There is a need for standards-based data access schemes, which would 
simplify performance assessment of DR programs.  

2.3 Standardizing Data to Facilitate Demand-Response Performance Assessment 
The cost-effectiveness of utilities’ and DR customers’ use of big data to support grid interoperability 
would be enhanced by data standardization. “Grid interoperability” refers to the grid’s ability to 
interface with disparate DR products, controls, or systems without requiring implementation-specific 
data translation. According to the U.S. Department of Energy’s grid modernization plan, 
“interoperability standards define technical requirements for defining the capability of two or more 
networks, systems, devices, applications, or components to externally exchange and readily use 
information securely and effectively” [25].  
 
A majority of the standardization principles discussed here are derived from the study team’s research 
[26]. Prior studies address comprehensive applications for grid and customer transactions [27][28]; this 
report focuses only on assessing DR program performance. 

                                                             
1 Normal operation days, excluding weekends, holidays, a DR event day, and any operational off day 
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Big data are characterized by an exponential “increase in number of connected devices or systems that 
can communicate and intelligently act upon information” [26]  Extracting valuable, actionable 
information from such a deluge of data can be challenging. Realizing the benefits of big-data analytics 
required easy, cost-effective access to data from different sources and interoperable data exchange. 
DR-ready customer products must be able to exchange data and information with the grid; data 
standardization will facilitate exchange. 
Challenges for standardization include: (1) insufficient adoption of secure, standards-based networks 
that can sense, collect, and transmit data; (2) lack of standard support for interoperability; and (3) lack 
of low-cost integration for fragmented DR systems and services from multiple electricity operators, 
providers, and vendors. Standards that allow cost-effective, reliable data exchange among systems 
would help address these challenges. We do not focus here on data- and cyber-security principles in 
implementing standards; U.S. smart grid guidelines address these issues [29–31].  
 
The scope of standardization for DSM is shown in Figure 7. DR programs do not exist in isolation but are 
part of a range of electricity or energy services implemented by customers, energy service providers, 
markets, and operators.  In the case of DR, standardization would apply to data -- e.g., a utility might 
request customer’s facility energy use data – or other information – e.g., a DR customer can request the 
baseline energy usage information from the service provider. Standardization can have multiple 
formats depending on the type of service provided. For example, Green Button is a standard for 
exchange of energy usage data from smart meters for purposes of customer billing [32], and OpenADR 
is a standard for communicating DR signals to elicit an automatic load-shed response from a customer’s 
facility [33].  
 

 
Figure 7: Scope of Standardization for Demand-Side Management 
 
Data, communication, and information exchange standards can support DSM services that include both 
DR and energy-efficiency performance assessment.  

2.3.1 Standards for Assessing Demand-Response Performance 
Table 5 lists some of the key standards and data sources used for DR performance assessment and 
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communication. The standards listed in the table were developed by formal standards development 
organizations (SDO) unless such a standard does not exist, as noted. The references to the table provide 
additional details. These standards are classified under, “de-jure” and “de-facto” standards. Here, de-
jure refers to standard that is developed by an SDO and adopted by the industry. The de-facto refers to 
a standard that is not developed by the SDO and is still widely adopted by the industry. 
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Table 5: Performance Assessment Standards and Data Sources [34–39] 

 
 
Common methods to analyze a customer’s DR performance require historical and real-time energy 
usage data. Data analytics are applied to measured energy-usage data to quantify a customer’s load 
reduction in response to a DR event. Electricity grid and utility managers can benefit from 
understanding the relationships among the types of analytics and ways to employ various applications 
[1]. For example, grid-asset and weather data can be used to manage the grid and to trigger DR events.  
 
Although smart meters and automated metering infrastructure (AMI) are used for DR M&V, 
standardization and harmonization can enable integration among customers, energy service providers 
and energy markets and their systems and can thereby enhance DR services and performance 
assessment. For example, Green Button and OpenADR or SEP standards could be harmonized. An 
example from the field is from PG&E’s DR programs where OpenADR-based management systems were 
integrated with customer information and meter data management systems to ensure that DR program 
signals were dispatched to enrolled customers and to validate DR performance. Standardization eases 
data sharing and integration across utility systems, enables many system architectures, and facilitates 
third-party access to data to help foster DSM technology innovation. 
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3 Data Architecture, Technologies, and Applications 
3.1 Overview of Big-Data System Architecture 
Big-data system architecture for the power grid comprises reliable, scalable, and automated data 
pipelines across grid systems. This system relies on communications technologies that collect raw data 
and convert those data into information that provides insight and value.  The technologies involved are: 
1) data acquisition, storage, and querying applications used by electric utilities; and 2) data-analysis 
models and methodologies, for example customer energy usage estimation models [5]–[8].  
A logical architecture for big data and analytics has three components [40]: 

1. Information management – high-volume data acquisition, multi-structured data organization 
and discovery, and low-latency data processing.  

2. Real-time analytics – speed-of-thought analysis, interactive dashboards, advanced analytics, and 
event processing. 

3. Intelligent processing – application-embedded analysis, optimized rules and recommendations, 
guided user navigation, and performance and strategy management.  

Utilities have successfully used the above architecture for acquisition, storage, and analysis of smart-
meter and AMI data on customer energy usage. Meter data management (MDM) can collect, store, and 
process customer data acquired from smart meters as well as from their predecessors, interval meters.  

Figure 8 shows a reference architecture used by electricity distribution utilities to acquire and manage 
smart-meter data. At one end are meters that sense and collect energy-related time-series data. The 
AMI network transmits these data using communication technologies such as wired and wireless 
networks, and the utility head-end system collects and aggregates the data. Once the data are collected 
securely and their accuracy are validated, the utility enterprise system’s interfaces link the data to 
different utility applications. The utility MDM system can leverage the big-data architecture outlined 
above to use customer smart-meter data for different purposes, such as managing loads through DR, 
providing customer service and billing, managing grid outages, and enabling customer participation in 
electricity markets through rate tariffs.  
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Figure 8: General Energy-Meter Data Management System Architecture for Utilities   
 
Using the above data acquisition and management techniques and the architecture to support 
advanced applications of big-data technologies creates challenges. Disparate utility head-end systems 
(e.g., MDM and DR management systems) need to integrate and exchange data among themselves and 
need to interface with diverse distributed energy resources and enabling markets that participate in the 
safe, reliable operation of the electricity grid. 

3.2 In-Depth Analysis of Big-Data Technologies  
This section’s in-depth analysis of power-sector big-data technologies focuses on the challenges of data 
acquisition and data analytical models for DSM-related applications. We give examples of state-of-art 
research in these areas. We review data acquisition needs and data analytical models in relation to 
descriptive, predictive, and prescriptive analytics for DSM applications.  
3.2.1 Data Acquisition Technology in the Power Industry 
Figure 9 is a diagram of data flow and actors on the smart grid [41,42]. The two most basic forms of 
data acquisition technologies on the smart grid are: 1) automatic meter reading (AMR) or AMI, and 2) 
supervisory control and data acquisition (SCADA) or distribution automation (DA). AMI is an integrated 
system of smart meters, communications networks, and data management systems that enables two-
way communication between utilities and customers through a smart meter. The AMI provides a 
number of functions as follows: remotely measure electricity use, connect and disconnect service, 
detect tampering, identify and isolate outages, and monitor voltage[43]. Customers are provided access 
to usage data for informational purposes.  SCADA/DA systems support efficient and reliable power 
system within the utility’s network. When integrated with MDM systems, SCADA/DA systems can 
monitor electricity transmission and distribution system equipment over large areas, allowing utilities 
to quantify power-quality issues related to voltage/current and control assets within their networks.  
These systems employ automated decision making, effective fault detection, and power restoration to 
support reliable power supply to customers. 
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Figure 9 also shows the seven domains of the smart grid: bulk generation, transmission, distribution, 
electricity markets, operations, service providers, and the customers. This study’s DSM focus falls into 
the domains of distribution, service providers, electricity markets, and customers; however, there are 
inextricable links to the other domains as well as needs for mutual integration. The purpose of the 
figure is to show the areas that the study focuses on and not to describe the complex communication 
pathways these areas undergo within the electrical grid. 

 
Figure 9: Smart Grid Conceptual Actors/Data Flow Diagram [41,42] 
 
AMI, introduced in Section 2, refers to automated two-way communication between a smart meter and 
a utility data center.  On a distribution network, SCADA and DA can be used along with smart-grid 
applications such as voltage and volt-ampere reactive management for power quality, DR management 
for grid reliability and customer engagement, and energy management for DER. 
 
AMI is a logical starting point for customer-centric smart grid communication technologies and other 
data-analysis components such as a DR management system. In a smart grid system, AMI comprises the 
following main components, interconnected through home-area and wide-area networks (HANs and 
WANs), as shown in Figure 10: 

1. Energy-use smart meter (for electricity, gas, water) 
2. Data communication and concentration point(s) 
3. Head-end/utility enterprise management systems 
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Figure 10: Example of High-Level Implementation of a Utility Automated Metering Infrastructure  
To help us understand distribution network management that is linked to the customers, Figure 11 
illustrates a smart-grid distributed communication and management architecture [44]. The central 
section of Figure 11 represents a MDM system that stores data and performs processing tasks. The 
components of the MDM system are an outage management system, a geographic information system, 
consumer information systems, and a data management system. Each system works with the others 
and the communication system linking them. These systems, in combination, enable the utility to 
integrate customer and distribution system services. 
 

  
Figure 11: A Distributed Communication and Management Architecture for the Smart Grid [44] 
 
3.2.2 Data Communication Technology in the Power Industry 
Utilities transmit data using communication technologies with multiple protocols, frequency bands, and 
transfer rates depending on the purpose, location, cost, and security and privacy requirements of the 
data or technology. Smart-grid communication technologies fall into two primary categories, wired and 
wireless. A recent study [45] compared wired and wireless communication technologies and evaluated 
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their applications on the smart grid. 
 
Wired Communication Technologies 
Most utility service providers prefer wired communication, transmitting energy data over power lines. 
The most important advantages of wired communication are reliability and insensitivity to interference. 
Types of wired communications include: 

1. Power-line communications, which send data over existing power cables. There are two classes:  
broadband and low- and high-data-rate narrowband.  Broadband operates in the 1.8-250 
megahertz (MHz) range and has a physical layer rate ranging from several megabits per second 
(Mbps) to several hundred Mbps. Low- and high-data-rate narrowband operate in the 3 
kilohertz (kHz) to ~500 kHz range and have physical layer rates of 1-10 kilobits per second (Kbps) 
for low data rate and 10-500 kbps for high data rate [46]. 

2. Fiber-optic communication is a fundamental communication technology for a WAN because it 
has a relatively high data rate and is immune to noise. High data rates range from 155 Mbps to 
40 gigabits per second (Gbps). 

3. Digital subscriber line (DSL) is used to transmit digital data over telephone lines. There are three 
DSL systems: asymmetric (ADSL), high-speed (HDSL), and very-high-data rate (VDSL). ADSL has 
data rates up to 8Mbps downstream and 800 Kbps upstream, HDSL has data rates of up to 2 
Mbps, and VDSL has data rates up to 100 Mbps. 

4. Coaxial cable communications on the cable infrastructure, which can provide data rates up to 
170 Mbps. 

 
Wireless Communication Technologies 

1. ZigBee is a wireless personal-area-network protocol that provides data rates range from 20 kbps 
to 250 kbps. 

2. A wireless local area network (WLAN) is based on Institute of Electrical and Electronics Engineers 
(IEEE) standard 802.11 [47]. A WLAN provides data rates range from 2 Mbps to 600 Mbps. 

3. A wireless mesh network has many nodes of mesh clients and routers. 
4. Z-Wave is a proprietary wireless technology that is suitable for short-range communications and 

supports data rate of up to 40 kbps. 
5. WiMAX is a 4G wireless technology based on the IEEE 802.16 set of standards [48]. It provides 

data rates of up to 75 Mbps. 
6. The cellular network is a communication network in which the last link is wireless. The data 

rates depend on which generation of the network is used: 2G, 2.5G, 3G, and 4G provide data 
rates of 14.4 kbps, 144 kbps, 2 Mbps, and 14 Mbps, respectively. 

7. Satellite communication transfers signals between two nodes and has data rates of up to 1 
Mbps.  

 
The above descriptions illustrate the diversity of communication technologies among utilities and 
applications. Table 6 summarizes the types of communication technologies used for smart-grid data 
transmission [45].  
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Table 6: Communication Technologies used for Smart Grid Data Transmission [45] 
Technology Standard/Protocol Max. Data Rate Applications 

Wired Communication Technology 

Power line 
communications 

Broadband 14-200 Mbps Load-control applications such as 
energy management, home/building 
automation Narrowband 10-500 kbps 

Fiber-optic 

Passive optical 
network (PON) 155Mbps-2.5Gbps 

Substation automation and 
transmission domain communication 

Wavelength 
division 
multiplexing 
(WDM) 

40 Gbps 

Synchronous 
optical networking 
(SONET)/ 
Synchronous Digital 
Hierarchy (SDH) 

10 Gbps 

DSL 

ADSL 1-8 Mbps 

Smart metering HDSL 2 Mbps 

VDSL 15-100 Mbps 

Coaxial Cable 

Data Over Cable 
Service Interface 
Specification 
(DOCSIS) 

172 Mbps Smart meters, home automation 
services 

Wireless Communication Technologies 

ZigBee ZigBee 250 Kbps In-home applications 

WLAN 802.11x 2-600 Mbps HAN 

Wireless mesh 802.11, 802.15, 
802.16 Varies AMI and home automation 

Z-Wave Z-Wave 40 kbps HAN 

WiMAX 802.16 75 Mbps 
Monitoring transmission and 
distribution processes; smart 
metering 

Cellular 

2G 40 kbps 

Smart metering 

2.5G 144 kbps 

3G 2 Mbps 

4G 14 Mbps 

3G-LTE 100 Mbps 

4G-LTE 1 Gbps 

Satellite Satellite 1 Mbps 

Remote monitoring of transmission 
and distribution substations; global-
positioning-system-based location and 
synchronization of time 
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3.3 Big-data Analytics Applications in the Power Sector 
Data sensing, measurement, communication, and management infrastructure work together to 
securely access and store data. Data’s value lies in the information or insight that analytics can derive 
from the data.  Descriptive, predictive, and prescriptive analytics can be used for this purpose. Although 
this report focuses on descriptive and predictive analytics, we make reference to prescriptive analytics 
as an emerging application for big data in the power sector. 

3.3.1 Descriptive Data-Analytics Models 
Descriptive analytics aggregate and mine data to provide insight into the past. Cluster analysis is a 
commonly used, unsupervised learning technique that can help identify different types of energy 
consumption behavior. It has been applied to individual industrial, commercial, and residential 
customers [49] and is usually employed in descriptive models. This form of analysis identifies clusters 
embedded in the data. A cluster is a collection of data objects that are similar to one another in some 
way.  Cluster analysis is particularly useful where there are many cases with no obvious natural 
groupings. Clustering data-mining algorithms can be used to find any natural groupings within the data. 
A good clustering method produces high-quality clusters with low inter-cluster similarity and intra-
cluster similarity; in other words, members of a cluster are more like each other than they are like 
members of a different cluster.  
 
Clustering can also be used to pre-process data and identify homogeneous groups on which to build 
predictive models. Clustering models are different from predictive models in that the outcome of the 
clustering process is not guided by a known result; that is, there is no target attribute. Instead, 
clustering models uncover natural groupings (clusters) in the data. The model can then be used to 
assign groupings labels (cluster IDs) to data points. (The function of clustering models is in contrast to 
the function of predictive models, which forecast values for a target attribute; an error rate between 
the target and predicted values can be calculated to guide model-building).  
 
Clustering analysis of smart-meter data can identify a set of typical consumption behaviors and daily 
consumption patterns. For example, clustering analysis can identify and target customers that are 
suitable for a certain DR option or program. A recent study reviews different clustering methods and 
compares their performance using a large number of households’ smart-meter data [50]. 
Types of clustering models include: 
 
1. Centroid-based methods. These are a class of algorithms that iteratively assign and update each 

observation to its closest centroid, which can be defined as the mean or median. In centroid-based 
clustering, clusters are represented by a central vector, which might not necessarily be a member of 
the data set. When the number of clusters is fixed to k, k-means clustering gives a formal definition 
as an optimization problem: find the k cluster centers and assign the objects to the nearest cluster 
center, such that the squared distances from the cluster are minimized. 

2. Hierarchical clustering. This method uses a family of algorithms that takes an agglomerative or 
divisive approach to build a hierarchy of clusters. It is based on the core idea of objects being more 
related to nearby objects than to objects farther away. These algorithms connect "objects" to form 

https://en.wikipedia.org/wiki/K-means_clustering
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"clusters" based on their distances from one another. A cluster can be described using the maximum 
distance needed to connect parts of the cluster.  

3. Density-based clustering. This approach uses a data-clustering algorithm proposed by Ester et al. 
[51]. Density-based spatial clustering of applications with noise is one of the most common 
clustering algorithms. Given a set of points in a space, this algorithm groups points that are closely 
packed together (points with many nearby neighbors), marking as outliers points that are alone in 
low-density regions (i.e., whose nearest neighbors are too far away). Compared to K-means 
clustering, density-based spatial clustering of applications with noise can find non-linearly-separable 
clusters. 

4. Model-based clustering. This approach assumes that the data are generated by a mixture of 
probability distributions in which each component represents a different cluster [52]. A gaussian 
mixture model is commonly used for load-shape clustering in the power industry. This model 
assumes that the observation of each cluster of the data is gaussian. A better representation of the 
data can be built by increasing the number of components of the gaussian distribution and finding 
suitable parameters (means and covariance). 

A recent DR potential study [5,17] used 15-minute electricity usage data from more than 200,000 smart 
meters from California’s three IOUs (Pacific Gas & Electric Company, Southern California Edison, and 
San Diego Gas & Electric) to define and analyze characteristic customer load profiles for the data 
clusters.  Using these data, approximately 3,500 representative customer clusters were developed, 
characterized by a typical demographic profile, location, and hourly end-use load estimates.   

3.3.2 Predictive Data-Analytics Models  
A variety of statistical, modeling, data mining, and machine-learning techniques are utilized to study 
recent and historical data to make predictions about the future. We describe the following predictive 
models: (1) load-shape regression model, (2) change-point regression model, (3) seasonality and trend 
decomposition [53]. 
 
Load-Shape Regression Model 
Predicting electrical loads based on their shape and trends over time is a mature field that forecasts 
consumption, detects anomalies, and analyzes the impact of DR and efficiency measures. The most 
common load-shape regression technique uses heating and cooling degree-days to normalize monthly 
consumption. Degree-day is a quantitative index that has been demonstrated to reflect demand for 
energy to heat or cool houses and businesses. Over the years, various other approaches have been 
developed using techniques such as neural networks, autoregressive integrated moving average 
models, and more complex regression models.  
 
The load-shape regression model was developed by LBNL [54] and [55] and has been implemented 
mostly for evaluating DR. The model is based on two features: a time-of-week indicator and an outdoor 
air-temperature dependence. It is also known as the time-of-week and temperature model or the LBNL 
regression model and is implemented in the load-shape library developed by LBNL [56]. 

https://en.wikipedia.org/wiki/Fixed-radius_near_neighbors
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Figure 12: Example from the Lawrence Berkeley National Laboratory Load-Shape Regression Model 
[55]   
 
Change-Point Regression Model 
Change-point models are used to identify inflection points where the plot of building load vs. outside air 
temperature changes slope (indicative of HVAC of operations) [57]. Figure 13 shows the change-point 
multiple-linear model for a building HVAC system without (left) and with (right) electric heating. 
Typically, the power usage of the cooling system increases linearly with OAT. By contrast, the power 
usage of the electric heating system decreases when the outside temperature is warm. The 
temperature points  are the building balance point temperatures, which are the OATs at 
which the building’s heat gains are equal to the heat losses. This model assumes that  the patterns of 
weather-independent loads such as occupants, lights, and equipment are similar on weekdays and 
weekends, respectively.  
 

 
Figure 13. Change-Point Model: Non-Electric Heating (Left) and Electric Heating (Right) 
 
Based on the change-point model structure, we developed hourly DR estimation models between 12PM 
and 6PM using smart-meter and weather data, as shown in Figure 14. We observed that the HVAC 
system starts to operate when the OAT exceeds approximately 70°F. In addition, the plot shows a linear 
pattern between HVAC power usage and OAT. 



   

Big-Data Analytics for Grid and Demand-Side Management │34 

 
Figure 14. Example of Change-Point Model Results 
 
Seasonality and Trend Decomposition  
Temporal or time-series data often exhibit patterns. The fields of forecasting and temporal data mining 
study these patterns. For example, smart-meter data from buildings often exhibit a relatively 
predictable pattern. A very common load pattern in office building is that lighting and plug loads turn 
on and off at certain times on weekdays. Office buildings are typically unoccupied on weekends, so 
weekend loads tend to consist of computers and other equipment that remain on even when workers 
are absent. A fixed, consistent pattern of this type is known as “seasonality” and is often extracted 
before creating predictive models. 
 
Trends are also commonly found in temporal data. A trend is a long-term increase or decrease that 
often doesn’t follow a particular pattern. Trends commonly result from external factors that are less 
systematic than those that cause seasonality. Trends in a building’s energy consumption manifest as 
gradual shifts over weeks or months. Often these shifts are caused by weather-related factors that 
influence HVAC equipment operation. Other causes of trends include changes in occupancy and 
degradation of system efficiency. 
 
The most common technique to capture seasonality and trends is a seasonal trend and decomposition 
package using Loess (STL) in R [58], which is a filtering procedure for decomposing time-series data into 
trend, seasonal, and remainder components [53]. The process uses an inner loop of algorithms to 
remove trends and seasonality from the data by creating a trend component, , and a seasonal 
component, . The remainder component, , is a subtraction of the input values,  as seen in the 
following equation. 
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For example, in electric meter data, the weather-normalized electrical meter data are the actual data.  
The seasonal component would be the weekly pattern of the data. The remainder is the residual after 
the other components have been subtracted out. Figure 15 illustrates the seasonal component 
extracted by means of this decomposition process, which reveals the typical weekly pattern of a 
building’s electrical consumption. 
 

 
Figure 15: Single-Building Example of Decomposed Weekly Patterns Obtained Using the STL Process 
[59] 
 
An increasing number of utility programs and service-based applications are leveraging the data from 
smart meters and other sensor-based sources. The data-analytics models and tools use this data to 
derive grid value by targeting specific group of customers for different price-based and incentive-based 
DR programs. Driven by the transition of the electric grid from large centralized systems to local 
distributed energy resources with high penetration of renewable generation sources, there is a need to 
deploy advanced sensors and measurement equipment and use such data analytical methods for a safe, 
reliable, and resilient planning and operation of the grid. 
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4 Big-Data Applications for the Power Industry: A Predictive 
Analytics Model and Two Case Studies 

This section describes a predictive analytics model used for DR programs and peak load management in 
commercial buildings and two utility case studies of big-data analytics applications, one using 
synchrophasor data and one using utility smart meter data.  The case studies illustrate methods and 
applications described in Section 3.   
 
Before we provide case studies, examples of key applications of big data in the power sector are 
presented, which support utility-specific case studies on use of data and analytical methods. Such 
applications focus on addressing the following challenges: 

• Smart energy management using smart meters, AMI, and meter data management systems 
(MDMS). 

• Customer energy-use for demand forecasting and supply-side planning 
• Customer DR performance assessment using integrated demand response management systems 

(DRMS) and MDMS 
 

As an example of integrating the utility smart meter, AMI, and MDMS, DR and enabling electricity 
market participation by the customers, shows how different systems and data sources are used for 
clustering and big data analytics techniques to offer price-based and incentive-based DR programs and 
its management by the utilities. The existing systems such as MDMS, customer information system, 
geographic information system, and other data sources such as weather and utility electricity rate 
tariffs (liked to wholesale markets, as applicable) are used as analysis to offer targeted signals to DR 
customers. Such data analytics techniques offer locational-based dispatch capabilities to the utilities 
using big data analytics-based intelligence for situational awareness of the grid conditions and improve 
grid reliability.  Figure 16 represents such big data analytics techniques, customer-centric DR programs, 
and utility systems used to collect and analyze the data for targeted grid applications. 
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Figure 16: Big-Data Applications for Targeting and Implementing Demand Response  
 
Among many grid- and customer-sited data sources, presently, smart meter and its supporting 
automated metering infrastructure (AMI) constitute a large share of data source that are used by the 
utilities for customer engagement and DSM-based programs. The advancement of grid-based sensors 
and applications of information and communication technologies for grid and customer systems can 
increase the data volume and the need for advanced data analytical methods. This can lead to new 
value streams to the grid operators and customers.   

4.1 Smart-Meter Data and Predictive Analytics for Demand Response in 
Commercial Buildings 

Quantifying the potential nationwide benefit of DR is a complex undertaking. To quantify aggregate DR 
benefits, we need two key inputs: (1) measures of customer acceptance, technology adoption, 
participation rates, and performance compared to dynamic pricing and emergency DR programs, and 
(2) data on the extent to which customers curtail load in response to time-varying prices or DR program 
incentive payments. As mentioned in Chapter 2, there are nearly 70 million smart meter installations in 
the U.S., with 90 million predicted by 2020, so the volume of data to be analyzed is enormous.  
Meanwhile, small and medium office and retail customers are increasingly choosing to participate in 
DR. Figure 17 depicts an example of a retail customer’s DR performance [60]. The DR event was 
activated when the outside air temperature was around 90 °F. Whole-building power demand 
decreased immediately when zone temperature set points were adjusted. The demand reduction was 
21.2% on average, compared to a baseline model. 
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Figure 17: Example of Pre-cooling and Global Temperature Adjustment during Demand-Response 
Event Hours 
 
To evaluate the potential for DR in small and medium commercial buildings, we collected more 10,000 
commercial PG&E customers’ meter data. We then quantified the DR potential and benefits for the  
customers who participated in peak four-hour DR events (2PM-6PM). HVAC is one of the most 
promising end-uses in buildings for delivering peak-capacity DR. Here, we introduce a framework for 
estimating the DR potential from HVAC systems in office, retail, and other types of small and medium 
commercial premises.  This framework uses a regression-based prediction strategy to estimate the DR 
potential from large-scale aggregation of building loads. The estimation relies on a number of key 
inputs, including changes to thermostat set points, time of day, season, weather conditions, and 
building envelope and HVAC characteristics. This novel approach relies on a collection of previously 
generated, detailed simulation results from physical models to produce a highly accurate estimate of a 
building’s thermal response to the above inputs. This strategy avoids the large amount of 
computational time that would be required for physical building models to estimate the DR potential of 
a large, heterogeneous load population. Each regression model is generated as follows: 

1. Physical models or representative buildings are used to simulate HVAC and other 
thermostatically controlled load set-point adjustments at various time steps. 

2. The load changes resulting from set-point changes are determined for the period of the set-
point adjustment. 

3. Linear regression models are fitted to the simulated load changes based on other input variables 
(e.g., OAT) for each hour of the day. 

As illustrated in Figure 18, a data-driven regression model estimates the DR potential of using the 
control strategy “cycle on/off HVAC units.” In previous studies, we used a physical model-based method 
to estimate the DR effect of “pre-cooling with global temperature adjustment” in building HVAC 
systems [19]. 
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Figure 18: Overall Demand Response Estimation Model  
 
Two models predict the DR kW capacity: 

• A data-driven HVAC model tells when to turn off the HVAC system: 

 

• A hybrid model predicts the impact of thermostat set-point adjustment: 

 
 
The data-driven model uses the change-point model to disaggregate the HVAC power usage from the 
meter data by identifying the inflection point where the graph of the building load vs. the OAT changes 
slope (indicative of HVAC operations) [57]. Figure 13 shows the change-point multiple-linear model for 
the building HVAC system without (left) and with (right) electric heating. Typically, cooling system power 
usage increases linearly with OAT whereas electric heating system power usage decreases when the 
outside weather is warm. The temperature points  are the building balance-point 
temperatures, which represent the OATs at which the building’s heat gains are equal to heat losses. For 
this model, it is assumed that the weather-independent loads, such as occupants, lights, and equipment, 
exhibit similar patterns on weekdays and weekends, respectively. A similar load-shape regression model 
was developed by LBNL [54] and [55] that was used mostly to quantify the DR performance in buildings. 
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Figure 19: Change-Point Models: Cooling only without Electric Heating (Highlighted)  
 
Based on the change-point model, we developed hourly DR estimation models for the time period 
between 12PM and 6PM. For this, we used smart-meter and weather data, as shown in Figure 20. We 
observed that the HVAC system starts to operate when the OAT exceeds about 70°F. The plot also 
shows a linear relationship between HVAC power usage and OAT. 
 

 
Figure 20: Example of a Change-Point Model 
 

4.1.1 Applications for Individual Customers 
A spreadsheet tool was used to develop DR estimation approaches. This tool provides DR load-shed 
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magnitudes for a range of OATs. DR strategies considered were HVAC temperature re-set (pre-cool with 
zone temp setback) and cycling on/off of HVAC units for small and medium business customers. Figure 
21 illustrates the DR estimation framework in the spreadsheet tool.  
 
The customer inputs required for this estimation are: 
Site Description 

• Building type 

o Office 

o Retail 

• HVAC type 

o Central plant 

o Rooftop unit 

• Site location 

o Zip code 

• Meter data (at least 6 months data in summer season) 

 
Base on the zip code, the tool can automatically look up the county and climate zone. In addition, peak 
demand is calculated from meter data to determine the customer size. 

 
Figure 21: Demand Response Estimation Framework in a Spreadsheet Tool 
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DR Control Inputs for Global Temperature Adjustment 

• Percent of building floor area to which the temperature re-set will apply (0-100) 

• Pre-cool period temperature offset 

o 0°F 

o -2°F 

• DR event period temperature offset 

o 2°F 

o 4°F 

o 6°F 

DR Shed Results 

• kW shed potential 

o Average, Min, and Max 

• DR shed estimation (kW) for peak OATs in building’s climate zone  

o 60-65°F 

o 65-70°F 

o 70-75°F 

o 75-80°F 

o 80-85°F 

o 85-90°F 

o Above 90°F 

Table 7 shows DR estimation model equations for a small office in the CZ12-Stockton climate zone. All of 
the model equations are built into the spreadsheet tool with the key index of Case ID in the table. 
 
Table 7: Model Equations for Small Office in CZ12-Stockton 

 CZ12 - Stockton 
 Small Office CZ12   OAT<=75°F 75°F<=OAT<95°F OAT>=95°F 

Case ID 
Precool 
(°F) 

Temp 
Reset (°F) 

DR 
Event 
Hour 

Slope Intercept Slope Intercept Slope Intercept 

CZ12SmallOffice021 0 2 1 0.09 0.98 0.07 2.02 0.03 6.37 
CZ12SmallOffice022 0 2 2 0.04 2.67 0.05 2.20 0.01 5.02 
CZ12SmallOffice023 0 2 3 0.04 2.28 0.04 2.33 0.04 1.89 
CZ12SmallOffice024 0 2 4 0.02 4.81 0.03 4.56 0.01 6.65 
CZ12SmallOffice041 0 4 1 0.27 -5.65 0.17 1.71 0.05 12.49 
CZ12SmallOffice042 0 4 2 0.09 4.32 0.09 4.31 0.03 10.04 
CZ12SmallOffice043 0 4 3 0.08 3.70 0.07 4.49 0.07 4.34 
CZ12SmallOffice044 0 4 4 0.12 3.96 0.05 9.22 0.01 13.23 
CZ12SmallOffice061 0 6 1 0.59 -24.69 0.27 -1.78 0.06 18.28 
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CZ12SmallOffice062 0 6 2 0.27 -3.83 0.08 10.68 0.03 15.48 
CZ12SmallOffice063 0 6 3 0.16 2.93 0.08 8.30 0.08 9.05 
CZ12SmallOffice064 0 6 4 0.45 -14.54 0.06 14.95 0.00 20.45 
CZ12SmallOffice-221 -2 2 1 0.20 -3.69 0.13 0.72 0.03 9.78 
CZ12SmallOffice-222 -2 2 2 0.06 2.81 0.06 2.68 0.02 5.97 
CZ12SmallOffice-223 -2 2 3 0.04 2.63 0.04 2.87 0.05 2.00 
CZ12SmallOffice-224 -2 2 4 0.02 5.78 0.03 5.47 0.01 7.79 
CZ12SmallOffice-241 -2 4 1 0.43 -14.79 0.20 1.10 0.05 14.96 
CZ12SmallOffice-242 -2 4 2 0.08 6.42 0.09 5.83 0.03 11.36 
CZ12SmallOffice-243 -2 4 3 0.08 4.69 0.08 5.18 0.08 4.74 
CZ12SmallOffice-244 -2 4 4 0.17 1.49 0.05 10.20 0.01 14.17 
CZ12SmallOffice-261 -2 6 1 0.64 -27.92 0.39 -10.14 0.07 19.27 
CZ12SmallOffice-262 -2 6 2 0.41 -12.45 0.07 13.18 0.01 18.14 
CZ12SmallOffice-263 -2 6 3 0.25 -2.28 0.07 10.34 0.08 10.01 
CZ12SmallOffice-264 -2 6 4 0.50 -17.61 0.05 16.57 0.00 21.43 

 
Hybrid modeling for DR estimation, which is based on data-driven and physical model approaches, has 
the following advantages: 

• Eliminates the need to develop a complicated model for each facility with the associated model 
calibration effort 

• Accurately estimates DR for (a) Cycling on/off HVAC unit (for rooftop HVAC system only) and (b) 
global temperature adjustment (for both central plant and rooftop HVAC systems) 

• By making use of the building demand and the weather forecasts, rapidly estimates DR for any 
given time of day, day of week, and season 

4.1.2 Application for Large-Scale Customers 
Figure 22 shows the smart-meter data cleaning process. We selected the service agreement identifier 
(SA_ID) and zip code as the key indices for cross-matching among interval data, customer information, 
and zip code to the sub-load aggregation point (Sub-LAP) mapping area. This enabled us to input the 
time-series data for all customers located within each zip code. 
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Figure 22: Customer Meter Data-Set Cleaning Framework 
 
For estimating DR for large customers, we use the same DR equations as are used in the DR 
spreadsheet tool described above. Output includes not only an estimate of DR, but also a set of building 
performance metrics such as peak demand, load variability, and weather sensitivity, along with = the 
customer-specific summer baseline used by the utility. Table 8 lists all of the data analysis attributes for 
customers who are eligible to participate in DR. 
 
Table 8: Data Analysis Outputs for Demand Response 
DR Analysis Outputs Descriptions 

UUID 
A universally unique identifier is defined for each customer's 
SAID 

SAID Service agreement ID 

UUID 
A universally unique identifier is defined for each customer's 
SAID 

Peak_kW Peak value of interval usage 
Peak_kW_timestamp Date/time of the peak demand 

NAICS 

North American Industry Classification System code associated 
with activity at the premise for the associated service 
agreement 

NAICS_desc Descriptions of NAICS code 
cty City 
ZIPCODE Zip code 

SUBLAP 
A sub-Load aggregation point; resource aggregations are 
required to be within a single SubLAP. 
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PGE_CZ Climate zone defined by PG&E 
CEC_CZ Climate zone defined by California Energy Commission 
AMP Aggregator managed portfolio 
PDP Peak-day pricing 
DBP Demand bidding program 
CBP Capacity bidding program 
DR_Capacity_Precool0F_Reset2F No pre-cool with 2F degrees thermostat set-point adjustment 
DR_Capacity_Precool0F_Reset4F No pre-cool with 4F degrees thermostat set-point adjustment 
DR_Capacity_Precool0F_Reset6F No pre-cool with 6F degrees thermostat set-point adjustment 
DR_Capacity_Precool2F_Reset2F 2F pre-cool with 2F degrees thermostat set-point adjustment 
DR_Capacity_Precool2F_Reset4F 2F precool with 4F degrees thermostat set-point adjustment 
DR_Capacity_Precool2F_Reset6F 2F precool with 6F degrees thermostat set-point adjustment 
DR_Capacity_CycleOnOff_30Pct 30% Cycling. A/C compressor shuts off 30% of the time. 
DR_Capacity_CycleOnOff_50Pct 50% Cycling. A/C compressor shuts off 50% of the time. 

DR_Capacity_CycleOnOff_100Pct 
100% Cycling. A/C compressor shuts off 100% of the time 
during an event. 

HVAC_Building_Ratio 
Ratio of the average HVAC power over the averaged whole-
building power on 10 hottest days 

LoadVariability_kW 
Load variability (kW): averaged Standard Deviation (kW) of 
customer-specific summer baseline days' load 

LoadVariability_PCT 

Load variability (%): ratio of the average standard deviation 
over the mean value customer-specific summer baseline days' 
load 

HotDaysLoadVariability_kW Load variability (kW) on 10 hottest days 
HotDaysLoadVariability_PCT Load variability (%) on 10 hottest days 
CustSize Customer size based on peak kW 
Tariff Tariff based on peak kW 
TOU_UtilityCost Annual utility cost of time-of-use (TOU) rate 
PDP_UtilityCost_NoADR Annual utility cost of peak-day pricing 

PDP_UtilityCost_ADR 
Annual utility cost of peak-day pricing with the implementation 
of ADR 

PDP_TOU_Ratio 
Ratio of the annual utility cost of peak-day pricing over the TOU 
rate 

TOU2PDP_Benefit 
Difference between the annual utility cost of peak-day pricing 
and TOU rate 

TOU2PDP_ADR_Benefit 
Cost savings ($) for customers switching from TOU rate to 
peak-day pricing with ADR implementation 

PDP_ADR_Benefit 
Cost savings ($) for customers under the peak-day pricing with 
ADR implementation 

PDP_ADR_Benefit_Pct 
Cost savings (%) for customers under the peak-day pricing with 
ADR implementation 
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From the utility’s perspective, one interesting output is the potential DR capacity for each type of DR 
control strategy in a DR program. From the customer’s perspective, outputs of interest could be the 
potential benefit from participating in DR (utility cost savings and financial incentives) and the 
percentage of whole-building load that would be shed during a DR event. Figure 23 and Figure 24 show 
example DR capacity potential for each customer in the zip codes 94111 and 94105 within the city of 
San Francisco. The y-axis in Figure 23  (b) depicts the distribution of customer kW shed within zip code 
94111. Results show that a majority of commercial customers have less than 10 kW of DR capacity. 
Using this information, the utility could target customers with the largest DR capacities and low load 
variability in each zone. (A recent study [5] presents similar results for the load-shed and load-shift 
potential from residential HVAC systems by climate.) 

 
Figure 23:  Example of Demand-Response Capacity Potential for Customers in San Francisco’s 94111 
Zip Code  

 
Figure 24: Example of Demand-Response Capacity Potential for Customers in San Francisco’s 94105 
Zip Code  
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4.2 Synchrophasor Data Analytics on the Distribution Grid 
Deployment of high-fidelity, high-resolution power measurement sensors has increased on distribution 
systems in recent years. Control and protection applications can use real-time data from those sensors 
to improve grid reliability and resiliency. To extract the full potential of the rich data set from these 
sensors, we need an analytics framework that can detect and analyze patterns in events of interest.   
 
As described in Section 2, a PMU measures the electrical waves on an electricity grid using a common 
time source for synchronization. It measures the angle between voltage and current at different 
physical locations on a grid. Specifically in [14], a µPMU is capable of communicating voltage and 
current magnitude and phase-angle data twice per cycle, or 120 times per second. 
 
A previous LBNL study [15] presented an algorithm for detecting events in voltage-magnitude time-
series data by identifying edges – significant changes in voltage magnitude measurements – and an 
approach for clustering sets of events to distinguish them from one another (e.g., distinguishing 
capacitor bank switching from transformer tap changes). In another study [61], the team conducted a 
data-driven experimental analysis of capacitor bank switching operation events on a distribution feeder 
using an µPMU data set. 

4.2.1 Methodology 
Figure 25 shows an analytics pipeline for scanning high-frequency time-series data, extracting edges, 
and clustering. 
 

 
Figure 25: Schematic of Analytics Pipeline for Time-Series Data [15] 
 
A novel, ground-up database, BTrDB, is one of the key components in this analytic framework, [62] used 
to process large volumes of time-series data. BTrDB provides high, sustained throughput for raw inserts 
and queries. As shown in Figure 26, each device in the system produces 12 streams of 120-Hz high-
precision values with time stamps accurate to 100 nanoseconds (the limit of the global positioning 
system). On top of BTrDB, a multi-resolution search algorithm detects rare critical events over a wide 
range of temporal scales. A study [63] demonstrated the first practical application of this platform for 
voltage-sag detection and analysis. High-impedance faults can also be detected and distinguished from 
other local causes of voltage sag (such as motor starts) based on detailed time-series behavior of 
voltage and current [64]. 
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Figure 26: µPMU Network Storage and Query Processing System [62] 
 
In our study, an edge event is defined as a significant change in voltage magnitude measurements 
(impulse-like or step-like behavior) with the following search criteria: 

 
Where  represents a segment of the time series at temporal resolution , and  is the pre-defined 
threshold for the detection algorithm. Based on the edge-event search criteria, the algorithm for edge 
detection that operates on a time series is as follows: 
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In this procedure, individual time-series measurement  is referred to as  time stamp and 
 measurement. This study examines historical data for time periods where the max-to-min ratio 

exceeds a threshold and takes the derivative of the subsequence time series. Edges are the local 
extreme points in the derivative of the subsequence time-series measurement. 

4.2.2 Results 
This study uses k-means clustering for grouping the time series corresponding to events identified from 
the µPMU measurement data set. Figure 27 shows an example of one event, an “edge” that exhibits 
step-like and impulse-like behavior. The µPMU measurement stream includes voltage magnitude, 
current magnitude, voltage phase angle, and current phase angle. The objective is to cluster events into 
groups that are physically meaningful (e.g., transformer tap operations, capacitor bank switching, 
faults).  
 
Transformer Tap Operation 
A tap changer regulates the output voltage of a transformer by altering the number of turns in one 
winding and thereby changing the transformer’s turns ratio. 
 
Capacitor Bank Switching 
Capacitor bank switching is one of the most frequent utility operations, potentially occurring multiple 
times per day and hundreds of time per year throughout the power system. When capacitors are 
switched, the power system faces transient overvoltage. 
 
After identifying “edge” events in data, voltage magnitude, derivative of voltage phase angle, and 
reactive power are analyzed for purposes of clustering. 
 

 
Figure 27: Example of Edge Event Obtained from Data Analytics Pipeline [15] 
 
The three most observed edge-event clusters are shown in Figure 28. A total of 73 events were 
detected in the data set. The three most observed clusters contain 65 events. The preliminary results 
indicate that clusters 3 and 4 represent substation transformer tap changes.  
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Table 9: Characteristics of Observed Edge Event Clusters 

Cluster 
Number of 
identical events 

Pattern features 
Possible power system 
operations 

3 42 
Step-down voltage magnitude and decrease in 
voltage phase angle derivative, real and 
reactive power 

Substation transformer tap 
changes 

4 14 
Step-up pattern in voltage magnitude along 
with impulse like behavior in the voltage phase 
angle derivative and real power 

Substation transformer tap 
changes 

5 9 
Step-up pattern in voltage magnitude and in 
reactive power and decrease in the voltage 
phase angle derivative 

May be caused by tap 
changes or other devices 
operating in the feeder 

 

 
Figure 28: Centroids of Clusters 3, 4, and 5 [15] (Index on the x-axis refers to 1/100 second; legends 
are same as in Figure 27) 
 
This µPMU data analytics framework can be used to monitor the operational pattern of voltage 
regulation equipment. This approach can also be used to monitor equipment health, identify devices 
with erroneous control schemes, and provide cyber security (i.e., detecting malicious changes in device 
settings) [65].  
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4.3 Utility Data Analytics Case Study: Electric Power Board of Chattanooga, 
Tennessee 

EPB, a moderate-sized municipal utility, participated in the Smart Grid Investment Grant program 
funded by the United States Department of Energy and installed more than 175,000 smart meters 
within its distribution system, which is composed of 309 feeders and 117 substations. The AMI system 
was integrated with an outage management system to provide notification of outages and verification 
of service restoration after an outage.  
 
In addition to smart meters and AMI, EPB installed a fiber-optic network, which also supports phone 
and television services, to provide SCADA coverage for 100% of its distribution system. The fiber-optic 
network is directly connected to about 50% of the smart meters; other meters communicate over a 
900-MHz mesh system. The fiber system provides backhaul for meter data such as energy usage, which 
are accessible in near-real time. This system makes the 15-minute-interval smart meter and AMI data 
available to customers over a web portal within 15 minutes of the close of the interval. 
 
In addition to handling smart-meter data, the fiber network communicates with about 1,300 automated 
feeder switches installed on EPB’s distribution system to isolate faults and restore service for all of 
EPB’s 46-kV and 12-kV feeders, excluding the underground circuits and downtown underground 
network. EPB implemented a distribution management system integrated with the AMI system, using 
measured voltages for conservation voltage reduction. EPB also integrated its AMI system with its 
outage management system, providing for notification of outages and verification of restoration of 
service after an outage. The data collected from the distribution system and meters provide valuable 
insights about the value of peak demand management through DR programs that benefit the grid and 
customers. 

4.3.1 Data-Analytics Use Cases for Peak-Demand Management  
Several examples of EPB’s early-stage descriptive data analytics save customers money through outage 
reduction and power-cost management. EPB is a Tennessee Valley Authority (TVA) distributor, billed by 
the authority at wholesale demand and energy electricity rates. The demand portion of the wholesale 
bill is based upon the highest one-hour demand value in each calendar month. EPB has several 
programs to limit this peak demand. The data collection and analytics challenge to managing EPB’s 
peak-demand charge is being able to measure the current forecasted demand in comparison to the 
peak demand set from the previous month, and, if the current peak demand is higher, to identify 
measures to lower demand. 

4.3.2 Results 
Figure 29 shows how EPB’s system uses substation-level metering data to forecast the expected hourly 
demand value for the EPB system. On the day shown, the forecast exceeds the month-to-date peak, 
which would increase EPB’s billing. Thus, this forecast provides advance warning that EPB should 
consider executing some DR events to limit the peak on this day. Doing so would reduce the operational 
costs to EPB (and customers would have the incentive of lower bills). 
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Figure 29: Load Forecast Based on Current Conditions Indicates Need for a Demand-Response Event 
 
Reduction of EPB’s peak load might also have the benefit of reducing its contribution to TVA’s system 
peak demand, thereby reducing the amount of supply that TVA is obligated to arrange to meet that 
demand. The economic value of this peak reduction derives from reduction in the generation and 
transmission cost of supply and is reflected to some extent in the peak demand component of the 
wholesale rate.  The study results show the value of a DR program for EPB.  
  
Recently, EPB has been working with the U.S. Department of Energy’s Grid Modernization Laboratory 
Consortium to collect real-time data from sensors on its distribution system. The sensors provide a wide 
variety of data, including solar irradiance, temperature, humidity, wind speed, and detection of the 
presence of certain chemicals. The sensors capture vibrations, radio frequencies, coronal discharge, and 
thermal images of transformers from infrared cameras. Through the fiber network, the data are 
available to EPB centrally in near-real time. Although the sensors are not capturing power-system data, 
analytics based on the environmental data collected could also prove useful. 
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5 Summary, Conclusions, and Future Activities 
This report examined big-data types and sources and the use of advanced analytics for big data related 
to the smart grid, with a focus on demand response. The data collection and analysis architecture, 
technologies, applications, and challenges associated with use of big data on the smart grid were 
quantitatively and qualitatively reviewed and presented. Our case studies illustrated state-of-art uses of 
smart meter and µPMU data on distribution grids. 

Key big-data analytics methods include descriptive, predictive, and prescriptive approaches. To align 
with industry practices, this report focused on the descriptive and predictive aspects of (1) advanced 
analytics for DR using data from smart meters and other sources, and (2) use of µPMU measurement 
data for grid reliability and operational needs.  

5.1 Study Conclusions 
• Standardized data methods can enable efficient, cost-effective use of analytical information to 

support integrated grid activities such as electricity reliability, grid planning and operations, DSM 
programs, and DR performance assessment. 

• A utility can use big-data analytics to target customers that have the most DR capacity for each 
DR program. Early-stage prescriptive analytics and advanced predictive analytics methods are 
available to determine the value of DR to both the grid and the customer. 

• Analysis of µPMU data can detect several kinds of edge events (e.g., significant changes in the 
voltage magnitude) on distribution grids. This approach can also be used to monitor equipment 
health and help identify devices with erroneous behaviors to aid with the cyber security. 

• Big-data application on the smart grid should consider (1) heterogeneity, inconsistency, and 
incompleteness in data due to lack of standardization; (2) speed and volume of data, which 
creates complexity; and (3) the need for data security and privacy, i.e., cyber physical security on 
the smart grid for PMU and SCADA data. 

 
Electricity grid stakeholders including utility operators, electricity customers, and product vendors, can 
leverage the findings of this study to identify opportunities and technologies for big-data and analytics-
related applications for DSM and in support of modernizing the electric grid.  

5.2 Future Activities 
The next and final task of the study of which this report is a part focuses on dissemination of big-data 
applications in the electric utility industry and engagement of the power industry at workshops, 
advisory groups, conferences, webcasts, etc. Industry forums provide stakeholders with an opportunity 
to review data architecture, new software technologies, and applications of advanced analytics. The 
findings from this study showcase the value of big data and analytics for the U.S. electric industry and 
identify applications for prescriptive analytics that use machine-learning and artificial intelligence. 
Documentation of best practices in big data analytics is needed along with investigation of the 
challenges and opportunities of big data for the industry. In the exchange of research findings, new 
concepts and applications for utilities and new industry research partnerships will emerge for 
dissemination of big-data analytics that benefit the electric utility industry and its customers. 
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