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Abstract

Explicit electromagnetic Particle-In-Cell (PIC) codes are typically limited by the Courant-

Friedrichs-Lewy (CFL) condition, which implies that the timestep multiplied by the speed of light

must be smaller than the smallest cell size. In the case of boosted-frame PIC simulations of

plasma-based acceleration, this limitation can be a major hindrance as the cells are often very

elongated along the longitudinal direction and the timestep is thus limited by the small, transverse

cell size. This entails many small-timestep PIC iterations, and can limit the potential speed-up

of the boosted-frame technique. Here, by using a CFL-free analytical spectral solver, and by mit-

igating additional numerical instabilities that arise at large timestep, we show that it is possible

to overcome traditional limitations on the timestep and thereby realize the full potential of the

boosted-frame technique over a much wider range of parameters.

PACS numbers: 02.70.-c,52.65.-y,52.65.-r,52.38.Kd

I. INTRODUCTION

Particle-In-Cell (PIC) simulations [1, 2] are key to the development of plasma-based acceler-

ators and of their potential future applications [3]. However, these simulations can typically

be very computationally expensive. One way to reduce their computational cost is to use

the boosted-frame technique [4], whereby the simulation is performed in a Lorentz frame

moving relativistically in the same direction as the beam or laser driver. The boosted-frame

technique is nowadays routinely used in simulations of plasma-based accelerators, and can

speed up simulations by several orders of magnitude. To a large extent, this was made pos-

sible by the development of a number of algorithms that mitigate the Numerical Cherenkov

Instability (NCI) [5–20] – a numerical instability that would otherwise rapidly grow in the

boosted frame and irremediably corrupt the simulated physics.

The remarkable speedup afforded by the boosted-frame technique is due largely to the pos-

sibility of increasing the timestep in the boosted frame, and thereby reducing the number

of PIC iterations to be performed compared to a corresponding laboratory-frame simula-

∗ oshapoval@lbl.gov
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tion. For example, in a typical laboratory-frame simulation of laser-wakefield acceleration,

both the longitudinal cell size ∆zlab and timestep ∆tlab are constrained to resolve the small

laser oscillations at wavelength λlab: ∆zlab � λlab for a laser propagating along z, with

c∆tlab ≤ ∆zlab � λlab (while the transverse cell size is usually much larger: ∆x,∆y � ∆zlab).

By contrast, in a Lorentz boosted frame drifting along z at relativistic velocity with a

Lorentz factor γb � 1, the laser oscillations are dilated by a factor of approximately 2γb

(λ ≈ 2γbλlab), which greatly relaxes the constraints on the longitudinal cell size and timestep:

∆z � 2γbλlab, with c∆t ≤ ∆z � 2γbλlab (where the quantities ∆z and ∆t denote the lon-

gitudinal cell size and timestep in the boosted frame).

However, for large γb, as the constraints imposed by the laser are relaxed, the timestep often

becomes constrained instead by the transverse cell size: c∆t ≤ ∆x,∆y. (Note that the

transverse cell size is left unchanged in the boosted-frame simulation as compared to the

corresponding laboratory-frame simulation, since transverse physical length scales are un-

changed by the Lorentz transform.) In the case of Finite-Difference Time-Domain (FDTD)

PIC algorithms, this constraint on the timestep is due to the Courant-Friedrichs-Lewy (CFL)

condition [21, 22]. Similarly, the Pseudo-Spectral Time-Domain (PSTD) PIC algorithm [23]

also has a CFL condition. As a consequence of the CFL condition, the timestep of the

boosted-frame simulation is relatively small and limits the potential computational speedup,

even though the physics at stake does not necessarily require such a high temporal resolution.

On the other hand, unlike FDTD and PSTD PIC algorithms, Pseudo-Spectral Analytical

Time-Domain (PSATD) PIC algorithms [24, 25], which integrate analytically Maxwell’s

equations over one time step in Fourier space, do not have a similar CFL condition. It follows

that boosted-frame PIC simulations that use the PSATD Maxwell solver could use a larger

timestep, as it is thus not explicitly constrained by the transverse resolution. However, it

turns out that PSATD boosted-frame simulations are empirically unstable for c∆t > ∆x,∆y.

More specifically, the Galilean PSATD algorithm [16–18], which does efficiently mitigate the

NCI for c∆t < ∆x,∆y, does not seem to suppress the NCI anymore for c∆t > ∆x,∆y.

This paper examines the nature of this resurgent NCI and shows that this instability can

be strongly mitigated with a new algorithm, referred to as the averaged Galilean PSATD,

whereby a key feature of the PSATD algorithm is exploited to analytically average the
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electromagnetic fields in time before gathering them onto the macroparticles. Hence, with

this new algorithm, simulations can run with a large timestep (c∆t ≤ ∆z � ∆x,∆y)

and exhibit the corresponding computational speedup, while preserving the integrity of

the simulated physics. While this development was motivated here with the example of

laser-wakefield acceleration, it is generally applicable to any simulation where the physics

imposes a high transverse spatial resolution but does not impose such strong constraints on

the timestep, so that it would be advantageous to use a large timestep compared to the cell

size. For instance, this also includes the simulations of low-emittance pencil-like beams [26],

in which the space charge requires a high transverse resolution, but has a relatively slow

time evolution.

The remainder of the paper is structured as follows. We first examine in more detail the

NCI that occurs for large timesteps in the case of the standard Galilean PSATD algorithm.

Based on this analysis, we introduce the averaged Galilean PSATD algorithm and describe

the corresponding modified PIC loop. We then demonstrate the stability of this new al-

gorithm with large timesteps, first for a uniform plasma, and then for 2D simulations of

laser-wakefield acceleration (LWFA) and 3D simulations of plasma wakefield acceleration

(PWFA).

II. LIMITATIONS OF THE STANDARD GALILEAN PSATD ALGORITHM FOR

LARGE TIMESTEPS

As mentioned in the introduction, boosted-frame simulations with the Galilean PSATD algo-

rithm are typically unstable when using a large timestep c∆t > ∆x,∆y. Here, we illustrate

this by examining the theoretical NCI growth rate of the Galilean PSATD algorithm for

two-dimensional simulations of a uniform plasma drifting at a relativistic velocity v0 = v0uz

(where uz is the unit vector along the z axis). As a reminder, the Galilean PSATD algorithm

solves the Maxwell equations on a moving grid, which drifts at a velocity vgal = vgaluz. This

algorithm was shown to suppress the NCI when vgal = v0 [16].

In this section, we in fact consider two cases: that of a matching velocity vgal = v0 and that

of a slightly detuned velocity vgal = 0.99 v0. Conceptually, these two cases represent – at

a simplified level – different areas of the simulation box, in the case of a realistic LWFA
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simulation. More specifically, the matched case (vgal = v0) represents the background,

quiescent plasma, far from the driver and the wakefield, since the Galilean velocity is typically

chosen to match its velocity (i.e., vgal = −
√

1− 1/γ2
b c). On the other hand, the case of

the detuned velocity represents the perturbed plasma around the laser driver and in the

wakefield, where the local velocity is different than that of the background plasma, and thus

different than the Galilean velocity.

In both of these cases, we choose ∆z � ∆x. This is typical for boosted-frame simulations

with a large γb, since the longitudinally Lorentz-dilated driver and wakefield relax the re-

quirement on the longitudinal resolution. We then further consider two cases: that of a

small timestep c∆t = ∆x and that of a large timestep c∆t = ∆z. Note that the latter case

would not be allowed by the CFL condition of an FDTD algorithm.

Fig. 1 displays the theoretical NCI growth rate for the four possible combinations (i.e.,

small/large timestep and matched/detuned Galilean velocity). The growth rates are ob-

tained by solving the theoretical dispersion relation, namely equation (19) in [16]. In order

to guide the interpretation of this figure, we also plot the position of well-known NCI reso-

nant modes [8], which are caused by temporal and spatial aliasing. For the Galilean PSATD

algorithm, the equation of these aliased resonant modes is given by:

kx,res =

√(
kz
v0

c
+mz

2π

∆z

(v0 − vgal)
c

− 2πn

c∆t

)2

− k2
z , (1)

for any mz, n ∈ Z, where mz is the spatial alias index and n is the temporal alias index

[18]. As one can observe, if vgal ≈ v0, the term proportional to mz almost cancels and the

position of these lines mainly depends on the time aliasing n.

As can be seen in Fig. 1 (a)-(b), in the matched-velocity case (vgal = v0), the Galilean PSATD

algorithm suppresses the NCI, both for c∆t = ∆x (upper left panel) and c∆t� ∆x (upper

right panel). By contrast, in the detuned case (vgal 6= v0, lower panels in Fig. 1), the NCI

has a more noticeable growth rate. This growth rate is relatively small for c∆t = ∆x, but is

much larger for c∆t� ∆x. In practice, this implies that the Galilean algorithm is relatively

robust to velocity perturbations (e.g. in the wakefield) in the case of a small timestep

(c∆t ≤ ∆x), but it is much less robust to those perturbations in the case of a large timestep

(c∆t � ∆x). This explains the empirical observation, mentioned in the introduction, that

boosted-frame simulations of LWFA are typically unstable with large timestep.
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FIG. 1: NCI growth rate of the Galilean PSATD scheme. Normalized NCI growth

rate Im(ω)/ωp,r in spectral (kx,kz) space, calculated from the analytical stability analysis

for different Galilean velocities vgal = v0 (a)-(b) and vgal = 0.99 v0 (c)-(d), and for different

timesteps c∆t = ∆x (left) and c∆t = 6∆x (right). The solid and dotted lines correspond

to well-known aliased NCI resonant modes, with alias number (mz, n), as given by

equation (1). In this simulation, a uniform plasma drifts at a velocity v0 = c(1− 1/γ2
b )

1/2

with γb = 130, and the transverse and longitudinal cell sizes are ∆x = 6.4× 10−2 k−1
p,r and

∆z = 6∆x, respectively (where k2
p,r = n0e

2/(meε0c
2γ0), and where n0 is the plasma

density).

Furthermore, in the case vgal 6= v0 and c∆t � ∆x (panels (c)-(d) in Fig. 1), we see that

the large NCI growth rate is concentrated near time-aliased resonances. Thus, the NCI
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arises here primarily from the resonant interaction of particles with electromagnetic modes

that are not resolved in time. More specifically, the electromagnetic modes are in principle

oscillating in time (as predicted by the analytical formulas used in the derivation of the

PSATD algorithm), and in most cases their net effect on particles averages to zero. Yet

because these fields are sampled with a (large) discrete timestep – which can be comparable

to the period of their oscillations – particles may in certain cases see an almost constant value

(because of aliasing) instead of an oscillating one, and thus experience a lasting, resonant

effect.

III. AVERAGED GALILEAN PSATD ALGORITHM

The above analysis suggests a natural remedy: when pushing the particles, instead of using

the value of the fields sampled at a specific time t = n∆t for some integer n, the particles

should instead be pushed with the fields averaged in time between t = (n − 1/2)∆t and

t = (n + 1/2)∆t. Averaging the fields over one timestep will barely affect the physics,

provided that it is well-resolved in time with the chosen timestep. On the other hand, this

average will damp the under-resolved modes that are spuriously resonant in Fig. 1. Since this

is a temporal average, not a spatial one, it will not affect the above-mentioned fine spatial

details that typically impose a high transverse resolution ∆x, ∆y (for example, the space-

charge field of a low-emittance beam), as long as they vary slowly in time (in comparison to

the time step used in the simulation).

We note that with most Maxwell solvers (for example, the FDTD and PSTD algorithms),

the time evolution of the electromagnetic fields within one time step is in general not known.

However, this evolution is indeed known in the case of the PSATD algorithm. More specifi-

cally, as part of the derivation of the PSATD algorithm [16, 24, 25], the time evolution of the

E and B fields in Fourier space is calculated analytically. Here, we propose to average this

analytical expression over one timestep in Fourier space (see equations (A.9) and (A.10) in

appendix A), and then to transform these averaged fields 〈E〉 and 〈B〉 to real space, where

they are gathered onto the macroparticles and then discarded. (However, the unaveraged E

and B fields are still kept in memory, and are updated by the standard Galilean PSATD

equations [16, 17] at each PIC iteration.) The corresponding modified PIC loop is illustrated
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in Fig. 2 and described in more detail in appendix B.

In the rest of this article, we refer to this new scheme as the averaged Galilean PSATD

algorithm, since it combines the Galilean PSATD scheme [16–18] and the temporal average

of the fields over one timestep. By construction, the averaged Galilean PSATD algorithm

inherits the main advantages of the Galilean PSATD scheme: it has a low amount of spurious

numerical dispersion (for high-order spatial derivatives [27, 28]) and does not have a CFL

limit. In addition, as shown in the next sections, the averaged Galilean PSATD algorithm

efficiently mitigates the NCI for large timesteps.

A. Stability analysis for a uniform plasma drifting at relativistic velocity

In order to analyze the stability of the new averaged Galilean PSATD algorithm, we consider

again the case of a two-dimensional uniform plasma drifting with a relativistic velocity. We

derived the theoretical dispersion equation for this system, by using a similar method as

for the standard Galilean PSATD algorithm [16] – while taking into account the additional

average in time. The full derivation of this theoretical dispersion equation is given in the

Appendix C. By solving this dispersion equation numerically, we can extract the NCI growth

rate Im(ω)/ωp,r as a function of k. In addition, we also performed actual PIC simulations

for the same system. We used the PIC code WarpX [29],[30] in which we implemented the

averaged Galilean PSATD algorithm, and we then extracted the NCI growth rate of the

NCI in post-processing.

The growth rates extracted from both the WarpX simulations and the theoretical dispersion

equation are shown in Fig. 3 - both for standard Galilean PSATD (left panels) and for the

averaged Galilean PSATD (right panels). For this case, we used the same parameters as

for the lower right panel of Fig. 1, i.e., γb = 130, ∆x = 6.4 × 10−2 k−1
p,r , a large timestep

c∆t = ∆z = 6∆x, and a detuned velocity vgal = 0.99 v0. (Recall from the previous sections

that the case of a detuned velocity is the one for which using a large timestep presents a

major issue.)

As can be seen in Fig. 3, the theoretical predictions (upper panels) and simulation results

(lower panels) are in good agreement, which confirms that the theoretical dispersion equa-
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Averaging interval

Time

Spectral grid (k)

Spatial grid (x)

Macroparticles

(n− 1)∆t n∆t

ρ̂n−1 Ên−1, B̂n−1 Ĵ n−1/2

pn−1/2

ρ̂n Ên, B̂n 〈Ê〉n, 〈B̂〉n

〈E〉n, 〈B〉n

xn

〈E〉(xn), 〈B〉(xn)

pn+1/2

Particle momenta push

Field gathering

Inverse FFT

Galilean PSATD

Field push: Eqs. (A.9) and (A.10)

FIG. 2: Illustration of the field push and particle momenta push, in the

averaged Galilean PSATD algorithm. The quantities represented in solid frames are

the ones that are known just before the field and particle push. (Note that this includes

the deposited charge and current ρ̂ and Ĵ .) The quantities in dashed and dotted frames

are the ones that are being computed during the field and particle push. As part of the

field push, the regular fields Ê and B̂ are updated, and the averaged fields 〈Ê〉 and 〈B̂〉 are

calculated and transformed to the spatial grid. As part of the particle push, the averaged

fields 〈E〉 and 〈B〉 are gathered onto the macroparticles, in order to update the

macroparticles’ momenta. The rest of the PIC cycle (e.g. charge and current deposition,

particle position push) is not shown here but is identical to the standard Galilean PSATD

[16, 17]. See the appendices for more details on the PIC loop and exact definitions of the

notation.

tion correctly captures the nature of the instability. (Note that growth rate measured from

simulations is typically noisy, which limits the comparison.) More importantly, both the

theoretical predictions and simulation results show that averaged Galilean PSATD (right

panels) strongly reduces the growth of the instability compared to the standard Galilean

PSATD (left panels). This confirms that averaging the fields in time inhibits spurious reso-

nances with under-resolved electromagnetic modes, and thereby enables stable simulations

with large timesteps.
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FIG. 3: NCI growth rate: Galilean PSATD vs. averaged Galilean PSATD

schemes. Normalized NCI growth rate Im(ω)/ωp,r in spectral (kx,kz) space, calculated

from the analytical stability analysis (a-b) and from WarpX simulation results (c-d),

obtained using the Galilean PSATD (a,c) and averaged Galilean PSATD (b,d) schemes, at

infinite spectral order, with large time step c∆t = ∆z = 6∆x and slightly detuned Galilean

velocity vgal = 0.99 v0.
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IV. APPLICATION TO SIMULATIONS OF PLASMA WAKEFIELD IN A LORENTZ-

BOOSTED FRAME

A. 2D LWFA

This section illustrates that the stability properties observed in the case of a uniform plasma

also apply to realistic simulations of plasma-based acceleration. To this end, we first perform

two-dimensional (2D) simulations of a laser-wakefield accelerator. In these simulations, an

x-polarized Gaussian laser pulse with amplitude a0 = 1, duration τ = 20 fs and waist w0 =

15µm propagates in a matched parabolic plasma channel with a background density of 1.0×

1018 cm−3. The simulation runs in a Lorentz-boosted frame (γb = 30) with a nodal PSATD

solver with finite order 16 [18, 27, 28]. The longitudinal resolution (in the boosted frame) is

set to ∆z = 2γbλlab/32 = 1.52µm, while the transverse resolution is ∆x = 0.15µm, so that

∆z = 10∆x. We run the simulation with the standard and averaged Galilean PSATD, and

with a small timestep (c∆t = ∆x) as well as large timesteps (c∆t = 5∆x and c∆t = 10∆x).

Fig. 4 displays snapshots of the longitudinal electric field Ez and of the longitudinal current

density Jz in the boosted frame, for these different cases. In these colormaps, the rapid

oscillations of Ez for z > 0 mm correspond to the longitudinal component of the laser field,

which undergoes significant non-linear evolution and red-shifting, while the slow oscillations

of Ez and Jz for z < 0 mm correspond to the plasma wakefield.

As expected, the standard Galilean PSATD is stable for a small timestep (panel (a)), but

unstable for large timesteps (panels (c) and (e)). More specifically, in panels (c) and (e),

spurious oscillations rapidly grow in the wakefield and severely disrupt its structure. We

also note that the results of the averaged Galilean PSATD with a small timestep (panel

(b)) are almost indistinguishable from those of the standard Galilean PSATD (panel (a)) -

thereby confirming that averaging the fields in time preserves the essential physics. More

importantly, for large timestep (panel (d) and panel (f)), the averaged Galilean PSATD

achieves stability while preserving the overall structure of the wakefield. Indeed for c∆t =

5∆x (panel (d)) the Ez field is still almost indistinguishable from that of panel (a). For

c∆t = 10∆x (panel (f)), small differences become noticeable, especially in the red-shifted

laser oscillations - although they hardly affect the structure of the accelerating wakefield.

This may indicate that this value of ∆t starts to reach the limit for which the simulation is
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not well-resolved in time anymore.

We also note that, both for c∆t = 5∆x (panel (d)) and c∆t = 10∆x (panel (f)), small

transverse oscillations become noticeable in Jz for z < −1.0 mm. These oscillations may

be due to the remaining non-zero growth rate of the averaged Galilean algorithm (see the

growth rates represented in panel (b) and (d) of Fig. 3). However, their magnitude is small

enough that they do not lead to a modulation of the electric field, hence they do not affect

the dynamics. Again, this represents a clear improvement compared to the standard Galilean

algorithm (panel (b) and (e)).

B. 3D LWFA

In order to show that the advantageous stability properties of the averaged Galilean PSATD

generalize to 3D, we ran a 3D LWFA simulation using the same physical and numerical pa-

rameters as in section IV A. We note that, in this case, we had to use domain decomposition

in order to be able to run the simulation. This setup was run with the standard Galilean

PSATD and the averaged Galilean PSATD, both with a large timestep c∆t = 10∆z. Fig-

ure 5 displays corresponding snapshots. As can be seen, the standard Galilean PSATD

algorithm is unstable for this large timestep, while the averaged Galilean PSATD algorithm

remains stable. This is again consistent with the 2D results and confirms the benefits of the

proposed averaged algorithm.

C. 3D PWFA

We now go beyond the stability analysis, and show that the algorithm can speed up a full-

scale plasma-wakefield simulation while preserving the physical results of interest. Here we

focus on a 3D simulation of beam-driven wakefield acceleration. In this simulation, a 1 nC

Gaussian electron beam propagates in a plasma with a background density of 1.0×1017 cm−3,

and experiences a typical evolution whereby the head of the beam erodes while the tail of

the beam performs betatron oscillations in the generated wakefield. The electron beam

initially has a mean Lorentz factor γ = 2000, with a relative RMS spread ∆γ/γ = 0.01,

and a transverse and longitudinal RMS size of 5µm and 20µm respectively. The simulation

is run in a Lorentz-boosted frame (γb = 5.6), with 5123 cells of size ∆x = ∆y = 0.78µm,
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FIG. 4: Instability mitigation in a 2D laser-wakefield simulation with large

timestep. The upper half of each subplot shows the Ez field seen by the macro-particles

(i.e., the regular Ez field for the standard Galilean PSATD, and the averaged 〈Ez〉 field for

the averaged Galilean PSATD). The lower half of each subplot shows the longitudinal

current density Jz of the plasma. All the fields are shown in the boosted frame. The

different subplots correspond to the standard Galilean PSATD (a,c,e) and averaged

Galilean PSATD (b,d,f), with c∆t = 0.1∆z = ∆x (a-b), c∆t = 0.5∆z = 5∆x (c-d) and

c∆t = ∆z = 10∆x (e-f).

∆z = 5µm = 6.4 ∆x (in the boosted frame), and a nodal PSATD solver with finite order 16

[18, 27, 28]. In order to verify again that the averaged Galilean PSATD algorithm preserves

the physics of interest, we run the simulation both with the standard Galilean PSATD

algorithm and a small timestep c∆t = ∆x (fiducial case) and with the averaged Galilean
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FIG. 5: Instability mitigation in a 3D laser-wakefield simulation with large

timestep. The upper half of each subplot shows the Ez field seen by the macro-particles

(i.e., the regular Ez field for the standard Galilean PSATD (a), and the averaged 〈Ez〉 field

for the averaged Galilean PSATD (b)). The lower half of each subplot shows the

longitudinal current density Jz of the plasma. All the fields are shown in the boosted

frame with c∆t = ∆z = 10∆x.

PSATD algorithm and a large timestep c∆t = ∆z. In both cases, we ran the WarpX code

on the Summit supercomputer, using 24 GPUs with domain decomposition along z.

The top panels of Figure 6 display colormaps of the wakefield in the laboratory frame,

which were reconstructed on-the-fly during the boosted-frame simulation. Again, the simu-

lation with the large timestep and the averaged Galilean PSATD is stable (panel (b)) and

the simulated wakefield is almost indistinguishable from that produced from the fiducial

small-timestep simulation (panel (a)). In addition, panels (c) and (d) in Figure 6 show

the evolution of the emittance and relative energy spread of the driver beam in the labo-

ratory frame, as it undergoes head erosion and betatron oscillation. This is obtained from

laboratory-frame particle data that is reconstructed on-the-fly during the boosted-frame

simulation. As can be seen, the evolution of these beam quantities show excellent agreement

between the fiducial small-timestep simulation and the large-timestep with the averaged

Galilean PSATD.

Thus, in the above example, the averaged Galilean PSATD allowed stable simulations to be

run with a large timestep while preserving the integrity of the physics at stake. We note
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FIG. 6: Algorithm comparison for a 3D plasma-wakefield simulation. (a,b)

Snapshot of the Ez field (〈Ez〉 in the case of the averaged Galilean PSATD) in the

laboratory frame, for the small-timestep (c∆t = ∆x) standard Galilean PSATD simulation

(a) and large-timestep (c∆t = ∆z) averaged Galilean PSATD simulation (b) with fixed

∆z = 6.4∆x. The green dots are representative random samples of the macroparticles in

the beam driver. (c,d) Evolution of the emittance and relative energy spread of the beam,

in the laboratory frame.

that, as a consequence of the large timestep, the simulation using the averaged Galilean

PSATD exhibited a 5× overall speed-up compared to the small-timestep standard Galilean
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PSATD simulation, on the Summit supercomputer.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a modified PIC algorithm that enables stable boosted-frame sim-

ulations of plasma-based acceleration with a large timestep c∆t� ∆x, where ∆x represents

the smallest cell size. This was achieved by using a CFL-free Galilean PSATD solver and by

averaging the E and B fields in time, in order to inhibit spurious resonances with under-

resolved, aliased electromagnetic modes. We demonstrated this novel scheme in realistic 2D

and 3D plasma-wakefield simulations.

We note that the proposed algorithm could certainly be further refined and improved upon

in the future. For instance, although the proposed algorithm strongly reduces the NCI

growth rate for large timesteps, it does not completely eliminate it. As a consequence, the

NCI at large timesteps could still be an issue for certain sets of parameters.

In conclusion, this work demonstrates that it is possible to run boosted-frame simulations

with a much larger timestep than the traditional CFL limit, while still accurately capturing

the physics. This new development enables potential speedups of an order of magnitude or

more, opening up a new area of investigation within the field of first-principles, Particle-In-

Cell modeling of plasma-wakefield particle accelerators, whereby the simulation timestep is

chosen much more freely than before.

Although the present work is focused on simulations of plasma accelerators and on a partic-

ular method (the averaged Galilean PSATD), it could have a wider impact. For instance,

even though the algorithm proposed here builds specifically upon the PSATD framework,

the central idea (namely averaging the fields in time) is fairly general and could thus also

guide the future development of similar solutions for FDTD-based methods. In addition,

beyond the plasma accelerator community, this work may be of interest to the modeling

of advanced light sources concepts, coherent synchrotron radiation in particle accelerators,

astrophysical shocks or beam-plasma instabilities of astrophysical relativistic jets, which can

also utilize the boosted-frame PIC method for accurate modeling from first principles. We

also envision that the method that is used in this paper can be employed to overcome similar
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timestep limitations in PIC simulations that do not employ the boosted-frame technique,

with impact to a much wider range of applications.
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Appendix A: Derivation of the averaged fields

Throughout the paper, we use the notation 〈F̂〉n to refer to the averaged field within the

time interval [(n− 1
2
)∆t, (n+ 1

2
)∆t], defined as

〈F̂〉n =
1

∆t

∫ (n+1/2)∆t

(n−1/2)∆t

F̂(k, τ)dτ , (A.1)

where F̂ = F̂(k, t) =
∫
F (x, t)e−ik·xd3x refers to the Fourier transform of the F (x, t) field.

In the Galilean coordinates drifting at vgal, the p-order discretized Maxwell equations trans-

formed to Fourier space read[18]:(
∂

∂t
− i[k] · vgal

)2

B̂+c2[k]2B̂ =
1

ε0

i[k]× Ĵ , (A.2)(
∂

∂t
− i[k] · vgal

)2

Ê+c2[k]2Ê = −c
2

ε0

ρ̂i[k]

− 1

ε0

(
∂

∂t
− i[k] · vgal

)
Ĵ , (A.3)

where [k] =
√

[k]2 =
√

[kx]2 + [ky]2 + [kz]2 and where [ku] with u = {x, y, z} is the Fourier

transform of the p-order discretized stencil ∇̂u (i.e., such that a p-order Taylor expansion

yields ∇̂uF = ∂uF +O(∆up).) [27, 28].
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As explained in [16], these equations can be integrated analytically under the assumption

that the current Ĵ is constant over one timestep, and that the fields Ê , B̂, Ĵ and ρ̂ satisfy

the conservation equations. More specifically, assuming that the E and B fields are known

at t = (n−1)∆t, and under the assumption that Ĵ (k, t) is constant and equal to Ĵ n−1/2
(k)

over the time interval [(n− 1)∆t, n∆t], we can obtain the expressions of Ê(k, t), B̂(k, t) as

a function of Ên−1
, B̂n−1

, Ĵ n−1/2
, ρ̂n−1, ρ̂n:

Ê(k, t) =

[
Ên−1 − α1

c2[k]2(1− ν2)
− β1

c2[k]2

]
cos [c[k](t− (n− 1)∆t)]eiνc[k](t−(n−1)∆t)

+
α1

c2[k]2(1− ν2)
+

β1

c2[k]2
eiνc[k](t−(n−1)∆t)

+
1

c[k]

[
c2i[k]× B̂n−1 − 1

ε0

Ĵ n−1/2
+ iν

α1

c[k](1− ν2)

]
sin [c[k](t− (n− 1)∆t)]eiνc[k](t−(n−1)∆t)

(A.4)

B̂(k, t) =

[
B̂n−1 − α2

c2[k]2(1− ν2)

]
cos [c[k](t− (n− 1)∆t)]eiνc[k](t−(n−1)∆t) +

α2

c2[k]2(1− ν2)

+
1

c[k]

[
−i[k]× Ên−1

+ iν
α2

c[k](1− ν2)

]
sin [c[k](t− (n− 1)∆t)]eiνc[k](t−(n−1)∆t)

(A.5)

where ν = [k] · vgal/c[k] and

α1 =
iνc[k]

ε0

Ĵ n−1/2 − c2

ε0

ρ̂n − ρ̂n−1eiνc[k]∆t

1− eiνc[k]∆t
i[k] (A.6)

β1 =
c2

ε0

ρ̂n − ρ̂n−1

1− eiνc[k]∆t
i[k] (A.7)

α2 =
1

ε0

i[k]× Ĵ n−1/2
(A.8)

Strictly speaking, these expressions of Ê(k, t), B̂(k, t) in Eqns. (A.4) and (A.5) are only

valid for t in the interval [(n−1)∆t, n∆t] (because of the assumption Ĵ (k, t) = Ĵ n−1/2
(k)).

However, we assume that they are also approximately valid on the interval [(n−1/2)∆t, (n+

1/2)∆t] over which the fields are averaged (see Fig. 2). This is valid if Ĵ varies slowly from

one timestep to the next - i.e., if the plasma response is well-resolved in time.

Under these assumptions, we average Eqns. (A.4) and (A.5) in time as defined in Eq. (A.1),
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and obtain:

〈Ê〉n = Ψ1Ê
n−1 − icΨ2

[k]

[k]
× B̂n−1

+
(iνc[k]

ε0

A1 +
Ψ2

c[k]ε0

)
Ĵ n−1/2

+ Cρ(A2 − A1)ρ̂n
[k]

[k]
+ Cρ(θ

2A1 − A2)ρ̂n−1 [k]

[k]
,

(A.9)

〈B̂〉n = Ψ1B̂
n−1

+
i

c
Ψ2

[k]

[k]
× Ên−1

+
i[k]

ε0

A1
[k]

[k]
× Ĵ n−1/2

. (A.10)

Here again, ν = [k] · vgal/c[k], θ = ei[k]·vgal∆t/2, and the other coefficients are given by:

Cρ =
ic2[k]

ε0(1− θ2)
, (A.11a)

A1 =
Ψ1 − 1 + iνΨ2

c2[k]2(ν2 − 1)
, (A.11b)

A2 =
Ψ3 −Ψ1

c2[k]2
, (A.11c)

Ψ1 = θ
(S1 + iνC1)− θ2(S3 + iνC3)

c[k]∆t(ν2 − 1)
, (A.11d)

Ψ2 = θ
(C1 − iνS1)− θ2(C3 − iνS3)

c[k]∆t(ν2 − 1)
, (A.11e)

Ψ3 =
iθ(1− θ2)

c[k]∆tν
, (A.11f)

with Cm = cos(mc[k] ∆t/2) and Sm = sin(mc[k] ∆t/2) for m = 1, 2, 3.

Appendix B: PIC cycle overview

Fig. 2 gives an overview of a key part of the PIC loop for the averaged Galilean PSATD

algorithm. Here we describe the exact PIC loop in more detail. Assuming that we originally

know the particle positions and momenta xn at pn−1/2 and the fields En−1 and Bn−1, the

loop consists of the following steps:

1. Deposit the charge and current densities of the particles onto the spatial grid. In

particular, we deposit the charge density ρn at time t = n∆t from the particle positions

xn and the current density Jn−1/2 at time t = (n − 1
2
)∆t from the particle positions

xn−1 and xn and the particle velocities vn−1/2;

2. Transform all relevant physical quantities from physical space to Fourier space;
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3. Compute the new electromagnetic fields in Fourier space Ên and B̂n
, from the charge

and current densities ρ̂n−1 (available from the previous PIC iteration), ρ̂n and Ĵ n−1/2
;

4. Compute the averaged electromagnetic fields, 〈Ê〉n and 〈B̂〉n;

5. Transform all relevant physical quantities from Fourier space back to physical space;

6. Gather the averaged electromagnetic fields, in physical space, from the spatial grid

onto the particles;

7. Push the particles by updating their positions and momenta based on the current

values of the averaged electromagnetic fields, 〈E〉n and 〈B〉n, whose precise definition

is given in the next section. In particular, the momenta are updated from pn−1/2 to

pn+1/2 and the positions are then updated from xn to xn+1

Appendix C: Derivation of the Dispersion Relation for the Averaged Galilean PSATD

Algorithm

Here we derive the 2D dispersion relation to study the NCI induced by a relativistic plasma

flowing through a periodic grid along the z-axis with velocity v0 = v0uz, where v0 =

c(1− 1/γ2
b )

1/2. This is done by combining the discretized Maxwell equations in the Galilean

frame and the discretized Vlasov equation, and assuming small perturbations for the electro-

magnetic fields E,B and the distribution function δf . Because the Vlasov equation involves

the averaged fields 〈E〉, 〈B〉, we include their expression as a function of the regular fields

E, B in the system of equations. Hence, when expressed in spectral space, the different

equations of the system are:
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• the discretized Maxwell equations at n-th time step in time-symmetrical form [16]:

θ∗cB̂n − θcB̂n−1
= −tck

ik × (θ∗Ên + θÊn−1
)

k

+ 2χ
′

4

T̂

ε0ck

k × Ĵ n−1/2

d

k
, (C.1)

θ∗Ên − θÊn−1
= tck

ik × (θ∗cB̂n
+ θcB̂n−1

)

k

− 2χ4
T̂

ε0ck

[
Ĵ n−1/2

d − (k · Ĵ n−1/2

d )k

k2

]

− T̂ ik

ε0k2
(θ∗ρ̂n − θρ̂n−1);

(C.2)

• the perturbed Vlasov equation [16]. Note that, here, we replaced the regular fields Ê , B̂

by the averaged fields 〈Ê〉, 〈B̂〉 in order to take into account the changes associated

with the averaged Galilean PSATD.

δf̂n+1/2(km,p)eikm(v−vgal)∆t/2

− f̂n−1/2(km,p)e−ikm(v−vgal)∆t/2

+ q∆tŜ(km)
[
〈Ên(k)〉+ v × 〈B̂n

(k)〉
]
· ∂f0

∂p
= 0 ; (C.3)

• the expression of the averaged field for t ∈ [(n− 1/2)∆t, (n+ 1/2)∆t]:

〈B̂n
(k, t)〉 = Ψ1B̂

n−1
+
i

c
Ψ2
k

k
× Ên−1

+
ik

ε0

A1
k

k
× Ĵ n−1/2

(C.4)

〈Ên(k, t)〉 = Ψ1Ê
n−1 − icΨ2

k

k
× B̂n−1

+

(
iνck

ε0

A1 +
Ψ2

ckε0

)
Ĵ n−1/2

+ Cρ(A2 − A1)ρ̂n
k

k
+ Cρ(θ

2A1 − A2)ρ̂n−1k

k
. (C.5)

Here, T̂ =
∏

i

[
1−sin(ki∆i/2)

]
represents a one-pass binomial smoother, and Ŝ(km) is

the particle shape factor, with km = k+Km (Km = 2π
∑

i uimi/∆i) for i =
{
x, y, z

}
.
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As follows from the discrete continuity equation, the corrected current Ĵ n−1/2
satisfies

Ĵ n−1/2
= Ĵ n−1/2

d − (k · Ĵ n−1/2

d )k

k2

+
(k · vgal)k

k2

ρ̂n − ρ̂n−1θ2

1− θ2
. (C.6)

As in [16], we use the following Ansatz for the electromagnetic modes:

Ên(k) = Ê(k)e−i(ω−k·vgal)n∆t , (C.7a)

〈Ên(k)〉 = 〈Ê(k)〉e−i(ω−k·vgal)n∆t , (C.7b)

δf̂n−1/2(km,p) = δf̂(km,p)e−i(ω−k·vgal)(n−1/2)∆t , (C.7c)

Ĵ n−1/2

d (k) = Ĵ d(k)e−i(ω−k·vgal)(n−1/2)∆t , (C.7d)

ρ̂n(k) = ρ̂(k)e−i(ω−k·vgal)n∆t , (C.7e)

and after some amount of algebra, we derive the following equations for Ĵ d(k) and

ρ̂(k) from the Vlasov equation (see a similar derivation in [16]):

〈F̂(k)〉 = 〈Ê(k)〉+ v0 × 〈B̂(k)〉

− (v0 · 〈Ê(k)〉)v0/c2 , (C.8)

Ĵ d = i
ckε0

T̂

(
ξ1〈F̂〉+ (ξ2 · 〈F̂〉)

v0
c

)
, (C.9)

ρ̂ =
ikε0

T̂
(ξ3 · 〈F̂〉) , (C.10)

In addition, by substituting the expressions (C.6) and (C.7) into (C.1), (C.2), (C.4),
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the problem is reduced to the following set of equations to be solved:

sωcB̂ = tckcω
k × Ê
k

+ χ
′

4

T̂

ε0ck

ik × Ĵ d

k
, (C.11)

sωÊ = −cωtck
kcB̂
k
− isω

T̂k

ε0k2
ρ̂

− iχ4
T̂

ε0ck

[
Ĵ d −

(k · Ĵ d)k

k2

]
, (C.12)

θ2c〈B̂〉 = Ψ1cB̂eiω∆t + iΨ2
k × Ê
k

eiω∆t

+
ickA1T̂ θ

ε0

k × Ĵd
k

e
iω∆t

2 , (C.13)

θ2〈Ê〉 = Ψ1Êeiω∆t − icΨ2
k

k
× B̂eiω∆t

+
iAνT̂

ckε0

θe
iω∆t

2

[
Ĵ d −

(k · Ĵ d)k

k2

]

+
ikρ̂T̂

ε0k2

c2k2A2(θ2 − eiω∆t)

(1− θ2)
.

+
c2k2A2θ

2(c2k2A1 − νAν)(eiω∆t − 1)

(1− θ2)

(C.14)

Here, Aν = νc2k2A1 − iΨ2, and the ξ1, ξ2,3 coefficients represent the plasma response (for

more details see Appendix A in [16]):

ξ1 =
T̂ ω2

p

γ0ck

∑
m

Ŝ2(km)

s′ω
, (C.15)

ξ2 =
T̂ ω2

p

γ0k

∑
m

cω′Ŝ2(km)

s2
ω′

km , (C.16)

ξ3 =
T̂ ω2

p

γ0k

∑
m

Ŝ2(km)

s2
ω′

km , (C.17)

where

cω′ = cos

(
ω − k · v0 −Km(v0 − vgal)

2∆t−1

)
, (C.18)

sω′ =
2

∆t
sin

(
ω − k · v0 −Km(v0 − vgal)

2∆t−1

)
. (C.19)

By projecting equations (C.12) and (C.14) along y and equations (C.9), (C.11) and (C.13)

along x and z, the final system of equations can be written in the matrix form

MavU = 0 , (C.20)
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where Mav is the block matrix

Mav =



−θ2 0 0

M 0 −θ2 0 N

0 0 −θ2

0 0 0 1 0 0

0 0 0 P 0 1 0

0 0 0 0 0 1

0 0 0

R 0 0 0 Q

0 0 0



(C.21)

and U is the vector

U =

(
cB̂y, Êz, Êx, c〈B̂y〉, 〈Êz〉, 〈Êx〉,

Ĵz
ckε0

,
Ĵx
ckε0

,
ρ̂

kε0

)T

. (C.22)

The resulting dispersion relation is given by the determinant equation

detMav = 0. (C.23)
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Here, the individual matrices defining Mav read

M = eω


Ψ1 −iΨ2kxn iΨ2kzn

−iΨ2kxn Ψ1 0

iΨ2kzn 0 Ψ1

 , (C.24a)

N = θ
√
eω T̂


−iA1kxn iA1kzn 0

ik2
xnAν −ikxnkznAν ikznrων

−ikxnkznAν ik2
znAν ikxnrων

 , (C.24b)

P =
1

T̂


iβ2

0ξ2x −i(1− β2
0)(β0ξ2z + ξ1) −iβ0ξ2x

iβ0ξ1 0 −iξ1

iβ0ξ3x −i(1− β2
0)ξ3z −iξ3x

 , (C.24c)

R =


sω cωkxntck −cωkzntck

cωkxntck sω 0

−cωkzntck 0 sω

 , (C.24d)

Q = T̂


ikxnχ

′
4 −ikznχ

′
4 0

ik2
xnχ4 −ikxnkznχ4 ikznsω

−ikxnkznχ4 ik2
znχ4 ikxnsω

 , (C.24e)

with kxn = kx/k, kzn = kz/k, β0 = v0/c, cω = cos(ω∆t/2), sω = sin(ω∆t/2), and

rων =
θ∗
√
eω

A2(θ2 − eiω∆t) + θ2(A1 − νAν)(eiω∆t − 1)

(1− θ2)
. (C.25)

Even though the matrix Mav has multiple zeros entries, it is difficult to find an analytical

solution of equation (C.23) for any pair (kx, kz). To solve it numerically, we used the secant

method as a root-finding algorithm, which allowed us to calculate the NCI growth rates

across a wide range of frequencies.

We remark that in the case of the standard Galilean PSATD scheme, Mav reduces to

Mav =

R Q

P I

 , (C.26)
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which is equivalent to equation (19) of [16].
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