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Abstract

Computation of the thermodynamic consequences of protein mutations holds great promise in 

protein biophysics and design. Alchemical free energy methods can give improved estimates of 

mutational free energies, and are already widely used in calculations of relative and absolute 

binding free energies in small molecule design problems. In principle, alchemical methods can 

address any amino acid mutation with an appropriate alchemical pathway, but identifying a 

strategy that produces such a path for proline and glycine mutations is an ongoing challenge. 

Most current strategies perturb only side chain atoms, while proline and glycine mutations also 

alter the backbone parameters and backbone ring topology. Some strategies also perturb backbone 

parameters and enable glycine mutations. This work presents a strategy that enables both proline 

and glycine mutations and comprises two key elements: a dual backbone with restraints and 

scaling of bonded terms, facilitating backbone parameter changes, and a soft bond in the proline 

ring, enabling ring topology changes in proline mutations. These elements also have utility for 

core hopping and macrocycle studies in computer-aided drug design. This new strategy shows 

slight improvements over an alternative side chain perturbation strategy for a set T4 lysozyme 

mutations lacking proline and glycine, and yields good agreement with experiment for a set of T4 

lysozyme proline and glycine mutations not previously studied. To our knowledge this is the first 

report comparing alchemical predictions of proline mutations with experiment. With this strategy 

in hand, alchemical methods now have access to the full palette of amino acid mutations.

1 Introduction

The effects of amino acid mutations in proteins are of great importance in medicine, where 

they determine the mechanism of genetic diseases1 and control evolutionary pathways of 

drug resistance,2,3 and in biotechnology, where protein design relies on iterative mutations 

to optimize target properties.4–6 The ability to predict the effect of these mutations using 

computational methods is highly desirable both to streamline experimental efforts and 

aid in their interpretation. Consequently, many methods have been developed to compute 
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mutational free energies with physics or knowledge-based potentials, machine learning, 

or genomic sequencing data.3,7–12 These methods enable rapid estimation of mutational 

free energy changes, but can suffer in accuracy due to approximations in the equilibrium 

ensemble and force field, or from poor generalizability to new ligands, nonnatural amino 

acids, and problems beyond the training data. Alchemical free energy methods can offer 

better accuracy and generalizability at an increased computational cost, and have already 

found widespread use in computer-aided drug design.13,14 This has motivated a growing 

interest in applying alchemical methods to protein mutations.15–22

While alchemical free energy calculations of protein mutations have shown great promise, 

none of these previous studies15–22 have been able to treat mutations to or from proline, 

and only a few included mutations to or from glycine.17,19,20 This may seem like a minor 

limitation in testing and validation studies and some design studies when one can choose to 

avoid inconvenient mutations, but in many cases, such as comparing evolutionarily related 

sequences23 or evaluating redesigned proteins against their natural homologues,24,25 the 

sequences are already defined and often include a few proline mutations. In principle there 

is no reason alchemical calculations cannot address proline mutations given an appropriate 

alchemical pathway; the limitation lies in the perturbation strategies employed in previous 

studies, which do not generalize to proline. Indeed, two previous studies have examined 

a single proline perturbation, but they neither compared to experimental measurement of 

the free energy change, nor described the perturbation strategy in sufficient detail.26,27 

Consequently, description and experimental testing of a proline perturbation strategy is 

needed.

In this work, we present a perturbation strategy that enables treatment of proline mutations. 

This strategy also enables glycine mutations, which can be problematic for some free 

energy approaches. We begin with a discussion of alchemical free energy methods and the 

perturbation strategy. Next, the new strategy is validated on a previous T4 lysozyme data set 

lacking proline and glycine mutations to ensure it does not degrade accuracy for mutations 

that can be treated with other strategies. Finally, the strategy is tested on a new set of 

ten proline and glycine mutations in T4 lysozyme. We anticipate this strategy will inspire 

treatment of proline mutations for several alchemical methods, and the underlying principles 

will facilitate core hopping and macrocycle calculations in computer-aided drug design.

2 Alchemical Methods and a Proline Perturbation Strategy

Alchemical methods all use a similar approach to calculate free energy differences (Figure 

1). Because free energy is a state function, the relative free energy difference upon mutation 

for a physical process like folding can be expressed as either the difference of the horizontal 

physical processes or the vertical alchemical processes in Figure 1. Alchemical methods 

utilize the alchemical processes because they converge much more rapidly. Most alchemical 

free energy methods introduce an alchemical coupling parameter λ into the potential energy 

function for the system that mutates from one sequence to the other. In the conventional 

equilibrium methods of thermodynamic integration,28 free energy perturbation,29 and the 

multistate Bennett acceptance ratio,30 several simulations are run at closely spaced, fixed 

values of λ. In nonequilibrium methods like fast growth thermodynamic integration,31 λ 
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is a continuous driving variable. Finally, in the multisite λ dynamics (MSλD) technique 

pioneered in our lab,32,33 λ is a continuous degree of freedom that fluctuates on equal 

footing with spatial degrees of freedom. While examples of each of these methods have 

shown impressive accuracy in predicting the effect of protein mutations,18,19,22 MSλD 

is unique in that λ can be generalized to a multidimensional alchemical space, allowing 

scalable and efficient treatment of multiple mutations. This makes MSλD uniquely well 

suited to the combinatorial sequence spaces encountered in protein design.

Alchemical methods allow representation of multiple sequences by partitioning the system 

into environment atoms, which are present in all sequences, and mutating or alchemical 

atoms, which are unique to a particular mutation. For convenience, an atom may be removed 

from the environment by creating a copy of it in each alchemical set; for example, while 

both mutating residues may contain a Cγ atom, it may be more convenient to include a Cγ 
atom in each alchemical set so that the same alchemical set can be used when mutating to 

alanine, which lacks a Cγ atom. Within MSλD, the potential energy representing the hybrid 

system is

U = U0, 0 + ∑
s

M
∑

i

Ns
λsi U0, si + Usi, si + ∑

s

M
∑
t > s

M
∑

i

Ns
∑

j

Nt
λsiλtjUsi, tj + Ubias (1)

where λsi is the alchemical scaling parameter of mutation i at site s, the sum of λsi 

over i at each site is constrained with implicit constraints,34 U0,0 are the interaction terms 

involving only environment atoms, U0,si and Usi,si are the interactions of mutating atoms 

with the environment and among themselves, Usi, tj are interactions between mutating atoms 

at different sites, and Ubias is a biasing potential typically obtained with adaptive landscape 

flattening (ALF) to optimize sampling.22,35 This reduces to the potential energy function 

for a particular sequence (plus some noninteracting dummy atoms) at alchemical endpoints 

where all λ values are either 0 or 1, but allows transformation between sequences through 

nonphysical alchemical intermediates where λ values are between 0 and 1.

In practice, typically only nonbonded electrostatic and Lennard-Jones interactions are 

scaled by λ, while bonded interactions, referring to bonds, angles, dihedrals, impropers, 

and CMAP interactions,36,37 are not scaled by λ. If bonded terms are scaled by λ, 

mutating atoms can occupy unreasonable geometries when λ is 0, which introduces serious 

convergence artifacts; for example in MSλD, λ cannot fluctuate back away from 0 because 

of the large force −∂U/∂λ on λ once atoms are out of position. Conversely, artifacts can 

arise if the unscaled bonded terms for an alchemical set of atoms affect the ensemble beyond 

this set of atoms when λ is 0. When a special allowed set of alchemical bonded terms 

remains unscaled and other alchemical bonded terms are scaled to zero, their contribution 

to the partition function may be factored out by a change of variables, resulting in an 

additive constant to the free energy, which cancels out in the difference between the 

two alchemical processes.38 This allowed set of unscaled bonded interactions includes all 

bonded interactions between a set of alchemical atoms, their bonds to one environment 

atom, their angles involving that atom and one additional environment atom, and their 

dihedrals involving those two atoms and one additional environment atom. Alchemical 
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calculations sometimes include extra unscaled bonded interactions or restraints between an 

alchemical region and the environment or other alchemical regions, but these cannot be 

guaranteed to cancel out. The dual concerns of ensuring mutating atoms maintain reasonable 

geometries yet do not perturb the ensemble when λ is 0 strongly influence the development 

of our perturbation strategy below.

To motivate the new perturbation strategy for proline and glycine, we outline the previous 

MSλD side chain perturbation strategy22 and the two fundamental problems that must be 

addressed for any amino acid perturbation strategy to treat proline and glycine, followed 

by the new perturbation strategy that addresses these problems. Simulations were carried 

out using the CHARMM36 forcefield39,40 in the CHARMM software package41,42 using 

the block module. Backbone atoms (N, HN, Cα, Hα, C, and O) were considered part 

of the environment, and atoms for each mutating side chain were included with unscaled 

bond, angle, and improper interactions. Each mutating side chain has its own Cβ atom 

with three unscaled angle interactions Cβ-Cα-N, Cβ-Cα-C, and Cβ-Cα-Hα, which is two 

more unscaled angles than allowed as outlined above.38 This effectively double counts and 

rigidifies these angles for each Cβ present, but the high accuracy of the approach suggests 

that the decreased amplitude of angle vibrations has similar effects on both ensembles.22 

The validity of this assumption is verified below by scaling some or all of these angles. 

In contrast, the double counting of the ϕ dihedral Cβ-Cα-N-C and ψ dihedral Cβ-Cα-C­

O would affect not just vibrations but also Ramachandran distributions, so all perturbed 

dihedral interactions were scaled by λ.

There are two fundamental problems with this approach. First, for proline and glycine 

mutations, backbone parameters change, which cannot be implemented in the block module 

of CHARMM without increasing the set of mutating atoms to include the backbone, and 

can also lead to problems for some other alchemical methods implemented in NAMD43 and 

GROMACS.44 Second, a problem for all alchemical methods is that in proline the side chain 

is bonded to the backbone at both Cα and N, which is one more bond than allowed above38 

and perturbs the ensemble by preventing free rotation around the backbone ϕ angle, even 

when λ for proline is zero.

The first problem is that proline and glycine mutations change parameters of backbone 

atoms generally included in the environment. Changing parameters of environment atoms 

has been mostly implemented in GROMACS,45 with the notable exception of CMAP 

interactions. Implementing changing parameters of environment atoms within the block 

module of CHARMM would have required extensive code restructuring, so the mutating 

region was expanded to include the entire residue, leading to multiple copies of the 

backbone atoms. The whole residue is connected to the environment by two bonds, so 

care must be taken to avoid artifacts. A simple test system mutating glycine to glutamine 

in a pentapeptide environment revealed that dihedral and CMAP scaling were required 

to obtain the correct Ramachandran distribution. With CMAP and dihedral terms scaled, 

the remaining bonded terms perturbed the glycine N-Cα-C angle from 115.0° to 113.7°, 

indicating the two unscaled glutamine bonds to neighboring residues distort the glycine even 

when λ for glutamine is zero.
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Therefore, we apply a strategy that allows one to factor out the contribution of the side chain 

from the partition function, followed by factoring out the contributions of the backbone 

atoms when λ for that residue is 0, and rigorously guarantees the endpoint ensembles 

are not perturbed. Bond and angle terms are scaled if they contain only environment and 

analogous backbone atoms (N, Cα, Hα, C, and O), but are left unscaled if they contain 

any side chain atoms (or HN, which is missing from proline), while all other bonded terms 

are scaled regardless. The only obstacle to factoring out the side chain (and HN) is that 

three unscaled Cβ-Cα-X angles and two unscaled HN-N-X angles remain when only one 

of each is allowed. Three different treatments of these unscaled angles are tested below. 

To prevent the analogous backbone atoms from adopting distorted configurations, they are 

tightly harmonically restrained together (see Supporting Information for details), similar 

to a recent ligand perturbation approach in NAMD using holonomic constraints.46 This 

approach is rigorous, because after the side chain and HN are factored out of the partition 

function, each analogous backbone atom is an isolated harmonic oscillator that may also 

be factored out. For generalization to multiple mutation sites, if Ns and Nt mutations to 

adjacent residues are made, all Ns × Nt inter-residue C-N bonds are included and scaled 

by the product of their λ values. While most backbone parameters can be changed as a 

function of λ in GROMACS, CMAP scaling is not yet implemented,45 and the distortion 

of the Ramachandran distribution in our pentapeptide system highlights that CMAP scaling 

must be implemented before glycine mutations can be performed in GROMACS with 

the CHARMM36 force field. Furthermore, by replacing tight harmonic restraints with 

holonomic constraints, this strategy may be adapted to enable glycine mutations NAMD.

This approach is still not sufficient for proline, where unscaled bonds in the ring prevent free 

rotation around the backbone ϕ dihedral even when λ is 0, and perturb the Ramachandran 

distribution of the alternative residues unphysically. Fundamentally, one of the bonds in 

the proline ring must be scaled to zero with λ, but the two previous studies of a proline 

perturbation failed to mention this or or describe their solution.26,27 In this work, we use 

recently developed soft bonds47,48 to break the ring:

U =
1
2λsinαk r − r0

2

1 + 1 − λsinα r − r0
2/rα2

(2)

where k and r0 are the bond spring constant and equilibrium distance. Previous work chose 

rα = 0.7 Å for core hopping47 and rα = 1.4 Å for macrocycle applications,48 and we 

choose rα = 1 Å in this work. Previous work only included the special case nα = 1, but 

we used nα = 2 because it gives smoother free energy profiles (see Supporting Information 

for details). We apply the soft bond to the Cβ-Cγ bond to avoid any dihedrals through 

the soft bond that include atoms from the previous residue, which could also be mutating. 

Any Urey-Bradley interactions through this bond are also treated with soft bonds, and other 

bonded terms through this bond (e.g. angles) are scaled linearly by λsi
nθ with nθ = 1, 

rather than by λsi
nα. The two sets of side chain atoms bonded to Cα and N can then be 

factored out of the partition function separately because they no longer interact when λ 
is 0. In testing soft bonds on perturbations between 5, 6, and 7 membered ring inhibitors 

of BACE1 previously studied in our lab,49 we discovered that soft-core interactions,35 
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which were previously not applied to 1–4 nonbonded interactions, had to be applied to 1–4 

interactions as well to prevent serious artifacts. Thus, we apply soft-core interactions to 1–4 

nonbonded interactions to make the approach easily generalizable, as well as to prevent 

possible artifacts for 1–4 interactions between Hβ and Hγ atoms that could possibly overlap.

Two control tests were performed to test the thermodynamic rigor of the perturbation 

strategy. First, the Ramachandran distributions were compared for plain molecular dynamics 

and the present perturbation strategy with λ fixed at a λ = 1 endpoint to ensure the 

perturbation strategy does not perturb the endpoint ensemble. For 40 ns simulations of the 

pentapeptide model of the unfolded state, deviations were observed due to slow transitions 

between basins, but for longer 400 ns simulations, both methods converged to the same 

distribution (Figure S2 & S3). Second, the free energy around a closed thermodynamic cycle 

proline to glycine to alanine and back to proline was computed. Unlike other alchemical 

methods, MSλD need not use closed thermodynamic cycles to connect a network of 

pairwise free energy comparisons since all perturbations can be evaluated in the same 

simulation, but cycles can still highlight potential artifacts. We find the proline to glycine 

leg exhibits substantial variability on the 40 ns time scale, while the other legs appear 

converged. For longer 400 ns simulations, all legs converge to give a cycle closure error 

of less than 0.2 kcal/mol (Table S4). Only one of the ten mutations examined subsequently 

involves a proline to glycine mutation, and while we observe slightly improved agreement 

with experiment for 400 ns simulations (see Supporting Information), the results highlighted 

in the main text use 40 ns simulations.

This perturbation strategy incorporating both scaled bonded interactions of restrained 

analogous atoms and soft bonds allows mutation between any amino acid including proline 

at several sites by MSλD within the CHARMM molecular dynamics package, and should 

give insight into how to treat proline and glycine mutations with other alchemical methods 

in other software packages.

3 T4 Lysozyme Control Mutations

To test this perturbation strategy we first sought to ensure it gave consistent results for non­

proline and glycine mutations with the previous side chain perturbation strategy. Therefore, 

the set of previously calculated T4 lysozyme point mutations were recalculated as described 

previously,22 changing only the perturbation strategy. Simulations used particle mesh Ewald 

electrostatics,50 modeled the folded alchemical transformation starting from PDB 1L63,51 

and approximated the unfolded alchemical transformation with a capped pentapeptide 

centered on the mutating residue.

It is often more informative to compare computational results obtained with different 

methods with each other than to compare with experiment, because the goal in methods 

development (in contrast to force field development or design applications) is to converge to 

the force field correct answer, which may or may not agree with experiment, depending on 

the quality of the force field. However, it is also useful to compare with experiment, because 

artifacts in the method can lead to systematic errors that tend to increase the deviation 

from experimental values. Experimental values are taken from reference 52, and Pearson 
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correlation (R), mean unsigned error 〈|Δx|〉 (MUE), and root mean squared error (〈Δx2〉 
− 〈Δx〉2)1/2 (RMSE) are evaluated. We evaluate the centered RMSE, which includes the 

native sequence in the averages, rather than the larger uncentered RMSE (〈Δx2〉1/2) because 

it is more appropriate for relative free energies and for consistency with our previous study 

of T4 lysozyme.22 We only include neutral mutations in the statistics, otherwise statistical 

variation in the single M102K mutation dominates the statistics.

To determine whether the three unscaled angles through the Cβ-Cα bond to the backbone 

caused artifacts, since only one is rigorously allowed, additional simulations were run with 

some or all of these angles scaled. In one case, all but one of these angles were scaled (see 

Supporting Information for details), but this allowed free rotation of the Cα-Cβ bond into 

nonphysical orientations when λ was small. Though no chirality flips were observed, the 

increased rigor translated to poorer results (Table 1). Therefore another set of simulations 

was run with a harmonic angular restraint between Cα-Cβ vectors; the restraint counted as 

the one allowed angle term, thus all three of the Cα angles were scaled by λ. This gave 

comparable results to the simulations without the angles scaled, suggesting that there are not 

substantial artifacts when the angles are unscaled (Table 1).

Figure 2 shows the whole residue strategy with scaling of all three Cα angles achieves 

excellent agreement with experiment, and nearly identical results with the side chain strategy 

without Cα angle scaling. Furthermore, the new whole residue strategy seems to give 

slightly improved results relative to the original side chain strategy (Table 1), though this is 

likely just statistical variation. These findings suggest the high accuracy previously reported 

with the side chain strategy can also be expected from the whole residue perturbation 

strategy.

4 T4 Lysozyme Proline and Glycine Mutations

Having shown the whole residue strategy gives comparable or improved results in T4 

lysozyme mutations previously evaluated with the side chain strategy, we turn our attention 

to proline and glycine mutations that could not be addressed with the side chain strategy. 

As a test set, we chose all mutations between neutral amino acids and either proline or 

glycine made to T4 lysozyme in the C54T/C97A background listed in reference 52. This 

comprises ten mutations: Y25P, L33G, P37G, S44G, S44P, G56M, T59G, Q69P, L99G, and 

V149G. The folded protein and unfolded pentapeptides were set up as described previously, 

including protonation states at a pH of 3.0 and 5.4.22 Two mutations in this set were 

measured experimentally at a pH of 6.5, but PROPKA calculations53 indicated protonation 

states of all residues were the same as at a pH of 5.4. Production simulations were run with 

5 independent trials of 40 ns each. To our knowledge, this is the first alchemical study of 

proline mutations that compares with experimentally measured free energies.

MSλD simulations of proline and glycine mutations agree well with experiment, but not as 

well as simulations of mutations excluding proline and glycine (Figure 3). The statistics of 

R = 0.876, MUE = 2.05 kcal/mol, and RMSE = 1.65 kcal/mol in Figure 3 were obtained 

scaling all Cα angles; statistics without Cα angles scaled were comparable with R = 0.870, 

MUE = 1.93 kcal/mol, and RMSE = 1.59 kcal/mol (see Supporting Information Figure 
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S1). Two of the largest studies including glycine mutations both observed poorer results for 

glycine mutations than other kinds of mutations,17,19 and our glycine MUE of 1.97 kcal/mol 

(or 1.84 kcal/mol with unscaled angles) is comparable to the glycine MUE of 2.1 kcal/mol in 

reference 19. To our knowledge this study is the first comparison of alchemical simulations 

with experiment for proline, and suggests that like glycine, they will also have larger errors 

than other mutations.

The most likely source of increased error for proline and glycine mutations is the strong 

effect on the flexibility of the backbone, though the two worst outliers are both buried 

mutations from leucine to glycine whose stability changes are driven instead by creation 

of a buried cavity. The destabilizing effect of proline and glycine mutations is generally 

overpredicted, suggesting the 40 ns simulations may be too short for the protein to relax to 

accommodate the mutation. Overprediction can occur if a relaxation process that mitigates 

the destabilizing effect of a mutation is too slow to observe computationally. It is also 

possible the experimental results are partially responsible for the discrepancy; free energies 

were reported at high temperatures, and extrapolating back to the simulation temperature 

of 300 K gives marginally improved RMSE and substantially improved mean signed error 

(see Supporting Information). Overall, it is unsurprising that the computational results are 

poorer for these difficult mutations, yet it is encouraging that the results are still reasonably 

accurate.

5 Discussion

In this paper we described the implementation of a protocol for mutating amino acids in 

proteins where one endpoint contained either glycine or proline. Our results demonstrate 

that the whole residue perturbation strategy enables accurate computation of mutational free 

energies for mutations to and from all twenty amino acids. As mentioned in the introduction, 

the ability to compute the effect of proline mutations is useful in studies of evolution,23 

where the effects of mutations including proline constrain viable evolutionary paths. It is 

especially important in protein design,24,25 where we envision MSλD refining designs from 

less rigorous, but much faster, methods like Rosetta, because proline mutations often have 

larger effects than other mutations. This new perturbation strategy opens these and other 

applications of MSλD.

We expect this perturbation strategy will also be relevant to studies of protein mutations with 

other alchemical free energy methods. Scaling bonded interactions of restrained analogous 

atoms may be helpful in some alchemical software implementations like NAMD but 

unnecessary in others where the parameters of bonded interactions can vary as a function 

of λ. The demonstration that soft bonds enable accurate calculation of the effects of proline 

mutations is useful for all alchemical methods and should encourage future studies to 

include proline mutations. Other details, such as noting dihedrals and CMAP terms should 

always be scaled, that 1–4 interactions should be treated with soft cores, and that angular 

restraints allow extra angles to be scaled by λ without sacrificing sampling should aid in 

crafting perturbation strategies for other alchemical methods.
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We also anticipate the two key techniques introduced in the whole residue perturbation 

strategy, namely scaling bonded interactions of restrained analogous atoms and judicious 

use of soft bonds, will be useful in many other MSλD studies of ligand perturbations in 

drug design. Scaling and restraining can be used when perturbations involve core atoms 

that cannot easily be treated as substituents, or for atoms whose parameters change only 

slightly in response to a perturbation. Soft bonds represent a more aggressive approach 

that is warranted when perturbations open, close, or resize a ring, or when a perturbation 

to a core changes connectivity. The use of soft bonds has already enabled studies of core 

hopping and macrocyles with free energy perturbation,47,48 and should now enable them 

within the MSλD framework as well. During the D3R grand challenge 2, the core hopping 

transformation between ligands 91 and 93 could have been easily achieved by scaling and 

restraining, rather than the less rigorous approach that we improvised at that time.54 Soft 

bonds would have been necessary to efficiently study the macrocycle perturbations with 

MSλD in the D4R grand challenge 4.55 Finally, scaling and restraining enables a broader 

scope of MSλD multisite systems, because alchemical regions may be directly bonded to 

each other rather than requiring two intervening environment atoms.

6 Conclusions

We have presented a perturbation strategy that allows proline mutations, and demonstrated 

that it gives accurate predictions of the effects of mutations for all amino acids including 

proline and glycine. The underlying principles will also enable a wider array of small 

molecule perturbations in computer-aided drug design. With this strategy, MSλD is now 

poised to study and design proteins with the full palette of amino acid mutations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
To determine the relative free energy difference of a process like folding upon mutation, 

alchemical methods take the difference of the two vertical alchemical processes rather 

than the difference of the two horizontal physical processes, because simulations of the 

alchemical processes converge more rapidly.
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Figure 2: 
For a previous mutation set lacking proline or glycine, the whole residue perturbation 

strategy agrees well with experiment (top) and gives virtually identical results to the side 

chain perturbation strategy (bottom). Statistics exclude the two charge changing mutations, 

shown as open circles. The dashed line is y = x; experimental and side chain data are from 

references 52 and 22, respectively.
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Figure 3: 
Comparison of MSλD with experiment for proline and glycine mutations. The whole 

residue strategy was required to evaluate proline and glycine mutations. The dashed line 

is y = x; experimental data is from reference 52.
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