UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Distributed Representation and Parallel Processing of Recursive Structures

Permalink
https://escholarship.org/uc/item/4hs6b3py
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 15(0)

Authors

Miyata, Yoshiro
Smolensky, Paul
Legendre, Geraldine

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4hs6b3pv
https://escholarship.org
http://www.cdlib.org/

Distributed Representation and Parallel Processing of Recursive
Structures

Yoshiro Miyata
Chukyo University

Paul Smolensky

University of Colorado, Boulder

Géraldine Legendre
University of Colorado, Boulder

Abstract

We have developed principles integrating connec-
tionist and symbolic computation by establish-
ing mathematical relationships between two lev-
els of description of a single computational sys-
tem: at the lower level, the system is formally
described in terms of highly distributed patterns
of activity over connectionist units, and the dy-
namics of these units; at the higher level, the
same system is formally described by symbolic
structures and symbol manipulation. In this pa-
per, we propose a specific treatment of recur-
sion where complex symbolic operations on re-
cursive structures are mapped to massively par-
allel manipulation of distributed representations
in a connectionist network.

1 Integration of Connectionist
and Symbolic Computation

This paper concerns the computational backbone
supporting the Sub-Symbolic Paradigm research pro-
gram [Smolensky, 1988]: research studying how sym-
bolic computation can arise naturally as a higher-
level virtual machine realized in appropriately de-
signed lower-level connectionist networks.

1.1 The Principles

We begin by briefly presenting the current formula-
tion of two of the fundamental computational prin-
ciples, one concerning the nature of mental repre-
sentation and one concerning the nature of mental
processing operating on the representation. We then
proceed in subsequent sections to present a concrete

implementation of these principles. These principles
are hypothesized to operate in higher cognitive do-
mains, where cognitive theory has posited symbolic
representations that play a central role.

1.1.1 Integrated Representation.

a. When analyzed at the lower level, mental rep-
resentations are distributed patterns of connec-
tionist activity; when analyzed at a higher level,
these same representations constitute symbolic
structures.

b. Such a symbolic structure s is a set of filler/role
bindings {£;/r;}, defined by a collection of struc-
tural roles {r;} each of which may be occupied
by a filler £;—a constituent symbolic structure.

c. The corresponding lower-level description is an
activity vector s = ) . f;®r; which is the sum
of vectors representing the filler/role bindings.
In these tensor product representations, the pat-
tern for the whole is the superposition of pat-
terns for all the constituents. The pattern for
a constituent is the tensor product of a pattern
for the filler and a pattern for the structural role
it occupies.!

!The tensor product @ generalizes the outer product
of matrix algebra. If u = (u1,u2);v = (v1,v2) then
their tensor product u®v is a second-rank tensor, a vec-
tor whose elements are normally labelled with two sub-
scripts: (uU®v);; = u,v,; the elements of u®v are thus
(u1v1,u1v2,u2v1,u2v2). In general, a tensor of rank n
has elements labelled with n subscripts, and the tensor
product extends in the obvious way to tensors of arbi-
trary rank; e.g., the tensor product of a rank-2 tensor S
and a rank-3 tensor T is a rank-5 tensor R = S®T with
elements Ri;kim = Si;Tkim. The recursive construction
of tensor product representations requires the use of ten-
sors of rank higher than two, which is why simpler matrix
algebra does not suffice.

759



d. In certain cognitive domains such as language
and reasoning, the representations are recursive:
fillers which are themselves complex structures
are represented by vectors which in turn are re-
cursively defined as tensor product representa-
tions. The set of fillers is then the same as the
set of whole structures.

Tensor product representations [Smolensky, 1987b,
Smolensky, 1990] generalize many of the traditional
kinds of connectionist representations, and while the
generic tensor product representations are fully dis-
tributed, special cases reduce to semi- or fully local
representations.? The units in tensor product repre-
sentations can sometimes be interpreted as the con-
junction of a feature of a filler and a feature of its role;
in these cases, the approach is a formalization of the
idea of conjunctive coding [Hinton et al., 1986] Psy-
chological models of human memory have also em-
ployed tensor product or closely related representa-
tions (e.g., [Anderson et al., 1984]). Tensor calculus
(unlike matrix algebra) allows such representations
to be defined recursively; in this paper, we will de-
scribe an analysis of the recursive capabilities of ten-
sor product representations.

1.1.2 Integrated Processing.

a. When analyzed at the lower level, mental pro-
cesses consist in massively parallel spreading of
numerical activation; when analyzed at a higher
level, these same processes constitute a form of
symbol manipulation in which entire structures
are manipulated in parallel.

b. Certain of these processes can be described pre-
cisely in terms of higher level programs. Like
traditional computer programs, these programs
describe complex functions by sequentially com-
bining primitive symbolic operations. Such pro-
grams specify the input/output function that is
computed, but the complex sequences of primi-
tive operations do not constitute procedures by
which these functions are actually computed.

c. These processes are capable of fully productive
recursive structure processing.

2Thus even those who believe that neural representa-
tions are not highly distributed should not see this as any
objection to the use of tensor product representations as
a low-level model of mental representations. If desired,
special cases of the tensor product representation can be
designed with any desired degree of locality, up to and
including representations which dedicate a single node to
an entire structure (e.g, proposition).

Structure-sensitive symbolic processing of tensor
product representations is achieved by means of op-
erations from tensor calculus which check condi-
tions on constituents and which use linear trans-
formations to move constituents in given structural
roles to new ones, or to modify the fillers in given
roles. Such operations are naturally embodied in
connectionist networks [Dolan and Smolensky, 1989,
Legendre et al., 1991, Smolensky, 1987b]. Some new
extensions of this principle are developed in this pa-
per.

1.2 An Example Simulation

We have developed the concrete mathematical tech-
niques needed to perform computations using these
principles, realized in computer simulations. One
simple simulation, which we describe here, was de-
signed purely to demonstrate the formal capabil-
ities of the technique; it takes as input a dis-
tributed pattern of activity representing the tree
structure underlying an English sentence, deter-
mines by inspecting the structure whether the form
i1s that of an active or passive sentence, and, ac-
cordingly, produces as output a distributed repre-
sentation of a tree structure encoding a predicate-
calculus form of the semantic interpretation of the
input sentence [Legendre et al., 1991]. The network,
“ACTIVE/PASSIVENET”, performs all the required
symbol manipulation in parallel, and handles entire
embedded sub-trees (e.g., complex NPs) as readily as
it does simple symbols.

ACTIVE/PASSIVENET processes sentences with
two possible syntactic structures: simple active sen-

tences of the form A& and passive sentences of

the form a=v sy, Each is transformed into a tree

representing V(A, P), namely b . Here, the agent

A and patient A\ of the verb V are both arbitrarily
complex noun phrase trees. (The network could ac-
tually handle arbitrarily complex V’s as well. Aux is
taken as a marker of passive, e.g., are in are admired.)

Figure 1 shows the network processing a pas-
sive sentence ((A.B).((Aux.V).(by.C))) as in Few con-
nectionists are admired by Jerry and generating
(v.(c.(A.B))) as output. The network is presented
with an activation vector representing the sentence
at the input units, shown at the bottom. This input
is fed to the two units labeled “passive” and “active”,
which decide whether the sentence is a passive or an
active one. In the figure, the input sentence is pas-
sive and the “passive” unit is turned on. This unit

760



Output = cons(V ,cons(C,cons(A,B)))

Input = cons(cons(A,B),cons(cons(Aux,V),cons(by,C)))

Figure 1: Active/PassiveNET processing a pas-
sive sentence

then gates the input pattern through the weight ma-
trix “Wp” to generate an output activation pattern,
shown at the top, representing the interpretation of
the input sentence. If the input is an active sentence,
the “active” unit is turned on, which gates the input
pattern through the weight matrix “Wa” instead.

2 A Fully Distributed Recur-
sive Representation

While the tensor product technique is general enough
to apply to virtually any kind of symbolic struc-
ture, we will consider in this paper only the spe-
cial case of binary trees, the basic data structure
of LISP. The work reported in this section extends
earlier results presented in [Legendre et al., 1991,
Smolensky, 1990].

2.1 Representation of Binary Trees

A binary tree may be viewed as having a large num-
ber of positions with various locations relative to the
root: we can adopt positional roles r, labelled by bi-
nary strings (or bit vectors) such as z = 0101 which
is the position in a tree accessed by the LISP function
cadadr .3 Decomposing the tree using these struc-
tural roles (positions), each constituent of a tree is
an atom (the filler) bound to some role r; specify-
ing its location. A tree s with a set of atoms {£;}

3cadadr(s) = car(cdr(car(cdr(s)))) , thatis, the
left child (0; car) of the right child (1; cdr) of the left
child of the right child of the root of the tree s .

at respective locations {z;} has the tensor product
representation s = ) _; fi®rx,.

The role vectors themselves are also defined as ten-
sor products of sequences of smaller vectors. For ex-
ample, the role vector for the left child of the right
child of the root is:

rgL = vOVR®...vRrg®rp

The rightmost vector (rq in this case) represents
which child of the root (left or right subtree) it be-
longs to. The second vector from the right represents
which (left or right) branch of this subtree it belongs
to. More generally stated, each role vector is con-
structed as the tensor product of a sequence of D
vectors; each of these vectors is chosen from a set of
three basic vectors {rg, rq, v} . This sequence spec-
ifies the position in the tree represented by each role
vector. If the position is at depth d in the tree, then
the nth vector from the right is: for n = 1 through
d, rg or ry depending on whether it is in the right
or left branch at depth n; and v for n > d. Basically
the vector v acts like a place holder (like the digit 0)
to make the total rank of the tensor product constant
(D). As long as the vectors {rg, ry, v} are linearly
independent, trees up to depth D can be represented
with complete accuracy. If these vectors are chosen
so that each has non-zero components along all co-
ordinate axes, then every unit in the connectionist
network will take part in the representation of every
atom, regardless of its depth in the tree. We assume
henceforth, for simplicity, that these vectors form an
orthonormal basis — they are mutually orthogonal
and have norms of 1.

2.2 Processing of Binary Trees

This section describes how trees represented using
this distributed recursive tensor representation are
manipulated. First, take the cons operation illus-
trated in Figure 2 which merges two trees into one.
For example, at the symbolic level (Figure-2-(a)), two
trees each consisting only of an atom (A and B, re-
spectively) at the root, are merged into a new tree
with A and B as the left and the right children of
the root. This symbolic operation cons is mapped
to a connectionist operation (Figure 2-(b) and (c))
that takes two tensor products T4 = AQVRV...Qv
representing the tree A and Tp = B@v®v...Qv rep-
resenting the tree B, and generates a tensor product
that is the sum of the tensor AQv®v...Qr( repre-
senting A at the left child of the root and the tensor
B®v®v...®@rq representing B at the right child of the
root.

761



to cons(cdadr(s), cons(cdddr(s), car(s))) by the
matrix Wp WeonsoWedr WearWedqy +
Weons1(WeonsoWedr Wedr Wedr T
Weonst Wear)- In the terminology of production
systems, this “action matrix” Wp is gated by a
“condition unit” which determines whether the in-
put pattern s represents the parse tree s of a pas-
sive sentence, by checking whether caddr(s) = Aux.
This condition unit can be a linear threshold element
whose activity is 1 when its net input 7 > 0, and 0
otherwise; its net input I = —[|WcarW 4, Wc.qrs—
Aux||? is always negative, except that I = 0 when the
desired condition caddr(s) = Aux is satisfied.

2.4 TPPL

We have begun to develop a symbolic formalism—
TPPL for “Tensor Prod-
uct Programming Language”—which enables high-
level formal characterization of the computations per-
formed by connectionist networks processing tensor
product representations. TPPL contains analogues
of simple programming language control structures
(like if-then-else) and basic symbolic computation
operators (like car, cdr, cons) which are formally de-
fined using elements of the tensor calculus. TPPL en-
ables both a formal higher-level symbolic description
of the lower-level networks and a calculus for proving
their correctness.

To illustrate the idea, ACTIVE/PASSIVENET is de-
scribed in TPPL by the program:

AP(s) = if PassiveP(s)then PassiveF(s)
else ActiveF(s)
PassiveP(s) = [cadr(s) = Aux]
PassiveF(s) = cons(cdadr(s))),
cons(cdddr(s))), car(s)))
ActiveF(s) = cons(cadr(s)),

cons(car(s), cddr(s))))

The primitive operations car, cdr, cons are de-
fined using the inner- and outer-product operations
of tensor calculus, as explained above. As illus-
trated in Sections 1.2 and 2.3, the matrix realiza-
tions of these operations are straightforwardly com-
bined to produce a single matrix that performs the
entire function PassiveF', which can then be im-
plemented in one layer of connection weights. The
same applies to the other functions, ActiveF and
PassiveMarker F which are described in detail in
[Smolensky et al., 1992].

2.5 Further Directions

Having produced a general formalism for a fully
distributed recursive representation and successfully
tested it by computer simulation, it remains to de-
velop specific ways to exploit the full advantages of
distributed representation. First, consider the issue
of graceful saturation with depth. One general tech-
nique is to take a high (perhaps infinite) dimensional,
fully accurate representational space and to project
onto a lower dimensional subspace. Here we want to
pick such a subspace so that less accuracy is asso-
ciated with greater depth. A promising idea we are
currently working on for how to achieve this comes
from modifying the means by which the fully dis-
tributed representation is specialized to the ‘strati-
fied’ representation of our earlier work, where differ-
ent depths of the tree were distributed over differ-
ent pools of units. Stratification is the special case
when v = (0, 1) because v is orthogonal to the sub-
space spanned by {rg,rq}. If instead we choose v
to have small but non-zero projection onto this sub-
space, each depth will have small but non-zero repre-
sentation on subspaces that are primarily dedicated
to the representation of lesser depths. We can there-
fore set up a fully distributed representation with
some large depth limit D (possibly infinite), and then
project onto a lower-dimensional subspace, achieving
a “soft depth limit” beyond which the representation
saturates gracefully.

A second direction for future work is to explore
the underlying connectionist distributed represeneta-
tions. A central connectionist principle asserts that
distributed representations encode the feature- or
similarity-structure of information, and a main moti-
vation for distributed tensor product representations
is to allow the application of this principle to the roles
of symbolic structures. Here, natural languages pro-
vide a distinctly better domain of study than purely
formal languages, because of all the meaningful infor-
mation that is encoded through real linguistic struc-
ture. In a purely formal binary tree, the two recursive
roles left child and right child are just two primitive,
distinct roles; in our simulations we represent them as
two arbitrary distributed vectors. But linguistic theo-
ries provide a rich set of features (explicitly or implic-
itly) for describing the roles in syntactic and seman-
tic structure. These include hierarchically structured
grammatical functions (subject, direct object, ...),
thematic roles (agent, patient, ...), X-bar syntactic
configurational roles (head, specifier, argument, ad-
junct ...), syntactic and semantic feature structural
roles (number, gender, ...), and many more. Tensor
product representations make it possible to study the

762



e oy B N

(cons A B)

(B8] ™[ PRV«

(c) T Te —>(va8lw) e+ (v&k )en
= wmi) ’I:A + wmslT

Figure 2: The cons operation.

This operation is easily understood as one combin-
ing two linear operations that take two trees and push
them into the left and the right subtrees of a new tree
(let us call these operations consg and consi).

cons(A, B) = conso(A) + cons,(B)

Each of these operations is achieved, in turn, by
combining two basic linear operations, the tensor con-
traction ® and the tensor product operation ®:

conso(T) =
cons1(T) =

Tx*rg=(vo T)®rg
Txr; =(voT)®rg

The tensor contraction operation vOT replaces the
left-most (“deepest”) role-vector in T with its inner
product with v. Since the inner product is a scalar,
the resulting tensor has rank one less than that of T.
T x w is a rank-preserving outer product, a version
of T®w in which the tensor product with w is taken
only after “unpadding” T via an inner product with
v. In the expression (v ® T)®r(, the ® operation
takes the leftmost v vector off the tensor product
and the ® operation pushes the vector rg or ry into
the tensor product from the right.

Now we consider taking the car or cdr of a tree—
extracting its left or right subtree. Defining the car
and cdr operations requires the following generaliza-
tion of the inner product operation.

car(T) =T org = v®(T O rp)
cdr(T)=Tory =v®(TOry)

i Rt oo

(car (A.B)) =
u @ (Tus®r)=W

car u;;

Figure 3: The car operation.

T ow is a rank-preserving inner product, a version
of T ® w in which a right inner product with w is
taken, and an extra v is added to pad the new tensor
back up to full rank. As illustrated in Figure 3, the
rightmost role-vector is rg for the left subtree and rq
for the right subtree, so the inner product with rg,
used in the car operation, is 1 for the left subtree and
0 for the right. This is reversed for the cdr operation
where inner product is taken with ry.

2.3 Parallel Implementation

If we regard a tensor representing a tree as a single
vector in a vector space V, the consy, cons;, car, cdr
operations can each be defined as a single (square)
matrix that maps a vector in V' to another vector in
V. Thus, they can be implemented as simple vector-
matrix multiplication operations. The four matrices
are called W.ons0, Weons1, Wear, and chr
This connectionist representation/processing of
trees enables massively parallel processing. Whereas
in the traditional sequential implementation of LISP,
symbol processing consists of a long sequence of
car, cdr, and cons operations, here we can com-
pose together the corresponding sequence of Wear,
Wedrr Weonso and Wegns1 operations into a
single matrix operation. Adding some minimal
nonlinearity allows us to compose more complex
operations incorporating the equivalent of condi-
tional branching. For example, a passive sentence
parse tree s is transformed by ACTIVE/PASSIVENET

763



consequences—for representation, processing, learn-
ing, and grammatical description—of directly encod-
ing such information via distributed role vectors.

References

[Anderson et al., 1984] Anderson, J. A., Silverstein,
J. W._, Ritz, S. A., and Jones, R.S. (1984). Distinc-
tive features, categorical perception, and probabil-
ity learning: Some applications of a neural model.
Psychological Review, 84:413-451.

[Dolan and Smolensky, 1989] Dolan,
C. P. and Smolensky, P. (1989). Tensor Product
Production System: A modular architecture and
representation. Connection Science, 1:53-68.

[Hinton et al., 1986] Hinton, G. E., McClelland,
J. L., and Rumelhart, D. E. (1986). Distributed
representation. In Rumelhart, D. E., McClelland,
J. L., and the PDP Research Group, editors, Paral-
lel Distributed Processing: Ezplorations in the Mi-
crostructure of Cognition, Volume 1: Foundations,
chapter 3, pages 77-109. MIT Press/Bradford
Books, Cambridge, MA.

[Legendre et al., 1991] Legendre, G., Miyata, Y.,
and Smolensky, P. (1991). Distributed recursive
structure processing. In Touretzky, D. S. and Lipp-
man, R., editors, Advances in Neural Information
Processing Systems 3, pages 591-597, San Mateo,
CA. Morgan Kaufmann. Slightly expanded ver-
sion in Brian Mayoh, editor, Scandinavian Con-
ference on Artificial Intelligence—91, pages 47-53.
I0S Press, Amsterdam.

[McClelland and Kawamoto, 1986] McClelland,
J. L. and Kawamoto, A. H. (1986). Mechanisms
of sentence processing: Assigning roles to con-
stituents. In Rumelhart, D. E., McClelland, J. L.,
and the PDP Research Group, editors, Parallel
Distributed Processing: Ezplorations in the Mi-
crostructure of Cognition. Volume 2: Psychological
and Biological Models, chapter 19, pages 272-325.
MIT Press/Bradford Books, Cambridge, MA.

[Plate, 1991] Plate, T. (1991). Holographic reduced
representations. Technical Report CRG-TR-91-1,
Department of Computer Science, University of
Toronto.

[Smolensky, 1987b] Smolensky, P. (1987b). On vari-
able binding and the representation of symbolic
structures in connectionist systems. Technical re-
port, Department of Computer Science, University
of Colorado at Boulder. Technical Report CU-CS-
355-87.

764

[Smolensky, 1988] Smolensky, P. (1988). On the
proper treatment of connectionism. The Behav-
toral and Brain Sciences, 11:1-74.

[Smolensky, 1990] Smolensky, P. (1990).  Tensor
product variable binding and the representation of
symbolic structures in connectionist networks. Ar-
tificial Intelligence, 46:159-216.

[Smolensky et al., 1992] Smolensky, P., Legendre,
G., and Miyata, Y. (1992). Principles for an in-
tegrated Connectionist/Symbolic theory of higher
cognition. Technical Report 92-1-02, School of
Computer and Cognitive Sciences, Chukyo Univer-
sity



	cogsci_1993_759-764



